KR102289480B1 - 마이크로 엘립소미터 - Google Patents

마이크로 엘립소미터 Download PDF

Info

Publication number
KR102289480B1
KR102289480B1 KR1020200030389A KR20200030389A KR102289480B1 KR 102289480 B1 KR102289480 B1 KR 102289480B1 KR 1020200030389 A KR1020200030389 A KR 1020200030389A KR 20200030389 A KR20200030389 A KR 20200030389A KR 102289480 B1 KR102289480 B1 KR 102289480B1
Authority
KR
South Korea
Prior art keywords
polarization
sample
light source
light
detector
Prior art date
Application number
KR1020200030389A
Other languages
English (en)
Inventor
박희재
최가람
Original Assignee
서울대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 서울대학교산학협력단 filed Critical 서울대학교산학협력단
Priority to KR1020200030389A priority Critical patent/KR102289480B1/ko
Priority to PCT/KR2020/019482 priority patent/WO2021182732A1/ko
Application granted granted Critical
Publication of KR102289480B1 publication Critical patent/KR102289480B1/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/21Polarisation-affecting properties
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J4/00Measuring polarisation of light
    • G01J4/04Polarimeters using electric detection means
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/28Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising
    • G02B27/283Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising used for beam splitting or combining

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

본 발명은 마이크로 엘립소메트리에 관한 것이다. 상기 마이크로 엘립소메트리는, 광원; 상기 광원을 편광시키는 편광생성기; 상기 편광생성기를 거친 상기 광원을 분할하는 광분할기; 상기 광분할기를 거친 빔을 샘플에 조사되도록 하는 대물렌즈; 상기 대물렌즈를 거쳐 샘플로부터 반사된 빔의 초점을 후초점면으로 맞추는 렌즈부; 상기 후초점면을 통과한 빔의 편광을 해석하는 편광해석기; 상기 편광해석기의 후단에 배치되어 상기 후초점면의 이미지를 획득하는 디텍터; 상기 디텍터에 의해 획득된 이미지를 신호 처리하여 샘플의 물리적 정보를 추출하는 신호처리부;를 포함하는 것을 특징으로 한다.

Description

마이크로 엘립소미터{Micro-Ellipsometer}
본 발명은 마이크로 엘립소미터에 관한 것으로, 특히 샘플에서 반사되는 빔의 후초점면을 이미지화하여 다양한 입사각에 대한 정보를 동시에 획득하고, 다파장 광원을 이용하여 각 파장별로 샘플의 편광 특성을 동시에 분석하며, 위상지연자에 의해 샘플의 광학적 분석을 위한 추가 파라미터 추출이 가능하도록 한 마이크로 엘립소미터에 관한 것이다.
본 발명은 박막의 두께 내지 광학 특성을 측정하는 엘립소미터에 관한 것이다. 빛을 샘플에 비스듬하게 입사시켰을 때, 빛의 입사 경로와 반사 경로에 의해 빛의 입사면이 정의된다. 전기장의 진동 방향에 따라 입사면에 평행한 것을 P파, 수직한 것을 S파라고 한다. P파와 S파는 서로 독립적인 진폭 및 위상을 갖는다.
일반적으로, 선형 편광되어 있고, P파와 S파의 성분을 모두 가지고 있는 빛을 샘플에 비스듬하게 입사시키면 반사된 빛은 타원 편광이 있다. P파와 S파의 상대 진폭 변화비(Ψ)와 위상차(Δ)를 의미하는 파라미터를 분석하여, 상기 타원 편광의 상태를 해석하고, 이론적인 신호와 비교하여 박막의 두께 내지 광학 상수를 측정하는 장비가 엘립소미터이다.
상기 엘립소미터로는, 특정한 입사각과 반사각에 대한 편광 해석을 요구하므로, 도1에 도시된 바와 같이, 샘플에 광을 경사지게 입사시키는 경사 입사 엘립소미터가 있다. 그러나 상기 경사 입사 엘립소미터는 수직 입사 구조를 갖는 동축 광학계에 비하여 크기가 커지고, 측정 스팟의 크기가 커져 극소 부위의 측정이 불가능한 단점이 있다. 또한, 편광 상태를 변화시키기 위해서 별도의 구동부를 구비하여 편광 상태를 조절하는데, 이러한 구동부에 의해 측정 시간이 오래 걸리고 구동부의 동작시 오차가 커지는 단점이 있다.
이러한 문제를 해결하기 위해서, 동축 광학계로 이루어지는 마이크로 엘립소미터가 연구되고 있다. 상기 마이크로 엘립소미터는 동축 광학계를 구성하므로 장비의 사이즈를 축소하고 고배율의 대물렌즈를 작용할 수 있는 장점이 있다. 그러나, 종래 마이크로 엘립소미터는 특정 파장에 대한 정보를 분석하므로, 여러 파장에 대한 정보를 분석하기 위해서는 특정 파장을 조사하여 측정하고, 광원의 파장을 변화시킨 후 다시 다른 파장을 조사하여 측정하여야 한다. 따라서 반복된 작업으로 측정의 번거로움 내지 측정 시간이 과하게 소요되는 단점이 있었다.
본 발명은 상술한 바와 같은 문제점을 개선하기 위해 안출된 것으로, 특히 샘플에서 반사되는 빔의 후초점면을 이미지화하여 다양한 입사각에 대한 정보를 동시에 획득하고, 다파장 광원을 이용하여 각 파장별로 샘플의 편광 특성을 동시에 분석하며, 위상지연자에 의해 샘플의 광학적 분석을 위한 추가 파라미터 추출이 가능하도록 한 마이크로 엘립소미터를 제공함을 그 목적으로 한다.
본 발명의 실시예에 따른 마이크로 엘립소메트리는, 광원; 상기 광원을 편광시키는 편광생성기; 상기 편광생성기를 거친 상기 광원을 분할하는 광분할기; 상기 광분할기를 거친 빔을 샘플에 조사되도록 하는 대물렌즈; 상기 샘플로부터 반사된 빔이 상기 대물렌즈를 거쳐 형성하는 후초점면에 초점을 맞추는 렌즈부; 상기 후초점면을 통과한 빔의 편광을 해석하는 편광해석기; 상기 편광해석기의 후단에 배치되어 상기 후초점면의 이미지를 획득하는 디텍터; 상기 디텍터에 의해 획득된 이미지를 신호 처리하여 샘플의 물리적 정보를 추출하는 신호처리부;를 포함하는 것을 특징으로 한다.
또한, 상기 광원으로부터 복수의 단파장 빛을 필터링하도록, 상기 광원과 상기 디텍터 사이에 마련되는 다중대역필터를 포함하고, 상기 디텍터는 상기 각 단파장 빛을 검출하도록 상기 각 단파장 빛에 대응하는 복수의 센서필터를 구비하는 것이 바람직하다.
또한, 상기 편광생성기와 상기 광분할기의 사이에 마련되어, 편광된 빔의 위상을 지연시키는 위상지연자를 포함하는 것이 바람직하다.
또한, 상기 다중대역필터는 상기 광원을 적어도 3가지 파장의 단파장 빛으로 필터링하는 것이 바람직하다.
또한, 상기 편광생성기 및 상기 광분할기는 상기 광원의 편광 및 분할을 함께 수행하는 편광빔스플리터에 통합된 것이 바람직하다.
본 발명에 따른 마이크로 엘립소미터는, 샘플에서 반사되는 빔의 후초점면을 이미지화하여 다양한 입사각에 대한 정보를 동시에 획득하는 효과를 제공한다.
또한, 다파장 광원을 샘플에 동시에 조사하고, 상기 광원이 상기 샘플로부터 반사되어 나올 때, 각 파장별로 샘플의 편광 특성을 동시에 분석할 수 있는 효과를 제공한다.
또한, 위상지연자를 사용함으로써, 샘플의 광학적 분석을 위한 추가적인 파라미터를 추출이 가능한 효과를 제공한다.
도1은 종래 엘립소미터를 도식적으로 보인 도면,
도2는 본 발명의 실시예에 따른 마이크로엘립소미터의 개념도,
도3은 후초점면에서 초점의 위치와 입사각의 관계를 도식적으로 도시한 도면,
도4는 수직광학계에서 방위각에 따른 입사광과 반사광의 편광상태를 보여주는 도면,
도5는 후초점면을 이미지화한 도면,
도6은 반사광을 구성하는 수학적 파라미터를 푸리에 변환하여 파장 및 입사각에 그래프로 표현한 도면,
도7은 이지미획득부에 의해 획득된 이미지를 푸리에 변환하여 특정 파라미터에 대한 측정값을 도시할 때, 파장 및 입사각에 정보를 동시에 획득한 모습을 보여주는 도면이다.
이하, 본 발명에 따른 바람직한 실시예를 첨부된 도면을 참조하여 상세히 설명한다.
도2는 본 발명의 실시예에 따른 마이크로엘립소미터의 개념도이고, 도3은 후초점면에서 초점의 위치와 입사각의 관계를 도식적으로 도시한 도면이다. 도4는 수직광학계에서 방위각에 따른 입사광과 반사광의 편광상태를 보여주는 도면이고, 도5는 후초점면을 이미지화한 도면이다. 도6은 반사광을 구성하는 수학적 파라미터를 푸리에 변환하여 파장 및 입사각에 그래프로 표현한 도면이고, 도7은 이지미획득부에 의해 획득된 이미지를 푸리에 변환하여 특정 파라미터에 대한 측정값을 도시할 때, 파장 및 입사각에 정보를 동시에 획득한 모습을 보여주는 도면이다.
본 발명의 일 실시예 따른 마이크로 엘립소메트리는, 광원(10), 편광생성기(20), 광분할기(30), 대물렌즈(40), 렌즈부(50), 평광해석기, 디텍터(70), 및 신호처리부(80)를 포함한다.
상기 광원(10)은 광을 방출하기 위해 마련된다. 상기 광원(10)은 백색광원이 사용된다. 상기 광원(10)으로는 텡스텐-할로겐 램프, Xe 램프 등 다양한 소스가 사용될 수 있다.
상기 편광생성기(20)는, 상기 광원(10)의 후단에 마련되어 상기 광원(10)을 편광시키기 위해서 마련된다. 상기 편광생성기(20)는, 광원(10)이 특정 성분을 갖도록 편광시킨다. 본 실시예에 따르면, 상기 광원(10)은 상기 편광생성기(20)에 의해 선형 편광된다.
상기 광분할기(30)는, 상기 광원(10)을 분할하여 샘플(200)로 광을 유도하기 위해서 마련된다. 본 실시예에 따르면, 상기 광분할기(30)에 의해 분할된 빔은 수직 하측에 배치되는 샘플(200) 측으로 나아간다. 한편, 상기 편광생성기(20) 및 상기 광분할기(30)는 상기 광원의 편광 및 분할을 함께 수행하는 편광빔스플리터(Polarizing Beam Splitter)에 의해 통합되어 구현될 수 있다.
상기 대물렌즈(40)는, 상기 광분할기(30)에 의해 분할된 빔을 샘플(200)로 조사한다. 상기 빔은 상기 대물렌즈(40)를 거치 후 상기 샘플(200)에 조사되고, 상기 샘플(200)로부터 반사되어 다시 대물렌즈(40)를 거쳐 광분할기(30)를 거쳐 편광해석기(60)로 들어간다.
상기 렌즈부(50)는, 상기 샘플로부터 반사된 빔이 상기 대물렌즈를 거쳐 형성하는 후초점면(BP)(Back focal plane)에 초점을 맞춘다. 상기 후초점면(BP)은 동일한 입사각을 가진 빛들이 상기 샘플(200)에 반사되어 되돌아올 때 다시 모이는 면으로서, 상기 후초점면(BP)을 이미징하면 입사각에 대한 데이터를 얻을 수 있다. 본 실시예에 따르면, 상기 렌즈부(50)는 상기 후초점면(BP)과 디텍터(detector,70) 사이에 마련되며, 상기 디텍터(70)가 상기 후초점면(BP)의 이미지를 볼 수 있도록 작용한다.
상기 편광해석기(60)는 상기 후초점면(BP)을 통과한 빔의 편광을 해석하기 위해서 마련된다. 상기 편광해석기(60)는 실질적으로 편광생성기(20)와 동일한 편광기를 사용할 수 있으며, 그 기능면에서 상기 편광생성기(20)는 편광을 만들어내는 작용을 하고, 상기 편광해석기(60)는 편광을 해석하는 작용을 한다.
상기 디텍터(70)는, 상기 편광해석기(60)의 후단에 배치되어 상기 후초점면(BP)의 이미지를 획득하기 위해서 마련된다. 또한, 상기 신호처리부(80)는 상기 디텍터(70)에 의해 획득된 이미지를 신호처리하여 샘플(200)의 물리적 정보를 추출하기 위해서 마련된다.
도3 및 도4을 참조하여, 상기 후초점면(BP)을 통해 샘플(200)의 편광 특성을 측정하는 것을 좀 더 구체적으로 설명한다. 도4에 도시된 바와 같이, 마이크로 엘립소미터가 편광자만을 사용할 때, 후초점면(BP)에 빛의 편광 정보가 어떻게 실리는지 보여준다. 선형 편광되어 있는 빛은 한쪽 방향으로만 편광되어 있지만, 후초점면(BP) 상에서는 극좌표계로 표현될 경우, 후초점면(BP)에서 다른 방향의 편광 정보를 갖게 된다. 도4에 있어서, 선형 편광된 빛은 파란색 화살표와 같은 편광상태를 갖는데, 후초점면(BP)에서 극좌표계에 따르면 방위각에 따라 틀어져서 입사되는 효과가 있으므로, 결과적으로 빛은 회전되는 편광자를 통과한 것과 같은 효과를 갖게 된다.
따라서, 수평 방향으로 파란색으로 표기된 선형 편광된 빛이 각 원호(대물렌즈)를 통과할 때, P라고 표기된 좌표축은 각 지점에서의 입사면이 되고, 각 지점마다 입사면이 변하게 되어 p파 및 s파의 성분 비율이 변화하게 된다. 도4를 기준으로, 그 중심에서 반지름 방향으로 샘플(200)에 입사하는 입사각θ가 달라지게 된다.
이를 디텍터(70)에 의해 시뮬레이션하면, 도5에 도시된 바와 같다. 원형의 이미지에서 원의 반지름 축은 입사각을 의미하고, 0부터 대물렌즈(40)의 개구수 (NA)에 따른 최대 입사각을 따라 데이터를 획득할 수 있다. 따라서, 편광 상태를 변경하기 위해서 편광자를 회전시키는 별도의 구동부를 구비하지 않고, 다양한 편광상태에 대한 정보와 다양한 입사각에 대한 정보를 획득할 수 있다.
본 발명 실시예에 따르면, 다중대역필터(90), 센서필터(110), 위상지연자(100)를 더 포함한다.
상기 다중대역필터(90)는, 상기 광원(10)으로부터 복수의 단파장 빛을 필터링하도록, 상기 광원(10)과 상기 디텍터(70) 사이에 마련된다. 본 실시예에 따르면, 상기 다중대역필터(90)는 상기 광원(10)과 상기 편광생성기(20) 사이에 마련된다. 물론, 상기 대중대역필터(90)의 위치는 상기 광원(10)과 상기 편광생성기(20) 사이로 한정되는 것은 아니다. 즉, 상기 광원(10)과 상기 디텍터(70) 사이의 광 경로 상에 마련될 수 있다. 상기 광원(10)은 n개의 대역필터(narrow bandpass filter)를 거치도록 구성될 수 있다. 본 실시예에 따르면, 적어도 3가지 파장의 단파장 빛을 획득하도록 구성될 수 있다. 상기 광원(10)은 Red, Green, Blue에 대응하는 단파장으로 필터링된다. 상기 광원(10)은 상기 3개의 대역필터를 개별적으로 거친 후 3개의 단파장 빛이 합성된 형태가 된다.
상기 센서필터(110)는, 상기 다중대역필터(90)를 통해 만들어진 각 단파장 빛을 검출하기 위해서 마련된다. 상기 센서필터(110)는 상기 복수의 단파장 빛에 대응하여 복수로 마련된다. 상기 센서필터(110)는 상기 디텍터(70)에 마련되어, 상기 디텍터(70)가 각 단파장 빛에 의한 이미지를 동시에 획득할 수 있도록 한다.
상기 위상지연자(100)는, 상기 편광생성기(20)를 통과하고 상기 편광해석기(60)로 들어오는 광 경로 상에 마련되어, 편광된 빛의 위상을 지연시키기 위해서 마련된다. 상기 위상지연자(100)는, 디텍터(70)에 의해 수신된 이미지를 신호 처리할 때, 편광된 P파와 S파의 위상차(Δ)에 의해 주어지는 sin(Δ) 값을 추출하여 샘플(200)에 대한 더욱 상세한 정보를 추출하기 위해서 마련된다.
본 실시예에 따르면, 상기 위상지연자(100)는 상기 편광생성기(20)와 광분할기(30) 사이에 마련된다. 물론, 상기 위상지연자(100)는, 상기 편광생성기(20)를 통과하고 상기 편광해석기(60)를 경유하는 광 경로 상에 마련될 수 있다. 예컨대, 상기 위상지연자(100)는, 상기 광분할기(30)와 상기 편광해석기(60) 사이에 마련될 수 있다.
또한, 상기 위상지연자(100)는 상기 편광생성기(20)에서 편광해석기(60)로 나아가는 경로 상에 적어도 하나 이상이 마련될 수 있다. 예컨대, 상기 위상지연자(100)는 2개가 마련될 수 있다. 상기 편광생성기(20)와 상기 광분할기(30) 사이 및 상기 광분할기(30)와 상기 편광해석기(60) 사이에 각각 마련될 수 있다.
이하, 상기 구성에 따른 마이크로 엘립소메트리의 작용 내지 효과를 구체적으로 설명한다.
광원(10)에서 출발한 빛은 다중대역필터(90)를 거치면서 복수의 단파장 빛으로 필터링되어, 이들이 서로 합쳐진 형태로 편광생성기(20)로 들어간다. 상기 편광생성기(20)에서 상기 단파장들의 합성된 빛은 위상지연자(100)를 경유하면서 P파와 S파의 위상 지연이 발생한다. 그리고 상기 광분할기(30)를 거치면서, 상기 위상지연된 빛은 대물렌즈(40)를 거쳐 샘플(200)에 반사되어 되돌아오고, 광분할기(30), 편광해석기(60), 렌즈부(50)를 순차적으로 경유하여 디텍터(70)로 들어온다.
도5에 도시된 바와 같이, 상기 디텍터(70)는 상기 렌즈부(50)에 의해 후초점면(BP)을 이미지화한다. 도5에 도시된 바와 같이, 샘플(200)로 들어가는 방위각 및 입사면이 변화하면, P파 및 S파의 구성비가 변화하고, 도5를 기준으로 반지름 r에 따라 샘플(200)에 들어가는 입사각이 변화한다. 따라서, 상기 디텍터(70)가 획득한 이미지 신호에는 파장 및 입사각에 따른 샘플(200)에 대한 정보를 포함하고 있다.
신호처리부(80)는, 상기 디텍터(70)가 획득한 이미지를 푸리에 변환하고, 푸리에 변환식에 표현되는 파라미터에 대한 정보를 이용하여 샘플(200)의 물리적 정보를 추출한다.
상기 디텍터(70)가 편광생성기(20) 및 위상지연자(100)를 거친 빛에 대한 후초점면(BP)의 이미지를 획득할 때, 이미지의 신호는 다음과 같이 주어진다. 아래 수학식1에서 I는 디텍터(70)에 의해 수신된 광량의 세기이고, ρ는 빛이 샘플(200)에 입사하는 방위각, α2는 저주파의 실수부 파라미터이고, α4는 고주파의 실수부 파라미터이다. 또한, β2는 저주파의 허수부 파라미터이고, β4는 고주파의 허수부 파라미터이다.
[ 수학식1 ]
I = DC{ 1+ α2cos(2ρ) + α4cos(4ρ) + β2sin(2ρ) + β4sin(4ρ) }
여기서,
DC =
Figure 112020025976588-pat00001
,
α2 =
Figure 112020025976588-pat00002
Figure 112020025976588-pat00003
,
α4 =
Figure 112020025976588-pat00004
,
β2 =
Figure 112020025976588-pat00005
Figure 112020025976588-pat00006
β4 =
Figure 112020025976588-pat00007
상기 α2424 에 있어서, P는 편광생성기의 각도, C는 위상지연자의 각도, A는 편광해석기의 각도를 나타낸다. 그리고, M11, M12, M22,M33은 샘플의 광학적 특성을 나타내는 뮬려 행렬의 성분으로, 즉 샘플의 뮬려 행렬을 다음과 같이 나타나는 샘플에 대한 물려 행렬의 대응 성분값을 의미한다. 그리고, 아래에서 Ψ는 P파와 S파의 진폭비, Δ는 P파와 S파의 위상차를 나타낸다.
Figure 112020025976588-pat00008
Figure 112020025976588-pat00009
여기서, P=A=0이고, C=π/4 이면, 상기 파라미터 중 α2와 β2는 다음과 같이 주어진다.
[ 수학식2 ]
DC = M11/4
α2 = 1/DC × M12/8
β2 = 1/DC × M34/4
상기 파리미터들 α2, β2를 광이 샘플(200)에 입사하는 각도에 따라서 그래프로 나타내면 도6과 같다. 도6의 α2 및 β2에 대응하는 그래프에 보듯이, 입사각에 따라 각 파장이 갖는 특성이 구분되어 획득됨을 알 수 있다. 위상지연자(100)가 없는 경우에는 α2 및 α4에 대한 파라미터 분석만 가능하며, 위상지연자(100)를 통과함으로써 β2 ,β4 (단, C=π/4 일때는,β2 만 추출 가능) 대한 추가적인 파라미터를 획득 분석하여 샘플(200)의 물리적 특성에 대하여 더욱 상세한 정보를 추출할 수 있다.
실제 디텍터(70)가 샘플(200)에 반사된 후초점면(BP)의 이미지를 도5와 같이 획득하고, 이를 푸리에 변환하여 처리하면 도7과 같이 주어진다. 따라서, 도7은 실제 샘플(200)에 대하여 Red, Green, Blue 파장에 대하여 디텍터(70)의 각 픽셀이 획득한 신호를 푸리에 변환하여 α2 및 β2 를 그래프화한 것이다. 도7에 도시된 바와 같이, 각 파장별로 입사각에 따른 정보를 명확히 구분하여 획득할 수 있으므로, 입사각에 따른 파장별 민감도(Sensitivity)를 높일 수 있다.
상기 신호처리부(80)는, 도7과 같이 푸리에 변환을 통해 파라미터에 대한 정보를 추출하고, 그로부터 측정된 Ψ 및 Δ를 도출한다. 이를 모델링한 이론값과 비교하여 샘플(200)의 두께 및 굴절률에 대한 물리적 정보를 산출할 수 있다.
본 발명 실시예에 따르면, 상기 위상지연자(100)는 샘플(200)의 특성을 더욱 정확하게 분석할 수 있는 작용을 한다. 이하, 본원발명의 효과를 광원(10)으로부터 단일파장의 빛을 편광시켜서 샘플(200)에 조사시킨 후 디텍터(70)가 검출하는 경우와 비교하여 좀 더 상세하게 설명한다. 단일파장의 광원(10)을 편광시켜 샘플(200)에 조사하면, 디텍터(70)가 검출하는 광의 세기는 아래 수학식 3와 같이 주어진다.
[ 수학식3 ]
I = DC{ 1+ α2cos(2ρ) + α4cos(4ρ)}, 여기서,
α2 = (4tan2(Ψ)-4)/(3tan2(Ψ)-2tan(Ψ)cos(Δ)+3),
α4 = (tan2(Ψ)+2tan(Ψ)cos(Δ)+1) / (3tan2(Ψ)-2tan(Ψ)cos(Δ)+3)
로 주어진다.
한편, 본 발명 실시예에 따라, 다파장 광원을 조사하고, 편광생성기(20)를 통과시킨 후 디텍터(70)에 의해 센싱되는 광의 세기는 상기 수학식 1과 같고, 이때 위상지연자(100)의 각도를 π/4로 하며, 편광생성기 및 편광해석기의 각도를 0으로 하는 경우, α2 및 β2 는 상기 수학식 2와 같다. 위상지연자(100)를 통과하지 않은 상태에서는 상기 수학식 3에서 보듯이, α2 및 α4 는 모두 각각 Ψ 및 Δ의 함수로 주어지므로, Ψ 및 Δ에서 발생된 에러가 모두 α2 및 α4 값에 영향을 주게 되나, 본 발명 실시예에 따른 수학식 2를 참조하면 α2 는 Ψ만의 함수이고, α4 는 Δ의 함수로 표현될 수 있음로, Ψ 및 Δ의 에러에 의한 상호 영향을 줄일 수 있는 효과를 제공한다.
샘플(200)의 광학적 특성은 뮬러 행렬(Mueller Matrix)로 표현될 수 있고, 이때 이들 행렬은 아래와 같이 Ψ 및 Δ가 포함된 식으로 표현된다. 아래 식에서 rp는 P파의 반사계수, rs는 S파의 반사계수, Ψ는 P파와 S파의 진폭비, Δ는 P파와 S파의 위상차를 나타낸다.
Figure 112020025976588-pat00010
위 샘플 메트릭스 성분에 있어서, 위상지연의 효과가 없는 경우에는 박스 안에 표시된 행렬들의 성분만 산출되고, 위상지연자(100)에 의해 위상 지연 효과가 있는 경우에 비로소 M43, M34(숫자는 행과 열을 표시함) 성분이 추가적으로 산출된다. 따라서, 위상지연자(100)를 이용한 경우에는 위상차에 대한 sin(Δ) 함수를 획득할 수 있다. 이러한 sin(Δ) 함수에 의해 샘플(200)의 물리적 특성을 더욱 민감하게 파악할 수 있다. 위상지연자(100)가 없는 경우, cos(Δ)의 역함수를 이용하여 Δ 정보를 추출할 수도 있으나, 이러한 경우 분석의 지연 및 모호성이 있으므로 sin(Δ)를 획득하는 것이 효과적이며, 본 발명에 따르면 cos(Δ) 및 sin(Δ) 값을 동시에 추출할 수 있는 효과를 제공한다. 예컨대, 이상적인 실리콘(silicon) 샘플의 경우, Δ는 입사각에 따라 180°또는 0°의 값만을 갖는다. 이때 cos(Δ)를 이용하면 샘플에 대한 Δ의 민감도가 낮게 된다. 그 이유는 cos 함수는 180°또는 0°부근에서 기울기가 0에 가까워 민감하게 변하지 않기 때문이다. 반면에 sin(Δ)은 180°또는 0°부근에서 가장 큰 기울기를 갖게 되므로, 샘플에서의 심호 변화를 휠씬 민감하게 센싱할 수 있다.
또한, 다시 수학식 1을 참조하면, DC는 M11 성분과 M33 성분으로 표현되고, α2 및 β2 는 M12 성분과 M34 성분으로 표현되며, α4 및 β4 는 M11과 M33으로 표현된다. 따라서, 위상지연자를 이용하여 5개의 성분, 즉 DC,α2 2 4 및 β4 의 값을 모두 산출할 수 있으므로, 샘플의 광학 정보를 완벽하게 획득할 수 있는 효과를 제공한다.
또한, 샘플(200)이 이방성 샘플(anisotropic sample)인 경우, M34 내지 M43의 성분을 구할 수 있어야 샘플(200)의 이방성 성질을 측정할 수 있기 때문에, 본 발명은 물리적 정보를 얻고자 하는 샘플(200)의 대상을 확대할 수 있는 효과를 제공한다.
이처럼, 본 발명에 따른 마이크로 엘립소미터는, 샘플(200)에서 반사되는 빔의 후초점면(BP)을 이미지화하여 다양한 입사각에 대한 정보를 파장별로 동시에 획득하는 효과를 제공한다. 또한, 위상지연자(100)를 사용함으로써, 샘플(200)의 광학적 분석을 위한 추가적인 파라미터를 추출이 가능하여 샘플(200) 특성에 대하여 더욱 상세한 정보를 추출할 수 있다.
이상, 본 발명을 바람직한 실시예들 들어 상세하게 설명하였으나, 본 발명은 상기 실시예에 한정되지 않으며, 본 발명의 범주를 벗어나지 않는 범위 내에서 여러 가지 많은 변형이 제공될 수 있다.
10... 광원 20... 편광생성기
30... 광분할기 40... 대물렌즈
50... 렌즈부 60... 편광해석기
70... 디텍터 80... 신호처리부
90... 다중대역필터 100... 위상지연자
110... 센서필터 200... 샘플
BP... 후초점면

Claims (6)

  1. 광원;
    상기 광원을 편광시키는 편광생성기;
    상기 편광생성기를 거친 상기 광원을 분할하는 광분할기;
    상기 광분할기를 거친 빔을 샘플에 조사되도록 하는 대물렌즈;
    상기 샘플로부터 반사된 빔이 상기 대물렌즈를 거쳐 형성하는 후초점면에 초점을 맞추는 렌즈부;
    상기 후초점면을 통과한 빔의 편광을 해석하는 편광해석기;
    상기 편광해석기의 후단에 배치되어 상기 후초점면의 이미지를 획득하는 디텍터;
    상기 디텍터에 의해 획득된 이미지를 신호 처리하여 샘플의 물리적 정보를 추출하는 신호처리부; 및
    상기 광원으로부터 복수의 단파장 빛을 필터링하도록, 상기 광원과 상기 디텍터 사이에 마련되는 다중대역필터를 포함하고,
    상기 필터링된 복수의 단파장 빛은 서로 합쳐진 형태로 진행하여 상기 디텍터로 들어가며, 상기 디텍터는 상기 각 단파장 빛을 검출하도록 상기 각 단파장 빛에 대응하는 복수의 센서필터를 포함하여, 상기 각 단파장에 대한 샘플의 편광 특성 및 입사각에 대한 정보를 동시에 분석하는 것을 특징으로 하는 마이크로 엘립소메트리.
  2. 삭제
  3. 제1항에 있어서,
    상기 편광생성기를 통과하고 상기 편광해석기로 들어오는 광 경로 상에 마련되는 적어도 하나의 위상지연자를 포함하는 것을 특징으로 하는 마이크로 엘립소메트리.
  4. 제1항에 있어서,
    상기 다중대역필터는 상기 광원을 적어도 3가지 파장의 단파장 빛으로 필터링하는 것을 특징으로 하는 마이크로 엘립소메트리.
  5. 제1항에 있어서,
    상기 렌즈부는, 상기 디텍터와 상기 후초점면 사이에 마련된 것을 특징으로 하는 마이크로 엘립소메트리.
  6. 제1항에 있어서,
    상기 편광생성기 및 상기 광분할기는 상기 광원의 편광 및 분할을 함께 수행하는 편광빔스플리터에 통합된 것을 특징으로 하는 마이크로 엘립소메트리.
KR1020200030389A 2020-03-11 2020-03-11 마이크로 엘립소미터 KR102289480B1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020200030389A KR102289480B1 (ko) 2020-03-11 2020-03-11 마이크로 엘립소미터
PCT/KR2020/019482 WO2021182732A1 (ko) 2020-03-11 2020-12-31 마이크로 엘립소미터

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020200030389A KR102289480B1 (ko) 2020-03-11 2020-03-11 마이크로 엘립소미터

Publications (1)

Publication Number Publication Date
KR102289480B1 true KR102289480B1 (ko) 2021-08-13

Family

ID=77313824

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020200030389A KR102289480B1 (ko) 2020-03-11 2020-03-11 마이크로 엘립소미터

Country Status (2)

Country Link
KR (1) KR102289480B1 (ko)
WO (1) WO2021182732A1 (ko)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100917912B1 (ko) * 2007-11-13 2009-09-16 한국표준과학연구원 단일 편광자 초점 타원계측기
JP2014035257A (ja) * 2012-08-08 2014-02-24 National Institute Of Advanced Industrial & Technology ミューラー行列顕微エリプソメータ
KR20160144568A (ko) * 2015-06-08 2016-12-19 (재)한국나노기술원 매질 분석 장치 및 그 방법
KR20190118603A (ko) * 2017-02-08 2019-10-18 이섬 리서치 디벨로프먼트 컴퍼니 오브 더 히브루 유니버시티 오브 예루살렘 리미티드 높은 공간 해상도의 일립소메트리에서 사용하기 위한 시스템 및 방법

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10809182B2 (en) * 2018-05-16 2020-10-20 Agency For Science, Technology And Research Differential polarisation imaging and imaging precision ellipsometry

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100917912B1 (ko) * 2007-11-13 2009-09-16 한국표준과학연구원 단일 편광자 초점 타원계측기
JP2014035257A (ja) * 2012-08-08 2014-02-24 National Institute Of Advanced Industrial & Technology ミューラー行列顕微エリプソメータ
KR20160144568A (ko) * 2015-06-08 2016-12-19 (재)한국나노기술원 매질 분석 장치 및 그 방법
KR20190118603A (ko) * 2017-02-08 2019-10-18 이섬 리서치 디벨로프먼트 컴퍼니 오브 더 히브루 유니버시티 오브 예루살렘 리미티드 높은 공간 해상도의 일립소메트리에서 사용하기 위한 시스템 및 방법

Also Published As

Publication number Publication date
WO2021182732A1 (ko) 2021-09-16

Similar Documents

Publication Publication Date Title
US11175221B2 (en) Instantaneous ellipsometer or scatterometer and associated measuring method
TW200925566A (en) Single-polarizer focused-beam ellipsometer
KR101005179B1 (ko) 광학적 간섭을 이용한 ocd 측정 방법 및 장치
JP4926957B2 (ja) 光学特性計測装置及び光学特性計測方法
US11264256B2 (en) Wafer inspection apparatus
CN111542734B (zh) 快照椭圆偏振仪
WO2018102398A1 (en) A scanning white-light interferometry system for characterization of patterned semiconductor features
KR20170031642A (ko) 고속분광편광 측정장치 및 방법
JP4011902B2 (ja) 波長依存性を考慮した複屈折測定装置及び方法
US11530953B2 (en) Snapshot Mueller matrix polarimeter
KR102289480B1 (ko) 마이크로 엘립소미터
US20210262921A1 (en) Fast generalized multi-wavelength ellipsometer
WO2021130757A1 (en) Combined ocd and photoreflectance method and system
JP2001141602A (ja) 複屈折評価装置および複屈折評価方法
CN107923735B (zh) 用于推导物体表面的形貌的方法和设备
US20230124259A1 (en) Method and system for spectral imaging of density, anisotropy, and orientation
JPH10281876A (ja) 偏光性イメージング装置
CN113777048B (zh) 一种共轴超快光谱椭偏仪及测量方法
KR102015811B1 (ko) 분광 타원계를 이용한 표면 검사장치
KR102316503B1 (ko) 동축 분광 이미징 엘립소미터
CN110763633A (zh) 一种大量程成像式双折射分布测量装置及方法
US20230003576A1 (en) Apparatus for carrying out polarization resolved raman spectroscopy
KR102380250B1 (ko) 반사도 및 입사 광량의 측정 장치
US11391666B1 (en) Snapshot ellipsometer
CN116026760B (zh) 一种波长型spr传感系统及方法

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant