KR102281180B1 - 영상 처리 장치 및 방법 - Google Patents

영상 처리 장치 및 방법 Download PDF

Info

Publication number
KR102281180B1
KR102281180B1 KR1020140163506A KR20140163506A KR102281180B1 KR 102281180 B1 KR102281180 B1 KR 102281180B1 KR 1020140163506 A KR1020140163506 A KR 1020140163506A KR 20140163506 A KR20140163506 A KR 20140163506A KR 102281180 B1 KR102281180 B1 KR 102281180B1
Authority
KR
South Korea
Prior art keywords
vpl
vector
tile
cluster
normal
Prior art date
Application number
KR1020140163506A
Other languages
English (en)
Other versions
KR20160061066A (ko
Inventor
안민수
박승인
이형욱
하인우
Original Assignee
삼성전자주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성전자주식회사 filed Critical 삼성전자주식회사
Priority to KR1020140163506A priority Critical patent/KR102281180B1/ko
Priority to US14/935,875 priority patent/US10121282B2/en
Publication of KR20160061066A publication Critical patent/KR20160061066A/ko
Application granted granted Critical
Publication of KR102281180B1 publication Critical patent/KR102281180B1/ko

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T15/003D [Three Dimensional] image rendering
    • G06T15/50Lighting effects
    • G06T15/506Illumination models

Abstract

영상 처리 장치가 제공된다. 상기 영상 처리 장치는 타일 기반 디퍼드 렌더링을 위해 간접 광을 타일들에 할당할 지의 여부를 결정할 수 있다. 계산부는 렌더링될 타일의 오브젝트 법선 방향을 대표하는 제1 벡터와, 타일 할당 여부가 판단되는 간접 광의 법선 벡터인 제2 벡터 중 적어도 하나를 이용하여 상관도를 계산한다. 판단부는 이러한 상관도를 임계치와 비교함으로써 타일 할당 여부를 판단할 수 있다.

Description

영상 처리 장치 및 방법{IMAGE PROCESSING APPARATUS AND METHOD}
영상 처리 분야에 연관되며, 보다 특정하게는 전역 조명(global illumination) 또는 간접 조명(indirect illumination) 효과를 표현하는 렌더링 분야에 연관된다.
3D 게임, 가상현실(virtual reality) 애니메이션, 영화 등 다양한 분야에서, 3D 모델에 대한 실시간 렌더링(real-time rendering)에 대한 관심이 높아지고 있다. 전역 조명 기술을 이용하여 3D 장면(scene)을 렌더링하는 경우, 이미지 공간 내에서 빛의 회절, 반사 등 간접 조명 효과를 대표하는 가상 점 광원(virtual point light, VPL)들이 샘플링 된다(sampled). 이러한 VPL들은 경우에 따라 많은 수가 샘플링되는데, 이는 렌더링 과정에서의 가시성 체크(visibility check) 및 섀이딩(shading)에 많은 연산양을 필요하게 한다.
일측에 따르면, 렌더링될 제1 타일에 대응하는 적어도 하나의 오브젝트 버텍스의 법선 분포와, 3D 공간에 샘플링된 제 1 VPL의 광 조사 방향의 상관도를 계산하는 계산부; 및 상기 상관도가 제1 임계치 이상인 경우, 상기 제1 VPL을 상기 제1 타일의 렌더링에 이용되는 간접광원으로 결정하는 판단부를 포함하는 영상 처리 장치가 제공된다. 여기서 계산부는 상기 적어도 하나의 오브젝트 버텍스의 법선 방향을 대표하는 제1 벡터와 상기 제1 VPL의 법선 벡터인 제2 벡터를 이용하여 상기 상관도를 계산할 수 있다. 이 경우, 상기 제1 벡터는 상기 적어도 하나의 버텍스의 각각의 법선 벡터들의 분포를 가중 평균하여 얻은 단위 벡터일 수 있다.
한편, 상기 판단부는, 상기 3D 공간에 샘플링된 복수 개의 VPL 중, 상기 제2 벡터와의 내적이 제2 임계치 이상인 법선 벡터를 갖는 적어도 하나의 VPL을 상기 제1 타일의 렌더링에 이용될 간접광원으로 결정할 수 있다. 이 경우, 상기 영상 처리 장치는, 상기 3D 공간에 샘플링된 상기 복수 개의 VPL 중에 적어도 하나의 VPL - 상기 적어도 하나의 VPL은 상기 제2 벡터와의 내적이 제2 임계치 이상인 법선 벡터를 갖고, 상기 제1 VPL의 위치와 3 임계치 미만인 위치에 샘플된 것임 - 을 상기 제1 타일의 렌더링에 이용될 간접광원으로 결정할 수 있다.
일실시예에서, 영상 처리 장치는 상기 3D 공간에 샘플링된 복수 개의 VPL을 법선 벡터 분포에 따라 클러스터링 하는 클러스터링부를 더 포함한다. 이 경우, 상기 제2 벡터는 상기 제1 VPL을 포함하는 제1 클러스터를 대표하는 법선 벡터이다. 그리고 판단부는, 상기 제1 VPL의 상기 제1 타일에 대한 상관도가 상기 제1 임계치 이상인 경우, 상기 제1 클러스터에 포함되는 VPL을 상기 제1 타일의 렌더링에 이용될 간접광원으로 결정할 수 있다. 또한 예시적인 실시예에서, 상기 클러스터링부는, 상기 3D 공간에 샘플링된 상기 복수 개의 VPL 중 법선 벡터 내적이 제2 임계치 이상인 VPL들을 동일한 클러스터로 결정한다. 나아가, 상기 클러스터링부는, 상기 3D 공간에 샘플링된 상기 복수 개의 VPL 중 법선 벡터 내적이 상기 제2 임계치 이상이고 샘플링 위치가 제3 임계치 미만인 VPL들을 동일한 클러스터로 결정할 수도 있다.
한편 다른 일실시예에서는, 상기 제1 VPL이, 상기 3D 공간에 샘플링된 복수 개의 VPL 중 상기 제1 타일에 대응하는 뷰 프러스텀(view frustum)과 중첩되는 영향 범위를 갖는 VPL일 수도 있다.
다른 일측에 따르면, 3D 공간에 샘플링된 복수 개의 VPL을, 샘플링 된 위치 및 샘플링된 위치의 법선 벡터 방향 중 적어도 하나에 기초하여, 클러스터링 하는 클러스터링부; 및 렌더링될 제1 타일 내의 적어도 하나의 오브젝트 버텍스의 법선 방향과 상기 클러스터링에 의하여 구분되는 제1 클러스터를 대표하는 법선 방향의 상관도에 기초하여 상기 제1 클러스터를 상기 제1 타일의 렌더링에 이용할 지 여부를 결정하는 판단부를 포함하는 영상 처리 장치가 제공된다. 일실시예에서, 상기 판단부는 상기 제1 타일 내의 상기 적어도 하나의 오브젝트 버텍스의 법선 방향을 대표하는 제1 벡터와, 상기 적어도 하나의 오브젝트로부터 상기 제1 클러스터를 향한 방향의 단위 벡터인 제2 벡터 간의 내적이 제1 임계치 이상인 경우, 상기 제1 클러스터를 상기 제1 타일의 렌더링에 이용하는 것으로 결정할 수 있다. 상기 판단부는 상기 제1 클러스터를 대표하는 법선 벡터인 제3 벡터와, 상기 제1 클러스터로부터 상기 적어도 하나의 오브젝트를 향한 방향의 단위 벡터인 제4 벡터 간의 내적이 제1 임계치 이상인 경우, 상기 제1 클러스터를 상기 제1 타일의 렌더링에 이용하는 것으로 결정할 수도 있다.
또 다른 일측에 따르면, 적어도 하나의 프로세서를 포함하는 영상 처리 장치의 영상 처리 방법에 있어서, 상기 방법은: 렌더링될 제1 타일 내의 적어도 하나의 오브젝트 버텍스의 법선 방향을 대표하는 제1 벡터와, 3D 공간에 샘플링된 제1 VPL의 법선 벡터인 제2 벡터 간의 상관도를 계산하는 단계; 및 상기 상관도가 제1 임계치 이상인 경우, 상기 제1 VPL을 상기 제1 타일의 렌더링에 이용될 간접광원으로 결정하는 단계를 포함하는 영상 처리 방법이 제공된다. 일실시예에서 영상 처리 방법은, 상기 3D 공간에 샘플링된 복수 개의 VPL을 법선 벡터 분포에 따라 클러스터링 하는 단계를 더 포함할 수 있다. 이 경우, 상기 제2 벡터는 상기 제1 VPL을 포함하는 제1 클러스터를 대표하는 법선 벡터일 수 있다. 그리고, 상기 결정하는 단계는, 상기 상관도가 상기 제1 임계치 이상인 경우, 상기 제1 클러스터에 포함되는 VPL을 상기 제1 타일의 렌더링에 이용될 간접광원으로 결정할 수 있다.
일실시예에 따르면, 상기 클러스터링 하는 단계는, 상기 3D 공간에 샘플링된 상기 복수 개의 VPL 중 법선 벡터 내적이 제2 임계치 이상인 VPL들을 동일한 클러스터로 결정할 수 있다. 또한 일실시예에서 상기 클러스터링 하는 단계는, 상기 3D 공간에 샘플링된 상기 복수 개의 VPL 중 법선 벡터 내적이 제2 임계치 이상이고 샘플링 위치가 제3 임계치 미만인 VPL들을 동일한 클러스터로 결정할 수도 있다.
한편 다른 일실시예에서, 상기 제1 VPL은, 상기 3D 공간에 샘플링된 복수 개의 VPL 중 상기 제1 타일에 대응하는 뷰 프러스텀과 중첩되는 영향 범위를 갖는 VPL일 수 있다. 나아가, 상기 제1 VPL은, 상기 3D 공간에 샘플링된 복수 개의 VPL 중 상기 제1 타일에 대응하는 뷰잉 프러스텀과 중첩되는 오브젝트 상에 샘플링된 VPL일 수도 있다.
도 1은 일실시예에 따른 영상 처리 장치를 도시한 블록도이다.
도 2는 일실시예에 따라 스크린 스페이스를 복수 개의 영역으로 분할하는 과정을 설명하기 위한 도면이다.
도 3은 일실시예에 따른 타일 및 뷰 프러스텀을 도시한다.
도 4는 일실시예에 따른 노말 분석을 설명하기 위한 도면이다.
도 5는 일실시예에 따른 타일 영역의 법선 분포 및 간접광 할당을 설명하기 위한 도면이다.
도 6은 다른 일실시예에 따른 영상 처리 장치를 도시한 블록도이다.
도 7은 일실시예에 따른 간접광의 클러스터링을 설명하기 위한 도면이다.
도 8은 일실시예에 따라 뷰 프러스텀과 간접광 영향의 중첩 여부를 판단하는 과정을 설명하기 위한 도면이다.
도 9는 일실시예에 따라 타일 별로 간접광이 할당되는 과정 및 결과를 설명하기 위한 도면이다.
도 10 내지 도 11은 일실시예에 따른 영상 처리 방법을 도시한 흐름도이다.
이하에서, 일부 실시예들를, 첨부된 도면을 참조하여 상세하게 설명한다. 그러나, 이러한 실시예들에 의해 제한되거나 한정되는 것은 아니다. 각 도면에 제시된 동일한 참조 부호는 동일한 부재를 나타낸다.
아래 설명에서 사용되는 용어는, 연관되는 기술 분야에서 일반적이고 보편적인 것으로 선택되었으나, 기술의 발달 및/또는 변화, 관례, 기술자의 선호 등에 따라 다른 용어가 있을 수 있다. 따라서, 아래 설명에서 사용되는 용어는 기술적 사상을 한정하는 것으로 이해되어서는 안 되며, 실시예들을 설명하기 위한 예시적 용어로 이해되어야 한다.
또한 특정한 경우는 출원인이 임의로 선정한 용어도 있으며, 이 경우 해당되는 설명 부분에서 상세한 그 의미를 기재할 것이다. 따라서 아래 설명에서 사용되는 용어는 단순한 용어의 명칭이 아닌 그 용어가 가지는 의미와 명세서 전반에 걸친 내용을 토대로 이해되어야 한다.
도 1은 일실시예에 따른 영상 처리 장치를 도시한 블록도이다.
일실시예에 따르면 영상 처리 장치(100)는 디퍼드 렌더링(deferred rendering)을 위해 간접 광(indirect light)을 타일들에 할당할 지의 여부를 결정한다. 상기 타일들은 타일 기반 렌더링을 위해 스크린 스패이스 상에서 분할된 부분 영역들이다.
계산부(110)는 렌더링될 제1 타일 내의 적어도 하나의 오브젝트 버텍스의 법선 방향을 대표하는 제1 벡터와, 3D 공간에 샘플링된 제1 VPL의 법선 벡터인 제2 벡터 중 적어도 하나를 이용하여, 상기 제1 VPL의 상기 제1 타일에 대한 상관도를 계산한다. 상기 제1 벡터는, 상기 적어도 하나의 버텍스의 각각의 법선 벡터들의 분포를 가중 평균하여 얻은, 단위 벡터일 수 있다.
일실시예 따르면, 상기 상관도는 적어도 하나의 오브젝트로부터 상기 제1 VPL 방향으로의 제1 방향 벡터를 상기 제1 벡터와 내적한 제1 내적 값일 수 있다. 또 다른 실시예에서 상기 상관도는 상기 제1 VPL 방향으로부터 상기 적어도 하나의 오브젝트로의 제2 방향 벡터를 상기 제2 벡터와 내적한 제2 내적 값일 수도 있다. 나아가, 상기 상관도는 상기 제1 내적 값과 상기 제2 내적 값의 곱으로서, 0 이상 1 이하의 값일 수도 있다. 상기 상관도에 대해서는 도 4를 참조하여 보다 상세히 후술한다.
판단부(120)는 상기 상관도가 제1 임계치 이상인 경우, 상기 제1 VPL을 상기 제1 타일의 렌더링에 이용될 간접광원으로 결정할 수 있다. 상기 제1 VPL을 상기 제1 타일의 렌더링에 이용될 간접 광으로 결정한다는 것은, 상기 제1 VPL을 상기 제1 타일에 할당하여 디퍼드 렌더링을 수행한다는 것으로 이해될 수 있다. 그리고 상기 판단부는, 상기 3D 공간에 샘플링된 복수 개의 VPL 중, 상기 제2 벡터와의 내적이 제2 임계치 이상인 법선 벡터를 갖는 적어도 하나의 VPL을 상기 제1 타일의 렌더링에 이용될 간접광원으로 결정할 수도 있다. 이 경우, 상기 3D 공간에 샘플링된 상기 복수 개의 VPL 중에 적어도 하나의 VPL - 상기 적어도 하나의 VPL은 상기 제2 벡터와의 내적이 제2 임계치 이상인 법선 벡터를 갖고, 상기 제1 VPL의 위치와 3 임계치 미만인 위치에 샘플된 것임 - 을 상기 제1 타일의 렌더링에 이용될 간접광원으로 결정할 수도 있다.
도 2는 일실시예에 따라 스크린 스페이스를 복수 개의 영역으로 분할하는 과정을 설명하기 위한 도면이다.
오브젝트(201) 및 오브젝트(202)가 도시되었다. 렌더될 시점에 대응하는 스크린 스패이스(screen space)로 변환된 3D 공간이 복수 개의 타일들(200)로 나누어진 것이 관찰된다. 이러한 타일-기반 처리는 병렬 처리를 통한 GPU 가속에 유리하다. 또한, 타일-기반 디퍼드 라이팅에 의해 불필요한 연산이 최소화될 수 있다.
참고로, 이러한 타일 분할은 스크린 스패이스에서의 균일한 그리드 생성에 의해 이루어질 수 있다. 또한 타일 분할은 중요도(importance)나 텍스처 복잡도 등을 고려한 불균일한 그리드에 의해 이루어질 수도 있다.
이하에서는 분할된 타일(210)의 렌더링에 이용될 광원, 보다 구체적으로는 간접 광원을 할당하는 실시예들이 제시된다. 상기 간접 광원은 VPL(Virtual Point Light)일 수 있다. VPL은 3D 공간에 샘플된 것이며, 그 수는 예시적으로 수백 내지 수 천개 또는 그 이상일 수 있다. 이러한 많은 VPL들이 모든 픽셀 및/또는 모든 타일들의 섀이딩/라이팅에 고려된다면 연산양은 매우 커질 수 있다. 따라서 실시예들에 의해, VPL들 중 어느 VPL이 어느 타일의 섀이딩에 이용될 지의 정보가 미리 처리된다.
예시적으로 VPL(220)이 오브젝트(202) 위에 샘플링되어 있는 것으로 가정한다. 이 VPL(220)이 샘플링된 부분의 탄젠트 평면(tangent plane)의 법선 벡터(normal vector)가 n p 로 표현되었다. 픽셀에 광이 영향을 미치는 결과를 계산하는 라이팅 연산에 있어서, 직접 광(direct light)과 간접 광(indirect light)의 차이 중 하나는, 간접 광이 샘플링된 오브젝트 법선 방향이 고려되는 점이다. 예시적으로, 법선 벡터와 동일 방향에 있는 표면에서는 간접 광이 상대적으로 더 큰 영향을 갖고, 법선 벡터와 직교하는 방향에 있는 표면에서는 간접 광이 상대적으로 더 작은 영향을 가질 수 있다.
따라서, 타일(210)의 렌더링에 VPL(220)이 반영될 지의 여부, 달리 말해 VPL(220)을 타일(210)에 할당할 지의 여부는 법선 벡터 n p 를 고려하여 이하의 실시예들에 따라 결정된다.
도 3은 일실시예에 따른 타일 및 뷰 프러스텀을 도시한다.
도시된 바를 참고하면, 뷰 프로스텀(view frustum)(300)은 스크린 스패이스에 연관되는 카메라 시점으로부터 타일(310)을 향한 가상의 영역 또는 범위로 이해될 수 있다. 일실시예에 따르면, 특정 VPL 또는 VPL 그룹이 타일(310)에 할당되는지의 여부를 판단하는 데에 있어서 3D 공간에 샘플링된 전체 VPL을 대상으로 하는 것이 아니라, 이 뷰 프러스텀(300)에 영향을 줄 수 있는 것만을 대상으로 판단할 수 있다.
어느 한 VPL이 뷰 프러스텀에 영향을 주는 지의 여부는 몇 가지 기준에서 판단할 수 있다. 일실시예에 따르면 VPL이 샘플링 된 위치를 중심으로 하고, 일정한 반경을 갖는 구(sphere)나 반구(hemisphere) 또는 원뿔을 그 VPL의 영향 범위로 간주한다. 여기서 상기 일정한 반경은 VPL의 인텐서티(intensity), 텍스처의 복잡도 등 다양한 팩터를 고려하여 가변(variable)일 수 있다. 그리고 VPL의 영향 범위가 상기 뷰 프러스텀과 중첩되는 경우에 그 VPL은 해당 타일에 영향을 줄 가능성이 있는 것으로 간주하여 타일 할당 여부를 판단한다. 그렇지 않고 VPL의 영향 범위가 뷰 프러스텀과 중첩되지 않으면, 해당 VPL에 대해서는 타일에의 할당 여부를 판단하지 않을 수도 있다. 이러한 내용에 관해서는 도 8을 참조하여 보다 상세히 후술한다.
한편 일실시예에 따르면, 뷰 프러스텀(300)에 포함되는 오브젝트 버텍스(object vertex)들의 법선 분포가 결정될 수 있으며, 이러한 법선 분포를 대표하는 대표 법선 벡터(representative normal vector)가 결정될 수 있다. 이 대표 법선 벡터(representative normal vector)는 뷰 프러스텀(300)을 대표하는 탄젠트 평면(tangent plane)과 직교하는(perpendicular) 단위 벡터(unit vector)일 수 있다.
도 4는 일실시예에 따른 노말 분석을 설명하기 위한 도면이다.
포인트(410)는 뷰 프러스텀에 포함되는 임의의 버텍스에 대응할 수 있다. 이 포인트(410)의 위치 x에서의 법선 벡터는 n으로 표시되었다. 상기 벡터 n은 상기 뷰 프러스텀 내의 버텍스들의 법선을 대표하는 대표 법선 벡터일 수도 있다.
포인트(420)는 간접 광, 이를테면 VPL이 샘플링된 위치 xp에서의 버텍스에 대응한다. 그리고 n p 는 VPL의 위치 xp에서의 법선 벡터이다. 다른 원인을 무시한다면, VPL은 법선 벡터 n p 방향으로 가장 많은 영향을 주는 것으로 이해될 수 있다. 또한, 포인트(410)은 법선 벡터 n 방향에 가까운 VPL들의 영향을 많이 받는 것으로 이해될 수 있다. 이 경우, 직접광 (direct light, 미도시)에 의한 밝기 계산 및 간접광에 의한 밝기 계산은 아래 수학식들과 같이 계산될 수 있다. 여기서, Cd는 직접광에 의한 포인트(410)에의 칼라 밝기 값이고, Cp는 VPL에 의한 포인트(410)의 칼라 밝기 값이다. 수학식 2를 수학식 1과 비교하면, 포인트(410)과 VPL의 법선 벡터 항이 추가됨을 알 수 있다. 이는 상술한 바와 같이 간접광인 VPL의 경우 통상적으로 자신의 법선 벡터 n p 방향으로 가장 많은 영향을 주는 것, 그리고 오브젝트 포인트(410)도 자신의 법선 벡터 n 방향으로부터 가장 많은 영향을 주는 것에 상응한다.
Figure 112014112592223-pat00001
Figure 112014112592223-pat00002
따라서, 실시예들에서는 이러한 이해에 기초하여 법선 벡터 방향을 이용하여 VPL(420)을 포인트(410) 및 포인트(410)을 포함하는 타일(tile)의 렌더링에 반영할 지의 여부를 결정한다. 즉, 법선 벡터들 및 VPL과 포인트의 상대적인 위치에 의해 판단될 수 있는 영향을 값으로 정량화하고, 이를 임계치와 비교함으로써 VPL을 타일에 할당할 것인지의 여부를 판단한다.
예시적으로 도 4에 도시된 포인트(410)의 위치 x로부터 VPL(420)의 위치 xp로의 방향 벡터를 v 1 이라고 하고, VPL(420)의 위치 xp로부터 포인트(410)의 위치 x로의 방향 벡터를 v 2 라고 한다. 그러면 VPL(420)이 포인트(410) x 및 x가 포함되는 타일에 미치는 영향이 큰 지, 즉 VPL(420)을 포인트(410) 대응 타일 렌더링에 포함할 지의 여부를 판단할 수 있다.
일실시예에 따르면, 방향 벡터 v 1 과 법선 벡터 n의 내적(dot product) s1을 구한다. 구한 s1이 소정의 임계치 T1 이상인 경우라면 VPL(420)이 포인트(410)를 포함하는 타일의 렌더링에 할당되는 것으로 판단할 수 있다.
또 다른 일실시예에 따르면, 방향 벡터 v 2 와 법선 벡터 n p 의 내적 s2를 구한다. 구한 s2가 소정의 임계치 T2 이상인 경우라면 VPL(420)이 포인트(410)를 포함하는 타일의 렌더링에 할당되는 것으로 판단할 수 있다. 임계치 T1은 임계치 T2와 동일할 수도 있고, 상이할 수도 있다.
한편, 상기 s1과 s2의 곱 s (s = s1 * s2)을 임계치 T와 비교할 수도 있다. T는 T = T1 * T2일 수 있다. s가 T보다 이상인 경우, VPL(420)이 포인트(410)를 포함하는 타일의 렌더링에 할당되는 것으로 판단할 수 있다.
상기한 실시예들은 예시적인 내용에 불과하므로, 판단 기준(criteria)이나 판단 방법에 관한 수식은 얼마든지 다양하게 변형될 수 있다. 예를 들어, VPL(420)의 법선 벡터 n p 의 역방향 벡터 (-1)·n p 와 법선 벡터 n 의 곱을 임계치 T와 비교하는 것도 가능하다. 따라서, VPL의 노말 방향이 타일에 포함된 오브젝트 버텍스들(vertices) 방향에 직교하는 등, VPL의 영향을 정량화하여 임계 값과 비교할 수 있다면 다른 방법들도 가능하다. 또한, 이러한 실시예에서 오브젝트 포인트 및/또는 VPL 샘플 포인트의 BRDF(Bidirectional Reflection Distribute Function)이 함께 고려되는 것도 가능하다. 이러한 판단 기준, 판단 방법의 변형은, 이 기술 분야의 통상의 지식을 가진 자의 반복 시행에 의해 다양하게 선택 가능하다.
도 5는 일실시예에 따른 타일 영역의 법선 분포 및 간접광 할당을 설명하기 위한 도면이다.
스크린 스패이스에서 타일 분할이 수행되어 생성된 타일(510)은 뷰 프러스텀(500)에 대응한다. 그리고 뷰 프러스텀(500)은 오브젝트 표면(520)을 포함한다. 일실시예에 따르면, 영상 처리 장치는 오브젝트 표면(520)의 노말 분포(521)를 분석한다. 그러면 각 노말 벡터들의 가중 합 또는 다양한 선형 연산을 통해, 오브젝트 표면(520)을 대표하는 대표 법선 벡터 n 이 구해질 수 있다.
그리고 특정한 오브젝트(530) 위에 샘플링된 VPL(531)의 법선 벡터 n p 가 구해질 수 있다. 그러면 도 4를 설명하여 상술한 실시예들에 따라, VPL(531)이 타일(510)의 렌더링을 위해 할당되어야 하는 지의 여부가 판단될 수 있다.
도 6은 다른 일실시예에 따른 영상 처리 장치를 도시한 블록도이다.
영상 처리 장치(600)에 포함되는 클러스터링부(610)은 3D 공간에 샘플링된 VPL들을 클러스터링 한다. 상기한 실시예들에 따라, 어떤 VPL이 어떤 타일에 할당 될 것인지를 판단하는 것 자체도 연산 자원(resource or cost)을 필요로 하므로, 유사한 위치의 유사한 성격의 VPL들 모두에 대해 이러한 판단이 수행될 필요는 없다. 실시예들에 따르면, 클러스터링부(610)가 위치 및/또는 법선 방향이 유사한 VPL을 그룹핑하여, 복수 개의 클러스터들로 분류한다. 클러스터링 과정에 대한 보다 상세한 설명은 도 7을 참조하여 후술한다.
한편 이러한 실시예에서, 상기 도 4 내지 도 5를 참조하여 설명한 과정에 고려되는 VPL의 법선 벡터 n p 는 각 클러스터에 포함된 VPL들을 대표할 수 있는 값으로 선택된다.
계산부(620)는 렌더링될 제1 타일 내의 적어도 하나의 오브젝트 버텍스의 법선 방향을 대표하는 제1 벡터와, 3D 공간에 샘플링된 제1 VPL의 법선 벡터인 제2 벡터 중 적어도 하나를 이용하여, 상기 제1 VPL의 상기 제1 타일에 대한 상관도를 계산할 수 있다. 일실시예 따르면, 상기 상관도는 적어도 하나의 오브젝트로부터 상기 제1 VPL 방향으로의 제1 방향 벡터를 상기 제1 벡터와 내적한 제1 내적 값일 수 있다. 또 다른 실시예에서 상기 상관도는 상기 제1 VPL 방향으로부터 상기 적어도 하나의 오브젝트로의 제2 방향 벡터를 상기 제2 벡터와 내적한 제2 내적 값일 수도 있다. 나아가, 상기 상관도는 상기 제1 내적 값과 상기 제2 내적 값의 곱으로서, 0 이상 1 이하의 값일 수도 있다.
판단부(630)는 상기 상관도가 제1 임계치 이상인 경우, 상기 제1 VPL을 상기 제1 타일의 렌더링에 이용될 간접광원으로 결정할 수 있다. 그리고 상기 판단부는, 상기 3D 공간에 샘플링된 복수 개의 VPL 중, 상기 제2 벡터와의 내적이 제2 임계치 이상인 법선 벡터를 갖는 적어도 하나의 VPL을 상기 제1 타일의 렌더링에 이용될 간접광원으로 결정할 수도 있다. 계산부(620) 및 판단부(630)의 동작은 도 1 내지 도 5를 참조하여 상술한 실시예들에 의해 더 상세히 이해될 수 있다.
도 7은 일실시예에 따른 간접광의 클러스터링을 설명하기 위한 도면이다.
상기한 바와 같이, 실시예에 따르면 VPL들의 법선 방향에 기초하여, 법선 방향이 유사한 VPL들을 클러스터링 한다. 이렇게 함으로써, 모든 VPL에 대해서 각 타일에의 할당 여부를 계산하지 않고, VPL 클러스터 단위로 타일들 각각에 대한 할당 여부를 판단할 수 있고, 따라서 연산 자원이 절약될 수 있다. 도시된 클러스터(720), 클러스터(730) 및 클러스터(740)은 법선 방향이 유사한 VPL들을 그룹핑한 결과이다.
또한, 법선 방향이 유사한 것에 더하여, 또는 이에 대신하여, 서로 일정 거리 미만에 있는 VPL들을 클러스터링 하는 것도 가능하다. 도시된 클러스터(711) 및 클러스터(712)는 법선 방향은 유사하지만 거리를 고려하였기 때문에 서로 다른 클러스터들로 분리되었다.
도 8은 일실시예에 따라 뷰 프러스텀과 간접광 영향의 중첩 여부를 판단하는 과정을 설명하기 위한 도면이다.
일실시예 따르면, VPL 또는 VPL 클러스터들 전체에 대해 각 타일에의 할당 여부를 판단하지 않고, 그 중에서도 일부에만 타일 할당 여부를 판단할 수 있다. 도시된 바와 같이, 오브젝트(820) 위에 샘플링된 VPL(821) 및 VPL(822)는 각각 서로 다른 영향 범위를 갖는다. VPL은 간접 광이기 때문에 인텐서티나 영향 범위가 직접 광보다 작을 수 있으며, 오브젝트 위에 샘플링되었기 때문에 영향을 줄 수 있는 각도 범위도 한정적이다. 이러한 VPL의 영향 범위는 구(sphere) 또는 반구(hemisphere) 등의 형태로 가정될 수 있다. 영향 범위의 크기/부피는 샘플링된 VPL의 인텐서티, 샘플링된 위치의 재질 특성, 방향, 반사도 등에 의해 결정될 수 있다, 모든 VPL들에 대해 동일하지 않을 수도 있다.
도시된 예에서, VPL(821)의 영향 범위(831)는 어떤 한 타일에 대응하는 뷰 프러스텀(810)과 중첩된다. 그러면 VPL(821) 또는 VPL(821)을 포함하는 VPL 클러스터(도시되지 않음)에 대해서는 뷰 프러스텀(810)에 대응하는 타일(도시되지 않음)에 대한 할당 여부가 상술한 바에 따라 판단된다. 그러나 VPL(822)의 영향 범위(832)는 뷰 프러스텀(810)과 중첩되지 않기 때문에, 상기 타일에 대한 할당 여부를 판단하지 않고 스킵(skip) 할 수 있다. 이러한 과정에 의해, VPL 및/또는 VPL 클러스터가 각 타일에 할당되는 지의 여부를 판단하는 데에 소요되는 연산 자원이 더욱 절약되어, 한정된 연산 자원을 갖는 단말에서 실시간 렌더링이 더욱 원할하게 수행될 수 있다.
도 9는 일실시예에 따라 타일 별로 간접광이 할당되는 과정 및 결과를 설명하기 위한 도면이다.
예시적으로 도시된 도 2의 스크린 스패이스를 참조하여, 타일들에 VPL들이 할당된 결과(900)가 도시되었다. 이러한 예시적 결과는 이해를 돕기 위해 가정된 것이다. 타일(910)에 대해서는 19개의 VPL들이 할당되었다. 그러면, 타일(910) 부분의 렌더링을 위해서는 3D 공간에 샘플된 모든 VPL들에 대해 섀이딩을 처리하는 것이 아니라, 할당된 19 개의 VPL들에 대해서만 섀이딩이 수행된다. 도시된 바와 같이 일부 타일에 대해서는 VPL이 할당되지 않기도 하였다. 일실시예에 따르면 이러한 타일의 렌더링에 있어서는 VPL들에 의한 섀이딩이 생략될 수 있다.
도 10은 일실시예에 따른 영상 처리 방법을 도시한 흐름도이다.
단계(1010)에서 타일 기반의 디퍼드 렌더링을 위해 스크린 스패이스 상에서 3D 공간이 복수 개의 타일로 분할된다. 이러한 타일 분할에 관해서는 도 2를 참조하여 설명한 바와 같다. 일실시예에 따르면, 각 타일은 동일한 크기의 그리드에 의해 구분될 수도 있지만, 다른 실시예에서는 타일들이 다른 크기를 가질 수도 있다.
단계(1020)에서는 각 타일에 대한 법선 분포가 계산된다. 이러한 법선 분포의 계산 결과는 각 타일에 대해 VPL 할당 여부를 판단할 대표 법선 벡터를 결정하는 데 이용될 수 있다. 도 5를 참조하여 설명한 실시예에서도 타일(510)에 대응하는 오브젝트 영역(520)의 법선 분포(521)가 결정되었다.
그리고 단계(1030)에서 해당 오브젝트 영역의 대표 법선 벡터가 계산된다. 다시 도 5를 참조하면 오브젝트 법선 분포(521)을 대표하는 대표 법선 벡터 n이 계산되었다. 이러한 대표 법선 벡터 n은 법선 벡터의 가중 평균으로 구해질 수 있다.
도 11의 흐름도는 일실시예에 따른 영상 처리 방법에 따라, 각 타일에 VPL 및/또는 VPL 클러스터 할당 여부가 판단되는 과정을 도시한다.
단계(1110)에서는 VPL 클러스터링이 수행된다. 상술한 바와 같이, 어떤 VPL이 어떤 타일에 할당 될 것인지를 판단하는 것 자체도 연산 자원을 필요로 하므로, 유사한 위치의 유사한 성격의 VPL들 모두에 대해 이러한 판단이 수행될 필요는 없다. 따라서, VPL들에 대해 위치 및/또는 법선 방향이 유사한 것들끼리 그룹핑하여, 복수 개의 클러스터들로 분류한다. 예시적으로, VPL들의 법선 방향에 기초하여, 법선 방향이 유사한 VPL들을 클러스터링 한다. 이렇게 함으로써, 모든 VPL에 대해서 각 타일에의 할당 여부를 계산하지 않고, VPL 클러스터 단위로 타일들 각각에 대한 할당 여부를 판단할 수 있고, 따라서 연산 자원이 절약될 수 있다. 또한 법선 방향이 유사한 것에 더하여, 또는 이에 대신하여, 서로 일정 거리 미만에 있는 VPL들을 클러스터링 하는 것도 가능하다.
단계(1120)에서는 타일 할당 여부를 판단할 VPL 및/또는 VPL 클러스터가 선택된다. 그러면 단계(1130)에서, 상기 선택된 VPL 및/또는 VPL 클러스터가 해당 타일에 할당될 지 여부가 판단된다. 상기 타일 내의 오브젝트 버텍스 법선 방향을 대표하는 제1 벡터 및 상기 VPL 및/또는 VPL 클러스터를 대표하는 제2 벡터 중 적어도 하나가 이 판단에 이용될 수 있다.
일실시예에 따르면, 상기 타일의 오브젝트 버텍스와 상기 VPL 및/또는 VPL 클러스터 사이의 상관도가 계산되고, 이 상관도가 제1 임계치와 비교된다. 상기 상관도가 제1 임계치 이상인 경우 상기 VPL 및/또는 VPL 클러스터는 상기 타일에 할당되는 것으로 판단된다. 예시적으로, 상기 상관도는 타일의 오브젝트로부터 상기 VPL 및/또는 VPL 클러스터 방향으로의 제1 방향 벡터를 상기 제1 벡터와 내적한 제1 내적 값일 수 있다. 또한 다른 실시예에서 상기 상관도는 상기 VPL 및/또는 VPL 클러스터로부터 상기 타일의 오브젝트로의 제2 방향 벡터를 상기 제2 벡터와 내적한 제2 내적 값일 수도 있다. 나아가, 상기 상관도는 상기 제1 내적 값과 상기 제2 내적 값의 곱으로서, 0 이상 1 이하의 값일 수도 있다. 이러한 판단 과정은 도 1 내지 도 6을 참조하여 상술한 바를 통해 이해될 수 있다.
단계(1140)에서 모든 VPL 및/또는 VPL 클러스터에 대해 상기 단계(1130)의 판단이 수행되었는지가 체크된다. 물론, 모든 VPL 및/또는 VPL 클러스터가 아니라, 일정한 기준에 따라 미리 스킵 하도록 결정되는 VPL 및/또는 VPL 클러스터는 이러한 체크에서 제외될 수도 있다. 이러한 과정을 도 11의 흐름도에서와 같이 이터래이티브 하게 수행함으로써 타일 할당이 수행될 수 있다. 그리고 이러한 과정은 분할된 복수 개의 타일들 각각에 대해 수행될 수 있다.
이상에서 설명된 실시예들은 하드웨어 구성요소, 소프트웨어 구성요소, 및/또는 하드웨어 구성요소 및 소프트웨어 구성요소의 조합으로 구현될 수 있다. 예를 들어, 실시예들에서 설명된 장치, 방법 및 구성요소는, 예를 들어, 프로세서, 콘트롤러, ALU(arithmetic logic unit), 디지털 신호 프로세서(digital signal processor), 마이크로컴퓨터, FPGA(field programmable gate array), PLU(programmable logic unit), 마이크로프로세서, 또는 명령(instruction)을 실행하고 응답할 수 있는 다른 어떠한 장치와 같이, 하나 이상의 범용 컴퓨터 또는 특수 목적 컴퓨터를 이용하여 구현될 수 있다. 처리 장치는 운영 체제(OS) 및 상기 운영 체제 상에서 수행되는 하나 이상의 소프트웨어 애플리케이션을 수행할 수 있다. 또한, 처리 장치는 소프트웨어의 실행에 응답하여, 데이터를 접근, 저장, 조작, 처리 및 생성할 수도 있다. 이해의 편의를 위하여, 처리 장치는 하나가 사용되는 것으로 설명된 경우도 있지만, 해당 기술분야에서 통상의 지식을 가진 자는, 처리 장치가 복수 개의 처리 요소(processing element) 및/또는 복수 유형의 처리 요소를 포함할 수 있음을 알 수 있다. 예를 들어, 처리 장치는 복수 개의 프로세서 또는 하나의 프로세서 및 하나의 콘트롤러를 포함할 수 있다. 또한, 병렬 프로세서(parallel processor)와 같은, 다른 처리 구성(processing configuration)도 가능하다.
소프트웨어는 컴퓨터 프로그램(computer program), 코드(code), 명령(instruction), 또는 이들 중 하나 이상의 조합을 포함할 수 있으며, 원하는 대로 동작하도록 처리 장치를 구성하거나 독립적으로 또는 결합적으로(collectively) 처리 장치를 명령할 수 있다. 소프트웨어 및/또는 데이터는, 처리 장치에 의하여 해석되거나 처리 장치에 명령 또는 데이터를 제공하기 위하여, 어떤 유형의 기계, 구성요소(component), 물리적 장치, 가상 장치(virtual equipment), 컴퓨터 저장 매체 또는 장치, 또는 전송되는 신호 파(signal wave)에 영구적으로, 또는 일시적으로 구체화(embody)될 수 있다. 소프트웨어는 네트워크로 연결된 컴퓨터 시스템 상에 분산되어서, 분산된 방법으로 저장되거나 실행될 수도 있다. 소프트웨어 및 데이터는 하나 이상의 컴퓨터 판독 가능 기록 매체에 저장될 수 있다.
실시예에 따른 방법은 다양한 컴퓨터 수단을 통하여 수행될 수 있는 프로그램 명령 형태로 구현되어 컴퓨터 판독 가능 매체에 기록될 수 있다. 상기 컴퓨터 판독 가능 매체는 프로그램 명령, 데이터 파일, 데이터 구조 등을 단독으로 또는 조합하여 포함할 수 있다. 상기 매체에 기록되는 프로그램 명령은 실시예를 위하여 특별히 설계되고 구성된 것들이거나 컴퓨터 소프트웨어 당업자에게 공지되어 사용 가능한 것일 수도 있다. 컴퓨터 판독 가능 기록 매체의 예에는 하드 디스크, 플로피 디스크 및 자기 테이프와 같은 자기 매체(magnetic media), CD-ROM, DVD와 같은 광기록 매체(optical media), 플롭티컬 디스크(floptical disk)와 같은 자기-광 매체(magneto-optical media), 및 롬(ROM), 램(RAM), 플래시 메모리 등과 같은 프로그램 명령을 저장하고 수행하도록 특별히 구성된 하드웨어 장치가 포함된다. 프로그램 명령의 예에는 컴파일러에 의해 만들어지는 것과 같은 기계어 코드뿐만 아니라 인터프리터 등을 사용해서 컴퓨터에 의해서 실행될 수 있는 고급 언어 코드를 포함한다. 상기된 하드웨어 장치는 실시예의 동작을 수행하기 위해 하나 이상의 소프트웨어 모듈로서 작동하도록 구성될 수 있으며, 그 역도 마찬가지이다.
이상과 같이 실시예들이 비록 한정된 실시예와 도면에 의해 설명되었으나, 해당 기술분야에서 통상의 지식을 가진 자라면 상기의 기재로부터 다양한 수정 및 변형이 가능하다. 예를 들어, 설명된 기술들이 설명된 방법과 다른 순서로 수행되거나, 및/또는 설명된 시스템, 구조, 장치, 회로 등의 구성요소들이 설명된 방법과 다른 형태로 결합 또는 조합되거나, 다른 구성요소 또는 균등물에 의하여 대치되거나 치환되더라도 적절한 결과가 달성될 수 있다. 그러므로, 다른 구현들, 다른 실시예들 및 특허청구범위와 균등한 것들도 후술하는 특허청구범위의 범위에 속한다.

Claims (18)

  1. 렌더링될 제1 타일에 대응하는 적어도 하나의 오브젝트 버텍스의 법선 분포와, 3D 공간에 샘플링된 제 1 VPL의 광 조사 방향의 상관도를 계산하는 계산부; 및
    상기 상관도가 제1 임계치 이상인 경우, 상기 제1 VPL을 상기 제1 타일의 렌더링에 이용되는 간접광원으로 결정하는 판단부
    를 포함하고,
    상기 계산부는 상기 적어도 하나의 오브젝트 버텍스의 법선 방향을 대표하는 제1 벡터와, 상기 제1 VPL의 법선 벡터인 제2 벡터를 이용하여, 상기 상관도를 계산하고,
    상기 판단부는, 상기 3D 공간에 샘플링된 복수 개의 VPL 중, 상기 제2 벡터와의 내적이 제2 임계치 이상인 법선 벡터를 갖는 적어도 하나의 VPL을 상기 제1 타일의 렌더링에 이용될 간접광원으로 결정하는
    영상 처리 장치.
  2. 삭제
  3. 제1항에 있어서,
    상기 제1 벡터는, 상기 적어도 하나의 버텍스의 각각의 법선 벡터들의 분포를 가중 평균하여 얻은, 단위 벡터인 영상 처리 장치.
  4. 삭제
  5. 제1항에 있어서,
    상기 3D 공간에 샘플링된 상기 복수 개의 VPL 중,
    상기 제2 벡터와의 내적이 제2 임계치 이상인 법선 벡터를 갖고, 상기 제1 VPL의 위치와 3 임계치 미만인 위치에 샘플된
    적어도 하나의 VPL을 상기 제1 타일의 렌더링에 이용될 간접광원으로 결정하는 영상 처리 장치.
  6. 제1항에 있어서,
    상기 3D 공간에 샘플링된 복수 개의 VPL을 법선 벡터 분포에 따라 클러스터링 하는 클러스터링부
    를 더 포함하는 영상 처리 장치.
  7. 제6항에 있어서,
    상기 제 1 VPL의 상기 광 조사 방향은 상기 제1 VPL을 포함하는 제1 클러스터에 포함되는 VPL 법선 벡터 분포를 대표하는 제1 벡터이고, 상기 상관도가 상기 제1 임계치 이상인 경우, 상기 판단부는 상기 제1 클러스터에 포함되는 VPL을 상기 제1 타일의 렌더링에 이용될 간접광원으로 결정하는 영상 처리 장치.
  8. 제7항에 있어서,
    상기 클러스터링부는, 상기 3D 공간에 샘플링된 상기 복수 개의 VPL 중 법선 벡터 내적이 제2 임계치 이상이고 샘플링 위치가 제3 임계치 미만인 VPL들을 동일한 클러스터로 결정하는 영상 처리 장치.
  9. 제1항에 있어서,
    상기 제1 VPL은, 상기 3D 공간에 샘플링된 복수 개의 VPL 중 상기 제1 타일에 대응하는 뷰잉 프러스텀과 중첩되는 영향 범위를 갖는 VPL인 영상 처리 장치.
  10. 3D 공간에 샘플링된 복수 개의 VPL을, 샘플링 된 위치 및 샘플링된 위치의 법선 벡터 방향 중 적어도 하나에 기초하여, 클러스터링 하는 클러스터링부; 및
    렌더링될 제1 타일 내의 적어도 하나의 오브젝트 버텍스의 법선 방향과 상기 클러스터링에 의하여 구분되는 제1 클러스터를 대표하는 법선 방향의 상관도에 기초하여 상기 제1 클러스터를 상기 제1 타일의 렌더링에 이용할 지 여부를 결정하는 판단부
    를 포함하고,
    상기 판단부는 상기 제1 타일 내의 상기 적어도 하나의 오브젝트 버텍스의 법선 방향을 대표하는 제1 벡터와, 상기 적어도 하나의 오브젝트로부터 상기 제1 클러스터를 향한 방향의 단위 벡터인 제2 벡터 간의 내적이 제1 임계치 이상인 경우, 상기 제1 클러스터를 상기 제1 타일의 렌더링에 이용하는 것으로 결정하는
    영상 처리 장치.
  11. 삭제
  12. 제10항에 있어서,
    상기 판단부는 상기 제1 클러스터를 대표하는 법선 벡터인 제3 벡터와, 상기 제1 클러스터로부터 상기 적어도 하나의 오브젝트를 향한 방향의 단위 벡터인 제4 벡터 간의 내적이 제1 임계치 이상인 경우, 상기 제1 클러스터를 상기 제1 타일의 렌더링에 이용하는 것으로 결정하는 영상 처리 장치.
  13. 적어도 하나의 프로세서를 포함하는 영상 처리 장치의 영상 처리 방법에 있어서, 상기 방법은,
    렌더링될 제1 타일 내의 적어도 하나의 오브젝트 버텍스의 법선 방향을 대표하는 제1 벡터와, 3D 공간에 샘플링된 제1 VPL의 법선 벡터인 제2 벡터 간의 상관도를 계산하는 단계;
    상기 3D 공간에 샘플링된 복수 개의 VPL을 법선 벡터 분포에 따라 클러스터링 하는 단계; 및
    상기 상관도가 제1 임계치 이상인 경우, 상기 제1 VPL을 상기 제1 타일의 렌더링에 이용될 간접광원으로 결정하는 단계
    를 포함하고,
    상기 제2 벡터는 상기 제1 VPL을 포함하는 제1 클러스터를 대표하는 법선 벡터이고,
    상기 결정하는 단계는,
    상기 상관도가 제1 임계치 이상인 경우, 상기 제1 클러스터에 포함되는 VPL을 상기 제1 타일의 렌더링에 이용될 간접광원으로 결정하는
    영상 처리 방법.
  14. 삭제
  15. 제13항에 있어서,
    상기 클러스터링 하는 단계는,
    상기 3D 공간에 샘플링된 상기 복수 개의 VPL 중 법선 벡터 내적이 제2 임계치 이상인 VPL들을 동일한 클러스터로 결정하는 영상 처리 방법.
  16. 제15항에 있어서,
    상기 클러스터링 하는 단계는,
    상기 3D 공간에 샘플링된 상기 복수 개의 VPL 중 법선 벡터 내적이 제2 임계치 이상이고 샘플링 위치가 제3 임계치 미만인 VPL들을 동일한 클러스터로 결정하는 영상 처리 방법.
  17. 제13항에 있어서,
    상기 제1 VPL은, 상기 3D 공간에 샘플링된 복수 개의 VPL 중 상기 제1 타일에 대응하는 뷰잉 프러스텀과 중첩되는 영향 범위를 갖는 VPL인 영상 처리 방법.
  18. 제13항 및 제15항 내지 제17항 중 어느 한 항에 있어서,
    상기 영상 처리 방법을 실행하는 프로그램을 저장하고 있는 컴퓨터 판독 가능 매체.
KR1020140163506A 2014-11-21 2014-11-21 영상 처리 장치 및 방법 KR102281180B1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020140163506A KR102281180B1 (ko) 2014-11-21 2014-11-21 영상 처리 장치 및 방법
US14/935,875 US10121282B2 (en) 2014-11-21 2015-11-09 Image processing apparatus and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020140163506A KR102281180B1 (ko) 2014-11-21 2014-11-21 영상 처리 장치 및 방법

Publications (2)

Publication Number Publication Date
KR20160061066A KR20160061066A (ko) 2016-05-31
KR102281180B1 true KR102281180B1 (ko) 2021-07-23

Family

ID=56010733

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020140163506A KR102281180B1 (ko) 2014-11-21 2014-11-21 영상 처리 장치 및 방법

Country Status (2)

Country Link
US (1) US10121282B2 (ko)
KR (1) KR102281180B1 (ko)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2546811B (en) * 2016-02-01 2020-04-15 Imagination Tech Ltd Frustum rendering
JP6835536B2 (ja) * 2016-03-09 2021-02-24 株式会社リコー 画像処理方法、表示装置および点検システム
CN111489448A (zh) * 2019-01-24 2020-08-04 宏达国际电子股份有限公司 检测真实世界光源的方法、混合实境系统及记录介质
KR102553340B1 (ko) * 2021-07-23 2023-07-07 인하대학교 산학협력단 물체의 실루엣을 통한 이미지 내 광원 인식 알고리즘

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130328873A1 (en) * 2012-06-08 2013-12-12 Advanced Micro Devices, Inc. Forward rendering pipeline with light culling

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5739820A (en) * 1992-11-19 1998-04-14 Apple Computer Inc. Method and apparatus for specular reflection shading of computer graphic images
US6525737B1 (en) 1998-08-20 2003-02-25 Apple Computer, Inc. Graphics processor with pipeline state storage and retrieval
US6771264B1 (en) 1998-08-20 2004-08-03 Apple Computer, Inc. Method and apparatus for performing tangent space lighting and bump mapping in a deferred shading graphics processor
US6900805B2 (en) 2002-08-29 2005-05-31 Nec Laboratories America, Inc. Torrance-sparrow off-specular reflection and linear subspaces for object recognition
GB2430026A (en) 2005-09-09 2007-03-14 Qinetiq Ltd Automated selection of image regions
KR101329134B1 (ko) 2007-08-28 2013-11-14 삼성전자주식회사 부화소 렌더링을 이용한 영상 변환 시스템 및 방법
US9098945B2 (en) 2009-05-01 2015-08-04 Microsoft Technology Licensing, Llc Modeling anisotropic surface reflectance with microfacet synthesis
KR20120007398A (ko) * 2010-07-14 2012-01-20 삼성전자주식회사 영상 처리 장치 및 방법
US8773434B2 (en) * 2011-05-26 2014-07-08 Autodesk, Inc. Directing indirect illumination to visibly influenced scene regions

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130328873A1 (en) * 2012-06-08 2013-12-12 Advanced Micro Devices, Inc. Forward rendering pipeline with light culling

Also Published As

Publication number Publication date
US10121282B2 (en) 2018-11-06
US20160148419A1 (en) 2016-05-26
KR20160061066A (ko) 2016-05-31

Similar Documents

Publication Publication Date Title
EP3035292B1 (en) 3d rendering method and apparatus
KR102306780B1 (ko) 영상 처리 장치 및 방법
CN106558090B (zh) 3d渲染和阴影信息存储方法和设备
US9842424B2 (en) Volume rendering using adaptive buckets
KR102281180B1 (ko) 영상 처리 장치 및 방법
KR102137263B1 (ko) 영상 처리 장치 및 방법
KR102558737B1 (ko) 3d 렌더링 방법 및 장치
US10776996B2 (en) Method and apparatus for processing image
CN114424239A (zh) 用于光线追踪应用中的循环模糊的去噪技术
US10062138B2 (en) Rendering apparatus and method
US9595133B2 (en) Information processing apparatus, control method, and storage medium for defining tiles with limited numbers of fragments
KR102558739B1 (ko) 3d 렌더링 방법 및 장치
KR101871222B1 (ko) 영상 처리 장치 및 방법
WO2018202435A1 (en) Method and device for determining lighting information of a 3d scene
KR102211142B1 (ko) 영상 처리 장치 및 방법
US11727535B2 (en) Using intrinsic functions for shadow denoising in ray tracing applications
KR102306774B1 (ko) 영상 처리 방법 및 장치
US10026216B2 (en) Graphics data processing method and apparatus
CN114140335A (zh) 光线追踪应用中的时空自引导阴影去噪

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant