KR102275301B1 - Heat transfer pipe and Heat exchanger for chiller - Google Patents
Heat transfer pipe and Heat exchanger for chiller Download PDFInfo
- Publication number
- KR102275301B1 KR102275301B1 KR1020190010701A KR20190010701A KR102275301B1 KR 102275301 B1 KR102275301 B1 KR 102275301B1 KR 1020190010701 A KR1020190010701 A KR 1020190010701A KR 20190010701 A KR20190010701 A KR 20190010701A KR 102275301 B1 KR102275301 B1 KR 102275301B1
- Authority
- KR
- South Korea
- Prior art keywords
- refrigerant
- width
- main cavity
- microcavity
- heat
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B1/00—Compression machines, plants or systems with non-reversible cycle
- F25B1/04—Compression machines, plants or systems with non-reversible cycle with compressor of rotary type
- F25B1/053—Compression machines, plants or systems with non-reversible cycle with compressor of rotary type of turbine type
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B39/00—Evaporators; Condensers
- F25B39/04—Condensers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B41/00—Fluid-circulation arrangements
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B41/00—Fluid-circulation arrangements
- F25B41/40—Fluid line arrangements
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D7/00—Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
- F28D7/16—Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F1/00—Tubular elements; Assemblies of tubular elements
- F28F1/10—Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
- F28F1/12—Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
- F28F1/24—Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely
- F28F1/26—Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely the means being integral with the element
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2339/00—Details of evaporators; Details of condensers
- F25B2339/04—Details of condensers
- F25B2339/047—Water-cooled condensers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D21/00—Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
- F28D2021/0019—Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
- F28D2021/0068—Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for refrigerant cycles
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F2215/00—Fins
- F28F2215/10—Secondary fins, e.g. projections or recesses on main fins
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Geometry (AREA)
- Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
Abstract
본 발명은 내부에 냉매가 유동되는 공간을 가지는 냉매 튜브; 상기 냉매 튜브의 외면에서 돌출되며, 상기 냉매 튜브의 외면과 단차를 가지는 상단면을 포함하는 복수의 방열핀; 서로 인접한 방열핀들 사이에 형성되고, 상기 복수의 방열핀들의 상단 사이에 입구가 형성되는 주 공동; 및 상기 방열핀의 상면에 형성되고, 상기 주 공동 보다 작은 높이 및 폭을 가지고, 상부로 개방된 복수의 미세 공동을 포함하는 것을 특징으로 한다.The present invention is a refrigerant tube having a space in which the refrigerant flows; a plurality of heat dissipation fins protruding from the outer surface of the refrigerant tube and including an upper surface having a step difference from the outer surface of the refrigerant tube; a main cavity formed between adjacent heat dissipation fins and having an inlet formed between upper ends of the plurality of heat dissipation fins; and a plurality of microcavities that are formed on the upper surface of the heat dissipation fins, have a height and a width smaller than that of the main cavity, and open upwards.
Description
본 발명은 전열관 및 칠러용 열교환기에 관한 것이다.The present invention relates to a heat transfer tube and a heat exchanger for a chiller.
일반적으로, 칠러 시스템은 냉수를 냉수 수요처로 공급하는 것으로서, 냉동 시스템을 순환하는 냉매와, 냉수 수요처와 냉동 시스템의 사이를 순환하는 냉수간에 열교환이 이루어져 냉수를 냉각시키는 것을 특징으로 한다. 이러한 칠러 시스템은 대용량 설비로서, 규모가 큰 건물 등에 설치될 수 있다.In general, a chiller system supplies cold water to a cold water demander, and heat exchange is performed between a refrigerant circulating in a refrigeration system and cold water circulating between a cold water demander and a refrigeration system to cool the cold water. Such a chiller system is a large-capacity facility, and may be installed in a large-scale building.
종래 칠러 시스템은 한국등록특허공보 제10-1084477호에 개시된다. 종래 기술에서는 2개의 냉매를 서로 열교환하기 위해 전열관을 사용하는 데, 전열관은 내부에 제1 냉매가 지나가는 공간을 가지고, 전열관의 외면은 제2 냉매와 접촉하여서, 2개의 냉매 사이에 열교환을 시킨다. A conventional chiller system is disclosed in Korean Patent Publication No. 10-1084477. In the prior art, a heat transfer tube is used to exchange heat between two refrigerants. The heat transfer tube has a space through which the first refrigerant passes, and the outer surface of the heat transfer tube is in contact with the second refrigerant to exchange heat between the two refrigerants.
이러한, 일반적인 전열관은 전열관의 내부로 유체가 지날 때 액체 또는 기체인 유체가 전열관의 내부 표면에 100% 이상 고르게 접촉 하지 않고 빠르게 통과되어 외부 제2 냉매와 전달이 저하되는 문제점이 존재한다.Such a general heat transfer tube has a problem in that when the fluid passes into the heat transfer tube, a liquid or gas fluid passes through quickly without evenly contacting the inner surface of the heat transfer tube by 100% or more, so that the transfer with the external second refrigerant is reduced.
특히, 기존 칠러용 냉매인 R-134a를 친환경 냉매(비가연성, 무독성)인 R1233zd로 변경시 이러한 전열관 성능 매우 저하(40%)되게 되는 문제점이 존재한다.In particular, when R-134a, which is a refrigerant for a conventional chiller, is changed to R1233zd, which is an eco-friendly refrigerant (non-flammable, non-toxic), there is a problem that the performance of the heat transfer tube is greatly reduced (40%).
즉, 친환경 냉매를 사용하기 위해서는 열교환 효율이 매우 우수한 전열관이 필요한 문제점이 존재한다.That is, there is a problem that a heat transfer tube having very excellent heat exchange efficiency is required to use an eco-friendly refrigerant.
본 발명이 해결하고자 하는 과제는 친환경 냉매를 사용하면서, 효율이 저하되지 않는 전열관 및 칠러 시스템을 제공하는 것이다.An object of the present invention is to provide a heat transfer tube and a chiller system in which efficiency is not reduced while using an eco-friendly refrigerant.
본 발명의 또 다른 과제는 제조가 용이하고, 동일한 관경에서 열전달 효율이 극대화되는 전열관을 제공하기 위함이다.Another object of the present invention is to provide a heat transfer tube that is easy to manufacture and maximizes heat transfer efficiency in the same tube diameter.
본 발명의 과제들은 이상에서 언급한 과제들로 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.The problems of the present invention are not limited to the problems mentioned above, and other problems not mentioned will be clearly understood by those skilled in the art from the following description.
상기 과제를 달성하기 위하여, 본 발명은 냉매 튜브의 외면에 주 공동과 주 공동보다 크기가 작은 미세 공동을 포함하는 것을 특징으로 한다.In order to achieve the above object, the present invention is characterized in that it includes a main cavity and a microcavity smaller in size than the main cavity on the outer surface of the refrigerant tube.
구체적으로, 내부에 냉매가 유동되는 공간을 가지는 냉매 튜브; 상기 냉매 튜브의 외면에서 돌출되며, 상기 냉매 튜브의 외면과 단차를 가지는 상단면을 포함하는 복수의 방열핀; 서로 인접한 방열핀들 사이에 형성되고, 상기 복수의 방열핀들의 상단 사이에 입구가 형성되는 주 공동; 및 상기 방열핀의 상면에 형성되고, 상기 주 공동 보다 작은 높이 및 폭을 가지고, 상부로 개방된 복수의 미세 공동을 포함하는 것을 특징으로 한다. Specifically, a refrigerant tube having a space in which the refrigerant flows; a plurality of heat dissipation fins protruding from the outer surface of the refrigerant tube and including an upper surface having a step difference from the outer surface of the refrigerant tube; a main cavity formed between adjacent heat dissipation fins and having an inlet formed between upper ends of the plurality of heat dissipation fins; and a plurality of microcavities that are formed on the upper surface of the heat dissipation fins, have a height and a width smaller than that of the main cavity, and open upwards.
상기 방열핀은, 하단이 상기 냉매 튜브의 외면과 연결된 제1 부분과, 상기 제1 부분의 상단에 연결되고, 상기 제1 부분 보다 확장된 폭을 가지는 제2 부분을 포함하고, 상기 상단면은 상기 제2 부분의 상면일 수 있다.The heat dissipation fin includes a first portion having a lower end connected to the outer surface of the refrigerant tube, and a second portion connected to the upper end of the first portion and having a width wider than the first portion, and the upper surface is the It may be the upper surface of the second part.
상기 복수의 미세 공동은 상기 상단면의 테두리를 따라 배치될 수 있다.The plurality of microcavities may be disposed along an edge of the top surface.
상기 미세 공동의 상부 폭은 상기 미세 공동의 하부 폭 보다 작을 수 있다.An upper width of the microcavity may be smaller than a lower width of the microcavity.
상기 미세 공동의 폭은 상부에서 하부 방향으로 진행될수록 작아질 수 있다.The width of the microcavity may decrease as it progresses from the top to the bottom.
상기 미세 공동의 깊이는 상기 주 공동의 깊이 대비 0.01% 내지 10% 일 수 있다.The depth of the microcavity may be 0.01% to 10% of the depth of the main cavity.
상기 미세 공동의 깊이는 상기 주 공동의 폭 대비 5% 내지 90% 일 수 있다.The depth of the microcavity may be 5% to 90% of the width of the main cavity.
상기 미세 공동의 깊이는 상기 미세 공동의 입구 폭 보다 크거나 같을 수 있다.A depth of the microcavity may be greater than or equal to an entrance width of the microcavity.
상기 미세 공동 입구 폭은 상기 주 공동의 입구 폭 대비 5% 내지 50% 일 수 있다.The entrance width of the microcavity may be 5% to 50% of the entrance width of the main cavity.
서로 인접한 상기 미세 공동 사이의 이격거리는 상기 미세 공동 입구 폭 대비 2배 내지 5배일 수 있다.The distance between the microcavities adjacent to each other may be 2 to 5 times the width of the entrance to the microcavities.
상기 주 공동의 입구는 서로 인접한 제2 부분들 사이에 형성될 수 있다.The entrance of the main cavity may be formed between the second portions adjacent to each other.
상기 주 공동의 하부 폭은 상기 주 공동의 입구 폭 보다 클 수 있다.A lower width of the main cavity may be greater than an inlet width of the main cavity.
상기 주 공동의 하부 폭은 상기 주 공동의 입구 폭 대비 2 배 내지 4배일 수 있다.The lower width of the main cavity may be 2 to 4 times the width of the entrance of the main cavity.
상기 주 공동의 깊이는 상기 주 공동의 입구 폭 대비 5 배 내지 10배 일 수 있다.The depth of the main cavity may be 5 to 10 times the width of the entrance of the main cavity.
상기 주 공동의 하부 폭은 300㎛ 내지 400㎛ 일 수 있다.A lower width of the main cavity may be 300 μm to 400 μm.
상기 주 공동의 깊이는 0.9mm 내지 1.2mm 일 수 있다.The depth of the main cavity may be 0.9 mm to 1.2 mm.
상기 미세 공동의 입구 폭은 10㎛ 내지 50㎛ 일 수 있다.The entrance width of the microcavity may be 10 μm to 50 μm.
또한, 본 발명은 열교환 공간을 가지는 케이스; 상기 케이스에 연결되어 제1 냉매를 상기 열교환 공간으로 공급하는 제1 냉매 공급관; 상기 케이스에 연결되어 상기 열교환 공간 내의 상기 제1 냉매가 토출되는 제1 냉매 토출관; 및 상기 케이스의 상기 열교환 공간에 배치되고, 상기 제1 냉매와 열교환하는 제2 냉매가 흐르는 다수의 전열관을 포함하고, 상기 전열관은 내부에 냉매가 유동되는 공간을 가지는 냉매 튜브; 상기 냉매 튜브의 외면에서 돌출되며, 상기 냉매 튜브의 외면과 단차를 가지는 상단면을 포함하는 복수의 방열핀; 서로 인접한 방열핀들 사이에 형성되고, 상기 복수의 방열핀들의 상단 사이에 입구가 형성되는 주 공동; 및 상기 방열핀의 상면에 형성되고, 상기 주 공동 보다 작은 높이 및 폭을 가지고, 상부로 개방된 복수의 미세 공동을 포함한다.In addition, the present invention is a case having a heat exchange space; a first refrigerant supply pipe connected to the case to supply a first refrigerant to the heat exchange space; a first refrigerant discharge pipe connected to the case to discharge the first refrigerant in the heat exchange space; and a plurality of heat transfer tubes disposed in the heat exchange space of the case and through which a second refrigerant that exchanges heat with the first refrigerant flows, the heat transfer tube comprising: a refrigerant tube having a space in which the refrigerant flows; a plurality of heat dissipation fins protruding from the outer surface of the refrigerant tube and including an upper surface having a step difference from the outer surface of the refrigerant tube; a main cavity formed between adjacent heat dissipation fins and having an inlet formed between upper ends of the plurality of heat dissipation fins; and a plurality of microcavities that are formed on the upper surface of the heat dissipation fin, have a height and a width smaller than those of the main cavity, and open upward.
기타 실시예들의 구체적인 사항들은 상세한 설명 및 도면들에 포함되어 있다.The details of other embodiments are included in the detailed description and drawings.
본 발명의 전열관 및 칠러용 열교환기에 따르면 다음과 같은 효과가 하나 혹은 그 이상 있다.According to the heat exchanger for a heat transfer tube and a chiller of the present invention, there are one or more of the following effects.
첫째, 본 발명은 전열관의 액냉매가 표면장력에 의해 미세 공동과, 주 공동으로 침투하기 어려운 구조를 가지므로, 미세 공동의 내부에는 기상 냉매가 항상 존재하게 되고, 미세 공동 내부의 기상 냉매는 액상 냉매가 기상 냉매로 상 변화하기 위한 상변확의ㅏ 핵으로 작용하여 액상 냉매의 비등을 촉진시키는 이점이 존재한다.First, in the present invention, since the liquid refrigerant of the heat transfer tube has a structure in which it is difficult to penetrate into the microcavity and the main cavity due to surface tension, a gaseous refrigerant is always present inside the microcavity, and the gaseous refrigerant inside the microcavity is a liquid There is an advantage in that the refrigerant acts as a phase change nucleus for phase change into a gaseous refrigerant, thereby accelerating the boiling of the liquid refrigerant.
둘째, 주 공동과, 미세 공동의 크기가 달라서 서로 달라서, 주 공동에서 생성된 기포가 미세 공동에서 생성된 기포와 병합하여 기포가 냉매 튜브에서 쉽게 이탈할 수 있게 하는 이점이 존재한다.Second, there is an advantage that the main cavity and the microcavity are different from each other because they have different sizes, so that the bubbles generated in the main cavity merge with the bubbles generated in the microcavities so that the bubbles can easily escape from the refrigerant tube.
셋째, 주 공동과 미세 공동을 가지므로, 전열관의 열교환 효율을 향상시키는 이점이 존재한다.Third, since it has a main cavity and a fine cavity, there is an advantage of improving the heat exchange efficiency of the heat transfer tube.
넷째, 본 발명은 단순하고, 제조가 용이한 구조를 가지는 이점이 존재한다.,Fourth, the present invention has the advantage of having a structure that is simple and easy to manufacture.,
다섯째, 본 발명은 친환경 냉매를 사용하면서도, 칠러의 효율이 저하되지 않는 이점이 존재한다.Fifth, the present invention has the advantage that the efficiency of the chiller is not lowered while using an eco-friendly refrigerant.
본 발명의 효과들은 이상에서 언급한 효과들로 제한되지 않으며, 언급되지 않은 또 다른 효과들은 청구범위의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.Effects of the present invention are not limited to the effects mentioned above, and other effects not mentioned will be clearly understood by those skilled in the art from the description of the claims.
도 1는 본 발명의 일 실시예에 칠러 시스템을 나타낸 것이다
도 2는 본 발명의 일 실시예에 따른 압축기의 구조를 도시한 것이다.
도 3은 본 발명의 일 실시예에 따른 압축기가 서지 미 발생 조건 경우를 도시한 것이다.
도 4는 본 발명의 일 실시예에 따른 압축기가 서지 발생 조건 경우를 도시한 것이다.
도 5는 본 발명의 일 실시예에 따른 전열관의 사시도이다.
도 6은 도 5의 주 공동의 입구를 확대한 도면이다.
도 7은 도 5의 전열관의 단면도이다.1 shows a chiller system in one embodiment of the present invention.
2 illustrates a structure of a compressor according to an embodiment of the present invention.
3 is a diagram illustrating a case in which the compressor according to an embodiment of the present invention does not generate a surge.
4 is a diagram illustrating a case in which the compressor according to an embodiment of the present invention generates a surge condition.
5 is a perspective view of a heat transfer tube according to an embodiment of the present invention.
Figure 6 is an enlarged view of the entrance of the main cavity of Figure 5;
7 is a cross-sectional view of the heat transfer tube of FIG. 5 .
본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 상세하게 후술되어 있는 실시예들을 참조하면 명확해질 것이다. 그러나 본 발명은 이하에서 개시되는 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 수 있으며, 단지 본 실시예들은 본 발명의 개시가 완전하도록 하고, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다. 명세서 전체에 걸쳐 동일 참조 부호는 동일 구성 요소를 지칭한다.Advantages and features of the present invention and methods of achieving them will become apparent with reference to the embodiments described below in detail in conjunction with the accompanying drawings. However, the present invention is not limited to the embodiments disclosed below, but may be implemented in various different forms, and only these embodiments allow the disclosure of the present invention to be complete, and common knowledge in the art to which the present invention pertains It is provided to fully inform those who have the scope of the invention, and the present invention is only defined by the scope of the claims. Like reference numerals refer to like elements throughout.
공간적으로 상대적인 용어인 "아래(below)", "아래(beneath)", "하부(lower)", "위(above)", "상부(upper)" 등은 도면에 도시되어 있는 바와 같이 하나의 구성 요소들과 다른 구성 요소들과의 상관관계를 용이하게 기술하기 위해 사용될 수 있다. 공간적으로 상대적인 용어는 도면에 도시되어 있는 방향에 더하여 사용시 또는 동작 시 구성요소의 서로 다른 방향을 포함하는 용어로 이해되어야 한다. 예를 들면, 도면에 도시되어 있는 구성요소를 뒤집을 경우, 다른 구성요소의 "아래(below)"또는 "아래(beneath)"로 기술된 구성요소는 다른 구성요소의 "위(above)"에 놓여질 수 있다. 따라서, 예시적인 용어인 "아래"는 아래와 위의 방향을 모두 포함할 수 있다. 구성요소는 다른 방향으로도 배향될 수 있고, 이에 따라 공간적으로 상대적인 용어들은 배향에 따라 해석될 수 있다.Spatially relative terms "below", "beneath", "lower", "above", "upper", etc. It can be used to easily describe the correlation between components and other components. Spatially relative terms should be understood as terms including different orientations of components in use or operation in addition to the orientation shown in the drawings. For example, when a component shown in the drawings is turned over, a component described as “beneath” or “beneath” of another component may be placed “above” of the other component. can Accordingly, the exemplary term “below” may include both directions below and above. Components may also be oriented in other orientations, and thus spatially relative terms may be interpreted according to orientation.
본 명세서에서 사용된 용어는 실시예들을 설명하기 위한 것이며 본 발명을 제한하고자 하는 것은 아니다. 본 명세서에서, 단수형은 문구에서 특별히 언급하지 않는 한 복수형도 포함한다. 명세서에서 사용되는 "포함한다(comprises)" 및/또는 "포함하는(comprising)"은 언급된 구성요소, 단계 및/또는 동작은 하나 이상의 다른 구성요소, 단계 및/또는 동작의 존재 또는 추가를 배제하지 않는다.The terminology used herein is for the purpose of describing the embodiments and is not intended to limit the present invention. As used herein, the singular also includes the plural unless specifically stated otherwise in the phrase. As used herein, "comprises" and/or "comprising" means that a referenced component, step and/or action excludes the presence or addition of one or more other components, steps and/or actions. I never do that.
다른 정의가 없다면, 본 명세서에서 사용되는 모든 용어(기술 및 과학적 용어를 포함)는 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 공통적으로 이해될 수 있는 의미로 사용될 수 있을 것이다. 또 일반적으로 사용되는 사전에 정의되어 있는 용어들은 명백하게 특별히 정의되어 있지 않은 한 이상적으로 또는 과도하게 해석되지 않는다.Unless otherwise defined, all terms (including technical and scientific terms) used herein may be used with the meaning commonly understood by those of ordinary skill in the art to which the present invention belongs. In addition, terms defined in a commonly used dictionary are not to be interpreted ideally or excessively unless clearly specifically defined.
도면에서 각 구성요소의 두께나 크기는 설명의 편의 및 명확성을 위하여 과장되거나 생략되거나 또는 개략적으로 도시되었다. 또한 각 구성요소의 크기와 면적은 실제크기나 면적을 전적으로 반영하는 것은 아니다. In the drawings, the thickness or size of each component is exaggerated, omitted, or schematically illustrated for convenience and clarity of description. In addition, the size and area of each component do not fully reflect the actual size or area.
이하, 첨부도면은 참조하여, 본 발명의 바람직한 실시예를 설명하면 다름과 같다.Hereinafter, preferred embodiments of the present invention will be described with reference to the accompanying drawings.
이하, 본 발명의 실시예들에 의하여 칠러 시스템을 설명하기 위한 도면들을 참고하여 본 발명에 대해 설명하도록 한다.Hereinafter, the present invention will be described with reference to the drawings for explaining a chiller system according to embodiments of the present invention.
도 1은 본 발명의 칠러 시스템을 도시한 것이다. 한편, 본 발명의 일 실시예에 따른 압축기(100)는 칠러 시스템의 일부로써 기능할 뿐만 아니라 공기조화기에도 포함될 수 있으며 기체 상태의 물질을 압축하는 기기라면 어디에든 포함될 수 있을 것이다.1 shows a chiller system of the present invention. Meanwhile, the
도 1을 참조하면, 본 발명의 일 실시예에 따른 칠러 시스템(1)은 냉매를 압축하도록 형성된 압축기(100), 압축기(100)에서 압축된 냉매와 냉각수를 열교환시켜 냉매를 응축시키는 응축기(200), 응축기(200)에서 응축된 냉매를 팽창시키는 팽창기(300), 팽창기(300)에서 팽창된 냉매와 냉수를 열교환시켜 냉매의 증발과 함께 냉수를 냉각하도록 형성된 증발기(400)를 포함한다. Referring to FIG. 1 , a
또한, 본 발명의 일 실시예에 따른 칠러 시스템(1)은 응축기(200)에서 압축된 냉매와 냉각수를 사이의 열교환을 통해 냉각수를 가열하는 냉각수유닛(600)과, 증발기(400)에서 팽창된 냉매와 냉수 사이의 열교환을 통해 냉수를 냉각하는 공기조화유닛(500)을 더 포함한다.In addition, the
응축기(200)는 압축기(100)에서 압축된 고압의 냉매를 냉각수유닛(600)에서 유입되는 냉각수와 열교환하는 장소를 제공한다. 고압의 냉매는 냉각수와의 열교환을 통해 응축된다. The
응축기(200)는 쉘-튜브 타입의 열교환기로 구성될 수 있다. 구체적으로, 압축기(100)에서 압축된 고압의 냉매는 응축기연결유로(150)를 통해 응축기(200) 내부 공간에 해당하는 응축공간(230)으로 유입된다. 또한, 응축공간(230) 내부에는 냉각수유닛(600)으로부터 유입되는 냉각수가 흐를 수 있는 냉각수유로(210)를 포함한다. 응축기(200)는 내부에 응축공간(230)을 가지는 응축챔버(201)을 포함한다. The
냉각수유로(210)는 냉각수유닛(600)으로부터 냉각수가 유입되는 냉각수유입유로(211)와 냉각수유닛(600)으로 냉각수가 배출되는 냉각수토출유로(212)로 구성된다. 냉각수유입유로(211)로 유입된 냉각수는 응축공간(230) 내부에서 냉매와 열교환을 한 후 응축기(200) 내부 일단 또는 외부에 구비된 냉각수연결유로(240)를 지나 냉각수토출유로(212)로 유입된다. The cooling
냉각수유닛(600)과 응축기(200)는 냉각수튜브(220)를 매개로 하여 연결이 된다. 냉각수튜브(220)는 냉각수유닛 (600)과 응축기(200) 사이에 냉각수가 흐르는 통로가 될 뿐만 아니라 외부로 새어나가지 않도록 고무 등의 재질로 구성될 수 있다. The cooling
냉각수튜브(220)는 냉각수유입유로(211)와 연결되는 냉각수유입튜브(221)와 냉각수토출유로( 212)와 연결되는 냉각수토출튜브(222)로 구성된다. 냉각수의 흐름을 전체적으로 살펴보면, 냉각수유닛(600)에서 공기 또는 액체와 열교환을 마친 냉각수는 냉각수유입튜브(221)를 통해 응축기(200) 내부로 유입된다. 응축기(200) 내부로 유입된 냉각수는 응축기(200) 내부에 구비된 냉각수유입유로(211), 냉각수연결유로(240), 냉각수토출유로(212)를 차례로 지나면서 응축기(200) 내부로 유입된 냉매와 열교환을 한 후 다시 냉각수토출튜브(222)를 지나 냉각수유닛(600)으로 유입된다.The cooling
한편, 응축기(200)에서 열교환을 통해 냉매의 열을 흡수한 냉각수는 냉각수유닛(600)에서 공냉시킬 수 있다. 냉각수유닛(600)은 본체부(630)와 냉각수토출튜브(222)를 통해 열을 흡수한 냉각수가 유입되는 입구인 냉각수유입관(610)과 냉각수유닛(600) 내부에서 냉각된 후 냉각수가 배출되는 출구인 냉각수토출관(620)으로 구성된다. Meanwhile, the cooling water that has absorbed heat of the refrigerant through heat exchange in the
냉각수유닛(600)은 본체부(630) 내부로 유입된 냉각수를 냉각시키기 위해 공기를 이용할 수 있다. 구체적으로 본체부(630)는 공기의 흐름을 발생시키는 팬이 구비되고 공기가 토출되는 공기토출구(631)와 본체부(630) 내부로 공기를 유입되는 입구에 해당하는 공기흡입구(632)로 구성된다. The cooling
공기토출구(631)에서 열교환을 마치고 토출되는 공기는 난방에 이용될 수 있다. 응축기(200)에서 열교환을 마친 냉매는 응축되어 응축공간(230) 하부에 고이게 된다. 고인 냉매는 응축공간(230) 내부에 구비된 냉매박스(250)로 유입된 후 팽창기(300)로 흘러간다. Air discharged after heat exchange at the
냉매박스(250)는 냉매유입구(251)로 유입되며, 유입된 냉매는 증발기연결유로(260)로 토출된다. 증발기연결유로(260)는 증발기연결유로유입구 (261)를 포함하며, 증발기연결유로유입구(261)는 냉매박스(250)의 하부에 위치할 수 있다. The
증발기(400)는 팽창기(300)에서 팽창된 냉매와 냉수 사이에 열교환이 일어나는 증발공간(430)을 가지는 증발 챔버(401)을 포함한다. 증발기연결유로(260)에서 팽창기(300)를 통과한 냉매는 증발기(400) 내부에 구비된 냉매분사장치(450)와 연결되며, 냉매분사장치(450)에 구비된 냉매분사홀(451)을 지나 증발기(400) 내부로 골고루 퍼지게 된다. The
또한 증발기(400) 내부에는 증발기(400) 내부로 냉수가 유입되는 냉수유입유로(411)와 증발기(400) 외부로 냉수가 토출되는 냉수토출유로(412)를 포함하는 냉수유로(410)가 구비된다. In addition, the
냉수는 증발기(400) 외부에 구비된 공기조화유닛(500)과 연통된 냉수튜브(420)를 통해 유입되거나 토출된다. 냉수튜브(420)는 공기조화유닛(500) 내부의 냉수가 증발기(400)로 향하는 통로인 냉수유입튜브(421)와 증발기(400)에서 열교환을 마친 냉수가 공기조화유닛(500)으로 향하는 통로인 냉수토출튜브(422)로 구성된다. 즉, 냉수유입튜브(421)는 냉수유입유로(411)와 연통되고 냉수토출튜브(422)는 냉수토출유로(412)와 연통된다. The cold water is introduced or discharged through the
냉수의 흐름을 살펴보면, 공기조화유닛(500), 냉수유입튜브(421), 냉수유입유로(411)를 거쳐 증발기(400)의 내부 일단 또는 증발기(400)의 외부에 구비된 냉수연결유로(440)를 통과한 후, 냉수토출유로(412), 냉수토출튜브(422)를 거쳐 공기조화유닛(500)으로 다시 유입된다. Looking at the flow of cold water, the cold
공기조화유닛(500)은 냉매를 통해 냉수를 냉각시킨다. 냉각된 냉수는 공기조화유닛(500) 내에서 공기의 열을 흡수하여 실내 냉방을 가능하게 한다. 공기조화유닛(500)은 냉수유입튜브(421)과 연통되는 냉수토출관(520)과 냉수토출튜브(422)와 연통되는 냉수유입관(510)을 포함한다. 증발기(400)에서 열교환을 마친 냉매는 압축기연결유로(460)를 통해 압축기(100)로 다시 유입된다. The
도 2는 본 발명의 일 실시예에 따른 원심 압축기(100)(일명, 터보 압축기)를 도시한 것이다.2 illustrates a centrifugal compressor 100 (aka, turbocompressor) according to an embodiment of the present invention.
도 2에 따른 압축기(100)는, 냉매를 축방향(Ax)으로 흡입하여 원심방향으로 압축하는 하나 이상의 임펠러(120), 임펠러(120) 및 임펠러(120)를 회전시키는 모터(130)가 연결된 회전축(110), 회전축(110)을 공중에서 회전 가능하도록 지지하는 다수개의 자기베어링(141)과 자기베어링(141)을 지지하는 베어링하우징(142)을 포함하는 베어링부(140), 회전축(110)과의 거리를 감지하는 갭센서(70) 및 회전축(110)이 축방향(Ax)으로 진동하는 것을 제한하는 트러스트 베어링(160)을 포함한다.
임펠러(120)는 1단 또는 2단으로 이루어진 것이 일반적이며 다수개의 단으로 이루어져도 무방하다. 회전축(110)에 의해 회전을 하며, 축방향(Ax)으로 유입된 냉매를 원심방향으로 회전에 의해 압축을 함으로써 냉매를 고압으로 만드는 역할을 한다. The
모터(130)는 회전축(110)과 별도의 회전축(110)을 가지고 벨트(미도시)에 의해 회전력을 회전축(110)으로 전달하는 구조를 가질 수도 있으나, 본 발명의 일 실시예의 경우, 모터(13)는 스테이터(미도시) 및 로터(112)로 구성되어 회전축(110)을 회전시킨다. The
회전축(110)은 임펠러(120) 및 모터(13)와 연결된다. 회전축(110)은 도 2의 좌우 방향으로 연장된다. 이하, 회전축(110)의 축방향(Ax)은 좌우 방향을 의미한다. 회전축(110)은 자기베어링(141) 및 트러스트베어링의 자기력에 의해 움직일 수 있도록 금속을 포함하는 것이 바람직하다.The
트러스트 베어링(160)에 의회 회전축(110)읜 축방향(Ax)(좌우방향)의 진동을 방지하기 위해, 회전축(110)이 축방향(Ax)과 수직한 면에서 일정한 면적을 가지는 것이 바람직하다. 구체적으로, 회전축(110)은 트러스트 베어링(160)의 자기력에 의해 회전축(110)을 이동시킬 수 있는 충분한 자기력을 제공하는 회전축날개(111)를 더 포함할 수 있다. 회전축날개(111)는 축방향(Ax)에 수직한 면에서 회전축(110)의 단면적 보다 넓은 면적을 가질 수 있다. 회전축날개(111)는 회전축(110)의 회전 반경 방향으로 연장되어 형성될 수 있다.In order to prevent vibration in the axial direction (Ax) (left and right) of the
자기베어링(141)과 트러스트 베어링(160)은 도체로 구성되며 코일(143)이 권선되어 있다. 권선된 코일(143)에 흐르는 전류에 의해 자석과 같은 역할을 한다. The
자기베어링(141)은 회전축(110)을 중심으로 하여 회전축(110)을 둘러싸도록 다수개가 구비되고, 트러스트 베어링(160)은 회전축(110)의 회전 반경 방향으로 연장되어 구비되는 회전축날개(111)에 인접하도록 구비된다. A plurality of
자기베어링(141)은 회전축(110)이 공중에 부양된 상태에서 마찰 없이 회전할 수 있도록 한다. 이를 위해 자기베어링(141)은 회전축(110)을 중심으로 적어도 3개 이상이 구비되어야 하며, 각각의 자기베어링(141)은 회전축(110)을 중심으로 균형을 이루어 설치되어야 한다. The
본 발명의 일 실시예의 경우, 4개의 자기베어링(141)이 회전축(110)을 중심으로 대칭되도록 구비되며, 각각의 자기베어링(141)에 권선된 코일에 의해 생성된 자기력에 의해 회전축(110)이 공중에 부양하게 된다. 공중에 회전축(110)이 부양되어 회전함으로 인해, 기존에 베어링이 구비된 종래 발명과 달리 마찰로 인해 손실되는 에너지가 줄어들게 된다.In the case of an embodiment of the present invention, four
한편, 압축기(100)는 자기베어링(141)을 지지하는 베어링하우징(142)을 더 구비할 수 있다. 자기베어링(141)은 다수개가 구비되며, 회전축(110)과 접촉되지 않도록 간극을 두고 설치된다.Meanwhile, the
다수개의 자기베어링(141)은 적어도 회전축(110)의 두 지점에 설치된다. 두 지점은 회전축(110)의 길이방향을 따라 서로 다른 지점에 해당한다. 회전축(110)이 직선에 해당하기 때문에 적어도 두 개의 지점에서 회전축(110)을 지탱해야 원주 방면으로의 진동을 방지할 수 있다. The plurality of
냉매의 흐름을 살펴보면, 압축기(100)연결유로(460)를 통해 압축기(100) 내부로 유입된 냉매가 임펠러(120)의 작용으로 원주 방면으로 압축된 후 응축기연결유로(150)로 토출된다. 압축기(100)연결유로(460)는 임펠러(120)의 회전 방향 과 수직인 방향으로 냉매가 유입될 수 있도록 압축기(100)와 연결된다. Looking at the flow of the refrigerant, the refrigerant introduced into the
트러스트 베어링(160)은 회전축(110)이 축방향(Ax)의 진동으로 이동하는 것을 제한하고, 서지 발생시에 회전축(110)이 임펠러(120) 방향으로 이동하면서, 압축기(100)의 다른 구성과 회전축(110)의 출동하게 되는 것을 방지한다.The
구체적으로, 트러스트 베어링(160)은, 제1트러스트베어링(161)과 제2트러스트베어링(162)으로 구성되며 회전축날개(111)를 회전축(110)의 축방향(Ax)으로 감싸도록 배치된다. 즉, 회전축(110)의 축방향(Ax)으로 제1트러스트베어링(161), 회전축날개(111), 제2트러스트베어링(162)의 순서로 배치된다.Specifically, the
더욱 구체적으로, 제2 트러스트 베어링(162)은 제1 트러스트 베어링(161) 보다 임펠러(120)에 인접하게 위치되고, 제1 트러스트 베어링(161)은 제2 트러스트 베러링 보다 임펠러(120)에서 멀게 위치되고, 제1 트러스트 베어링(161)과 제2 트러스트 베어링(162) 사이에 회전축(110)의 적어도 일부가 위치된다. 바람직하게는, 제1 트러스트 베어링(161)과 제2 트러스트 베어링(162) 사이에 회전축날개(111)가 위치된다.More specifically, the second thrust bearing 162 is located closer to the
따라서 제1트러스트베어링(161)과 제2트러스트베어링(162)은 넓은 면적을 가지는 회전축날개(111)와 자기력의 작동에 의해 회전축(110)이 회전축(110) 방향으로 진동하는 것을 최소화할 수 있는 효과가 있다. Therefore, the
갭센서(70)는 회전축(110)의 축방향(Ax)(좌우방향) 움직임을 측정한다. 물론, 갭센서(70)는 회전축(110)의 상하방향(축방향(Ax)과 직교하는 방향) 움직임을 측정할 수 있다. 물론, 갭센서(70)는 다수의 갭센서(70)를 포함할 수 있다.The gap sensor 70 measures the movement in the axial direction (Ax) (left and right) of the
예를 들면, 갭센서(70)는 회전축(110)의 상하 방향 움직임을 측정하는 제1 갭센서(710)와 회전축(110)의 좌우 방향 움직임을 측정하는 제2갭센서(720)로 구성된다. 제2 갭센서(720)는 회전축(110)의 축방향(Ax)의 일단에서 축방향(Ax)으로 이격되어 배치될 수 있다.For example, the gap sensor 70 includes a
트러스트 베어링(160)의 힘은 거리의 제곱에 반비례하며, 전류의 제곱에 비례한다. 회전축(110)에 서지발생시 임펠러(120) 방향(우측 방향)으로 추력이 발생하게 된다. 우측 방향으로 발생하는 힘을 트러스트 베어링(160)의 자기력을 이용하여 최대한의 힘으로 축을 당겨야 하는데 회전축(110)의 위치가 2개의 트러스트 베어링(160)의 중간(기준 위치(C0))에 위치되게 되면, 급격한 축 이동에 대응하여 회전축(110)을 빠르게 이동을 기준 위치(C0)로 이동이 어렵게 된다. The force of the
회전축(110)에 발생한 임펠러(120) 방향의 추력의 힘은 상당히 강하기 때문에, 기준 위치(C0)에 위치하게 되면, 트러스트 베어링(160)의 자기력을 증가시키기 위해 전류의 공급량을 늘리거나, 트러스트 베어링(160)의 크기를 증가시켜야 하는 문제점이 존재한다.Since the force of the thrust in the direction of the
따라서, 본 발명은 서지 발생이 예상되면 미리 회전축(110)을 추력이 발생되는 방향의 반대방향을 편심시켜 위치되게 하는 것이다.Therefore, the present invention is to position the
구체적으로, 제어부(700)는 갭센서(70)로부터 받은 정보에 기반하여 서지 발생 조건을 판단한다. 제어부(700)는 갭센서(70)에 의해 측정되는 회전축(110)의 위치가 정상 위치 범위(-C1~+C1)를 벗어나는 경우 서지 발생 조건으로 판단할 수 있다. 또한, 제어부(700)는 갭센서(70)에 의해 측정되는 회전축(110)의 위치가 정상 위치 범위(-C1~+C1) 내에 위치되는 경우, 서지 미 발생 조건으로 판단할 수 있다.Specifically, the
여기서, 회전축(110)의 정상 위치 범위(-C1~+C1)는, 회전축(110)의 기준 위치(C0)를 기준으로 좌우 방향의 일정 거리 이내의 영역을 의미한다. 회전축(110)의 정상 위치 범위(-C1~+C1)는 회전축(110)의 회전 시에 여러 환경적, 주변적 요인에 의해 회전축(110)이 축방향(Ax)으로 진동되게 되는 데, 이러한 진동이 정상 상태라고 판단되는 범위다. 이러한 정상 위치 범위(-C1~+C1)는 실험적인 값으로, 회전축(110)의 위치의 첨도(Kurtosis) 또는 왜도(Skewness)를 기준으로 정상 위치 범위(-C1~+C1)를 값을 정할 수도 있다. 정상 위치 범위(-C1~+C1)를 정하는 방법은 제한을 두지 않는다.Here, the normal position range (-C1 to +C1) of the
제어부(700)는 서지 발생 조건이 만족되는 경우, 트러스트 베어링(160)들에 공급되는 전류의 양을 조절하여서, 회전축(110)을 기준 위치(C0)에서 임펠러(120)의 반대방향으로 편심되게 위치시킬 수 있다. 회전축(110)이 편심되는 위치는 회전축날개(111)가 제1트러스트 베어링(160)과 기준 위치(C0) 사이에 위치되는 것을 의미한다.When the surge generation condition is satisfied, the
따라서, 이후에 서지가 발생하여 회전축(110)이 임펠러(120) 방향으로 급속하게 이동하는 완충 시간을 가질 수 있고, 적은 전류량의 증가로 인해 회전축(110)을 정상 위치 범위(-C1~+C1)로 제어하는 것이 용이해 진다. Therefore, after a surge occurs, the
구체적으로, 제어부(700)는 서지 발생 조건이 만족되는 경우, 제1 및 제2 트러스트 베어링(162) 중 제1 트러스트 베어링(161)에만 전류를 공급할 수 있다. 다른 예로,제어부(700)는 서지 발생 조건이 만족되는 경우, 제1 트러스트 베어링(161)에 공급되는 전류의 양이 제2 트러스트 베어링(162)에 공급되는 전류의 양보다 많게 조절할 수 있다. Specifically, when the surge generation condition is satisfied, the
제어부(700)는 서지 발생 조건이 만족되어서, 회전축(110)을 임펠러(120)의 반대방향으로 편심킨 후, 일정 시간 동안 회전축(110)의 위치를 편심위치로 고정되게 제어할 수 있다. 즉, 제어부(700)는 회전축(110)이 임펠러(120) 반대방향으로 편심된 후, 서지가 발생하는 경우, 제1 트러스트 베어링(161)으로 공급되는 전류 양을 증가시킬 수 있다. 제어부(700)는 회전축(110)이 임펠러(120) 반대방향으로 편심된 후, 편심 위치를 기준으로 진동 폭이 일정 기준 이하로 유지되는 경우, 회전축(110)을 다시 기준 위치(C0)로 이동시킬 수도 있다.The
제어부(700)는 서지 미 발생 조건이 만족되는 경우, 제1 트러스트 베어링(161)에 공급되는 전류의 양과 제2 트러스트 베어링(162)에 공급되는 전류의 양을 동일하게 조절할 수 있다. 또는, 제어부(700)는 서지 미 발생 조건이 만족되는 경우, 상 제1 트러스트 베어링(161) 및 제2 트러스트 베어링(162)에 공급되는 전류의 양을 조절하여서, 회전축(110)이 기준 위치(C0)에 위치되도록 제어할 수 있다.When the surge non-occurrence condition is satisfied, the
본 발명의 칠러용 열교환기는 열교환 공간을 가지는 케이스, 케이스에 연결되어 제1 냉매를 열교환 공간으로 공급하는 제1 냉매 공급관, 케이스에 연결되어 열교환 공간 내의 제1 냉매가 토출되는 제1 냉매 토출관, 케이스의 열교환 공간에 배치되고, 제1 냉매와 열교환하는 제2 냉매가 흐르는 다수의 전열관을 포함할 수 있다.The heat exchanger for a chiller of the present invention includes a case having a heat exchange space, a first refrigerant supply pipe connected to the case to supply a first refrigerant to the heat exchange space, a first refrigerant discharge pipe connected to the case to discharge the first refrigerant in the heat exchange space, It may include a plurality of heat transfer tubes disposed in the heat exchange space of the case and through which a second refrigerant that exchanges heat with the first refrigerant flows.
칠러용 열교환기는 상술한 증발기 또는/및 응축기를 포함할 수 있다. 예를 들면, 칠러용 열교환기는 열교환 공간을 가지는 케이스, 케이스에 연결되어 제1 냉매를 열교환 공간으로 공급하는 제1 냉매 공급관, 케이스에 연결되어 열교환 공간 내의 제1 냉매가 토출되는 제1 냉매 토출관, 케이스의 열교환 공간에 배치되고, 제1 냉매와 열교환하는 제2 냉매가 흐르는 다수의 전열관을 포함할 수 있다.The heat exchanger for the chiller may include the above-described evaporator and/or condenser. For example, the heat exchanger for a chiller includes a case having a heat exchange space, a first refrigerant supply pipe connected to the case to supply a first refrigerant to the heat exchange space, and a first refrigerant discharge pipe connected to the case to discharge the first refrigerant in the heat exchange space , which is disposed in the heat exchange space of the case and may include a plurality of heat transfer tubes through which a second refrigerant exchanging heat with the first refrigerant flows.
칠러용 열교환기가 응축기인 경우, 케이스는 응축챔버(201)이고, 제1 냉매 공급관은 응축기연결유로(150)이고, 제1 냉매 토출관은 증발기연결유로(260)이고, 전열관은 냉각수유입유로(211) 또는/및 냉각수토출유로(212)일 수 있다.When the heat exchanger for the chiller is a condenser, the case is the
칠러용 열교환기가 증발기인 경우, 케이스는 증발 챔버(401)이고, 제1 냉매 공급관은 증발기연결유로(260)이고, 제1 냉매 토출관은 압축기연결유로(460)이고, 전열관은 냉수유입유로(411) 또는/및 냉수토출유로(412)이거나, 냉수유입유로(411) 또는/및 냉수토출유로(412)의 적어도 일부일 수 있다.When the heat exchanger for the chiller is an evaporator, the case is the
여기서, 제1 냉매는 물일 수 있고, 제2 냉매는 프레온, R-134a 및 R1233zd 중 어느 하나일 수 있다.Here, the first refrigerant may be water, and the second refrigerant may be any one of Freon, R-134a, and R1233zd.
일반적인 전열관은 전열관의 내부로 유체가 지날 때 액체 또는 기체인 유체가 전열관의 내부 표면에 100% 이상 고르게 접촉 하지 않고 빠르게 통과되어 외부 제2 냉매와 전달이 저하되는 문제점이 존재한다.A general heat pipe has a problem in that when the fluid passes into the inside of the heat pipe, the fluid, which is a liquid or gas, passes quickly without contacting 100% or more of the inner surface of the heat pipe evenly, so that the transfer with the external second refrigerant is reduced.
또한, 유체는 전열관 내부를 지날 때 장애물의 방해 없이 일정속도로 이동되는 것이므로 유체의 열전달이 표면과 완전히 이루어지지 않은 상태로 이동되어 충분한 열 교환이 이루어지지 않았을 뿐 아니라 유체가 이동할 때 일부는 유동(流動)의 발생이 거의 없이 전열관 내부를 그대로 통과하므로 유체의 내부에 흐르는 열의 전달이 효과적으로 이루어질 수 없었다.In addition, since the fluid moves at a constant speed without obstruction of the heat transfer tube when passing through the heat transfer tube, heat transfer of the fluid is not completely achieved with the surface, so sufficient heat exchange has not been achieved, and when the fluid moves, some of it flows ( Since it passes through the inside of the heat transfer tube as it is without the occurrence of heat, the heat flowing inside the fluid could not be effectively transferred.
특히, 기존 칠러용 냉매인 R-134a를 친환경 냉매(비가연성, 무독성)인 R1233zd로 변경시 이러한 전열관(20) 성능 매우 저하(40%)되게 되는 문제점이 존재한다. In particular, there is a problem in that the performance of the
따라서, 본 발명의 전열관(20)은 상술한 문제점을 해결하여서, 효율이 우수하고, 친환경 냉매를 사용할 수 있는 구성을 가진다.Accordingly, the
이하, 본 발명의 전열관(20)에 대해 상술한다.Hereinafter, the
도 5는 본 발명의 일 실시예에 따른 전열관(20)의 사시도, 도 6은 도 5의 주 공동(30)의 입구(38)를 확대한 도면, 도 7은 도 5의 전열관(20)의 단면도이다.5 is a perspective view of a
도 5 내지 도 7을 참조하면, 본 발명의 전열관(20)은 내부에 공간을 가지고 제1방향으로 연장되는 냉매 튜브(21), 냉매 튜브(21)의 외면에서 돌출되며, 냉매 튜브(21)의 외면과 단차를 가지는 상단면(23c)을 포함하는 복수의 방열핀(23), 서로 인접한 방열핀(23)들 사이에 형성되고, 복수의 방열핀(23)들의 상단 사이에 입구가 형성되는 주 공동(30) 및 방열핀(23)의 상면에 형성되고, 주 공동(30) 보다 작은 높이 및 폭을 가지고, 상부로 개방된 복수의 미세 공동(40)을 포함한다.5 to 7 , the
냉매 튜브(21)는 내부에 유동 공간(29)을 가지고 제1방향으로 연장된다. 여기서, 제1방향은 X축 방향으로, 제2 냉매가 유동되는 방향이다. 냉매 튜브(21)는 열전도율이 높은 금속재질이다. 냉매 튜브(21)는 내부를 유동하는 제2 냉매와 외부를 유동하는 제1 냉매 사이의 열교환을 돕는다.The
냉매 튜브(21)의 단면 형상(도 5 기준, 이하 단면 형상은 Y-Z축 단면을 기준으로 한다)은 내부에 냉매 유동공간(22)을 가지는 원형, 타원형 다각형 일 수 있다. 바람직하게는, 냉매 튜브(21)는 외부 표면적이 넓은 원형이다.The cross-sectional shape of the refrigerant tube 21 (based on FIG. 5 , hereinafter the cross-sectional shape is based on the Y-Z axis cross-section) may be a circular or elliptical polygon having a refrigerant flow space 22 therein. Preferably, the
냉매 튜브(21)의 지름은 제한이 없다. 다만, 냉매 튜브(21)가 너무 큰 경우, 열교환 효율이 저하되고, 너무 작은 경우, 열교환 시간이 오래 걸리기 때문에, 냉매 튜브(21)의 지름은 17mm 내지 25mm 일 수 있다. 냉매 튜브(21)의 지름은 19-21mm인 것이 바람직하다.The diameter of the
냉매 튜브(21)는 표면적을 확장하기 위한 다수의 홈 또는 돌기를 가질 수 있다. 예를 들면, 냉매 튜브(21)에 내면에는 다수의 유도홈(미도시)이 형성될 수 있다. 유도홈은 냉매 튜브(21)의 내면이 외측으로 함몰되어 형성된다.The
다수의 유도홈(21a)은 냉매 튜브(21)의 내면에 규칙적 또는 불규칙적으로 형성될 수 있다. 이러한 다수의 유도홈(21a)은 제2 냉매와 냉매 튜브(21)의 내면과의 접촉 면적을 향상시킨다. The plurality of guide grooves 21a may be regularly or irregularly formed on the inner surface of the
냉매 튜브(21)의 외면에는 서로 단차를 가지는 주 공동(30)과, 미세 공동(40)을 포함할 수 있다. 주 공동(30)은 미세 공동(40) 보다 큰 크기를 가지고, 미세 공동(40) 보다 아래에 배치될 수 있다. 여기서 아래에 배치된다 함은 주 공동(30)의 하단이 미세 공동(40)의 하단 보다 아래에 위치되는 것을 의미한다.The outer surface of the
주 공동(30)과 미세 공동(40)의 크기 차이에 의해 주 공동(30)에서 생성된 기포와, 미세 공동(40)에서 생성된 기포가 서로 병합하여 기포가 냉매 튜브(21)에서 이탈되는 것을 촉진하고, 이렇게 이탈된 기포는 액상 냉매가 기상 냉매로 상환화를 촉진하게 된다.The bubbles generated in the
주 공동(30)과 미세 공동(40)은 다양한 방법으로 생성될 수 있다. 예를 들면, 냉매 튜브(21)의 외면이 제1 방향과 제1 방향과 교차되는 원주방향으로 롤러에 의해 가압되어서 다수의 홈(31, 32)과 다수의 방열핀(23)이 형성되고, 방열핀(23)이 상부에서 하부로 가압되어 방열핀(23)이 구부러지거나 방열핀(23)의 상부가 확장되어 주 공동(30)이 형성되고, 미세 공동(40)은 펀치, 습식 에칭, 건식 에칭에 의해 형성될 수 있다.The
복수의 방열핀(23)은 냉매 튜브(21)의 외면에서 돌출되어 형성된다. 복수의 방열핀(23)은 냉매 튜브(21)의 외면에 각각 접착되거나 일체로 형성될 수도 있지만, 상술한 방법에 의해 형성되는 것이 제조가 용이하다.The plurality of
방열핀(23)은 하단이 냉매 튜브(21)의 외면과 연결된 제1 부분(23a)과, 제1 부분(23a)의 상단에 연결되고, 제1 부분(23a) 보다 확장된 폭을 가지는 제2 부분(23b)을 포함한다.The
제1 부분(23a)의 하단은 냉매 튜브(21)의 외면과 연결되고, 제1 부분(23a)의 상단은 제2 부분(23b)과 연결된다. 서로 인접한 제1 부분(23a)들 사이는 서로 이격되어서, 주 공동(30)의 내부를 형성하게 된다. 서로 인접한 제1 부분(23a)들은 제2 부분(23b)이 확장되어도 주 공동(30)이 어느 정도 폭을 유지하도록 충분한 거리로 이격된다.The lower end of the
제2 부분(23b)은 제1 부분(23a)의 사단에 연결되어 상부로 연결된다. 제2 부분(23b)은 제1 부분(23a) 보다 큰 폭을 가진다. 제2 부분(23b)은 방열핀(23)의 상단이 가압되어 제조될 수 있다. 서로 인접한 제2 부분(23b)들은 서로 일부가 접촉되거나, 주 공동(30)의 폭 보다 작은 거리로 이격될 수 있다. 인접한 제2 부분(23b)들 사이의 공간은 주 공동(30)의 입구(38)를 정의하게 된다.The
각 방열핀(23)에는 냉매 튜브(21)의 외면과 단차를 가지는 상단면(23c)을 포함할 수 있다. 여기서, 냉매 튜브(21)의 외면은 주 공동(30)의 바닥면을 의미할 것이다. 구체적으로, 상단면(23c)은 제2 부분(23b)의 상면일 수 있다.Each
상단면(23c)의 면적은 주 공동(30)의 입구(38)의 면적 및 미세 공동(40)의 입구 폭 보다 클 수 있다. 상단면(23c)의 가장 큰 폭은 주 공동(30)의 가장 큰 폭 보다 큰 것이 바람직하다. 각 방열핀(23)의 제2 부분(23b)은 미세 공동(40)이 형성될 있도록 충분한 면적을 가지는 것이 바람직하다.The area of the
주 공동(30)은 서로 인접한 방열핀(23)들 사이에 형성되고, 복수의 방열핀(23)들의 상단 사이에 입구가 형성될 수 있다. 주 공동(30)의 크기는 미세 공동(40) 보다 크게 형성될 수 있다.The
주 공동(30)의 입구(38)가 너무 작으면 주 공동(30)의 내부의 기포가 외부로 이탈되지 못하고, 주 공동(30)의 입구(38)가 너무 크면 주 공동(30)의 내부로 침투하는 액상 냉매의 양이 많아지게 된다. If the
구체적으로, 주 공동(30)의 하부 폭(W3)은 주 공동(30)의 입구(38) 폭(W1) 보다 클 수 있다. 여기서, 주 공동(30)의 하부 폭(W3)은 바닥면에서 상부로 진행할수록 커지다가 다시 줄어들 수도 있고, 일정할 수도 있다. 주 공동(30)의 하부 폭(W3)은 주 공동(30)의 입구(38) 폭(W1) 대비 2 배 내지 4배 일 수 있다. 바람직하게는, 주 공동(30)의 하부 폭(W3)은 주 공동(30)의 입구(38) 폭(W1) 대비 3배 내지 4배일 수 있다. Specifically, the lower width W3 of the
주 공동(30)의 하부 폭(W3)은 300㎛ 내지 400㎛ 일 수 있다. 주 공동(30)의 입구(38) 폭(W1)은 10㎛ 내지 50㎛ 일 수 있다.The lower width W3 of the
주 공동(30)의 깊이(H2)가 너무 작으면 큰 기포를 만들 수 없고, 주 공동(30)의 깊이(H2)가 너무 깊으면, 주 공동(30)의 내부에서 생성된 기포가 이탈되기 어렵다. 따라서, 주 공동(30)의 깊이(H2)는 기포를 가둘 수 있는 충분한 깊이를 가질 수 있다. If the depth H2 of the
주 공동(30)의 깊이(H2)는 주 공동(30)의 입구(38) 폭(W1) 대비 5 배 내지 10배 일 수 있다. 바람직하게는, 주 공동(30)의 깊이(H2)는 주 공동(30)의 입구(38) 폭(W1) 대비 7 배 내지 8배 일 수 있다. 주 공동(30)의 깊이(H2)는 0.9mm 내지 1.2mm 일 수 있다.The depth H2 of the
미세 공동(40)은 방열핀(23)에 상면에 형성될 수 있다. 구체적으로, 미세 공동(40)은 주 공동(30)의 입구(38) 주변(테두리)을 정의하는 방열핀(23)의 일면에 위치될 수 있다. 더욱 구체적으로, 미세 공동(40)은 제2 부분(23b)의 상면인 상단면(23c)에 위치될 수 있다. The
미세 공동(40)이 제2 부분(23b)의 상면에 위치하면, 제2 부분(23b)의 상면은 방열핀(23)에서 가장 외측에 해당하여서, 주 공동(30)에서 성장한 기포가 올라올 때, 미세 공동(40)에서 형성된 기포와 병합하기 유리해진다.When the
바람직하게는, 미세 공동(40)의 기포와 주 공동(30)의 기포가 서로 병합할 확률을 향상시키기 위해, 미세 공동(40)은 방열핀(23)의 상단면(23c)의 테두리를 따라 복수 개가 배치될 수 있다.Preferably, in order to improve the probability that the bubbles of the
서로 인접한 미세 공동(40)들 사이의 이격거리가 너무 크면, 미세 공동(40)에서 생긴 기포의 양이 작아져서 주 공동(30)에서 생성된 기포를 원활하게 분리할 수 없고, 이격거리가 너무 작으면, 인접한 미세 공동(40)들에서 생성된 기포의 압력으로 인해 미세 공동(40)의 내부로 액상 냉매가 유입될 염려가 존재한다. 따라서, 서로 인접한 미세 공동(40) 사이의 이격거리는 미세 공동(40) 입구 폭 대비 2배 내지 5배일 수 있다. 서로 인접한 미세 공동(40) 사이의 이격거리는 미세 공동(40) 입구 폭 대비 3배 내지 3배인 것이 바람직하다.If the separation distance between the
미세 공동(40)은 방열핀(23)의 상단면(23c)에서 하부로 함몰되어 형성되고 상부가 개방된다. 미세 공동(40)은 다양한 형상을 가질 수 있다. 바람직하게는, 미세 공동(40) 내부로 외부의 냉매가 완전하게 유입되는 것을 방지하기 위해, 미세 공동(40)의 상부 폭은 미세 공동(40)의 하부 폭 보다 작을 수 있다. 더욱 바람직하게는, 미세 공동(40)의 폭은 상부에서 하부 방향으로 진행될수록 작아질 수 있다.The
미세 공동(40)의 크기는 미세 공동(40) 보다 작게 형성될 수 있다. 미세 공동(40)의 폭은 주 공동(30)의 폭 보다 작고, 미세 공동(40)의 깊이(H1)는 주 공동(30)의 깊이(H2) 보다 작을 수 있다. 또한, 미세 공동(40)의 입구 폭은 주 공동(30)의 입구(38) 폭(W1) 보다 작을 수 있다. The size of the
미세 공동(40)의 입구가 너무 작으면 미세 공동(40)의 내부의 기포가 외부로 이탈되지 못하고, 미세 공동(40)의 입구가 너무 크면 미세 공동(40)의 내부로 침투하는 액상 냉매의 양이 많아지게 된다. If the inlet of the
미세 공동(40) 입구 폭은 주 공동(30)이 깊이 또는 주 공동(30)의 폭 보다 작을 수 있다. 미세 공동(40) 입구 폭은 주 공동(30)의 입구(38) 폭(W1) 대비 5% 내지 50% 일 수 있다. 바람직하게는, 미세 공동(40) 입구 폭은 주 공동(30)의 입구(38) 폭(W1) 대비 10% 내지 20% 일 수 있다. 미세 공동(40) 입구 폭은 10 ㎛ 내지 50 ㎛ 인 것이 보통이다.The entrance width of the
미세 공동(40)의 깊이(H1)가 너무 작으면 적당한 크기의 기포를 만들 수 없고, 미세 공동(40)의 깊이(H1)가 너무 깊으면, 미세 공동(40)의 내부에서 생성된 기포가 이탈되기 어렵다. 따라서, 미세 공동(40)의 깊이(H1)는 적절한 기포를 가둘 수 있는 충분한 깊이를 가질 수 있다. If the depth H1 of the
미세 공동(40)의 깊이(H1)는 주 공동(30)의 깊이(H2) 대비 0.01% 내지 10% 일 수 있다. 바람직하게는, 미세 공동(40)의 깊이(H1)는 주 공동(30)의 깊이(H2) 대비 4% 내지 7% 일 수 있다.The depth H1 of the
미세 공동(40)의 깊이(H1)는 주 공동(30)의 폭 보다 작을 수 있다. 미세 공동(40)의 깊이(H1)는 주 공동(30)의 폭 대비 5% 내지 90% 일 수 있다. 바람직하게는, 미세 공동(40)의 깊이(H1)는 주 공동(30)의 폭 대비 10% 내지 20% 일 수 있다.The depth H1 of the
미세 공동(40)의 깊이(H1)는 미세 공동(40)의 입구 폭 보다 크거나 같을 수 있다. 미세 공동(40)의 깊이(H1)는 10 ㎛ 내지 100 ㎛ 인 것이 보통이다.The depth H1 of the
이상에서는 본 발명의 바람직한 실시예에 대하여 도시하고 설명하였지만, 본 발명은 상술한 특정의 실시예에 한정되지 아니하며, 특허청구범위에서 청구하는 본 발명의 요지를 벗어남이 없이 당해 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 다양한 변형실시가 가능한 것은 물론이고, 이러한 변형실시들은 본 발명의 기술적 사상이나 전망으로부터 개별적으로 이해되어서는 안될 것이다.In the above, preferred embodiments of the present invention have been illustrated and described, but the present invention is not limited to the specific embodiments described above, and in the technical field to which the present invention pertains without departing from the gist of the present invention as claimed in the claims. Various modifications may be made by those of ordinary skill in the art, and these modifications should not be individually understood from the technical spirit or perspective of the present invention.
20: 전열관 21: 냉매 튜브
23: 방열핀 30: 주 공동
40: 보조 공동 100: 압축기20: heat transfer tube 21: refrigerant tube
23: heat sink 30: main cavity
40: auxiliary cavity 100: compressor
Claims (20)
상기 냉매 튜브의 외면에서 돌출되며, 상기 냉매 튜브의 외면과 단차를 가지는 상단면을 포함하는 복수의 방열핀;
서로 인접한 방열핀들 사이에 형성되고, 상기 복수의 방열핀들의 상단 사이에 입구가 형성되는 주 공동; 및
상기 방열핀의 상면에 형성되고, 상기 주 공동 보다 작은 깊이 및 폭을 가지고, 상부로 개방된 복수의 미세 공동을 포함하고,
상기 복수의 미세 공동은 상기 상단면의 테두리를 따라 배치되며,
상기 미세 공동의 상부 폭은 상기 미세 공동의 하부 폭 보다 작은 전열관.a refrigerant tube having a space in which the refrigerant flows;
a plurality of heat dissipation fins protruding from the outer surface of the refrigerant tube and including an upper surface having a step difference from the outer surface of the refrigerant tube;
a main cavity formed between adjacent heat dissipation fins and having an inlet formed between upper ends of the plurality of heat dissipation fins; and
It is formed on the upper surface of the heat dissipation fin, has a smaller depth and width than the main cavity, and includes a plurality of microcavities open upward,
The plurality of microcavities are arranged along the edge of the top surface,
An upper width of the microcavity is smaller than a lower width of the microcavity.
상기 방열핀은,
하단이 상기 냉매 튜브의 외면과 연결된 제1 부분과,
상기 제1 부분의 상단에 연결되고, 상기 제1 부분 보다 확장된 폭을 가지는 제2 부분을 포함하고,
상기 상단면은 상기 제2 부분의 상면인 전열관.According to claim 1,
The heat dissipation fin is
a first portion having a lower end connected to the outer surface of the refrigerant tube;
It is connected to the upper end of the first part and includes a second part having a width that is wider than that of the first part,
The upper surface of the heat transfer tube is an upper surface of the second part.
상기 미세 공동의 폭은 상부에서 하부 방향으로 진행될수록 작아지는 전열관.According to claim 1,
The width of the microcavity becomes smaller as it progresses from the top to the bottom.
상기 미세 공동의 깊이는 상기 주 공동의 깊이 대비 0.01% 내지 10% 인 전열관.According to claim 1,
The depth of the microcavity is 0.01% to 10% of the depth of the main cavity.
상기 미세 공동의 깊이는 상기 주 공동의 폭 대비 5% 내지 90% 인 전열관According to claim 1,
The depth of the microcavity is 5% to 90% of the width of the main cavity.
상기 미세 공동의 깊이는 상기 미세 공동의 입구 폭 보다 크거나 같은 전열관.According to claim 1,
The depth of the microcavity is greater than or equal to the entrance width of the microcavity.
상기 미세 공동 입구 폭은 상기 주 공동의 입구 폭 대비 5% 내지 50% 인 전열관.According to claim 1,
The entrance width of the microcavity is 5% to 50% of the entrance width of the main cavity.
서로 인접한 상기 미세 공동 사이의 이격거리는 상기 미세 공동 입구 폭 대비 2배 내지 5배인 전열관.According to claim 1,
The distance between the microcavities adjacent to each other is 2 to 5 times the width of the entrance to the microcavity.
상기 주 공동의 입구는 서로 인접한 제2 부분들 사이에 형성되는 전열관.3. The method of claim 2,
The inlet of the main cavity is formed between the second portions adjacent to each other.
상기 주 공동의 하부 폭은 상기 주 공동의 입구 폭 보다 큰 전열관.According to claim 1,
a lower width of the main cavity is greater than an inlet width of the main cavity.
상기 주 공동의 하부 폭은 상기 주 공동의 입구 폭 대비 2 배 내지 4배 인 전열관.According to claim 1,
The lower width of the main cavity is 2 to 4 times the inlet width of the main cavity.
상기 주 공동의 깊이는 상기 주 공동의 입구 폭 대비 5 배 내지 10배 인 전열관.According to claim 1,
The depth of the main cavity is 5 to 10 times the inlet width of the main cavity.
상기 주 공동의 하부 폭은 300㎛ 내지 400㎛ 인 전열관.According to claim 1,
A lower width of the main cavity is 300 μm to 400 μm.
상기 주 공동의 깊이는 0.9mm 내지 1.2mm 인 전열관.According to claim 1,
The depth of the main cavity is 0.9mm to 1.2mm.
상기 미세 공동의 입구 폭은 10㎛ 내지 50㎛ 인 전열관.According to claim 1,
The entrance width of the microcavity is 10 μm to 50 μm.
상기 케이스에 연결되어 제1 냉매를 상기 열교환 공간으로 공급하는 제1 냉매 공급관;
상기 케이스에 연결되어 상기 열교환 공간 내의 상기 제1 냉매가 토출되는 제1 냉매 토출관; 및
상기 케이스의 상기 열교환 공간에 배치되고, 상기 제1 냉매와 열교환하는 제2 냉매가 흐르는 다수의 전열관을 포함하고,
상기 전열관은,
내부에 냉매가 유동되는 공간을 가지는 냉매 튜브;
상기 냉매 튜브의 외면에서 돌출되며, 상기 냉매 튜브의 외면과 단차를 가지는 상단면을 포함하는 복수의 방열핀;
서로 인접한 방열핀들 사이에 형성되고, 상기 복수의 방열핀들의 상단 사이에 입구가 형성되는 주 공동; 및
상기 방열핀의 상면에 형성되고, 상기 주 공동 보다 작은 높이 및 폭을 가지고, 상부로 개방된 복수의 미세 공동을 포함하며,
상기 복수의 미세 공동은 상기 상단면의 테두리를 따라 배치되며,
상기 미세 공동의 상부 폭은 상기 미세 공동의 하부 폭 보다 작은 칠러용 열교환기.a case having a heat exchange space;
a first refrigerant supply pipe connected to the case to supply a first refrigerant to the heat exchange space;
a first refrigerant discharge pipe connected to the case to discharge the first refrigerant in the heat exchange space; and
and a plurality of heat transfer tubes disposed in the heat exchange space of the case and through which a second refrigerant exchanging heat with the first refrigerant flows;
The heat pipe is
a refrigerant tube having a space in which the refrigerant flows;
a plurality of heat dissipation fins protruding from the outer surface of the refrigerant tube and including an upper surface having a step difference from the outer surface of the refrigerant tube;
a main cavity formed between adjacent heat dissipation fins and having an inlet formed between upper ends of the plurality of heat dissipation fins; and
It is formed on the upper surface of the heat dissipation fin, has a height and a width smaller than that of the main cavity, and includes a plurality of microcavities open upwards,
The plurality of microcavities are arranged along the edge of the top surface,
An upper width of the microcavity is smaller than a lower width of the microcavity.
상기 방열핀은,
하단이 상기 냉매 튜브의 외면과 연결된 제1 부분과,
상기 제1 부분의 상단에 연결되고, 상기 제1 부분 보다 확장된 폭을 가지는 제2 부분을 포함하고,
상기 상단면은 상기 제2 부분의 상면인 칠러용 열교환기.19. The method of claim 18,
The heat dissipation fin is
a first part having a lower end connected to the outer surface of the refrigerant tube;
It is connected to the upper end of the first part and includes a second part having a width that is wider than that of the first part,
The upper surface is a heat exchanger for a chiller that is an upper surface of the second part.
상기 복수의 미세 공동은 상기 상단면의 테두리를 따라 배치되는 칠러용 열교환기.
19. The method of claim 18,
The plurality of microcavities are heat exchangers for chillers that are disposed along the edge of the upper surface.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020190010701A KR102275301B1 (en) | 2019-01-28 | 2019-01-28 | Heat transfer pipe and Heat exchanger for chiller |
PCT/KR2020/001254 WO2020159176A1 (en) | 2019-01-28 | 2020-01-28 | Heat transfer pipe and heat exchanger for chiller |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020190010701A KR102275301B1 (en) | 2019-01-28 | 2019-01-28 | Heat transfer pipe and Heat exchanger for chiller |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20200093340A KR20200093340A (en) | 2020-08-05 |
KR102275301B1 true KR102275301B1 (en) | 2021-07-08 |
Family
ID=71840572
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020190010701A KR102275301B1 (en) | 2019-01-28 | 2019-01-28 | Heat transfer pipe and Heat exchanger for chiller |
Country Status (2)
Country | Link |
---|---|
KR (1) | KR102275301B1 (en) |
WO (1) | WO2020159176A1 (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004053167A (en) | 2002-07-22 | 2004-02-19 | Sumitomo Electric Ind Ltd | Conduit for fluid channel and heat exchanger comprising the same |
JP2010532855A (en) * | 2007-07-06 | 2010-10-14 | ウルバリン チューブ,インク. | Finned tube with stepped top |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2788793B2 (en) * | 1991-01-14 | 1998-08-20 | 古河電気工業株式会社 | Heat transfer tube |
JPH05164483A (en) * | 1991-12-19 | 1993-06-29 | Toshiba Corp | Double pipe type heat exchanger |
US7096931B2 (en) * | 2001-06-08 | 2006-08-29 | Exxonmobil Research And Engineering Company | Increased heat exchange in two or three phase slurry |
KR20030025707A (en) * | 2001-09-22 | 2003-03-29 | 엘지전선 주식회사 | A high efficiency absorber tube for absorption chiller |
US20090241577A1 (en) | 2008-03-26 | 2009-10-01 | Sanyo Electric Co., Ltd. | Chiller unit, refrigeration system having chiller unit and air conditioner having chiller unit |
DE102009021334A1 (en) * | 2009-05-14 | 2010-11-18 | Wieland-Werke Ag | Metallic heat exchanger tube |
-
2019
- 2019-01-28 KR KR1020190010701A patent/KR102275301B1/en active IP Right Grant
-
2020
- 2020-01-28 WO PCT/KR2020/001254 patent/WO2020159176A1/en active Application Filing
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004053167A (en) | 2002-07-22 | 2004-02-19 | Sumitomo Electric Ind Ltd | Conduit for fluid channel and heat exchanger comprising the same |
JP2010532855A (en) * | 2007-07-06 | 2010-10-14 | ウルバリン チューブ,インク. | Finned tube with stepped top |
Also Published As
Publication number | Publication date |
---|---|
KR20200093340A (en) | 2020-08-05 |
WO2020159176A1 (en) | 2020-08-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5490338B2 (en) | Centrifugal compressor | |
KR102268282B1 (en) | Turbo compressor and Refrigerating device having the same | |
US8820114B2 (en) | Cooling of heat intensive systems | |
US20210254482A1 (en) | Impeller and method of manufacturing the same | |
EP2893617B1 (en) | Motor rotor and air gap cooling | |
US10041701B1 (en) | Heating and cooling devices, systems and related method | |
KR102052949B1 (en) | double cooling structure of a motor | |
KR102275301B1 (en) | Heat transfer pipe and Heat exchanger for chiller | |
KR102201142B1 (en) | Heat transfer pipe and Heat exchanger for chiller | |
JP2013127205A (en) | Compression mechanism | |
JP2015169402A (en) | air conditioner | |
EP3376048B1 (en) | Turbo compressor | |
US20210324860A1 (en) | Compressor and chiller system having the same | |
JP5817488B2 (en) | Refrigeration equipment | |
EP4151941A1 (en) | Cooling tower and chiller system comprising same | |
US12130092B2 (en) | Heat transfer pipe and heat exchanger for chiller | |
KR102379341B1 (en) | Apparatus for heatsink | |
KR102292394B1 (en) | Apparatus for compressor | |
CN113513497B (en) | Magnetic bearing and compressor comprising same | |
JP2018068021A (en) | Turbomachine and refrigeration cycle device using the same | |
KR20120057687A (en) | Turbo compressor | |
KR102292392B1 (en) | Compressor and Chiller including the same | |
KR20200023836A (en) | Method and apparatus for compressor | |
KR20220065332A (en) | Compressor and Chiller including the same | |
JP2009014291A (en) | Air cycle refrigerating device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
E90F | Notification of reason for final refusal | ||
GRNT | Written decision to grant |