KR102273583B1 - Antiobesity composition comprising epigallocatechin gallate nano-emulsion as effective gradient and method for preparing the same - Google Patents

Antiobesity composition comprising epigallocatechin gallate nano-emulsion as effective gradient and method for preparing the same Download PDF

Info

Publication number
KR102273583B1
KR102273583B1 KR1020190154480A KR20190154480A KR102273583B1 KR 102273583 B1 KR102273583 B1 KR 102273583B1 KR 1020190154480 A KR1020190154480 A KR 1020190154480A KR 20190154480 A KR20190154480 A KR 20190154480A KR 102273583 B1 KR102273583 B1 KR 102273583B1
Authority
KR
South Korea
Prior art keywords
emulsifier
composition
epigallocatechin gallate
obesity
oil
Prior art date
Application number
KR1020190154480A
Other languages
Korean (ko)
Other versions
KR20210066067A (en
Inventor
남승희
양광열
정하나
Original Assignee
전남대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 전남대학교산학협력단 filed Critical 전남대학교산학협력단
Priority to KR1020190154480A priority Critical patent/KR102273583B1/en
Publication of KR20210066067A publication Critical patent/KR20210066067A/en
Application granted granted Critical
Publication of KR102273583B1 publication Critical patent/KR102273583B1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/10Dispersions; Emulsions
    • A61K9/107Emulsions ; Emulsion preconcentrates; Micelles
    • A61K9/1075Microemulsions or submicron emulsions; Preconcentrates or solids thereof; Micelles, e.g. made of phospholipids or block copolymers
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L2/00Non-alcoholic beverages; Dry compositions or concentrates therefor; Their preparation
    • A23L2/52Adding ingredients
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/10Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/335Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin
    • A61K31/35Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having six-membered rings with one oxygen as the only ring hetero atom
    • A61K31/352Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having six-membered rings with one oxygen as the only ring hetero atom condensed with carbocyclic rings, e.g. methantheline 
    • A61K31/3533,4-Dihydrobenzopyrans, e.g. chroman, catechin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/22Heterocyclic compounds, e.g. ascorbic acid, tocopherol or pyrrolidones
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/24Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite containing atoms other than carbon, hydrogen, oxygen, halogen, nitrogen or sulfur, e.g. cyclomethicone or phospholipids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • A61K47/34Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyesters, polyamino acids, polysiloxanes, polyphosphazines, copolymers of polyalkylene glycol or poloxamers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • A61K47/36Polysaccharides; Derivatives thereof, e.g. gums, starch, alginate, dextrin, hyaluronic acid, chitosan, inulin, agar or pectin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • A61K47/36Polysaccharides; Derivatives thereof, e.g. gums, starch, alginate, dextrin, hyaluronic acid, chitosan, inulin, agar or pectin
    • A61K47/38Cellulose; Derivatives thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • A61K47/36Polysaccharides; Derivatives thereof, e.g. gums, starch, alginate, dextrin, hyaluronic acid, chitosan, inulin, agar or pectin
    • A61K47/40Cyclodextrins; Derivatives thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/04Anorexiants; Antiobesity agents
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2002/00Food compositions, function of food ingredients or processes for food or foodstuffs
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2200/00Function of food ingredients
    • A23V2200/30Foods, ingredients or supplements having a functional effect on health
    • A23V2200/332Promoters of weight control and weight loss
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2300/00Processes
    • A23V2300/48Ultrasonic treatment

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Epidemiology (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biophysics (AREA)
  • Nutrition Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Molecular Biology (AREA)
  • Polymers & Plastics (AREA)
  • Food Science & Technology (AREA)
  • Child & Adolescent Psychology (AREA)
  • Mycology (AREA)
  • Dispersion Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Diabetes (AREA)
  • Hematology (AREA)
  • Obesity (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Preparation (AREA)
  • Coloring Foods And Improving Nutritive Qualities (AREA)
  • General Preparation And Processing Of Foods (AREA)

Abstract

본 발명은 유층 유화제와 수층 유화제가 첨가되고, 나노입자화된 에피갈로카테킨갈레이트(EGCG); 및 항갈변제;가 포함되고, 상기 유층 유화제는 레시틴, 폴리카프로락톤, 폴리프로필렌글리콜 및 올리브오일 중에서 선택된 어느 하나이고, 상기 수층 유화제는 펙틴, 하이드록시프로필 메틸셀룰로오스, 사이클로덱스트린, 알지네이트, 스테비오사이드, 및 카라기난 중에서 선택된 어느 하나이고, 상기 항갈변제는 비타민 C 및 갈산 중에서 선택된 어느 하나인, 나노화된 에피갈로카테킨갈레이트를 유효성분으로 포함하는 항비만 조성물에 관한 것이다. 이에 의하여, 에피갈로카테킨갈레이트(EGCG)의 음용소재로 적용시 단점인 불용성을 극복하고 가용성을 높여 입자를 나노화하여 투명한 음료 또는 식품에 적용할 수 있을 뿐 아니라, 쓴맛이 저감되고 항비만 활성을 있어 다이어트 식품, 음료 또는 약품에 다양하게 적용될 수 있다.The present invention is epigallocatechin gallate (EGCG) in which an oil-layer emulsifier and a water-layer emulsifier are added, and nanoparticulate; and an anti-browning agent; the oil layer emulsifier is any one selected from lecithin, polycaprolactone, polypropylene glycol and olive oil, and the water layer emulsifier is pectin, hydroxypropyl methylcellulose, cyclodextrin, alginate, stevioside , and any one selected from carrageenan, and the anti-browning agent relates to an anti-obesity composition comprising as an active ingredient nanoized epigallocatechin gallate, which is any one selected from vitamin C and gallic acid. Thereby, when applied as a drinking material of epigallocatechin gallate (EGCG), it overcomes insolubility, which is a disadvantage, and increases solubility to nano particles so that it can be applied to transparent beverages or foods, as well as reduced bitterness and anti-obesity activity Therefore, it can be variously applied to diet food, beverage, or medicine.

Description

에피갈로카테킨갈레이트 나노에멀젼을 유효성분으로 포함하는 항비만 조성물 및 이의 제조방법{Antiobesity composition comprising epigallocatechin gallate nano-emulsion as effective gradient and method for preparing the same}Antiobesity composition comprising epigallocatechin gallate nano-emulsion as an effective gradient and method for preparing the same

본 발명은 에피갈로카테킨갈레이트 나노에멀젼을 유효성분으로 포함하는 항비만 조성물 및 이의 제조방법에 관한 것으로, 더욱 상세하게는 에피갈로카테킨갈레이트를 나노화하고, 쓴맛을 저감하여 다양한 식품 등에 적용가능한 항비만 조성물 및 이의 제조방법에 관한 것이다.The present invention relates to an anti-obesity composition comprising epigallocatechin gallate nanoemulsion as an active ingredient and a method for manufacturing the same, and more particularly, epigallocatechin gallate nanoemulsion and bitterness reduction applied to various foods, etc. It relates to a possible anti-obesity composition and a method for preparing the same.

최근, 식품, 의약품, 생활용품 등의 산업에서는 생리활성소재의 발굴을 위하여 인체에 대한 생리활성이 뛰어날 뿐만 아니라, 생체적합성 및 생체안전성이 우수한 천연성분의 개발이 더욱 큰 중요성을 갖게 되었다. 녹차의 떫은맛을 내는 카테킨은 타닌 또는 폴리페놀이라고 불리는 것의 구성요소로, 산화되어 홍갈색을 낸다. 카테킨은 차의 성분 중 가장 많은 부분을 차지하며, 화학 구조상 수산기 -OH를 많이 가지고 있어 여러 가지 물질과 쉽게 결합할 수 있다. 이러한 성질이 체내 중금속 제거나 활성산소를 제거하는 항산화작용을 한다. 적정량의 활성산소는 생체 내 면역기능에 관계된 식세포 등의 살균작용 등에서 긍정적인 효과를 나타내는 것으로 알려져 있지만, 과다한 양의 활성산소는 산화-항산화의 균형을 깨트려 단백질의 변성이나 생체 내의 지질산화, DNA의 파괴 등을 일으켜 산화적 스트레스를 일으키는 원인이 되는데, 녹차 카테킨은 이러한 활성산소를 제거하는 능력이 탁월한 것으로 알려져 있다. In recent years, in industries such as food, pharmaceuticals, and daily products, the development of natural ingredients with excellent biocompatibility and biosafety as well as excellent bioactivity for the human body for the discovery of bioactive materials has become more important. Catechins, which give green tea astringent taste, are components of what are called tannins or polyphenols, which are oxidized to give them a reddish-brown color. Catechin accounts for the largest portion of tea, and has many hydroxyl groups -OH in its chemical structure, so it can be easily combined with various substances. These properties act as antioxidants to remove heavy metals or free radicals from the body. It is known that an appropriate amount of active oxygen has a positive effect on the sterilization of phagocytes related to the immune function in vivo, but an excessive amount of active oxygen disrupts the balance between oxidation and antioxidant, resulting in protein denaturation, in vivo lipid oxidation, DNA Green tea catechins are known to have excellent ability to remove these free radicals.

특히 녹차에 존재하는 카테킨류는 EC(Epicatechin), EGC(Epigallocatechin), ECG(Epicatechin gallate), EGCG(Epigallocatechin gallate)와 이들의 광학 이성질체 등이다. 일반적으로 이 네 가지가 녹차 카테킨으로 불리워지며, 이 중에서도 EGCG가 가장 많은 양을 차지하고, 가장 강력한 항산화 능력을 나타내는 등 생리활성이 가장 높은 것으로 알려져 있으며, EGCG는 지방세포에서 렙틴(leptin), HSL, Resistin mRNA 발현에 영향을 끼쳐 지방 대사를 조절하는데 즉, 중성지방 분해 및 지방산화를 촉진하여 체지방을 증가시킴으로써 지방이 감소되는 것으로 3T3-L1 지방 세포주에서 고농도의 EGCG가 지방 분해에 있다는 보고는 널리 알려진 결과이다 그러나, EGCG는 물에 극히 소량만이 용해되는 난용성의 특성을 가지고 있기 때문에 식품이나 음료 등에 유효성분로서의 활용에 많은 제약을 가지고 있는 것으로 알려져 왔다.In particular, catechins present in green tea include EC (Epicatechin), EGC (Epigallocatechin), ECG (Epicatechin gallate), EGCG (Epigallocatechin gallate), and optical isomers thereof. In general, these four are called green tea catechins, and among them, EGCG accounts for the largest amount and is known to have the highest physiological activity such as showing the strongest antioxidant ability. It is widely known that high concentration of EGCG in 3T3-L1 adipocyte line is in lipolysis, which affects the expression of Resistin mRNA and regulates fat metabolism, that is, increases body fat by promoting triglyceride decomposition and fatty acidization. Result However, EGCG has been known to have many restrictions on its use as an active ingredient in foods and beverages because it has a property of poor solubility in which only a very small amount is dissolved in water.

녹차유래 EGCG의 안정성을 증가시키기 위한 여러 방법들이 고안되고 있다. 예를 들면 EGCG의 유도체를 사용하는 방안이나, 친유성 마이크로캡슐을 이용하는 방법이 제안되어 있지만, 이러한 방안들은 매우 한정적인 경우에만 그 안정성을 보장할 수 있는 한계점을 가지고 있다. 또한, EGCG를 양이온성 고분자 또는 음이온성 고분자, 산화안정화제 등을 이용하여 수상에서도 안정화하는 방법을 제안하였지만, 안정화 제형에 다른 극성물질이 첨가될 경우 양이온성 고분자 또는 음이온성 고분자, 항산화제등과 매우 강하게 상호작용을 하게 되면, 안정화의 정도가 감소되는 단점이 있다. 또한, EGCG를 양극성 또는 음극성 고분자, 산화안정화제, 수불용성고분자 등을 이용한 수불용성 캡슐에 가두어 수상에서 안정화하는 방안도 제안된 바 있으나, 이는 수불용성인 특성을 갖는 캡슐이기 때문에, 수상에서 침전이 발생하거나, 현탁한 성상을 갖는 등 화장품, 의약품, 식품 및 생활용품 등의 분야에서 투명하게 용해되는 조건을 요구하는 용도 즉, 투명한 음료 등으로 활용에는 커다란 제약을 갖는 문제점이 있다.Several methods have been devised to increase the stability of green tea-derived EGCG. For example, a method using a derivative of EGCG or a method using a lipophilic microcapsule has been proposed, but these methods have a limitation in that they can ensure the stability only in very limited cases. In addition, a method for stabilizing EGCG in aqueous phase using a cationic polymer or anionic polymer, an oxidation stabilizer, etc. has been proposed, but when other polar substances are added to the stabilization formulation, it can be mixed with a cationic polymer or an anionic polymer, an antioxidant, etc. If there is a very strong interaction, there is a disadvantage in that the degree of stabilization is reduced. In addition, a method for stabilizing EGCG in an aqueous phase by confining it in a water-insoluble capsule using an anode or anode polymer, an oxidation stabilizer, a water-insoluble polymer, etc. has been proposed. There is a problem with the use of transparent beverages, etc. that require transparent dissolution conditions in the fields of cosmetics, pharmaceuticals, food and household products, such as having a suspended or suspended appearance.

한편, 나노에멀젼(nano-emulsion)은 입자크기가 대략 100nm 내외이고 열역학적으로 평형계로 알려져 있다. 보통의 에멀젼은 입자 지름이 커서 빛이 산란되어 뿌옇게 보이는 반면에, 나노에멀젼은 입자직경이 작아서 빛이 산란되지 않기 때문에 투명하게 보인다. 입자의 균질성이 양호하며, 저장안정성이 매우 높은 장점이 있다. 또한, EGCG는 탄닌 특유의 쓴맛이 있어 음용시 불편함이 있으므로 쓴맛을 저감하고 저장안정성도 향상시킴으로써 다양한 다이어트 식품 또는 약품 등에 적용할 수 있는 EGCG 처리 방법이 필요한 실정이다.On the other hand, nano-emulsion has a particle size of about 100 nm and is thermodynamically known as an equilibrium system. Ordinary emulsions have large particle diameters and appear cloudy because light is scattered, whereas nanoemulsions have small particle diameters and appear transparent because light is not scattered. The homogeneity of the particles is good and the storage stability is very high. In addition, since EGCG has a unique bitter taste of tannins, which is inconvenient when consumed, there is a need for an EGCG processing method that can be applied to various diet foods or medicines by reducing bitterness and improving storage stability.

한국공개특허공보 제2006-28916호Korean Patent Publication No. 2006-28916

본 발명의 목적은 에피갈로카테킨갈레이트(EGCG)의 음용소재로 적용시 단점인 불용성, 쓴맛이 나는 문제점을 해결하기 위한 것으로 유층 유화제, 수층 유화제 및 항갈변제의 처리와 초음파 분사에 의해 에피갈로카테킨갈레이트를 나노입자화 함으로써 가용성을 높여 저장안정성을 높이면서도 쓴맛을 저감하여 투명 음료 등의 식품 또는 약품에 적용하기 쉽도록 하고 항비만 효과 또한 향상된 에피갈로카테킨갈레이트 나노에멀젼을 유효성분으로 포함하는 항비만 조성물을 제공하는 데 있다.It is an object of the present invention to solve the problem of insolubility and bitter taste, which are disadvantages when applying epigallocatechin gallate (EGCG) as a drinking material. Epigallocatechin gallate nanoemulsion with improved anti-obesity effect is effective by making gallocatechin gallate into nanoparticles to increase solubility and improve storage stability while reducing bitterness to make it easier to apply to foods or drugs such as transparent beverages. To provide an anti-obesity composition comprising as a component.

본 발명의 일 측면에 따르면,According to one aspect of the present invention,

유층 유화제, 수층 유화제 및 항갈변제가 포함되고, 나노입자화된 에피갈로카테킨갈레이트(EGCG)를 포함하고,oil layer emulsifier, water layer emulsifier and anti-browning agent, and nanoparticulate epigallocatechin gallate (EGCG);

상기 유층 유화제는 레시틴, 폴리카프로락톤, 폴리프로필렌글리콜 및 올리브오일 중에서 선택된 어느 하나이고,The oil layer emulsifier is any one selected from lecithin, polycaprolactone, polypropylene glycol and olive oil,

상기 수층 유화제는 펙틴, 하이드록시프로필 메틸셀룰로오스, 사이클로덱스트린, 알지네이트, 스테비오사이드 및 카라기난 중에서 선택된 어느 하나이고,The aqueous layer emulsifier is any one selected from pectin, hydroxypropyl methylcellulose, cyclodextrin, alginate, stevioside and carrageenan,

상기 항갈변제는 비타민 C 및 갈산 중에서 선택된 어느 하나인, 에피갈로카테킨갈레이트 나노에멀젼을 유효성분으로 포함하는 항비만 조성물이 제공된다.The anti-browning agent is provided with an anti-obesity composition comprising as an active ingredient any one selected from vitamin C and gallic acid, epigallocatechin gallate nanoemulsion.

상기 나노입자화된 에피갈로카테킨갈레이트는 초음파 처리에 의한 분사에 의해 나노입자화된 것일 수 있다.The nanoparticulated epigallocatechin gallate may be nanoparticulated by spraying by ultrasonic treatment.

상기 나노입자화된 에피갈로카테킨갈레이트는, 용매와 에피갈로카테킨 분말이 혼합된 혼합물에 상기 유층 유화제, 수층 유화제 및 항갈변제를 차례로 첨가하면서 초음파 분사 처리함으로써 3회 초음파 분사 처리된 것일 수 있다.The nanoparticulated epigallocatechin gallate was ultrasonically sprayed three times by sequentially adding the oil-layer emulsifier, water-layer emulsifier and anti-browning agent to a mixture of solvent and epigallocatechin powder. can

상기 나노입자화된 에피갈로카테킨갈레이트는 평균입경이 100 내지 200 nm 일 수 있다.The nanoparticulated epigallocatechin gallate may have an average particle diameter of 100 to 200 nm.

상기 나노입자화된 에피갈로카테킨갈레이트는 균일도(PDI)가 0.1 내지 0.2 일 수 있다.The nanoparticulated epigallocatechin gallate may have a uniformity (PDI) of 0.1 to 0.2.

상기 항비만 조성물은 지방생성억제 활성 및 지방분해 활성을 갖는 것일 수 있다.The anti-obesity composition may have an adipogenesis inhibitory activity and a lipolytic activity.

상기 유층 유화제는 레시틴일 수 있다.The oil layer emulsifier may be lecithin.

상기 수층 유화제는 펙틴 또는 사이클로덱스트린일 수 있다.The aqueous emulsifier may be pectin or cyclodextrin.

상기 유층 유화제로 레시틴, 수층 유화제로 펙틴 또는 사이클로덱스트린을 동시 사용할 수 있다.Lecithin as the oil emulsifier and pectin or cyclodextrin as the water emulsifier may be used simultaneously.

상기 항갈변제는 갈산일 수 있다.The anti-browning agent may be gallic acid.

상기 항비만 조성물은 에피갈로카테킨갈레이트 100중량부에 대하여 유층 유화제 5 내지 20중량부, 수층 유화제 0.05 내지 2중량부, 및 항갈변제 0.05 내지 2중량부를 포함할 수 있다.The anti-obesity composition may include 5 to 20 parts by weight of an oil emulsifier, 0.05 to 2 parts by weight of an aqueous emulsifier, and 0.05 to 2 parts by weight of an anti-browning agent based on 100 parts by weight of epigallocatechin gallate.

본 발명의 다른 하나의 측면에 따르면, According to another aspect of the present invention,

상기 항비만 조성물을 포함하는 비만 개선 또는 예방용 식품 또는 음료 조성물이 제공된다.There is provided a food or beverage composition for improving or preventing obesity comprising the anti-obesity composition.

상기 식품 또는 음료 조성물은 투명 또는 반투명한 성질을 갖는 식품 또는 음료에 포함될 수 있다.The food or beverage composition may be included in the food or beverage having a transparent or translucent property.

본 발명의 다른 또 하나의 측면에 따르면, According to another aspect of the present invention,

상기 항비만 조성물을 포함하는 비만 치료 또는 예방용 약학 조성물이 제공된다.There is provided a pharmaceutical composition for treating or preventing obesity comprising the anti-obesity composition.

본 발명의 다른 또 하나의 측면에 따르면, According to another aspect of the present invention,

(a) 에피갈로카테킨갈레이트와 유층 유화제를 첨가한 물을 초음파 처리에 의해 분사하여 1차 에피갈로카테킨갈레이트 나노입자가 포함된 1차 에멀젼을 제조하는 단계;(a) preparing a primary emulsion containing primary epigallocatechin gallate nanoparticles by spraying water to which epigallocatechin gallate and an oil emulsifier are added by ultrasonic treatment;

(b) 상기 1차 에멀젼에 수층 유화제를 첨가하고 초음파 처리에 의해 분사함으로써 2차 에피갈로카테킨갈레이트 나노입자가 포함된 2차 에멀젼을 제조하는 단계; 및(b) preparing a secondary emulsion containing secondary epigallocatechin gallate nanoparticles by adding a water layer emulsifier to the primary emulsion and spraying by ultrasonication; and

(c) 상기 2차 에멀젼에 항갈변제를 첨가하고 초음파 처리에 의해 분사함으로써 3차 에피갈로카테킨갈레이트 나노입자가 포함된 3차 에멀젼을 제조하는 단계;를 포함하고,(c) preparing a tertiary emulsion containing tertiary epigallocatechin gallate nanoparticles by adding an anti-browning agent to the secondary emulsion and spraying by sonication;

상기 유층 유화제는 레시틴, 폴리카프로락톤, 폴리프로필렌글리콜, 및 올리브오일 중에서 선택된 어느 하나이고,The oil layer emulsifier is any one selected from lecithin, polycaprolactone, polypropylene glycol, and olive oil,

상기 수층 유화제는 펙틴, 하이드록시프로필 메틸셀룰로오스, 사이클로덱스트린, 알지네이트, 스테비오사이드, 및 카라기난 중에서 선택된 어느 하나이고,The aqueous emulsifier is any one selected from pectin, hydroxypropyl methylcellulose, cyclodextrin, alginate, stevioside, and carrageenan,

상기 항갈변제는 비타민 C 및 갈산 중에서 선택된 어느 하나인, 에피갈로카테킨갈레이트 나노에멀젼을 유효성분으로 포함하는 항비만 조성물의 제조방법이 제공된다.The anti-browning agent provides a method for preparing an anti-obesity composition comprising as an active ingredient any one selected from vitamin C and gallic acid, epigallocatechin gallate nanoemulsion.

상기 에피갈로카테킨갈레이트는 10 내지 30%(w/v)의 용액의 상태로 사용될 수 있다.The epigallocatechin gallate may be used in a solution of 10 to 30% (w/v).

상기 유층 유화제는 상기 에피갈로카테킨갈레이트 100중량부에 대하여 1 내지 30중량부로 혼합될 수 있다.The oil layer emulsifier may be mixed in an amount of 1 to 30 parts by weight based on 100 parts by weight of the epigallocatechin gallate.

상기 유층 유화제는 레시틴일 수 있다.The oil layer emulsifier may be lecithin.

상기 수층 유화제는 펙틴 또는 사이클로덱스트린일 수 있다.The aqueous emulsifier may be pectin or cyclodextrin.

상기 유층 유화제로 레시틴, 수층 유화제로 펙틴 또는 사이클로덱스트린을 동시 사용할 수 있다.Lecithin as the oil emulsifier and pectin or cyclodextrin as the water emulsifier may be used simultaneously.

본 발명의 다른 또 하나의 측면에 따르면, According to another aspect of the present invention,

상기 항비만 조성물의 제조방법을 포함하는 비만 개선 또는 예방용 식품 또는 음료 조성물의 제조방법이 제공된다.There is provided a method for preparing a food or beverage composition for improving or preventing obesity, including the method for preparing the anti-obesity composition.

상기 식품 또는 음료 조성물은 투명 또는 반투명한 성질을 갖는 식품 또는 음료에 포함시킬 수 있다.The food or beverage composition may be included in the food or beverage having a transparent or translucent property.

본 발명의 다른 또 하나의 측면에 따르면, According to another aspect of the present invention,

상기 항비만 조성물의 제조방법을 포함하는 비만 치료 또는 예방용 약학 조성물의 제조방법이 제공된다.There is provided a method for preparing a pharmaceutical composition for treating or preventing obesity, including the method for preparing the anti-obesity composition.

본 발명의 에피갈로카테킨갈레이트 나노에멀젼을 유효성분으로 포함하는 항비만 조성물은 유층 유화제, 수층 유화제 및 항갈변제의 처리와 초음파 분사에 의한 에멀젼 제조에 의해 에피갈로카테킨갈레이트를 나노입자화 함으로써, 가용성을 높여 저장안정성을 높이면서도 쓴맛을 저감하여 투명 음료 등의 식품 또는 약품에 적용하기 쉽도록 하고 항비만 효과 또한 향상시킬 수 있다.The anti-obesity composition comprising the epigallocatechin gallate nanoemulsion of the present invention as an active ingredient contains epigallocatechin gallate nanoparticles by treatment with an oil layer emulsifier, a water layer emulsifier and an antibrowning agent, and emulsion preparation by ultrasonic spraying. By making it easier to apply to foods or medicines such as transparent beverages by reducing bitterness while increasing solubility and improving storage stability, it is also possible to improve the anti-obesity effect.

도 1은 실험예 1의 10종의 유층 유화제와 그 농도에 따른 에멀젼의 상태를 나타낸 사진이다.
도 2는 실험예 1의 수층 유화제와 그 농도에 따른 에멀젼의 상태를 나타낸 사진
도 3은 실험예 2의 유층 유화제 및 수층 유화제 종류에 따른 EGCG 나노화 최적화 실험 결과이다.
도 4는 실험예 2의 유층 유화제 및 수층 유화제 종류에 따른 EGCG 나노화 최적화 실험 결과의 사진이다.
도 5는 실험예 2의 수층 유화제 종류에 따른 EGCG 나노화 최적화 실험 결과이다.
도 6은 실험예 2의 레시틴 혼합비율에 따른 EGCG 나노화 최적화 실험 결과이다.
도 7은 실험예 2의 EGCG 농도에 따른 EGCG 나노화 최적화 실험 결과이다.
도 8은 실험예 3의 EGCG 에멀젼의 FE-TEM 사진이다.
도 9는 실험예 3에 따른 EGCG 평균입경과 분산상태(A) 및 제타전위(B) 측정 결과이다.
도 10은 실험예 4에 따른 EGCG 에멀젼의 FTIR 분석 결과이다.
도 11은 실험예 6의 3T3-L1 분화세포의 염색 사진이다.
도 12는 실험예 6의 지방생성억제능 측정 결과이다.
도 13은 실험예 6의 지방분해능 측정 결과이다.
도 14는 실험예 7의 쓴맛 저감 효과 분석 방법을 개략적으로 나타낸 것이다.
도 15는 실험예 7의 전기생리학적 기법에 따른 쓴맛 측정 결과이다.
1 is a photograph showing the state of the emulsion according to 10 types of oil emulsifiers of Experimental Example 1 and their concentrations.
2 is a photograph showing the state of the emulsion according to the aqueous layer emulsifier of Experimental Example 1 and its concentration;
3 is an EGCG nano-optimization test result according to the type of oil-layer emulsifier and water-layer emulsifier of Experimental Example 2.
4 is a photograph showing the results of EGCG nano-optimization experiments according to the types of oil layer emulsifier and water layer emulsifier of Experimental Example 2.
5 is an EGCG nano-optimization experiment result according to the type of the aqueous emulsifier of Experimental Example 2.
6 is an EGCG nano-optimization experiment result according to the lecithin mixing ratio of Experimental Example 2.
7 is an EGCG nano-optimization experiment result according to the EGCG concentration of Experimental Example 2.
8 is a FE-TEM photograph of the EGCG emulsion of Experimental Example 3.
9 is an EGCG average particle size, dispersion state (A), and zeta potential (B) measurement results according to Experimental Example 3.
10 is an FTIR analysis result of the EGCG emulsion according to Experimental Example 4.
11 is a photograph of staining of 3T3-L1 differentiated cells of Experimental Example 6.
12 is a measurement result of the adipogenesis inhibitory ability of Experimental Example 6.
13 is a result of measuring lipolysis in Experimental Example 6.
14 schematically shows a method for analyzing the bitter taste reduction effect of Experimental Example 7.
15 is a measurement result of bitter taste according to the electrophysiological technique of Experimental Example 7.

본 발명은 다양한 변환을 가할 수 있고 여러 가지 실시예를 가질 수 있는 바, 특정 실시예들을 도면에 예시하고 상세한 설명에 상세하게 설명하고자 한다. 그러나, 이는 본 발명을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변환, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다. 본 발명을 설명함에 있어서 관련된 공지 기술에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략한다.Since the present invention can apply various transformations and can have various embodiments, specific embodiments are illustrated in the drawings and described in detail in the detailed description. However, this is not intended to limit the present invention to specific embodiments, and it should be understood to include all modifications, equivalents, and substitutes included in the spirit and scope of the present invention. In describing the present invention, if it is determined that a detailed description of a related known technology may obscure the gist of the present invention, the detailed description thereof will be omitted.

본 출원에서 사용한 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 출원에서, "포함하다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 구성요소, 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 구성요소, 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
The terms used in the present application are only used to describe specific embodiments, and are not intended to limit the present invention. The singular expression includes the plural expression unless the context clearly dictates otherwise. In the present application, terms such as “comprise” or “have” are intended to designate that a feature, number, step, element, or combination thereof described in the specification is present, and includes one or more other features or numbers, It should be understood that it does not preclude the possibility of the presence or addition of steps, components, or combinations thereof.

이하, 본 발명의 에피갈로카테킨갈레이트를 유효성분으로 포함하는 항비만 조성물에 대해 설명하도록 한다.Hereinafter, an anti-obesity composition comprising epigallocatechin gallate of the present invention as an active ingredient will be described.

본 발명의 재료로 사용된 에피갈로카테킨갈레이트는 녹차로부터 추출된 카테킨이며, 정제수, 글리세린, 부틸렌글라이콜, 헥산디올, 메칠프로판디올, 프로판디올, 프로필렌글라이콜, 에탄올, 메탄올, 에틸아세테이트, 디클로로메탄, 에틸에테르, 헥산 등의 추출용매에 의해 추출될 수 있고, 더욱 바람직하게는 정제수, 메칠프로판디올, 헥산디올에 이해 추출된 것일 수 있으나, 본 발명의 범위가 여기에 한정되지 않으며, 식물 재료의 추출에 사용될 수 있는 다양한 추출용매를 사용할 수 있다.Epigallocatechin gallate used as the material of the present invention is catechin extracted from green tea, purified water, glycerin, butylene glycol, hexanediol, methylpropanediol, propanediol, propylene glycol, ethanol, methanol, ethyl It may be extracted with an extraction solvent such as acetate, dichloromethane, ethyl ether, hexane, and more preferably, it may be extracted with purified water, methylpropanediol, or hexanediol, but the scope of the present invention is not limited thereto. , various extraction solvents that can be used for extraction of plant material can be used.

본 발명의 에피갈로카테킨갈레이트를 유효성분으로 포함하는 항비만 조성물은 유층 유화제, 수층 유화제 및 항갈변제가 포함되고, 나노입자화된 에피갈로카테킨갈레이트(EGCG)를 포함하는 것을 특징으로 한다.The anti-obesity composition comprising epigallocatechin gallate as an active ingredient of the present invention includes an oil-layer emulsifier, a water-layer emulsifier and an anti-browning agent, and comprises nanoparticulated epigallocatechin gallate (EGCG). do.

유화제(emulsifying agent)는 서로 혼합하지 않는 두 종의 액체를 안정한 에멀션(유탁액)으로 만드는 제3의 물질을 의미한다. 본 발명에서 유층 유화제는 HLB(Hydrophile Lipophile Balance) 값이 3 내지 7 범위에 있는 유화제로 정의한다. 또한, 수층 유화제는 HLB 값이 8 내지 18 범위에 있는 유화제로 정의한다.An emulsifying agent refers to a third substance that converts two immiscible liquids into a stable emulsion (emulsion). In the present invention, the oil layer emulsifier is defined as an emulsifier having a Hydrophile Lipophile Balance (HLB) value in the range of 3 to 7. A water layer emulsifier is also defined as an emulsifier having an HLB value in the range of 8 to 18.

상기 유층 유화제는 레시틴, 폴리카프로락톤, 폴리프로필렌글리콜, 및 올리브오일 중에서 선택된 어느 하나일 수 있고, 바람직하게는 레시틴일 수 있다.The oil layer emulsifier may be any one selected from lecithin, polycaprolactone, polypropylene glycol, and olive oil, and preferably lecithin.

상기 수층 유화제는 펙틴, 하이드록시프로필 메틸셀룰로오스, 사이클로덱스트린, 알지네이트, 스테비오사이드, 및 카라기난 중에서 선택된 어느 하나일 수 있고, 바람직하게는 펙틴 또는 사이클로덱스트린, 더욱 바람직하게는 펙틴일 수 있다.The aqueous emulsifier may be any one selected from pectin, hydroxypropyl methylcellulose, cyclodextrin, alginate, stevioside, and carrageenan, preferably pectin or cyclodextrin, more preferably pectin.

상기 항갈변제는 비타민 C 및 갈산 중에서 선택된 어느 하나일 수 있고, 더욱 바람직하게는 갈산일 수 있다.The anti-browning agent may be any one selected from vitamin C and gallic acid, and more preferably gallic acid.

상기 유층 유화제로 레시틴, 수층 유화제로 펙틴 또는 사이클로덱스트린을 동시 사용하는 것이 바람직하고, 더욱 바람직하게는 유층 유화제로 레시틴, 수층 유화제로 펙틴을 동시 사용할 수 있다. 더욱 더 바람직하게는 유층 유화제로 레시틴, 수층 유화제로 펙틴, 항갈변제로 갈산을 동시에 사용할 수 있다.It is preferable to use lecithin as the oil emulsifier and pectin or cyclodextrin as the water emulsifier, more preferably lecithin as the oil emulsifier, and pectin as the water emulsifier. Even more preferably, lecithin as the oil emulsifier, pectin as the water emulsifier, and gallic acid as the anti-browning agent can be used simultaneously.

상기 나노입자화된 에피갈로카테킨갈레이트는 초음파 처리에 의한 분사에 의해 나노입자화된 것일 수 있다.The nanoparticulated epigallocatechin gallate may be nanoparticulated by spraying by ultrasonic treatment.

구체적으로, 상기 나노입자화된 에피갈로카테킨갈레이트는, 용매와 에피갈로카테킨 분말이 혼합된 혼합물에 상기 유층 유화제, 수층 유화제 및 항갈변제를 차례로 첨가하면서 초음파 분사 처리함으로써 3회 초음파 분사 처리된 것이 바람직하다.Specifically, the nanoparticulated epigallocatechin gallate is ultrasonically sprayed three times by sequentially adding the oil-layer emulsifier, water-layer emulsifier and anti-browning agent to a mixture in which a solvent and epigallocatechin powder are mixed. It is preferably treated.

상기 나노입자화된 에피갈로카테킨갈레이트는 평균입경이 100 내지 200 nm 인 것이 바람직하고, 더욱 바람직하게는 100 내지 180 nm, 더욱 더 바람직하게는 100 내지 150 nm 일 수 있다. 100 nm 보다 작게 나노화되는 경우 음용시 인체에 해를 끼칠 수 있고, 200 nm 보다 큰 경우에는 입자 안정성이 낮아지고 투명한 성질이 저하되거나, 쓴맛 저감 효과, 항비만 효과가 저하될 수 있다.The nanoparticulated epigallocatechin gallate may have an average particle diameter of preferably 100 to 200 nm, more preferably 100 to 180 nm, and still more preferably 100 to 150 nm. If the nano is smaller than 100 nm, it may harm the human body when drinking, and if it is larger than 200 nm, the particle stability may be lowered and the transparent property may be deteriorated, or the bitter taste reducing effect and anti-obesity effect may be reduced.

상기 나노입자화된 에피갈로카테킨갈레이트는 균일도(PDI)가 0.1 내지 0.2 인 것이 바람직하고, 더욱 바람직하게는 0.15 내지 0.17, 더욱 바람직하게는 0.155 내지 0.165일 수 있다.The nanoparticulated epigallocatechin gallate may have a uniformity (PDI) of 0.1 to 0.2, more preferably 0.15 to 0.17, more preferably 0.155 to 0.165.

상기 항비만 조성물은 지방생성억제 활성 및 지방분해 활성을 가질 수 있다.The anti-obesity composition may have an adipogenesis inhibitory activity and a lipolytic activity.

본 발명의 항비만 조성물은 에피갈로카테킨갈레이트 100중량부에 대하여 유층 유화제 5 내지 20중량부, 수층 유화제 0.05 내지 2중량부, 항갈변제 0.05 내지 2중량부로 사용될 수 있고, 더욱 바람직하게는 유층 유화제 7 내지 15중량부, 수층 유화제 0.1 내지 1.5중량부, 항갈변제 0.1 내지 1.5중량부를 사용할 수 있고, 더욱 더 바람직하게는 유층 유화제 8 내지 12중량부, 수층 유화제 0.2 내지 1.2중량부, 항갈변제 0.2 내지 1.2중량부를 사용할 수 있다. 가장 바람직하게는 에피갈로카테킨갈레이트 100중량부에 대하여 유층 유화제인 레시틴 9 내지 11중량부, 수층 유화제인 펙틴 0.3 내지 1중량부, 항갈변제인 갈산 0.3 내지 1중량부를 사용할 수 있다. 이와 같은 함량비일 때 항비만 특성이 높고, 에멀젼의 입자의 나노화가 용이하며, 입자가 안정적으로 유지될 수 있다.
The anti-obesity composition of the present invention may be used in an amount of 5 to 20 parts by weight of an oil emulsifier, 0.05 to 2 parts by weight of an aqueous emulsifier, and 0.05 to 2 parts by weight of an anti-browning agent based on 100 parts by weight of epigallocatechin gallate, more preferably It is possible to use 7 to 15 parts by weight of an oil emulsifier, 0.1 to 1.5 parts by weight of an aqueous emulsifier, and 0.1 to 1.5 parts by weight of an anti-browning agent, and even more preferably 8 to 12 parts by weight of an oil emulsifier, 0.2 to 1.2 parts by weight of an aqueous emulsifier, 0.2 to 1.2 parts by weight of a browning agent may be used. Most preferably, based on 100 parts by weight of epigallocatechin gallate, 9 to 11 parts by weight of lecithin as an oil layer emulsifier, 0.3 to 1 parts by weight of pectin as an aqueous layer emulsifier, and 0.3 to 1 parts by weight of gallic acid as an anti-browning agent may be used. At such a content ratio, the anti-obesity properties are high, the nanoparticles of the emulsion particles are easy to be nanosized, and the particles can be stably maintained.

이하, 본 발명의 에피갈로카테킨갈레이트 나노에멀젼을 유효성분으로 포함하는 항비만 조성물의 제조방법에 대해 설명하도록 한다.Hereinafter, a method for preparing an anti-obesity composition comprising the epigallocatechin gallate nanoemulsion of the present invention as an active ingredient will be described.

먼저, first, 에피갈로카테킨갈레이트와Epigallocatechin gallate and 유층oil layer 유화제를 첨가한 물을 초음파 처리에 의해 분사하여 1차 Water with emulsifier added is sprayed by ultrasonic treatment to 에피갈로카테킨갈레이트epigallocatechin gallate 나노입자가 포함된 1차 Primary containing nanoparticles 에멀젼을emulsion 제조한다(단계 a). prepared (step a).

상기 에피갈로카테킨갈레이트는 분말을 용매와 혼합한 10 내지 30%(w/v)의 용액의 상태로 사용될 수 있다. 상기 용액은 알코올 용액이나 수용액일 수 있다.The epigallocatechin gallate may be used in the form of a solution of 10 to 30% (w/v) in which the powder is mixed with a solvent. The solution may be an alcohol solution or an aqueous solution.

상기 유층 유화제는 레시틴, 폴리카프로락톤, 폴리프로필렌글리콜, 및 올리브오일 중에서 선택된 어느 하나일 수 있고, 바람직하게는 레시틴일 수 있다.The oil layer emulsifier may be any one selected from lecithin, polycaprolactone, polypropylene glycol, and olive oil, and preferably lecithin.

다음으로 상기 1차 Next, the first 에멀젼에in emulsion 수층water layer 유화제를 첨가하고 초음파 처리에 의해 분사함으로써 2차 Secondary by adding emulsifier and spraying by sonication 에피갈로카테킨갈레이트epigallocatechin gallate 나노입자가 포함된 2차 secondary containing nanoparticles 에멀젼을emulsion 제조한다(단계 b). prepared (step b).

상기 수층 유화제는 펙틴, 하이드록시프로필 메틸셀룰로오스, 사이클로덱스트린, 알지네이트, 스테비오사이드, 및 카라기난 중에서 선택된 어느 하나일 수 있고, 바람직하게는 펙틴 또는 사이클로덱스트린, 더욱 바람직하게는 펙틴일 수 있다.The aqueous emulsifier may be any one selected from pectin, hydroxypropyl methylcellulose, cyclodextrin, alginate, stevioside, and carrageenan, preferably pectin or cyclodextrin, more preferably pectin.

상기 유층 유화제로 레시틴, 수층 유화제로 펙틴 또는 사이클로덱스트린을 동시 사용하는 것이 바람직하고, 더욱 바람직하게는 유층 유화제로 레시틴, 수층 유화제로 펙틴을 동시 사용할 수 있다. It is preferable to use lecithin as the oil emulsifier and pectin or cyclodextrin as the water emulsifier, more preferably lecithin as the oil emulsifier, and pectin as the water emulsifier.

이후, 상기 2차 After that, the second 에멀젼에in emulsion 항갈변제를anti-browning drug 첨가한다(단계 c). add (step c).

상기 항갈변제는 비타민 C 및 갈산(gallic acid) 중에서 선택된 1종 이상일 수 있고, 바람직하게는 갈산을 사용할 수 있다.The anti-browning agent may be at least one selected from vitamin C and gallic acid, preferably gallic acid.

더욱 더 바람직하게는 유층 유화제로 레시틴, 수층 유화제로 펙틴, 항갈변제로 갈산을 동시에 사용할 수 있다Even more preferably, lecithin as an oil emulsifier, pectin as an aqueous emulsifier, and gallic acid as an anti-browning agent can be used simultaneously.

상기 유층 유화제는 상기 에피갈로카테킨갈레이트 100중량부에 대하여 1 내지 30중량부로 혼합되는 것이 바람직하고, 더욱 바람직하게는 5 내지 20중량부, 더욱 더 바람직하게는 8 내지 15중량부, 가장 바람직하게는 약 10중량부로 혼합할 수 있다.
The oil emulsifier is preferably mixed in an amount of 1 to 30 parts by weight based on 100 parts by weight of the epigallocatechin gallate, more preferably 5 to 20 parts by weight, even more preferably 8 to 15 parts by weight, most preferably Preferably, it can be mixed in an amount of about 10 parts by weight.

본 발명은 상기 에피갈로카테킨갈레이트 나노에멀젼을 유효성분으로 포함하는 항비만 조성물을 포함하는 비만 개선 또는 예방용 식품 또는 음료 조성물을 제공한다.The present invention provides a food or beverage composition for improving or preventing obesity, comprising an anti-obesity composition comprising the epigallocatechin gallate nanoemulsion as an active ingredient.

상기 식품 또는 음료 조성물은 투명 또는 반투명한 성질을 갖는 식품 또는 음료에 포함될 수 있다.The food or beverage composition may be included in food or beverage having a transparent or translucent property.

본 발명에 따른 식품 또는 음료 조성물은 기능성 식품 또는 음료로 이용하거나, 각종 식품 또는 음료에 첨가할 수 있다. 본 발명의 조성물을 첨가할 수 있는 식품 또는 음료로는 예를 들어, 음료류, 알코올 음료류, 과자류, 다이어트바, 유제품, 육류, 초코렛, 피자, 빵류 라면, 기타 면류, 껌류, 아이스크림류, 비타민 복합제, 건강보조식품류 등이 있다.The food or beverage composition according to the present invention may be used as a functional food or beverage, or may be added to various foods or beverages. Foods or beverages to which the composition of the present invention can be added include, for example, beverages, alcoholic beverages, confectionery, diet bars, dairy products, meat, chocolate, pizza, bread noodles, other noodles, gums, ice creams, vitamin complexes, There are health supplements, etc.

본 발명의 식품 조성물은 유효성분으로서 나노화된 에피갈로카테킨갈레이트뿐만 아니라, 식품 제조 시에 통상적으로 첨가되는 성분을 포함할 수 있으며, 예를 들어, 단백질, 탄수화물, 지방, 영양소, 조미제 및 향미제를 포함한다. 상술한 탄수화물의 예는 모노사카라이드, 예를 들어, 포도당, 과당 등; 디사카라이드, 예를 들어 말토스, 슈크로스, 올리고당 등; 및 폴리사카라이드, 예를 들어 덱스트린, 사이클로덱스트린 등과 같은 통상적인 당 및 자일리톨, 소르비톨, 에리트리톨 등의 당알콜이다. 향미제로서 천연 향미제 [타우마틴, 스테비아 추출물 (예를 들어 레바우디오시드 A, 글리시르히진 등]) 및 합성 향미제(사카린, 아스파르탐 등)를 사용할 수 있다. 예컨대, 본 발명의 식품 조성물이 드링크제와 음료류로 제조되는 경우에는 나노화된 에피갈로카테킨갈레이트 이외에 구연산, 액상과당, 설탕, 포도당, 초산, 사과산, 과즙, 및 각종 식물 추출액 등을 추가로 포함시킬 수 있다.
The food composition of the present invention may include not only nano-sized epigallocatechin gallate as an active ingredient, but also ingredients commonly added during food production, for example, proteins, carbohydrates, fats, nutrients, seasonings and Contains flavoring agents. Examples of the above-mentioned carbohydrates include monosaccharides such as glucose, fructose and the like; disaccharides such as maltose, sucrose, oligosaccharides and the like; and polysaccharides, for example, conventional sugars such as dextrin, cyclodextrin, and the like, and sugar alcohols such as xylitol, sorbitol, and erythritol. As flavoring agents, natural flavoring agents [taumatine, stevia extract (eg, rebaudioside A, glycyrrhizin, etc.)) and synthetic flavoring agents (saccharin, aspartame, etc.) can be used. For example, when the food composition of the present invention is prepared as a drink or beverage, citric acid, fructose liquid, sugar, glucose, acetic acid, malic acid, fruit juice, and various plant extracts, etc. may be additionally included in addition to the nanoized epigallocatechin gallate. can

본 발명은 상기 항비만 조성물을 포함하는 비만 개선 또는 예방용 식품 또는 음료 조성물을 포함하는 건강기능식품 또는 건강기능음료를 제공한다. The present invention provides a health functional food or health functional beverage comprising a food or beverage composition for improving or preventing obesity comprising the anti-obesity composition.

건강기능식품 또는 음료이란, 나노화된 에피갈로카테킨갈레이트를 음료, 차류, 향신료, 껌, 과자류 등의 식품소재에 첨가하거나, 캡슐화, 분말화, 현탁액 등으로 제조한 식품으로, 이를 섭취할 경우 건강상 특정한 효과를 가져오는 것을 의미하나, 일반 약품과는 달리 식품을 원료로 하여 약품의 장기 복용 시 발생할 수 있는 부작용 등이 없는 장점이 있다. 이와 같이 하여 얻어지는 본 발명의 건강기능식품 또는 음료는, 일상적으로 섭취하는 것이 가능하기 때문에 매우 유용하다. 이와 같은 건강기능식품 또는 음료에 있어서의 나노화된 에피갈로카테킨갈레이트의 첨가량은, 대상인 건강기능식품 또는 음료의 종류에 따라 달라 일률적으로 규정할 수 없지만, 식품 본래의 맛을 손상시키지 않는 범위에서 첨가하면 되며, 대상 식품에 대하여 통상 0.01 내지 50 중량%, 바람직하기로는 0.1 내지 20 중량%의 범위이다. 또한, 환제, 과립제, 정제 또는 캡슐제 형태의 건강기능식품의 경우에는 통상 0.1 내지 100 중량% 바람직하기로는 0.5 내지 80 중량%의 범위에서 첨가하면 된다. 한 구체예에서, 본 발명의 건강기능식품은 환제, 정제, 캡슐제 또는 음료의 형태일 수 있다.
Health functional food or beverage is a food prepared by adding nanoized epigallocatechin gallate to food materials such as beverages, teas, spices, gum, and confectionery, or encapsulating, powdering, or suspension, etc. It means that it has a specific effect on health, but unlike general drugs, it has the advantage of not having side effects that may occur when taking a drug for a long period of time using food as a raw material. The health functional food or beverage of the present invention obtained in this way is very useful because it can be ingested on a daily basis. The amount of nano-enhanced epigallocatechin gallate added in such a health functional food or beverage may vary depending on the type of health functional food or beverage and cannot be uniformly defined, but within a range that does not impair the original taste of the food. It may be added, and it is usually in the range of 0.01 to 50% by weight, preferably 0.1 to 20% by weight, based on the target food. In addition, in the case of a health functional food in the form of pills, granules, tablets or capsules, it is usually added in an amount of 0.1 to 100% by weight, preferably 0.5 to 80% by weight. In one embodiment, the health functional food of the present invention may be in the form of a pill, tablet, capsule or beverage.

또한, 본 발명은 상기 항비만 조성물을 포함하는 비만 치료 또는 예방용 약학 조성물을 제공한다. In addition, the present invention provides a pharmaceutical composition for the treatment or prevention of obesity comprising the anti-obesity composition.

본 발명의 약학 조성물은 상기 유효 성분 이외에 약학으로 적합하고 생리학적으로 허용되는 보조제를 사용하여 제조될 수 있으며, 상기 보조제로는 부형제, 붕해제, 감미제, 결합제, 피복제, 팽창제, 윤활제, 활택제 또는 향미제 등을 사용할 수 있다.The pharmaceutical composition of the present invention may be prepared using pharmaceutically suitable and physiologically acceptable adjuvants in addition to the active ingredients, and the adjuvants include excipients, disintegrants, sweeteners, binders, coating agents, swelling agents, lubricants, and lubricants. Or a flavoring agent or the like may be used.

상기 약학 조성물은 투여를 위해서 상기 기재한 유효 성분 이외에 추가로 약학으로 허용 가능한 담체를 1종 이상 포함하여 약학 조성물로 바람직하게 제제화할 수 있다.The pharmaceutical composition may be preferably formulated as a pharmaceutical composition by including one or more pharmaceutically acceptable carriers in addition to the active ingredients described above for administration.

상기 약학 조성물의 제제 형태는 액제, 시럽, 즙, 현탁제, 유제, 점적제 또는 등이 될 수 있다. 예를 들어, 또한, 필요한 경우, 적합한 결합제, 윤활제, 붕해제 및 발색제 또한 혼합물로 포함될 수 있다. 적합한 결합제는 이에 제한되는 것은 아니나, 녹말, 젤라틴, 글루코스 또는 베타-락토오스와 같은 천연 당, 옥수수 감미제, 아카시아, 트래커캔스 또는 소듐올레이트와 같은 천연 및 합성 검, 소듐 스테아레이트, 마그네슘 스테아레이트, 소듐 벤조에이트, 소듐 아세테이트, 소듐 클로라이드 등을 포함한다. 붕해제는 이에 제한되는 것은 아니나, 녹말, 메틸 셀룰로스, 아가, 벤토니트, 잔탄 검 등을 포함한다.Formulations of the pharmaceutical composition may be solutions, syrups, juices, suspensions, emulsions, drops, or the like. For example, if necessary, suitable binders, lubricants, disintegrants and coloring agents may also be included in the mixture. Suitable binders include, but are not limited to, starch, gelatin, natural sugars such as glucose or beta-lactose, corn sweeteners, natural and synthetic gums such as acacia, tracacanth or sodium oleate, sodium stearate, magnesium stearate, sodium benzoate, sodium acetate, sodium chloride, and the like. Disintegrants include, but are not limited to, starch, methyl cellulose, agar, bentonite, xanthan gum, and the like.

본 발명의 약학 조성물은 경구 투여에 의하는 것이 바람직하다.
The pharmaceutical composition of the present invention is preferably administered orally.

[[ 실시예Example ]]

재료 및 시약Materials and reagents

본 시험에서 사용한 EGCG(Epigallocatechin gallate)는 참녹 네물차에서 추출된 순도 92%의 물질로 추출 후 동결건조해 분말화하여 사용하였다. 레시틴, 토코페롤, 올레산, β-사이클로덱스트린, 알지네이트, 펙틴, 스테비오사이드, 비타민 C, 갈산 등 표준품들은 Sigama Chemical Co. (St Louis, MO, USA)에서 메탄올, 에틸아세테이트 등 용매는 HPLC 용으로 Mallinchrodt Baker Inc. (Phillipsburg, NJ, USA) 제품을 사용하였다. 항갈변효과를 위한 PPO (polypheonol oxidase) 와 카테킨 기질은 Sigma- Aldrich (St. Luis, MO, USA)에서 구입하였다. 항산화능 측정용 시약으로 ABTS와 1,1-diphenyl-2-picrylhydrazyl (DPPH)은 Sigma Chemical Co. 제품을 사용하였다. 모든 분석시약은 90% 이상 순도인 시약을 사용하였다. 또한 3T3-L1 지방전구세포의 분화를 위하여 사용된 인슐린(insulin,) 덱사메타손(dexamethasone) 및 IBMX와 지방세포 내 트리글리세라이드(triglyceride) 생성을 확인하기 위하여 사용된 Oil Red O는 Sigma- Aldrich (St. Luis, MO, USA)에서 구입하였다.
EGCG (Epigallocatechin gallate) used in this test was extracted from green nemulcha with 92% purity, and then lyophilized and powdered for use. Standards such as lecithin, tocopherol, oleic acid, β-cyclodextrin, alginate, pectin, stevioside, vitamin C, and gallic acid are supplied by Sigama Chemical Co., Ltd. (St Louis, MO, USA) solvents such as methanol and ethyl acetate were prepared by Mallincrodt Baker Inc. for HPLC. (Phillipsburg, NJ, USA) product was used. Polypheonol oxidase (PPO) and catechin substrates for anti-browning effect were purchased from Sigma-Aldrich (St. Luis, MO, USA). As reagents for measuring antioxidant activity, ABTS and 1,1-diphenyl-2-picrylhydrazyl (DPPH) were manufactured by Sigma Chemical Co., Ltd. product was used. All analytical reagents were used with a purity of 90% or more. In addition, insulin (insulin, dexamethasone) and IBMX used for differentiation of 3T3-L1 preadipocytes and Oil Red O used to confirm triglyceride production in adipocytes were obtained from Sigma-Aldrich (St. Luis, MO, USA).

실시예Example 1: One: EGCGEGCG 에멀젼emulsion 제조 Produce

에피갈로카테킨갈레이트(EGCG) 알코올 혼합물(10%~30%, w/v)를 가용화 하기 위해 1차로 EGCG (10%, w/v)를 기준으로 유층 유화제 1%(w/v)를 첨가하고, 즉 EGCG 중량의 10%의 유층 유화제를 혼합 후 10배의 증류수에 5 분간 초음파처리를 하며 천천히 분사하였다. 2차로 수층에서의 EGCG 가용화 촉진제로 수층 유화제(0.1%, w/v)을 1차 용액에 5분간 초음파처리를 하며 천천히 분사하였다. 3차로 항갈변제(0.1%, w/v)을 2차 용액에 5 분간 초음파처리 하며 천천히 분사하였다. In order to solubilize the epigallocatechin gallate (EGCG) alcohol mixture (10%~30%, w/v), 1% (w/v) of an oil emulsifier based on EGCG (10%, w/v) was first added. In other words, 10% of the EGCG weight of the oil layer emulsifier was mixed, followed by ultrasonication in 10 times distilled water for 5 minutes and sprayed slowly. Second, an aqueous layer emulsifier (0.1%, w/v) as an EGCG solubilization accelerator in the aqueous layer was slowly sprayed with sonication for 5 minutes in the first solution. Third, an anti-browning agent (0.1%, w/v) was slowly sprayed into the secondary solution by ultrasonication for 5 minutes.

유층 유화제로 레시틴(lecithin)을 사용하였다. Lecithin was used as an oil emulsifier.

수층 유화제는 β-사이클로덱스트린(b-cyclodextrin), 알지네이트(alginate), 펙틴(pectin), 스테비오사이드(stevioside)를 사용하였다.As the aqueous emulsifier, β-cyclodextrin, alginate, pectin, and stevioside were used.

항갈변제는 비타민 C, 갈산(gallic acid)을 사용하였다.As an anti-browning agent, vitamin C and gallic acid were used.

초음파 처리 조건은 30% power (700W 100%), 3초 on /1초 off 5 분간 (50 cycles)로 에멀젼화하였으며, 사용기기는 John Morris Ultrasonic processor 750 watts, 20khz with CV334 converter & 630-0220 (1/2'') 13mm probe를 사용하였다.
Ultrasonic treatment conditions were emulsified at 30% power (700W 100%), 3 sec on /1 sec off 5 min (50 cycles), and the equipment used was John Morris Ultrasonic processor 750 watts, 20khz with CV334 converter & 630-0220 ( 1/2'') 13mm probe was used.

[[ 실험예Experimental example ]]

실험예Experimental example 1: One: 유층oil layer 유화제 및 emulsifiers and 수층water layer 유화제 선택 Choosing an emulsifier

EGCG 5%(w/v) 에탄올 혼합액을 사용하고, 각각의 유화제는 0.1~1% (w/v) 함량으로 증류수에 녹였으며, 혼합액은 초음파 분산시켜 탁도 및 성상을 관찰하였다.A mixed solution of EGCG 5% (w/v) ethanol was used, each emulsifier was dissolved in distilled water at a content of 0.1 to 1% (w/v), and the mixed solution was ultrasonically dispersed to observe turbidity and properties.

도 1은 10종의 유층 유화제와 그 농도에 따른 에멀젼의 상태를 나타낸 사진이고, 아래의 표 1은 이에 따른 탁도를 정리한 것이다.1 is a photograph showing the state of the emulsion according to 10 types of oil emulsifiers and their concentrations, and Table 1 below summarizes the turbidity accordingly.

순번 turn 유층 유화제 종류Types of oil emulsifiers EGCG 5% + 유화제 농도(%)EGCG 5% + Emulsifier Concentration (%) 0.1%0.1% 0.5%0.5% 1%One% 5%5% 10%10% 1One PolycaprolactonePolycaprolactone 0.120.12 1.151.15 1.281.28 2.072.07 2.002.00 22 Glyceryl monostearateGlyceryl monostearate 0.090.09 0.410.41 0.550.55 1.891.89 2.412.41 33 Hydroxy Propyl MethlycelluloseHydroxy Propyl Methlycellulose 0.120.12 0.140.14 0.230.23 0.610.61 0.150.15 44 Black pepper oilblack pepper oil 0.110.11 0.210.21 0.690.69 2.072.07 1.901.90 55 Polypropylene glycolPolypropylene glycol 0.120.12 0.200.20 0.330.33 2.082.08 2.042.04 66 Olive oilolive oil 0.180.18 025025 0.540.54 1.901.90 2.102.10 77 Tween 80Tween 80 0.210.21 1.191.19 1.801.80 2.622.62 2.182.18 88 Oleic acidOleic acid 0.120.12 0.430.43 1.161.16 2.122.12 2.702.70 99 ChitosanChitosan 0.170.17 0.200.20 0.200.20 0.180.18 0.420.42 1010 Lecithin Lecithin 0.120.12 0.200.20 0.330.33 0.510.51 1.901.90

이에 따라, 폴리카프로락톤, 폴리프로필렌글리콜, 올리브오일, 및 레시틴을 포함하는 4종의 유층 유화제를 적용할 수 있을 것으로 판단하였다.Accordingly, it was determined that four types of oil emulsifiers including polycaprolactone, polypropylene glycol, olive oil, and lecithin could be applied.

한편, 도 2는 8종의 수층 유화제와 그 농도에 따른 에멀젼의 상태를 나타낸 사진이고, 아래의 표 2는 이에 따른 탁도를 정리한 것이다. 여기서 소듐 알지네이트, 펙틴 및 카라기난은 용해도 한계점 때문에 제시된 농도의 0.1배만 첨가하였다.On the other hand, Figure 2 is a photograph showing the state of the emulsion according to the eight kinds of water-layer emulsifiers and their concentrations, and Table 2 below summarizes the turbidity accordingly. Here, sodium alginate, pectin and carrageenan were added only 0.1 times the indicated concentrations due to solubility limitations.

순번turn 수층유화제 종류Types of water layer emulsifiers EGCG 5% + 유화제 농도(%)EGCG 5% + Emulsifier Concentration (%) 0.1%0.1% 0.5%0.5% 1%One% 5%5% 10%10% 1One Hydroxy Propyl MethylcelluloseHydroxy Propyl Methylcellulose 0.120.12 0.140.14 0.230.23 0.610.61 0.150.15 22 Whey protein Concentrate Isolates(WCI)Whey Protein Concentrate Isolates (WCI) 0.230.23 0.470.47 0.950.95 2.322.32 2.842.84 33 Sodium caseinateSodium caseinate 0.110.11 0.320.32 0.450.45 2.222.22 2.552.55 44 CyclodextrinCyclodextrin 0.110.11 0.120.12 0.100.10 0.120.12 0.130.13 55 Sodium alginateSodium alginate 0.090.09 0.110.11 0.120.12 0.110.11 0.130.13 66 Pectin Pectin 0.100.10 0.090.09 0.100.10 0.130.13 0.140.14 77 SteaviosidesSteaviosides 0.100.10 0.090.09 0.180.18 0.130.13 0.130.13 88 CarrageenanCarrageenan 0.110.11 0.120.12 0.230.23 0.330.33 0.130.13

이에 따라, 하이드록시프로필 메틸셀룰로오스, 사이클로덱스트린, 소듐 알지네이트, 펙틴, 스테비오사이드, 카라기난을 포함하는 6종의 수층 유화제를 사용하는 것이 적절한 것으로 판단하였다.
Accordingly, it was determined that it was appropriate to use six types of aqueous emulsifiers including hydroxypropyl methylcellulose, cyclodextrin, sodium alginate, pectin, stevioside, and carrageenan.

실험예Experimental example 2: 2: EGCGEGCG 나노화nanoization 최적화 및 나노입자 크기 측정 Optimization and Nanoparticle Sizing

(1) (One) 유층oil layer 유화제 및 emulsifiers and 수층water layer 유화제 종류에 따른 According to the type of emulsifier EGCGEGCG 나노화nanoization 최적화 optimization

먼저, EGCG를 농도별(5 ~ 90%(w/v))로 유층 유화제 4종을 1%(w/v) 농도로 첨가한 결과를 도 3에 나타내었다. 이에 따르면, 유층 유화제 4종 중 레시틴은 EGCG 50%(w/v) 농도까지 EGCG를 가용화하는 것으로 나타났다.First, the results of adding 4 types of oil emulsifiers at a concentration of 1% (w/v) by concentration of EGCG (5 to 90% (w/v)) are shown in FIG. 3 . According to this, it was found that lecithin solubilizes EGCG up to 50% (w/v) EGCG concentration among the four types of oil emulsifiers.

이와 같은 결과를 토대로, EGCG 50%(w/v) + 종류별 유층유화제 1%(w/v) + 종류 별 수층유화제 0.1%(w/v) 조건으로 물분산시켜 에멀젼을 제조하여 그에 대한 사진을 도 4에 나타내었다. 또한 이와 같이 제조된 에멀젼에서 나노화된 EGCG 나노입자의 평균입경(nm)을 측정한 결과를 표 3에 나타내고, EGCG 나노입자의 PDI(Particle distribution index)를 측정한 결과를 표 4에 나타내었다.Based on these results, an emulsion was prepared by dispersing water under the conditions of 50% (w/v) of EGCG + 1% (w/v) of each type of emulsifier + 0.1% (w/v) of each type of emulsifier, and a photograph of the emulsion was taken. 4 is shown. In addition, the results of measuring the average particle diameter (nm) of EGCG nanoparticles nanosized in the emulsion prepared in this way are shown in Table 3, and the results of measuring the particle distribution index (PDI) of the EGCG nanoparticles are shown in Table 4.

이에 따르면, 수층 유화제인 펙틴과 유층 유화제인 레시틴의 조합에서 가장 효율적으로 작은 크기의 EGCG 나노입자가 형성되면서 낮은 입자 분포도를 보여 균일한 입자 분포를 나타냄을 확인할 수 있었다. 또한 사이클로덱스트린과 레시틴의 조합도 효율적으로 나노 EGCG가 생성되는 것으로 나타났다.According to this, it was confirmed that the combination of pectin, an emulsifier in the water layer, and lecithin, an emulsifier in the oil layer, formed the most efficiently small-sized EGCG nanoparticles, showing a low particle distribution and uniform particle distribution. In addition, the combination of cyclodextrin and lecithin was also shown to efficiently produce nano-EGCG.

EGCG (50%)EGCG (50%) 수충 유화제 (0.1 %)Insect Emulsifier (0.1%) ControlControl Methyl
cellulose
Methyl
cellulose
Whey protein IsolateWhey Protein Isolate Cylclo
dextrin
Cyclo
dextrin
AlginateAlginate PectinPectin Carra
geenan
Carra
geenan
유층유화제
(1 %)
oil emulsifier
(One %)
732.4732.4 757.6757.6 826.6826.6 543.3543.3 471.6471.6 493.8493.8 492.1492.1 492.1492.1
711.8711.8 623.9623.9 600.3600.3 522.2522.2 492.1492.1 338.5338.5 471.6471.6 471.6471.6 643.9643.9 522.2522.2 543.6543.6 471.6471.6 493.8493.8 367.8367.8 492.1492.1 492.1492.1 522.2522.2 341.5341.5 338.5338.5 345.9345.9 342.0342.0 250.3250.3 493.8493.8 493.8493.8 342.1342.1 363.5363.5 471.6471.6 247.4247.4 317.8317.8 198.2198.2 471.6471.6 471.6471.6

EGCG (50%)EGCG (50%) 수층 유화제 (0.1 %)water emulsifier (0.1%) ControlControl Methyl
cellulose
Methyl
cellulose
Whey protein IsolateWhey Protein Isolate Cylclo
dextrin
Cyclo
dextrin
AlginateAlginate PectinPectin Carra
geenan
Carra
geenan
유층유화제
(1 %)
oil emulsifier
(One %)
0.480.48 0.520.52 0.430.43 0.430.43 0.330.33 0.310.31 0.520.52 0.520.52
0.430.43 0.350.35 0.350.35 0.360.36 0.350.35 0.290.29 0.460.46 0.460.46 0.350.35 0.420.42 0.370.37 0.250.25 0.250.25 0.230.23 0.460.46 0.460.46 0.310.31 0.260.26 0.550.55 0.210.21 0.200.20 0.170.17 0.370.37 0.370.37 0.270.27 0.270.27 0.420.42 0.170.17 0.210.21 0.150.15 0.230.23 0.230.23

한편, EGCG 30%(w/v) 조건에서 + 유층 유화제로 레시틴 1%(w/v) + 4 종의 수층유화제 0.1%(w/v) 조건으로 물분산시켜 에멀젼을 제조하여 그에 대한 사진을 도 5에 나타내고, 평균입경 및 균일도(PDI)를 정리하여 표 5에 나타내었다.On the other hand, an emulsion was prepared by dispersing water under the conditions of EGCG 30% (w/v) + 1% (w/v) of lecithin as an oil emulsifier + 0.1% (w/v) of 4 types of water-layer emulsifier. 5, the average particle diameter and uniformity (PDI) are summarized and shown in Table 5.

EGCG 함량EGCG content 지용성 유화제fat soluble emulsifier 수용성유화제
(0.1%)
water-soluble emulsifier
(0.1%)
크기
(d.nm)
size
(d.nm)
균일도
(PDI)
uniformity
(PDI)
30%30% 무첨가additive-free waterwater 711.8711.8 0.3850.385 b-cyclodextrinb-cyclodextrin 496.1496.1 0.3720.372 AlginateAlginate 427.0427.0 0.3270.327 PectinPectin 282.9282.9 0.2960.296 SteviosideStevioside 349.6349.6 0.2920.292 Lecithin 1%Lecithin 1% waterwater 302.3302.3 0.260.26 b-cyclodextranb-cyclodextran 187.4187.4 0.180.18 AlginateAlginate 242.5242.5 0.230.23 PectinPectin 132.2132.2 0.150.15 SteviosideStevioside 162.3162.3 0.160.16

이에 따르면, EGCG 30%(w/v), lecithin 1%(w/v) 첨가해 나노화를 한 후 2차로 수용성 유화제 사이클로덱스트린, 알지네이트, 펙틴 및 스테비오사이드를 각각 0.1%(w/v)씩 처리해 EGCG 가용화 촉진정도를 조사하였다. 특히 펙틴은 그 자체로 EGCG를 가용화하는 능력이 있으나, 이 경우 나노화된 입자의 균일도가 떨어지고 생성된 입자의 안정성이 떨어져 3일이 지나면 바로 이탈하는 현상을 보였다. 그러나 레시틴으로 1차 유화 후, 2차로 수용성 가용화제 첨가시 사이클로덱스트린, 스테비오사이드, 펙틴은 각각 187.4, 162.3, 132.2 nm로 모두 안정되고 균일하며 크기가 적절한 100nm 수준의 나노입자를 형성하였다. 유층 유화제 중 펙틴은 입자크기 및 균일도가 가장 우수하였으며, 특히 펙틴과 레시틴이 함께 사용됨으로써 EGCG를 용해 및 나노화 하는데 상승효과를 나타내었다.
According to this, after nanoization by adding 30% (w/v) of EGCG and 1% (w/v) of lecithin, the second water-soluble emulsifiers cyclodextrin, alginate, pectin and stevioside were treated with 0.1% (w/v) each. The degree of promoting EGCG solubilization was investigated. In particular, pectin has the ability to solubilize EGCG by itself, but in this case, the uniformity of the nano-sized particles is lowered and the stability of the generated particles is lowered, so that they are released immediately after 3 days. However, after the first emulsification with lecithin and the second addition of a water-soluble solubilizer, cyclodextrin, stevioside, and pectin were all stable, uniform, and sized at 187.4, 162.3, and 132.2 nm, respectively, to form 100 nm level nanoparticles. Among the oil emulsifiers, pectin had the best particle size and uniformity, and in particular, pectin and lecithin were used together, thereby showing a synergistic effect in dissolving and nanoizing EGCG.

(2) 레시틴 혼합비율에 따른 (2) According to the lecithin mixing ratio EGCGEGCG 나노화nanoization 최적화 optimization

EGCG (10%, w/v)를 기준으로 레시틴을 농도별로 0.1%, 0.5%, 1%, 2%, 3%, 4%(w/v)를 첨가해 크기 및 균일도 측정을 위해 DLS 조사하여 그 결과 도 6 및 표 6에 나타내었다. 이에 따르면, 0.5%~1%(w/v) 첨가시 균일도가 높고, 특히 1% 첨가시, 즉 EGCG 기준에서 10% 레시틴을 첨가시 가장 가용화도가 높고 및 나노화가 잘되었다.Based on EGCG (10%, w/v), 0.1%, 0.5%, 1%, 2%, 3%, 4% (w/v) of lecithin was added for each concentration by DLS irradiation for size and uniformity measurement. The results are shown in FIG. 6 and Table 6. According to this, the uniformity is high when 0.5% to 1% (w/v) is added, and in particular, when 1% is added, that is, when 10% lecithin is added based on EGCG, solubilization is the highest and nanoization is good.

EGCG
(%, w/v)
EGCG
(%, w/v)
레시틴
(%, w/v)
lecithin
(%, w/v)
크기
(d.nm)
size
(d.nm)
균일도
(PDI)
uniformity
(PDI)
제타전위
(mV)
Zeta potential
(mV)
탁도
(OD600)
turbidity
(OD600)
1010 0.10.1 302.1302.1 0.2790.279 -46.0-46.0 0.040.04 0.50.5 152.1152.1 0.1860.186 -52.6-52.6 0.050.05 1One 135.8135.8 0.1780.178 -64.1-64.1 0.090.09 22 167.7167.7 0.1980.198 -55.3-55.3 0.140.14 33 187.1187.1 0.2190.219 -49.9-49.9 0.150.15 44 210.7210.7 0.3460.346 -47.0-47.0 0.160.16

(3) (3) EGCGEGCG 농도에 따른 according to concentration EGCGEGCG 나노화nanoization 최적화 optimization

한편, 상술한 바와 같이 EGCG 기준에서 10% 레시틴을 첨가시 나노화가 가장 효율적임을 고려하여, EGCG 기준에서 10% 레시틴 첨가량을 기준으로, EGCG 농도(10~80%, w/v), 레시틴을 1~8%% 첨가하고 DLS 조사하여 물리적 특성을 분석하여 결과를 도 7 및 표 7에 나타내었다. 이에 따르면 EGCG 기준에서 10% 레시틴을 첨가시 EGCG 10%~30% (w/v)농도로 사용하는 것이 가용화도가 높고 EGCG 나노화가 가장 잘 되는 것으로 나타났다.On the other hand, considering that nanoization is most efficient when 10% lecithin is added in the EGCG standard as described above, based on the 10% lecithin addition amount in the EGCG standard, EGCG concentration (10 to 80%, w/v), lecithin is 1 After adding ~8%%, DLS irradiation was performed to analyze the physical properties, and the results are shown in FIG. 7 and Table 7. According to this, when 10% lecithin is added in the EGCG standard, it was found that using EGCG at a concentration of 10% to 30% (w/v) has a high degree of solubilization and the best EGCG nanoization.

EGCG
(%, w/v)
EGCG
(%, w/v)
레시틴
(%, w/v)
lecithin
(%, w/v)
크기
(d.nm)
size
(d.nm)
균일도
(PDI)
uniformity
(PDI)
제타전위
(mV)
Zeta potential
(mV)
탁도
(OD600)
turbidity
(OD600)
1010 1One 133.3133.3 0.1720.172 -67.2-67.2 0.080.08 2020 22 142.8142.8 0.1780.178 -58.6-58.6 0.100.10 3030 33 148.5148.5 0.1600.160 -52.7-52.7 0.150.15 4040 44 174.2174.2 0.2920.292 -50.7-50.7 0.240.24 5050 55 187.5187.5 0.2960.296 -48.1 -48.1 0.480.48 6060 66 194.2194.2 0.3800.380 -41.1-41.1 0.670.67 7070 77 215.4215.4 0.3270.327 -44.6-44.6 0.730.73 8080 88 281.9281.9 0.3850.385 -46.2-46.2 0.830.83

실험예Experimental example 3: 3: EGCGEGCG 에멀젼의emulsion 물리적 특성 분석 Physical Characterization

FE-TEM 사진은 전계방사 투과전자현미경 Tecnai20 (FEI Co., The Netherlands)을 사용하였고, 액상 속의 EGCG 나노입자는 200 메쉬 탄소가 코팅된 구리 그리드에 한 방울(1㎕) 떨어뜨려 말린 후 다른 배율로 100 kV voltage에서 조사하였다. EGCG 30%(w/v) 알코올 혼합물에 유층 유화제로 레시틴, 수층 유화제로 펙틴, 항갈변제로 갈산을 사용하여 실시예 1의 조건으로 EGCG 에멀젼을 제조하였다. 이에 따라 제조된 EGCG 에멀젼, 즉 EGCG + 레시틴 + 펙틴 + 갈산 처리군(ELPG)과 비교군으로 EGCG만 분산시킨 대조군(E), EGCG + 레시틴 처리군(EL), EGCG + 레시틴 + 펙틴 처리군(ELP)을 비교한 사진과 FE-TEM 사진을 도 8에 나타내었다. 이에 따르면, 실시예 1의 ELPG에서 EGCG 나노입자가 가장 안정적 형태를 보여주었다.Field emission transmission electron microscope Tecnai20 (FEI Co., The Netherlands) was used for FE-TEM images, and EGCG nanoparticles in liquid were dried by dropping a drop (1 μl) on a 200 mesh carbon-coated copper grid and dried at different magnifications. was irradiated at 100 kV voltage. An EGCG emulsion was prepared under the conditions of Example 1 using lecithin as an emulsifier in an oil layer, pectin as an emulsifier in an aqueous layer, and gallic acid as an anti-browning agent in an EGCG 30% (w/v) alcohol mixture. The thus-prepared EGCG emulsion, that is, the EGCG + lecithin + pectin + gallic acid treatment group (ELPG) and the control group in which only EGCG was dispersed (E), EGCG + lecithin treatment group (EL), EGCG + lecithin + pectin treatment group ( ELP) and FE-TEM photographs are shown in FIG. 8 for comparison. According to this, in the ELPG of Example 1, the EGCG nanoparticles showed the most stable form.

한편, EGCG 에멀젼의 물리적 특징을 살펴보기 위해 평균입경(Diameter, nm), 균일도(PDI), 제타전위(mV), 포집능(%)을 조사하였다. EGCG 나노입자의 평균입경, 균일도(PDI), 제타전위는 dynamic light scattering (DLS) 와 Zetasizer Nano (Malvern Instruments Ltd., UK)을 사용해 측정하였다. 시료는 측정 전에 25배 희석해서 나노화하여 당일 바로 측정하였고 측정은 3반복의 평균값을 사용하였으며, 측정 온도는 40 ℃였다. 한편, EGCG 나노입자의 포집능 (Encapsulation efficiency, EE)은 UV-Vis spectroscopy 결과를 바탕으로 녹차 EGCG 경우 280~290nm 수치를 기준으로 아래의 식에 따라 계산하였다. 나노화된 EGCG는 10,000rpm 에서 10분간 원심분리하여 실험에 사용하였다. (Micro Centrifuge 5415C, Eppendorf, US) (Davidov-Pardo et al., 2015; Luo, Zhang, Whent, Yu, & Wang, 2011)Meanwhile, to examine the physical characteristics of the EGCG emulsion, average particle diameter (Diameter, nm), uniformity (PDI), zeta potential (mV), and trapping ability (%) were investigated. The average particle diameter, uniformity (PDI), and zeta potential of EGCG nanoparticles were measured using dynamic light scattering (DLS) and Zetasizer Nano (Malvern Instruments Ltd., UK). The sample was diluted 25-fold before measurement, and the nano was measured immediately on the same day. On the other hand, the encapsulation efficiency (EE) of EGCG nanoparticles was calculated according to the following equation based on the UV-Vis spectroscopy results, based on the 280-290 nm value for green tea EGCG. Nanosized EGCG was centrifuged at 10,000 rpm for 10 minutes and used in the experiment. (Micro Centrifuge 5415C, Eppendorf, US) (Davidov-Pardo et al., 2015; Luo, Zhang, Whent, Yu, & Wang, 2011)

[식][expression]

포집능(EE, %) = ((총 EGCG 함량- 나노화된 EGCG함량))/ 총 EGCG함량) *100
Capture capacity (EE, %) = ((Total EGCG content- Nanoized EGCG content))/ Total EGCG content) *100

한편, EGCG 에멀젼의 색도는 투명한 플라스틱 원통용기(35×10 mm)에 담아 분광측색계 (Minolta,CM-2500D,Tokyo,Japan)를 사용하여 CIE 체계인 L*,a*,b*를 각각 3개씩 준비하여 3회 반복 측정하였으며 평균치(mean)와 표준편차(SD)로 나타내었다. On the other hand, the chromaticity of the EGCG emulsion was placed in a transparent plastic cylindrical container (35×10 mm) and measured using a spectrophotometer (Minolta, CM-2500D, Tokyo, Japan) to measure L*, a*, b*, the CIE system, of 3 each. Each was prepared and measured three times, and it was expressed as mean and standard deviation (SD).

이와 같은 방법으로 측정한 실시예 1의 EGCG + 레시틴 + 펙틴 + 갈산 처리군(ELPG)과 EGCG만 분산시킨 대조군(E), EGCG + 레시틴 처리군(EL), EGCG + 레시틴 + 펙틴 처리군(ELP)에 대한 평균입경과 분산상태(A) 및 제타전위(B) 측정 결과를 그래프로 도 9에 나타내었고, 평균입경, 균일도(0.2 이내이면 균일한 것으로 판단), 제타전위(절대값 클수록 안정된 입자 생성), 및 포집능을 정리하여 아래의 표 8에 나타내었다. The EGCG + lecithin + pectin + gallic acid treatment group (ELPG) of Example 1 and the control group in which only EGCG was dispersed (E), EGCG + lecithin treatment group (EL), EGCG + lecithin + pectin treatment group (ELP) measured in this way ), the average particle diameter, dispersion state (A), and zeta potential (B) measurement results are shown in FIG. 9 as a graph, and the average particle diameter, uniformity (determined to be uniform if within 0.2), and zeta potential (the larger the absolute value, the more stable particles generation), and the collecting ability are summarized and shown in Table 8 below.

실험군experimental group 평균입경
(nm)
average particle diameter
(nm)
균일도
(PDI)
uniformity
(PDI)
제타전위
(mV)
Zeta potential
(mV)
포집능
(%)
trapping ability
(%)
EE 702.1702.1 0.3690.369 -35.73-35.73 -- ELEL 207.5207.5 0.1340.134 -63.48-63.48 69.469.4 ELPELP 251.0251.0 0.1760.176 -66.96-66.96 74.774.7 ELPGELPG 148.5148.5 0.1600.160 -69.59-69.59 88.988.9

이에 따르면, 평균입경은 나노화전 702 nm에서 레시틴 첨가 후 처리된 시료는 207.5 nm, ELPG 는 169.3 nm로 감소되었다. 균일도는 레시틴 첨가시 0.2 이하로 시료 중 가장 낮아서 균일도가 높았으며 실시예 1인 ELPG 처리군에서 -69.59 mV 의 제타전위를 보여 가장 안정된 입자를 생성하였다. 포집능은 레시틴 처리시 69.4%, 최종 나노화된 EGCG 처리군이 88.9% 로 대부분의 EGCG(30%)가 나노화된 것으로 나타났다
According to this, the average particle diameter was decreased from 702 nm before nanoization to 207.5 nm for the treated sample and 169.3 nm for ELPG after the addition of lecithin. The uniformity was 0.2 or less when lecithin was added, which was the lowest among the samples, and thus the uniformity was high. In Example 1, the ELPG treated group showed a zeta potential of -69.59 mV to generate the most stable particles. The capture ability was 69.4% when lecithin was treated, and 88.9% of the final nanonized EGCG treatment group, indicating that most of the EGCG (30%) was nanosized.

실험예Experimental example 4: 4: EGCGEGCG 에멀젼의emulsion 화학적 특성 분석 chemical characterization

FTIR 분석은 FTIR spectrophotometer (Frontier-89063; PerkinElmer, Inc., Waltham, USA)와 MIR TGS detector를 이용하여 화학적 EGCG 에멀젼에서 작용기의 변화를 분석하였고, 측정파장은 4000-450 cm-1 해상도, 실험자료는 Origin 8.0 software (OriginLab Corporation, Northampton, USA) 이용하여 수집, 분석하여 그 결과를 도 10에 나타내었다.For FTIR analysis, changes in functional groups in chemical EGCG emulsion were analyzed using FTIR spectrophotometer (Frontier-89063; PerkinElmer, Inc., Waltham, USA) and MIR TGS detector, and the measurement wavelength was 4000-450 cm -1 resolution, experimental data. was collected and analyzed using Origin 8.0 software (OriginLab Corporation, Northampton, USA), and the results are shown in FIG. 10 .

이에 따르면, EGCG와 나노화 생성물질들은 FTIR 스펙트럼 내 3가지 peak 범위인 1) 3500~2900 cm-1, 2) 1700~1300 cm-1, 3) 1200~900 cm-1로 구성되며 기존 연구결과로는 각 범위별로 1)은 OH 기 생성을 의미하며 주로 물이나 에탄올 특성들이 나타내고, 2)는 주로 페놀화합물의 존재, 증가나 생성을 의미하며 플라보노이드나 페놀류등의 주요 특성을 대표하며, 3)은 카보닐기의 확대나 증가를 나타내며 곡선 높이의 증가는 C=O 결합의 증가를 의미한다. According to this, EGCG and nano-products are composed of three peak ranges in the FTIR spectrum: 1) 3500-2900 cm -1 , 2) 1700-1300 cm -1 , 3) 1200-900 cm -1 For each range, 1) means the generation of OH groups, mainly water or ethanol characteristics, 2) mainly means the presence, increase or generation of phenolic compounds, and represents the main characteristics such as flavonoids and phenols, 3) is It indicates the expansion or increase of the carbonyl group, and the increase of the curve height means the increase of the C=O bond.

EGCG는 플라보노이드류로 페놀화합물의 존재를 나타내는 1700~1300 cm-1에 대부분의 피크가 몰려있었다. 반면 레시틴은 글리세롤과 결합된 인지질 특성을 나타내어 1) 3500~2900 cm-1, 2) 1700~1300 cm-1, 3) 1200~900 cm-1로 고르게 구성되며, 특히 OH기 존재를 가늠하는 1) 3500~2900 cm-1에서 피크가 뚜렷하였다. 갈산의 경우 단순 페놀구조로 이루어진 형태이므로 EGCG보다는 곡선의 크기는 작으나 2) 1700~1300 cm-1 과 3) 1200~900 cm-1 에 피크가 펼쳐져 있었다. EGCG와 나노화좀을 이루는 물질들의 결합 양상은 레시틴, 펙틴, 갈산을 추가할수록 곡선의 패턴은 유사하나 곡선의 굴곡이 크게 나타났다. 이는 레시틴, 펙틴, 갈산을 추가한 나노화를 통해 전체적으로 OH기 생성, 페놀구조의 결합을 통한 아로마틱 고리들의 증가에 의한 것으로 보인다.
EGCG is a flavonoid, and most of the peaks were concentrated at 1700-1300 cm -1 indicating the presence of phenolic compounds. On the other hand lecithin exhibits a characteristic phospholipid in combination with glycerol 1) 3500 ~ 2900 cm -1, 2) 1700 ~ 1300 cm -1, 3) are evenly made up of 1200 ~ 900 cm -1, particularly 1 to gauge the OH groups present ) The peak was clear at 3500-2900 cm -1 . In the case of gallic acid, since it has a simple phenolic structure, the size of the curve is smaller than that of EGCG, but peaks were spread at 2) 1700-1300 cm -1 and 3) 1200-900 cm -1 . As for the binding pattern of EGCG and the substances constituting the nano-somes, as lecithin, pectin, and gallic acid were added, the curve pattern was similar, but the curvature of the curve was larger. This seems to be due to the increase of aromatic rings through the formation of OH groups as a whole through the addition of lecithin, pectin, and gallic acid, and the bonding of phenolic structures.

실험예Experimental example 5: 5: EGCGEGCG 에멀젼의emulsion 안정성 분석 Stability analysis

실험예 3의 실험군과 동일하게 처리된 EGCG 에멀젼을 50 ℃에서 3일간 보관하여 EGCG 에멀젼의 물리적 특성변화를 조사하여 그 결과를 아래의 표 9에 나타내었다. 탁도는 600 nm에서 microplate reader를 이용해 측정하였다.The EGCG emulsion treated in the same manner as in the experimental group of Experimental Example 3 was stored at 50° C. for 3 days to investigate changes in the physical properties of the EGCG emulsion, and the results are shown in Table 9 below. Turbidity was measured at 600 nm using a microplate reader.

실험군experimental group 탁도(600nm)Turbidity (600 nm) 색도(L value)Chromaticity (L value) 0D0D 3D3D 0D0D 3D3D EE 0.340.34 0.320.32 46.9146.91 42.6642.66 ELEL 1.721.72 1.891.89 39.6639.66 38.1338.13 ELPELP 1.681.68 2.132.13 40.3740.37 36.6436.64 ELPGELPG 1.711.71 2.002.00 39.8839.88 38.6138.61

이에 따르면, 물질들의 탁도(용해도), 색도의 변화가 실시예 1의 EGCG 시료에서 가장 높게 유지됨을 확인하였으며, 이는 항갈변제로 사용된 갈산의 보호작용으로 추측된다.
According to this, it was confirmed that the changes in turbidity (solubility) and chromaticity of substances were maintained the highest in the EGCG sample of Example 1, which is presumed to be a protective action of gallic acid used as an anti-browning agent.

실험예Experimental example 6: 6: 항비만anti-obesity 효과 분석 Effect analysis

실험에 사용된 3T3-L1 지방전구세포는 American Type Culture Collection (Manassas, VA, USA)에서 구입하였으며, 10% bovine calf serum (BCS) 및 1% penicillin 및 streptomycin (Gibco BRL, Grand Island, NY, USA)이 함유된 Dulbecco’s Modified EaDCRT Media (DMEM, Gibco BRL)를 사용하여 37 ℃, 5% CO2 조건 하에서 배양하였다.The 3T3-L1 preadipocytes used in the experiment were purchased from the American Type Culture Collection (Manassas, VA, USA), and were prepared with 10% bovine calf serum (BCS) and 1% penicillin and streptomycin (Gibco BRL, Grand Island, NY, USA). ) containing Dulbecco's Modified EaDCRT Media (DMEM, Gibco BRL) was used to incubate at 37 °C, 5% CO 2 conditions.

3T3-L1은 In vitro 지방세포의 분화 및 기능연구에 주로 쓰이는 세포주로서, 전지방세포에서 지방세포로 분화하게 되면 WAT(백색지방세포)와 같은 성질이 있다. 전지방세포에서 지방세포로 분화하기 위해 하이글루코스 (high glucose) DMEM 10% FBS, 1% 페니실린을 함유한 메디아에 MDI 솔루션을 처리하면, 세포가 구형으로 변하고 지방구도 생기며 유전자 발현을 하게 된다. 지방세포 연구는 지방합성(합성과정에서 억제를 측정)과 지방분해(지방이 합성된 후 분해를 측정)로 나눌 수 있다. 세포연구는 씨딩 후, 컨플루언스한 상태가 되면, 0일에 FBS 메디아에 MDI솔루션과 샘플처리, 3일에 FBS 메디아에 인슐린과 샘플처리, 6일째에 FBS 메디아에 샘플처리를 진행한 후 9일째에 종료하였다. 지방세포 3T3-L1 분화(differentiation)를 위해 EGCG 와 나노화된 EGCG 에멀젼 시료의 세포 내 독성검사를 MTT assay를 통해 진행한 결과 EGCG시료가 100~300μM 농도에서 세포 내 독성이 없음을 확인 후 실험을 수행하였다. 3T3-L1 is a cell line mainly used for in vitro differentiation and function studies of adipocytes, and has the same properties as WAT (white adipocytes) when differentiated from pre-adipocytes into adipocytes. In order to differentiate from pre-adipocytes into adipocytes, when a medium containing high glucose DMEM 10% FBS and 1% penicillin is treated with MDI solution, the cells become spherical, adipocytes are formed, and gene expression occurs. Adipocyte research can be divided into liposynthesis (measuring inhibition during synthesis) and lipolysis (measuring breakdown after fat is synthesized). For cell research, after seeding, when confluent, MDI solution and sample processing in FBS media on day 0, insulin and sample processing in FBS media on day 3, and sample processing in FBS media on day 6 Ended on day one. For 3T3-L1 differentiation of adipocytes, intracellular toxicity tests of EGCG and nanosized EGCG emulsion samples were performed through MTT assay. As a result, it was confirmed that the EGCG sample had no intracellular toxicity at a concentration of 100 to 300 μM. did.

한편, 세포 내 지방 소립 생성을 확인하기 위하여 Oil Red O 염색을 실시하였다. 준비된 3T3-L1 세포를 PBS로 세척한 후 3.7% 포르말린으로 10분간 고정하고 60% 이소프로판올을 이용하여 세척한 다음 Oil Red O solution을 처리하여 실온에서 20분 간 염색하였다. 염색 후 Oil Red O solution을 제거하고 증류수로 4회 세척한 다음 염색된 세포를 위상차 현미경을 이용하여 관찰하였다. 또한 정량적 분석을 위하여 100% 이소프로판올 이용하여 지방을 추출한 후 96 well plate에 200㎕씩 옮겨서 ELISA reader로 500 nm에서 흡광도를 측정하였고 대조군의 흡광도 값에 대한 백분율로 나타내었다. 중성지방은 유리지방산과 글리세롤로 분해된다. 본 실험에서 지방 축적 동안 배지로 용출된 글리세롤의 함량은 540nm 에서 측정하였다. (Lin et al., 2005; Wu et al., 2005)On the other hand, Oil Red O staining was performed to confirm the formation of small fat particles in cells. The prepared 3T3-L1 cells were washed with PBS, fixed with 3.7% formalin for 10 minutes, washed with 60% isopropanol, treated with Oil Red O solution, and stained for 20 minutes at room temperature. After staining, the Oil Red O solution was removed, washed with distilled water 4 times, and the stained cells were observed using a phase contrast microscope. In addition, for quantitative analysis, after extracting fat using 100% isopropanol, 200 μl of each was transferred to a 96 well plate and absorbance was measured at 500 nm with an ELISA reader, and it was expressed as a percentage of the absorbance value of the control group. Triglycerides are broken down into free fatty acids and glycerol. In this experiment, the content of glycerol eluted into the medium during fat accumulation was measured at 540 nm. (Lin et al., 2005; Wu et al., 2005)

3T3-L1 분화세포의 EGCG의 단계별 나노화 시료(실험예 3의 실험군과 동일)를 농도별로 100 μM 또는 300 μM으로 처리 후 생성된 중성지방을 Oil red-O 염색법으로 염색하였다. Oil-red O reagent 지방구에 특이적으로 염색되는 염색제로 pre-adipocytes 와 dipocytes의 세포염색정도에 차이를 나타내게 된다. 지방구가 많을수록 빨간 형태를 띤다. 이에 대한 사진을 도 11에 나타내었다. 그 결과, 실시예 1의 EGCG 에멀젼 시료가 지방구의 축적이 적어 빨간 염색 정도가 낮은 것으로 나타났다.EGCG of 3T3-L1 differentiated cells was treated with 100 μM or 300 μM of each concentration of the nano-staged samples of EGCG (the same as in the experimental group of Experimental Example 3), and then the generated triglycerides were stained with Oil red-O staining method. Oil-red O reagent This is a staining agent that specifically stains fat cells. It shows a difference in the degree of cell staining of pre-adipocytes and dipocytes. The more fat cells, the more red. A photograph for this is shown in FIG. 11 . As a result, it was found that the EGCG emulsion sample of Example 1 had a low degree of red staining due to less accumulation of fat globules.

한편, 정량분석 결과로서 지방생성억제능 측정 결과를 도 12에 나타내었다. 이에 따르면, 실시예 1의 EGCG 에멀젼 시료가 300 μM 처리에서 지방 축적을 저해하는 효능이 가장 높게 나타났다. 또한, 지방생성억제에 따라 처리별 지방함량이 무처리된 대조군을 100% 로 하면, 시료를 300 μM 처리할 경우, EGCG는 85%, EGCG + Lecithin 처리군은 78%, 실시예 1의 EGCG 에멀젼 시료는 67%로 지방 생성이 매우 낮아짐을 확인할 수 있었다.Meanwhile, as a quantitative analysis result, the measurement result of the adipogenesis inhibitory ability is shown in FIG. According to this, the EGCG emulsion sample of Example 1 showed the highest efficacy in inhibiting fat accumulation in 300 μM treatment. In addition, according to the adipogenesis inhibition, when the untreated control group is 100%, when the sample is treated with 300 μM, EGCG is 85%, EGCG + Lecithin treatment group is 78%, EGCG emulsion of Example 1 In the sample, it was confirmed that the fat production was very low at 67%.

또한, 정량분석 결과로서 지방분해능 측정 결과를 도 13에 나타내었다. 이에 따르면, 밖으로 용출된 글리세롤의 양이 증가하는 것으로 나타났고, 지방분해촉진에 따라 처리별 지방축적 결과가 무처리된 대조군을 100%로 하여 비교시, 시료를 300 μM 처리할 경우, EGCG는 120%, EGCG + Lecithin 처리군은 138%, 실시예 1의 EGCG 에멀젼 시료는 180% 저해되어 지방 분해능 또한 매우 우수한 것을 확인할 수 있었다.
In addition, as a result of quantitative analysis, the measurement result of fat resolution is shown in FIG. 13 . According to this, it was found that the amount of glycerol eluted to the outside increased, and when the sample was treated with 300 μM, EGCG was 120 when compared with the untreated control group as 100% of the fat accumulation results for each treatment according to the promotion of lipolysis. %, the EGCG + Lecithin treatment group was inhibited by 138%, and the EGCG emulsion sample of Example 1 was inhibited by 180%, confirming that the fat resolution was also very excellent.

실험예Experimental example 7: 쓴맛 7: bitter taste 저감reduction 효과 분석 Effect analysis

단계 5나 6의 성숙하고 건강한 Xenopus 난모세포(개구리알)를 난소로부터 외과 수술적으로 채취한 후 콜라게나제(collagenase)를 처리한 후 약 5~20 ng의 쓴맛을 내는 수용체 TAS2R + GIRK1/4의 RNA를 미세주입기를 이용하여 난모세포에 미세주입하였다. 주입된 난모세포를 ND96 배양액에서 (96 mM NaCl, 2 mM KCl, 1 mM MgCl2, 5 mM HEPES, 1.8 mM CaCl2, 2.5 mM Na-pyruvate, 50㎍/㎖, gentamycin, pH 7.4)에서 2-3일간 배양하였다. 이때 처리된 고농도의 K+ 용액은 쓴맛 수용체에 쓴맛이 나는 물질(EGCG)이 결합하며 이온채널이 열리면서 K+ 이온이 유입되며 이때 생성되는 난모세포의 막전위차 정도를 TEVC(Two Electrode Voltage Clamp) 방법으로 측정하였으며 측정방법을 나타낸 개략도를 도 14에 나타내었다. 쓴맛이 강할수록 난모세포의 막전위차가 크게 나타나며 쓴맛의 정도를 정량 비교할 수 있다.TAS2R + GIRK1/4, a receptor that produces about 5-20 ng of bitter taste after treatment with collagenase after surgically harvesting mature and healthy stage 5 or 6 Xenopus oocytes (frog eggs) from the ovaries. of RNA was microinjected into oocytes using a microinjector. The injected oocytes were treated in ND96 culture medium (96 mM NaCl, 2 mM KCl, 1 mM MgCl 2 , 5 mM HEPES, 1.8 mM CaCl 2 , 2.5 mM Na-pyruvate, 50 μg/ml, gentamycin, pH 7.4) in 2- Cultured for 3 days. At this time, the processed high-concentration K + solution binds bitter taste receptors to the bitter taste receptor (EGCG), opens the ion channel, and K+ ions flow in. The degree of membrane potential difference of the oocytes generated at this time is measured by the TEVC (Two Electrode Voltage Clamp) method. It was measured and a schematic diagram showing the measurement method is shown in FIG. 14 . The stronger the bitter taste, the greater the membrane potential difference of oocytes appears, and the degree of bitterness can be quantitatively compared.

도 15는 전기생리학적 기법 통한 EGCG 농도별, EGCG 나노화 전과 후 물질의 쓴맛 정도를 비교한 결과이다. 이에 따르면, 쓴맛수용체가 발현된 개구리알에 개구리알에 100μM 농도의 EGCG0(무처리군)와 나노화 최종물질 EGCG2(실시예 1)를 처리했을 때 TEVC 측정 결과, 전류는 EGCG0 = 12 nA로 나타났고, EGCG2는 50% 감소된 6 nA로 나타났다.
15 is a result of comparing the degree of bitterness of substances before and after EGCG nano-ization by EGCG concentration through an electrophysiological technique. According to this, when frog eggs in which bitter taste receptors were expressed were treated with EGCG0 (untreated group) at a concentration of 100 μM and EGCG2 (Example 1), the final nanomaterial, as a result of TEVC measurement, the current was EGCG0 = 12 nA. , EGCG2 was reduced by 50% to 6 nA.

모든 실험 결과들은 3회 반복 측정하여 평균값과 표준편차로 나타냈으며, 각 처리별 평균치간의 유의성 검정은 SAS 프로그램(Package relwase 8.01)을 이용하여 분산분석(ANOVA)을 실시하였다. 평균간 유의적 차이가 있는 항목에 대해서는 Duncan's multiple range test로 p<0.05 수준에서 유의성 검정을 실시하였다.
All experimental results were measured three times and expressed as the mean and standard deviation, and the analysis of variance (ANOVA) was performed to test the significance between the mean values for each treatment using the SAS program (Package relwase 8.01). For items with significant differences between the means, a significance test was performed at p<0.05 level using Duncan's multiple range test.

이상, 본 발명의 실시예들에 대하여 설명하였으나, 해당 기술 분야에서 통상의 지식을 가진 자라면 특허청구범위에 기재된 본 발명의 사상으로부터 벗어나지 않는 범위 내에서, 구성 요소의 부가, 변경, 삭제 또는 추가 등에 의해 본 발명을 다양하게 수정 및 변경시킬 수 있을 것이며, 이 또한 본 발명의 권리범위 내에 포함된다고 할 것이다.
In the above, although embodiments of the present invention have been described, those of ordinary skill in the art can add, change, delete or add components within the scope that does not depart from the spirit of the present invention described in the claims. The present invention may be variously modified and changed by, etc., and this will also be included within the scope of the present invention.

Claims (22)

유층 유화제, 수층 유화제 및 항갈변제가 포함되고, 나노입자화된 에피갈로카테킨갈레이트(EGCG)를 포함하고,
상기 유층 유화제는 레시틴, 폴리카프로락톤, 폴리프로필렌글리콜 및 올리브오일 중에서 선택된 어느 하나이고,
상기 수층 유화제는 펙틴, 하이드록시프로필 메틸셀룰로오스, 사이클로덱스트린, 알지네이트, 스테비오사이드 및 카라기난 중에서 선택된 어느 하나이고,
상기 항갈변제는 비타민 C 및 갈산 중에서 선택된 어느 하나인, 에피갈로카테킨갈레이트 나노에멀젼을 유효성분으로 포함하는 항비만 조성물.
oil layer emulsifier, water layer emulsifier and anti-browning agent, and nanoparticulate epigallocatechin gallate (EGCG);
The oil layer emulsifier is any one selected from lecithin, polycaprolactone, polypropylene glycol and olive oil,
The aqueous layer emulsifier is any one selected from pectin, hydroxypropyl methylcellulose, cyclodextrin, alginate, stevioside and carrageenan,
The anti-browning agent is any one selected from vitamin C and gallic acid, an anti-obesity composition comprising an epigallocatechin gallate nanoemulsion as an active ingredient.
제1항에 있어서,
상기 나노입자화된 에피갈로카테킨갈레이트는 초음파 처리에 의한 분사에 의해 나노입자화된 것을 특징으로 하는 항비만 조성물.
According to claim 1,
The nanoparticulated epigallocatechin gallate anti-obesity composition, characterized in that the nanoparticles by spraying by ultrasonic treatment.
제2항에 있어서,
상기 나노입자화된 에피갈로카테킨갈레이트는, 용매와 에피갈로카테킨 분말이 혼합된 혼합물에 상기 유층 유화제, 수층 유화제 및 항갈변제를 차례로 첨가하면서 초음파 분사 처리함으로써 3회 초음파 분사 처리된 것을 특징으로 하는 항비만 조성물.
3. The method of claim 2,
The nanoparticulated epigallocatechin gallate was ultrasonically sprayed three times by sequentially adding the oil layer emulsifier, water layer emulsifier and anti-browning agent to a mixture in which a solvent and epigallocatechin powder were mixed. Anti-obesity composition, characterized in that.
제1항에 있어서,
상기 나노입자화된 에피갈로카테킨갈레이트는 평균입경이 100 내지 200 nm 인 것을 특징으로 하는 항비만 조성물.
According to claim 1,
The nanoparticulated epigallocatechin gallate anti-obesity composition, characterized in that the average particle diameter is 100 to 200 nm.
제1항에 있어서,
상기 나노입자화된 에피갈로카테킨갈레이트는 균일도(PDI)가 0.1 내지 0.2 인 것을 특징으로 하는 항비만 조성물.
According to claim 1,
The nanoparticulated epigallocatechin gallate anti-obesity composition, characterized in that the uniformity (PDI) of 0.1 to 0.2.
제1항에 있어서,
상기 항비만 조성물은 지방생성억제 활성 및 지방분해 활성을 갖는 것을 특징으로 하는 항비만 조성물.
According to claim 1,
The anti-obesity composition is an anti-obesity composition, characterized in that it has an adipogenesis inhibitory activity and a lipolytic activity.
제1항에 있어서,
상기 유층 유화제는 레시틴인 것을 특징으로 하는 항비만 조성물
According to claim 1,
The anti-obesity composition, characterized in that the oil emulsifier is lecithin
제1항에 있어서,
상기 수층 유화제는 펙틴 또는 사이클로덱스트린인 것을 특징으로 하는 항비만 조성물.
According to claim 1,
The anti-obesity composition, characterized in that the water-layer emulsifier is pectin or cyclodextrin.
제1항에 있어서,
상기 유층 유화제로 레시틴, 수층 유화제로 펙틴 또는 사이클로덱스트린을 동시 사용하는 것을 특징으로 하는 항비만 조성물.
According to claim 1,
Anti-obesity composition, characterized in that the simultaneous use of lecithin as the oil emulsifier and pectin or cyclodextrin as the water emulsifier.
제1항에 있어서,
상기 항비만 조성물은 에피갈로카테킨갈레이트 100중량부에 대하여 유층 유화제 5 내지 20중량부, 수층 유화제 0.05 내지 2중량부, 및 항갈변제 0.05 내지 2중량부를 포함하는 것을 특징으로 하는 항비만 조성물.
According to claim 1,
The anti-obesity composition comprises 5 to 20 parts by weight of an oil emulsifier, 0.05 to 2 parts by weight of an aqueous emulsifier, and 0.05 to 2 parts by weight of an anti-browning agent based on 100 parts by weight of epigallocatechin gallate. .
제1항 내지 제10항 중에서 선택된 어느 한 항의 항비만 조성물을 포함하는 비만 개선 또는 예방용 식품 또는 음료 조성물.A food or beverage composition for improving or preventing obesity comprising the anti-obesity composition of any one of claims 1 to 10. 제11항에 있어서,
상기 식품 또는 음료 조성물은 투명 또는 반투명한 성질을 갖는 식품 또는 음료에 포함되는 것을 특징으로 하는 비만 개선 또는 예방용 식품 또는 음료 조성물.
12. The method of claim 11,
The food or beverage composition is a food or beverage composition for improving or preventing obesity, characterized in that it is included in a food or beverage having a transparent or translucent property.
제1항 내지 제10항 중에서 선택된 어느 한 항의 항비만 조성물을 포함하는 비만 치료 또는 예방용 약학 조성물.A pharmaceutical composition for treating or preventing obesity comprising the anti-obesity composition of any one of claims 1 to 10. (a) 에피갈로카테킨갈레이트와 유층 유화제를 첨가한 물을 초음파 처리에 의해 분사하여 1차 에피갈로카테킨갈레이트 나노입자가 포함된 1차 에멀젼을 제조하는 단계;
(b) 상기 1차 에멀젼에 수층 유화제를 첨가하고 초음파 처리에 의해 분사함으로써 2차 에피갈로카테킨갈레이트 나노입자가 포함된 2차 에멀젼을 제조하는 단계; 및
(c) 상기 2차 에멀젼에 항갈변제를 첨가하고 초음파 처리에 의해 분사함으로써 3차 에피갈로카테킨갈레이트 나노입자가 포함된 3차 에멀젼을 제조하는 단계;를 포함하고,
상기 유층 유화제는 레시틴, 폴리카프로락톤, 폴리프로필렌글리콜, 및 올리브오일 중에서 선택된 어느 하나이고,
상기 수층 유화제는 펙틴, 하이드록시프로필 메틸셀룰로오스, 사이클로덱스트린, 알지네이트, 스테비오사이드, 및 카라기난 중에서 선택된 어느 하나이고,
상기 항갈변제는 비타민 C 및 갈산 중에서 선택된 어느 하나인, 에피갈로카테킨갈레이트 나노에멀젼을 유효성분으로 포함하는 항비만 조성물의 제조방법.
(a) preparing a primary emulsion containing primary epigallocatechin gallate nanoparticles by spraying water to which epigallocatechin gallate and an oil emulsifier are added by ultrasonic treatment;
(b) preparing a secondary emulsion containing secondary epigallocatechin gallate nanoparticles by adding a water layer emulsifier to the primary emulsion and spraying by ultrasonication; and
(c) preparing a tertiary emulsion containing tertiary epigallocatechin gallate nanoparticles by adding an anti-browning agent to the secondary emulsion and spraying by sonication;
The oil layer emulsifier is any one selected from lecithin, polycaprolactone, polypropylene glycol, and olive oil,
The aqueous emulsifier is any one selected from pectin, hydroxypropyl methylcellulose, cyclodextrin, alginate, stevioside, and carrageenan,
The anti-browning agent is any one selected from vitamin C and gallic acid, a method for producing an anti-obesity composition comprising an epigallocatechin gallate nanoemulsion as an active ingredient.
제14항에 있어서,
상기 에피갈로카테킨갈레이트는 10 내지 30%(w/v)의 용액의 상태로 사용되는 것을 특징으로 하는 항비만 조성물의 제조방법.
15. The method of claim 14,
The method for producing an anti-obesity composition, characterized in that the epigallocatechin gallate is used in a solution of 10 to 30% (w/v).
제14항에 있어서,
상기 유층 유화제는 상기 에피갈로카테킨갈레이트 100중량부에 대하여 1 내지 30중량부로 혼합되는 것을 특징으로 하는 항비만 조성물의 제조방법.
15. The method of claim 14,
The method for producing an anti-obesity composition, characterized in that the oil layer emulsifier is mixed in an amount of 1 to 30 parts by weight based on 100 parts by weight of the epigallocatechin gallate.
제14항에 있어서,
상기 유층 유화제는 레시틴인 것을 특징으로 하는 항비만 조성물의 제조방법.
15. The method of claim 14,
The method for producing an anti-obesity composition, characterized in that the oil emulsifier is lecithin.
제14항에 있어서,
상기 수층 유화제는 펙틴 또는 사이클로덱스트린인 것을 특징으로 하는 항비만 조성물의 제조방법.
15. The method of claim 14,
The method for producing an anti-obesity composition, characterized in that the water-layer emulsifier is pectin or cyclodextrin.
제14항에 있어서,
상기 유층 유화제로 레시틴, 수층 유화제로 펙틴 또는 사이클로덱스트린을 동시 사용하는 것을 특징으로 하는 항비만 조성물의 제조방법.
15. The method of claim 14,
Lecithin as the oil layer emulsifier, and pectin or cyclodextrin as the water layer emulsifier.
제14항 내지 제19항 중에서 선택된 어느 한 항의 항비만 조성물의 제조방법을 포함하는 비만 개선 또는 예방용 식품 또는 음료 조성물의 제조방법.20. A method of manufacturing a food or beverage composition for improving or preventing obesity, comprising the method for preparing an anti-obesity composition of any one of claims 14 to 19. 제20항에 있어서,
상기 식품 또는 음료 조성물은 투명 또는 반투명한 성질을 갖는 식품 또는 음료에 포함시키는 것을 특징으로 하는 비만 개선 또는 예방용 식품 또는 음료 조성물의 제조방법.
21. The method of claim 20,
The food or beverage composition is a method of manufacturing a food or beverage composition for improving or preventing obesity, characterized in that it is included in a food or beverage having a transparent or translucent property.
제14항 내지 제19항 중에서 선택된 어느 한 항의 항비만 조성물의 제조방법을 포함하는 비만 치료 또는 예방용 약학 조성물의 제조방법.20. A method of preparing a pharmaceutical composition for treating or preventing obesity, comprising the method for preparing an anti-obesity composition of any one of claims 14 to 19.
KR1020190154480A 2019-11-27 2019-11-27 Antiobesity composition comprising epigallocatechin gallate nano-emulsion as effective gradient and method for preparing the same KR102273583B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020190154480A KR102273583B1 (en) 2019-11-27 2019-11-27 Antiobesity composition comprising epigallocatechin gallate nano-emulsion as effective gradient and method for preparing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020190154480A KR102273583B1 (en) 2019-11-27 2019-11-27 Antiobesity composition comprising epigallocatechin gallate nano-emulsion as effective gradient and method for preparing the same

Publications (2)

Publication Number Publication Date
KR20210066067A KR20210066067A (en) 2021-06-07
KR102273583B1 true KR102273583B1 (en) 2021-07-07

Family

ID=76374115

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020190154480A KR102273583B1 (en) 2019-11-27 2019-11-27 Antiobesity composition comprising epigallocatechin gallate nano-emulsion as effective gradient and method for preparing the same

Country Status (1)

Country Link
KR (1) KR102273583B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230047243A (en) 2021-09-30 2023-04-07 고려자연식품(주) Method for preparing of microcapsules including fat solubility, microcapsules prepared by the method and jelly including the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019126184A1 (en) 2017-12-18 2019-06-27 Nanostrips, Inc. Transmucosal delivery device and method of manufacturing same
WO2019145773A1 (en) 2017-12-15 2019-08-01 Nos Life Sciences Corporation Liposomal-encapsulated formulations

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100835250B1 (en) * 2006-09-07 2008-06-09 주식회사 바이오랜드 A Self-emulsifying carrier and the preparation method thereof
KR101695836B1 (en) * 2010-04-13 2017-01-16 (주)아모레퍼시픽 Polymer-liposome nanocomplex composition for transdermal delivery and preparation method of the same
KR20170041407A (en) * 2015-10-07 2017-04-17 세종대학교산학협력단 Nanostructured lipid carriers with Epigallocatechin-3-gallate, piperin and method thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019145773A1 (en) 2017-12-15 2019-08-01 Nos Life Sciences Corporation Liposomal-encapsulated formulations
WO2019126184A1 (en) 2017-12-18 2019-06-27 Nanostrips, Inc. Transmucosal delivery device and method of manufacturing same

Also Published As

Publication number Publication date
KR20210066067A (en) 2021-06-07

Similar Documents

Publication Publication Date Title
Garavand et al. Encapsulation of phenolic compounds within nano/microemulsion systems: A review
Babazadeh et al. Phosphatidylcholine-rutin complex as a potential nanocarrier for food applications
Munagala et al. Exosomal formulation of anthocyanidins against multiple cancer types
Ganesan et al. Recent trends in the development of nanophytobioactive compounds and delivery systems for their possible role in reducing oxidative stress in Parkinson’s disease models
Toro-Uribe et al. Design, fabrication, characterization, and in vitro digestion of alkaloid-, catechin-, and cocoa extract-loaded liposomes
Zeng et al. Encapsulation of tannins and tannin-rich plant extracts by complex coacervation to improve their physicochemical properties and biological activities: A review
Premathilaka et al. Oral delivery of hydrophobic flavonoids and their incorporation into functional foods: Opportunities and challenges
Lacatusu et al. Marigold extract, azelaic acid and black caraway oil into lipid nanocarriers provides a strong anti-inflammatory effect in vivo
JP6459206B2 (en) Superabsorbent ubiquinol formulation
Rambaran A patent review of polyphenol nano-formulations and their commercialization
Kumar et al. Scope of nanotechnology in nutraceuticals
Bouyahya et al. Study of the antioxidant and antidiabetic activity in vitro of free and encapsulated phenolic compounds of olive pomace
Montagner et al. Liposomes loading grape seed extract: A nanotechnological solution to reduce wine-making waste and obtain health-promoting products
Abdulqahar et al. In vitro digestibility of Aucklandia costus-loaded nanophytosomes and their use in yoghurt as a food model
KR102273583B1 (en) Antiobesity composition comprising epigallocatechin gallate nano-emulsion as effective gradient and method for preparing the same
Liu et al. Construction of curcumin-fortified juices using their self-derived extracellular vesicles as natural delivery systems: grape, tomato, and orange juices
KR101467627B1 (en) UV-induced Apoptosis in human Keratinocytes Suppressing Composition Containing Extract of Undaria crenata
Rachmawati et al. Role of nanocarriers and their surface modification in targeting delivery of bioactive compounds
Leyva-Jiménez et al. Development of advanced phospholipid vesicles loaded with Lippia citriodora pressurized liquid extract for the treatment of gastrointestinal disorders
Rashwan et al. Health properties of bioactive food compounds-loaded micro and nano-encapsulation systems: a review
Han et al. Taste masking and stability improvement of Korean red ginseng (Panax ginseng) by nanoencapsulation using chitosan and gelatin
KR101927404B1 (en) Liquid composition comprising compound K at high concentration and producing method thereof
KR101931611B1 (en) Composition for antioxidant, and anti-inflammation effect comprising Cirtus extract and Hylotelephium erythrostictum extract
KR102088187B1 (en) Method for producing powder of green bean extract
Keshtkaran et al. Extraction optimization and microencapsulation of Berberine from Berberis vulgaris incorporated in a functional orange drink: Physiochemical attributes and kinetic release studies

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant