KR102273009B1 - Method for synthesis of cosmetic emulsifier derived from nature resource with immobilized enzyme - Google Patents

Method for synthesis of cosmetic emulsifier derived from nature resource with immobilized enzyme Download PDF

Info

Publication number
KR102273009B1
KR102273009B1 KR1020190077569A KR20190077569A KR102273009B1 KR 102273009 B1 KR102273009 B1 KR 102273009B1 KR 1020190077569 A KR1020190077569 A KR 1020190077569A KR 20190077569 A KR20190077569 A KR 20190077569A KR 102273009 B1 KR102273009 B1 KR 102273009B1
Authority
KR
South Korea
Prior art keywords
diglycerin
capric acid
reaction
caprate
enzyme
Prior art date
Application number
KR1020190077569A
Other languages
Korean (ko)
Other versions
KR20210002226A (en
Inventor
이재덕
안현진
장은상
박수남
Original Assignee
여명바이오켐 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 여명바이오켐 주식회사 filed Critical 여명바이오켐 주식회사
Priority to KR1020190077569A priority Critical patent/KR102273009B1/en
Publication of KR20210002226A publication Critical patent/KR20210002226A/en
Application granted granted Critical
Publication of KR102273009B1 publication Critical patent/KR102273009B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/64Fats; Fatty oils; Ester-type waxes; Higher fatty acids, i.e. having at least seven carbon atoms in an unbroken chain bound to a carboxyl group; Oxidised oils or fats
    • C12P7/6436Fatty acid esters
    • C12P7/6445Glycerides
    • C12P7/6454Glycerides by esterification

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Immobilizing And Processing Of Enzymes And Microorganisms (AREA)

Abstract

본 발명은 고정화효소(immobilized lipases)를 사용하여, 다이글리세린(Diglycerin)과 카프릭산(Capric acid)을 이용한 천연 유래 유화제인, 다이글리세린 카프레이트(Diglycerin caprate)를 수득하기 위한 화장품용 천연 유래 유화제의 합성방법에 관한 것으로, 본 발명은 균일계 촉매를 이용한 합성방법이 아닌 고정화효소(immobilized lipases)를 사용함으로써, 균일계 촉매 반응에 따른 고온공정이 갖는 과다 에너지 사용 문제 및 미반응물, 순도 저하 문제를 해결하였고, 이를 통해 다이글리세린 카프레이트(Diglycerin caprate)를 고순도로 수득할 수 있다.The present invention uses immobilized lipases, a naturally derived emulsifier using diglycerin and capric acid, a natural emulsifier for cosmetics to obtain diglycerin caprate The present invention uses immobilized lipases rather than a synthesis method using a homogeneous catalyst, and thus the problem of excessive energy use, unreacted substances, and lowering of purity in high-temperature processes according to the homogeneous catalytic reaction. was solved, and through this, diglycerin caprate can be obtained with high purity.

Description

고정화 효소를 이용한 화장품용 천연 유래 유화제의 합성방법 {Method for synthesis of cosmetic emulsifier derived from nature resource with immobilized enzyme}Synthesis method of natural emulsifier for cosmetics using immobilized enzyme {Method for synthesis of cosmetic emulsifier derived from nature resource with immobilized enzyme}

본 발명은 고정화 효소(immobilized enzyme)를 이용한 화장품용 천연 유래 유화제의 합성방법에 관한 것으로, 더욱 구체적으로는 고정화효소(immobilized lipases)를 사용하여, 다이글리세린(Diglycerin)과 카프릭산(Capric acid)을 이용한 고순도의 천연 유래 유화제, 다이글리세린 카프레이트(Diglycerin caprate)의 합성방법에 관한 것이다.The present invention relates to a method for synthesizing a natural-derived emulsifier for cosmetics using an immobilized enzyme, and more specifically, using immobilized lipases, diglycerin and capric acid. It relates to a method for synthesizing a high-purity, naturally-derived emulsifier, diglycerin caprate using

계면활성제(surface activation agent 또는 surfactants)는 상간의 경계면 활성화를 통한 표면장력(surface tension : dyne/cm)의 강하능력으로 인해 표면의 습윤, 침투, 기포, 소포, 유화, 가용화, 분산, 응집 및 세정 등의 작용을 가져 모든 세제(detergents)와 화장품(cosmetics)에 사용되는 필수 원료이다.Surfactants (surface activation agents or surfactants) have surface wetting, penetration, air bubbles, defoaming, emulsification, solubilization, dispersion, agglomeration and cleaning of the surface due to the ability to lower the surface tension (dyne/cm) through the activation of the interface between the phases. It is an essential raw material used in all detergents and cosmetics because of its action.

최근 소비자는 생분해성이 우수한 순한(mildness) 제품, 생체자극이 적으면서도 기존의 계면활성제가 지니고 있는 습윤력, 기포력, 세척력 그리고 표면장력의 저항력과 같은 우수한 물리적 특성을 보유하는 계면활성제를 선호하고 있다. 또한, 계면특성에 더하여 유연성, 살균성, 미백 및 항노화 효과 등을 복합적으로 나타낼 수 있는 다기능의 제품 개발이 요구되고 있다.Recently, consumers prefer mildness products with excellent biodegradability and surfactants with excellent physical properties such as wettability, foaming power, cleaning power, and resistance to surface tension that conventional surfactants have while having little biostimulation. have. In addition, there is a demand for the development of multifunctional products that can exhibit a combination of flexibility, sterilization, whitening and anti-aging effects in addition to interfacial properties.

한편, 국내 천연 유래의 계면활성제 제조기술 수준은 미국, 일본, 독일 등 선진기술의 모방단계에서 벗어나지 못하고 있으며, 특히 이들의 기술이전을 규제하고 있고, 업체의 영세성으로 인한 R&D 투자의 부담으로 기술축적이 어려운 실정이다. 대부분 업체가 범용제품에 대한 기술은 갖추고 있으나, 천연 유래의 기능성 고부가가치 제품에 대한 기술력은 미미한 상황이다. 또한, 인체 안전에 대한 관심 고조로 환경친화적인 생분해성 천연계면활성제 등 자체적인 기술개발이 절실히 요구되고 있으나 아직 이에 대한 기술개발은 부족한 실정이다.On the other hand, the level of manufacturing technology for surfactants derived from nature in Korea does not escape from the stage of imitation of advanced technologies such as the United States, Japan, and Germany. This is a difficult situation. Most companies have the technology for general-purpose products, but the technology for natural-derived functional high-value-added products is insignificant. In addition, due to the growing interest in human safety, there is an urgent need to develop an in-house technology such as an environmentally friendly biodegradable natural surfactant, but the technology development for this is still insufficient.

대한민국공개특허 제10-1999-0009251호(1999.02.05)에는, 천연 식물성 유화제만을 사용한 유화, 분산 타입의 민감성메이컵 화장료 조성물에 관하여 기재되어 있다.Korean Patent Laid-Open No. 10-1999-0009251 (199.02.05) describes an emulsified and dispersed type sensitive makeup cosmetic composition using only natural vegetable emulsifiers. 대한민국공개특허 제10-2014-0047443호(2014.04.22)에는, 천연 유화제를 사용하는 저점도의 화장료 조성물에 관하여 기재되어 있다.Korean Patent Application Laid-Open No. 10-2014-0047443 (2014.04.22) describes a low-viscosity cosmetic composition using a natural emulsifier.

본 발명은 고정화효소(Immobilized lipases)를 이용한 고순도 천연 유래 유화제(Diglycerin Caprate) 제조방법을 개발하여 제공하고자 한다.The present invention is to develop and provide a method for producing a high-purity natural emulsifier (Diglycerin Caprate) using immobilized lipases.

본 발명은 다이글리세린(Diglycerin), 카프릭산(Capric acid)을 첨가하고, 용매로 아세토나이트릴을 이용하며, 고정화된 리파아제로 반응시키는 것을 특징으로 하는 다이글리세린 카프레이트(Diglycerin caprate)의 합성방법을 제공한다.The present invention is a method for synthesizing diglycerin caprate, characterized in that by adding diglycerin and capric acid, using acetonitrile as a solvent, and reacting with immobilized lipase provides

본 발명의 다이글리세린 카프레이트(Diglycerin caprate)의 합성방법에 있어, 상기 다이글리세린(Diglycerin)과 카프릭산(Capric acid)의 합성 몰비는, 바람직하게 2~3:1인 것이 좋다.In the synthesis method of diglycerin caprate of the present invention, the synthesis molar ratio of diglycerin and capric acid is preferably 2 to 3:1.

본 발명의 다이글리세린 카프레이트(Diglycerin caprate)의 합성방법에 있어, 상기 고정화된 리파아제는, 바람직하게 상기 다이글리세린과 카프릭산 총량을 기준으로 5~20%(w/w) 첨가되는 것이 좋다.In the method for synthesizing diglycerin caprate of the present invention, the immobilized lipase is preferably added in an amount of 5 to 20% (w/w) based on the total amount of diglycerin and capric acid.

본 발명의 다이글리세린 카프레이트(Diglycerin caprate)의 합성방법에 있어, 상기 용매 아세토나이트릴은, 바람직하게 상기 다이글리세린과 카프릭산 총량을 기준으로 50~1,800%(w/w) 첨가되는 것이 좋다.In the method for synthesizing diglycerin caprate of the present invention, the solvent acetonitrile is preferably added by 50 to 1,800% (w/w) based on the total amount of diglycerin and capric acid. .

본 발명의 다이글리세린 카프레이트(Diglycerin caprate)의 합성방법에 있어, 상기 반응은, 바람직하게 2~24시간 동안 반응시키는 것이 좋다.In the method for synthesizing diglycerin caprate of the present invention, the reaction is preferably performed for 2 to 24 hours.

본 발명은 균일계 촉매를 이용한 합성방법이 아닌 고정화효소(immobilized lipases)를 사용함으로써, 균일계 촉매 반응에 따른 고온공정이 갖는 과다 에너지 사용 문제 및 미반응물, 순도 저하 문제를 해결하였고, 이를 통해 다이글리세린 카프레이트(Diglycerin caprate)를 고순도로 수득할 수 있다.The present invention uses immobilized lipases rather than a synthesis method using a homogeneous catalyst, thereby solving the problem of excessive energy use and unreacted substances and lowering purity of the high-temperature process according to the homogeneous catalytic reaction. Glycerin caprate can be obtained in high purity.

도 1은 다이글리세린(Diglycerin)과 카프릭산(Capric acid)의 몰비 변화에 따른 모노에스터(Mono-ester) 함량(%(w/w))을 비교한 결과이다.
도 2는 고정화 리파아제의 함량 변화에 따른 반응 결과를 나타낸 것이다.
도 3은 용매인 아세토나이트릴(Acetonitrile)함량 변화에 따른 반응 결과를 나타낸 것이다.
도 4는 반응시간에 따른 반응 정도를 비교한 결과이다.
1 is a result of comparing the mono-ester content (% (w / w)) according to the change in the molar ratio of diglycerin (Diglycerin) and capric acid (Capric acid).
Figure 2 shows the reaction results according to the change in the content of immobilized lipase.
Figure 3 shows the reaction results according to the change in the solvent acetonitrile (Acetonitrile) content.
4 is a result of comparing the degree of reaction according to the reaction time.

본 발명은 고정화 리파아제 효소(Immobilized lipases)를 이용하여 에스테르 반응(Esterification)에 의한 천연 유래 유화제 다이글리세린 카프레이트(Diglycerin caprate)를 제조하고자 하는 것으로, 일반적인 균일계 촉매를 이용한 방법보다 부반응물의 생성 저하 및 높은 순도의 다이글리세린 카프레이트를 제조하는 것에 목적이 있다.The present invention is to prepare a naturally-derived emulsifier diglycerin caprate by esterification using immobilized lipases, and lowers the production of side reactants than a method using a general homogeneous catalyst and to prepare diglycerin caprate of high purity.

이에, 본 발명은 다이글리세린(Diglycerin), 카프릭산(Capric acid)을 첨가하고, 용매로 아세토나이트릴을 이용하며, 고정화된 리파아제로 반응시키는 것을 특징으로 하는 다이글리세린 카프레이트(Diglycerin caprate)의 합성방법을 제공한다.Accordingly, the present invention is diglycerin caprate, characterized in that by adding diglycerin and capric acid, using acetonitrile as a solvent, and reacting with immobilized lipase. A synthesis method is provided.

효소반응은 보통의 화학촉매에 의한 반응과 비교하여 기질특이성이 높다. 또한 상온, 상압이라는 온화한 조건으로 반응을 할 수 있는 등의 장점을 갖고 있다. 효소는 원래 수용성 단백질이고 효소반응을 할 때는 일반적으로는 효소를 반응용액에 용해한 상태에서 행한다. 그러나 이러한 일반적인 방법에서는 반응종료 후에 사용한 효소를 반응용액에서 회수하는 것은 용이하지 않고, 효소는 1회용이 되고 만다. 이것은 특히 효소를 염가로 입수할 수 없는 경우 또는 효소를 생산하는 조작이 복잡한 경우에 큰 문제가 된다. Enzymatic reactions have high substrate specificity compared to reactions with normal chemical catalysts. In addition, it has advantages such as being able to react under mild conditions such as room temperature and normal pressure. Enzymes are originally water-soluble proteins, and when performing an enzymatic reaction, the enzyme is generally dissolved in a reaction solution. However, in this general method, it is not easy to recover the used enzyme from the reaction solution after completion of the reaction, and the enzyme is disposable. This is particularly a big problem when the enzyme cannot be obtained cheaply or when the operation for producing the enzyme is complicated.

효소의 유효 이용을 위해서는 어떠한 방법으로도 쉽게 효소를 반응용액 중에서 회수하여야 한다. 이 목적으로 효소를 가공한 것이 고정화 효소(immobilized enzyme)이다. 처음에는 효소를 물 불용성으로 하여 사용하였기 때문에 불용화 효소(insoluble enzyme)라고 하였지만, 상기의 목적을 위해서는 반드시 물 불용성으로 할 필요가 없는 경우도 있으므로 고정화 효소라 총칭하게 되었다. 보통의 물 불용성으로 한 고정화 효소는 경사법 또는 원심분리 등의 방법에 따라 용이하게 반응용액에서 회수할 수 있다.For effective use of the enzyme, the enzyme must be easily recovered from the reaction solution by any method. An enzyme processed for this purpose is an immobilized enzyme. Initially, the enzyme was called an insoluble enzyme because it was used as water-insoluble, but for the above purpose, it is not necessarily necessary to make the enzyme water-insoluble, so it is collectively called an immobilized enzyme. The immobilized enzyme usually made insoluble in water can be easily recovered from the reaction solution by a method such as decantation or centrifugation.

한편, 고정화 효소를 칼럼에 충전하여 반응용액을 흘리면 효소반응을 연속적으로 행하는 것도 가능해진다. 구체적으로 효소 단백질을 고정화하는 방법으로는 크게 담체결합법, 가교법, 포괄법의 3종류가 있다. 담체결합법은 불용성의 담체에 어떠한 방법으로 효소를 결합시키는 방법이지만 결합양식으로 이온결합법, 물리적 흡착법, 공유결합법으로 대별된다. 가교법은 효소분자 사이에 공유결합을 함으로써 분자량을 크게 하여 불용성으로 하는 방법이다. 포괄법은 겔(gel) 등의 매트릭스(matrix) 중에 효소를 고정화하는 격자법과 마이크로캡슐 중에 봉입하는 마이크로캡슐법이 있다.On the other hand, by filling the column with the immobilized enzyme and flowing the reaction solution, it becomes possible to continuously conduct the enzyme reaction. Specifically, there are three major methods for immobilizing an enzyme protein: a carrier binding method, a crosslinking method, and a blanket method. The carrier binding method is a method of binding an enzyme to an insoluble carrier by any method, but the binding mode is roughly divided into an ionic binding method, a physical adsorption method, and a covalent bonding method. The crosslinking method is a method to increase the molecular weight by covalent bonding between enzyme molecules to make them insoluble. The entrapment method includes a grid method in which an enzyme is immobilized in a matrix such as a gel and a microcapsule method in which the enzyme is encapsulated in microcapsules.

그 외의 방법으로 효소를 장용성(腸溶性) 중합체(중성, 알칼리성 영역에서 가용성, 산성 영역에서 불용성의 고분자)에 공유결합시키고, 반응 중에는 물 가용성의 상태, 반응 종료 후에는 pH를 산성 영역으로 함으로써 효소를 불용화하여 회수하는 방법도 보고되어 있다. 본 발명에서는 고정화 효소법으로 효소를 칼럼에 충전하여 사용하는데, 반드시 이 방법으로 한정되는 것은 아니고, 상기한 여타의 방법 또는 당업계에 널리 알려진 방법을 사용할 수 있다.By other methods, the enzyme is covalently bound to an enteric polymer (a polymer that is soluble in a neutral or alkaline region, insoluble in an acidic region), and is water-soluble during the reaction and the pH is adjusted to an acidic region after the reaction is completed. A method of recovering by insolubilization has also been reported. In the present invention, the enzyme is filled in the column by the immobilized enzyme method, but the present invention is not limited thereto, and other methods described above or methods well known in the art may be used.

본 발명 다이글리세린 카프레이트(Diglycerin caprate)의 합성방법은, 일반적인 균일계 촉매를 이용한 합성방법이 아닌, 고정화 리파아제 (immobilized lipases)를 사용하여 균일계 촉매 반응에 따른 고온공정이 갖는 과다 에너지 사용 문제 및 미반응물, 순도 저하 문제를 해결하였다. 고정화 리파아제로는 더욱 구체적으로 제노포커스에서 판매하는 'CalB-IM'을 사용하였다. 또한, 기질 반응 몰비, 고정화 효소 함량, 용매량, 반응시간을 최적화하였다.The method of synthesizing diglycerin caprate of the present invention is not a synthesis method using a general homogeneous catalyst, but uses immobilized lipases to solve the problem of excessive energy use and the high-temperature process according to the homogeneous catalytic reaction. The problem of unreacted substances and lowering of purity was solved. More specifically, 'CalB-IM' sold by Xenofocus was used as the immobilized lipase. In addition, substrate reaction molar ratio, immobilized enzyme content, solvent amount, and reaction time were optimized.

본 발명의 다이글리세린 카프레이트(Diglycerin caprate)의 합성방법에 있어, 다이글리세린(Diglycerin)과 카프릭산(Capric acid)의 합성 몰비는, 바람직하게 2~3:1인 것이 좋고, 고정화된 리파아제는, 바람직하게 다이글리세린과 카프릭산 총량을 기준으로 5~20%(w/w) 첨가되는 것이 좋으며, 용매 아세토나이트릴은, 바람직하게 다이글리세린과 카프릭산 총량을 기준으로 50~1,800%(w/w) 첨가되는 것이 좋고, 바람직하게 2~24시간 동안 반응시키는 것이 좋다. 상기 조건에서 고순도, 고수율의 다이글리세린 카프레이트를 제조할 수 있다.In the synthesis method of diglycerin caprate of the present invention, the synthesis molar ratio of diglycerin and capric acid is preferably 2 to 3:1, and the immobilized lipase is , preferably 5 to 20% (w/w) is added based on the total amount of diglycerin and capric acid, and the solvent acetonitrile is preferably 50 to 1,800% (w/w) based on the total amount of diglycerin and capric acid ( w/w) is preferably added, preferably reacting for 2 to 24 hours. Under the above conditions, diglycerin caprate of high purity and high yield can be prepared.

더욱 구체적으로, 다이글리세린과 카프릭산의 3:1 반응몰비에서 84.4%(w/w)의 모노에스터 함량을 얻을 수 있어 가장 우수한 반응몰비로 3:1이 도출되었다. 또한, 다이글리세린과 카프릭산 총량을 기준으로 20%(w/w)의 고정화효소 첨가량에서 99.5%(w/w) 이상의 다이글리세린 카프레이트(Diglycerin caprate) 전환율을 나타냈다. 또한, 다이글리세린과 카프릭산 총량을 기준으로 200%(w/w)의 아세토나이트릴 용매의 사용이 가장 반응에 적합하였다. 또한, 반응 시간으로는 8시간 동안 반응시키는 것이 최적의 반응 시간임을 확인할 수 있었다. 이상의 최적반응 조건을 결합하여 다이글리세린 카프레이트를 합성한 결과, 모노에스터(Mono ester) 85.9%(w/w) 이상의 고순도 다이글리세린 카프레이트를 제조할 수 있었으며, 75.4%(w/w)의 고수율로 다이글리세린 카프레이트를 수득할 수 있었다.More specifically, a monoester content of 84.4% (w/w) could be obtained at a 3:1 reaction molar ratio of diglycerin and capric acid, and 3:1 was derived as the best reaction molar ratio. In addition, based on the total amount of diglycerin and capric acid, it showed a diglycerin caprate conversion rate of 99.5% (w/w) or more at an immobilized enzyme addition amount of 20% (w/w). In addition, the use of an acetonitrile solvent of 200% (w/w) based on the total amount of diglycerin and capric acid was most suitable for the reaction. In addition, as the reaction time, it was confirmed that the optimal reaction time was to react for 8 hours. As a result of synthesizing diglycerin caprate by combining the above optimal reaction conditions, it was possible to produce high-purity diglycerin caprate of 85.9% (w/w) or more of mono ester, and 75.4% (w/w) of high-purity diglycerin caprate. It was possible to obtain diglycerin caprate in yield.

이하, 본 발명의 구성을 하기 실시예를 통해 구체적으로 설명하고자 한다. 다만, 본 발명의 권리범위가 하기 실시예에만 한정되는 것은 아니고, 그와 등가의 기술적 사상의 변형까지를 포함한다.Hereinafter, the configuration of the present invention will be described in detail through the following examples. However, the scope of the present invention is not limited only to the following examples, and includes modifications of technical ideas equivalent thereto.

[[ 실시예Example 1: 본 발명의 천연 유화제 합성] 1: Synthesis of natural emulsifier of the present invention]

1. 실험 재료1. Experimental Materials

본 발명의 천연 유래 유화제인, 다이글리세린 카프레이트(Diglycerin caprate)를 합성하기 위하여, 다이글리세린(diglycerin)은 (주)KCI에서 구입하였고, 카프릭산(Capric acid)은 Emery 제품을 사용하였다. 또한, 고정화효소는 제노포커스사에서 제품명 CalB-IM을 구입하여 사용하였으며, 그 밖의 시약들은 reagent-grade에서 구입하여 사용하였다.In order to synthesize diglycerin caprate, which is a naturally derived emulsifier of the present invention, diglycerin was purchased from KCI, and capric acid was used as Emery product. In addition, the immobilized enzyme was used by purchasing the product name CalB-IM from Xenofocus, and other reagents were purchased from reagent-grade and used.

2. 분석 방법2. Analysis method

GC분석을 진행하기에 앞서 모든 분석은 실릴화(Silylation)를 유도한 후, 분석을 진행하였다. 분석 조건으로는 컬럼은 Agilent DB-5 (25m×0.2㎜×0.11㎛, 19091J-002)을 사용하였고, 오븐 초기 온도는 150℃에서 5분간 유지한 후, 10℃/분의 비율로 280℃까지 온도를 상승시키고, 280℃에서 10분간 유지하였다. 이후, 면적 백분율법을 이용하여 합성물의 함량 순도을 구하였다.Before proceeding with the GC analysis, all analysis was performed after inducing silylation. As analysis conditions, an Agilent DB-5 (25m×0.2mm×0.11㎛, 19091J-002) was used for the column, and the initial temperature of the oven was maintained at 150°C for 5 minutes, and then at a rate of 10°C/min to 280°C. The temperature was raised and held at 280° C. for 10 minutes. Thereafter, the content purity of the compound was obtained using the area percentage method.

3. 최적 생산 조건 탐색3. Explore optimal production conditions

3-1. 본 발명 천연 유래 유화제 합성을 위한 반응 3-1. Reaction for synthesizing natural emulsifier of the present invention 몰비molar ratio 최적화 optimization

다이글리세린 카프레이트로의 에스테르화(esterification)를 위해 고정화 리파아제(immobilized lipases)들 중 CalB-IM를 선택하여 몰비 변화에 따른 모노에스터(Monoester) 함량 비중이 높은 몰비를 도출하고자 하기와 같이 실험을 수행하였다.For esterification with diglycerin caprate, CalB-IM was selected among immobilized lipases to derive a molar ratio with a high monoester content according to a change in the molar ratio. The experiment was performed as follows. did.

다이글리세린(Diglycerin)과 카프릭산(Capric acid)의 합성 몰비는 1:1mol, 2:1mol, 3:1mol 몰비로 설정하였다. 고정화 리파아제 CalB-IM의 함량은 다이글리세린과 카프릭산 총량을 기준으로 20%(w/w)를 사용하였고, 용매로는 아세토나이트릴(Acetonitrile)을 사용하였다.The synthesis molar ratio of diglycerin and capric acid was set to 1:1 mol, 2:1 mol, 3:1 mol molar ratio. The content of the immobilized lipase CalB-IM was 20% (w/w) based on the total amount of diglycerin and capric acid, and acetonitrile was used as the solvent.

구체적인 실험 방법으로는 500㎖ 둥근바닥 플라스크에 다이글리세린(Diglycerin), 카프릭산(Capric acid)을 각각 1:1mol, 2:1mol, 3:1mol 몰비로 첨가한 후, 고정화 리파아제(CalB-IM)를 다이글리세린과 카프릭산 총량을 기준으로 20%(w/w)첨가하였고, 아세토나이트릴(Acetonitrile)을 다이글리세린과 카프릭산 총량을 기준으로 200%(w/w) 첨가하고, 마개를 닫고 교반하면서 60℃에서 24시간 동안 반응시켰다. 반응 완료 후, 여과하여 고정화 리파아제(CalB-IM) 및 용매를 제거한 후, GC(Gas chromatography)분석을 통하여 에스터(Ester) 함량을 비교 분석하였다 (표 1, 도 1). 도 1은 다이글리세린(Diglycerin)과 카프릭산(Capric acid)의 몰비 변화에 따른 모노에스터(Mono-ester) 함량(%(w/w))을 비교한 결과이다.As a specific experimental method, diglycerin and capric acid were added in a molar ratio of 1:1 mol, 2:1 mol, and 3:1 mol, respectively, to a 500ml round-bottom flask, and then immobilized lipase (CalB-IM) 20% (w / w) was added based on the total amount of diglycerin and capric acid, and 200% (w / w) of acetonitrile was added based on the total amount of diglycerin and capric acid, and the stopper was closed. It was closed and reacted for 24 hours at 60°C with stirring. After completion of the reaction, the immobilized lipase (CalB-IM) and the solvent were removed by filtration, and the ester content was comparatively analyzed through GC (gas chromatography) analysis (Table 1, FIG. 1). 1 is a result of comparing the mono-ester content (% (w/w)) according to the change in the molar ratio of diglycerin (Diglycerin) and capric acid (Capric acid).

다이글리세린(Diglycerin)과 카프릭산(Capric acid)의 몰비 변화에 따른 모노에스터(Monoester) 함량(%(w/w))Monoester content (% (w/w)) according to the change in the molar ratio of diglycerin and capric acid nono 다이글리세린(Diglycerin)과 카프릭산(Capric acid)의 몰비Molar ratio of diglycerin and capric acid Ester 함량(%(w/w))Ester content (% (w/w)) 비고remark MonoMono DiDi TriTri 1One 1:11:1 60.760.7 37.037.0 2.32.3 22 2:12:1 78.278.2 21.121.1 0.70.7 33 3:13:1 84.484.4 15.615.6 --

실험 결과, 다이글리세린 카프레이트(Diglycerin caprate)의 효소적 에스테르 최적반응 조건으로, 반응몰비는 3:1의 몰비가 모노에스터(monoester) 함량 84.4%(w/w)로 가장 우수하였다.As a result of the experiment, as an optimal reaction condition for the enzymatic ester reaction of diglycerin caprate, a molar ratio of 3:1 was the most excellent with a monoester content of 84.4% (w/w).

3-2. 고정화 리파아제(CalB-IM) 첨가량 최적화3-2. Optimization of the amount of immobilized lipase (CalB-IM) added

상기의 몰비 최적화 실험 결과를 기초로, 다이글리세린(Diglycerin)과 카프릭산(Capric acid)의 몰비를 3:1로 선정하였고, 고정화 리파아제(CalB-IM)의 첨가량을 달리하여 반응시켰다. 첨가량은 1%(w/w), 3%(w/w), 5%(w/w), 10%(w/w), 20%(w/w)를 첨가하였고, 용매로는 아세토나이트릴(Acetonitrile)을 사용하였다.Based on the results of the above molar ratio optimization experiment, a molar ratio of diglycerin and capric acid was selected as 3:1, and the reaction was performed with different amounts of immobilized lipase (CalB-IM) added. The amount added was 1% (w/w), 3% (w/w), 5% (w/w), 10% (w/w), 20% (w/w), and acetonite was used as a solvent. Reel (Acetonitrile) was used.

구체적인 실험 방법으로는 500㎖ 둥근바닥 플라스크에 다이글리세린(Diglycerin)과 카프릭산(Capric acid)의 몰비를 3:1이 되도록 첨가한 후, 용매인 아세토나이트릴(Acetonitrile)을 다이글리세린과 카프릭산 총량을 기준으로 200%(w/w) 첨가하고, 투입하여 교반, 용해하고, 고정화 리파아제(CalB-IM)를 다이글리세린과 카프릭산 총량을 기준으로 각각 1%(w/w), 3%(w/w), 5%(w/w), 10%(w/w), 20%(w/w) 투입하였다. 이후, 플라스크의 마개를 닫고, 교반하면서 60℃에서 24시간 동안 반응하였다. 반응 완료 후, 여과하여 고정화 리파아제(CalB-IM) 및 용매를 제거한 후, GC(Gas chromatography)분석을 통하여 미반응 카프릭산 함량 및 전환율을 비교 분석하였다(표 2, 도 2). 도 2는 고정화 리파아제(CalB-IM)함량 변화에 따른 반응 결과를 나타낸 것이다.As a specific experimental method, a molar ratio of diglycerin and capric acid was added to a 500 ml round-bottom flask so that the molar ratio of diglycerin and capric acid was 3:1, and then, acetonitrile, a solvent, was added to diglycerin and capric acid. 200% (w/w) based on the total amount of acid was added, added, stirred and dissolved, and immobilized lipase (CalB-IM) was added to 1% (w/w), respectively, based on the total amount of diglycerin and capric acid, 3 % (w/w), 5% (w/w), 10% (w/w), and 20% (w/w) were added. Thereafter, the flask was capped and reacted at 60° C. for 24 hours while stirring. After completion of the reaction, the immobilized lipase (CalB-IM) and the solvent were removed by filtration, and then, the content and conversion of unreacted capric acid were comparatively analyzed through gas chromatography (GC) analysis (Table 2, FIG. 2). Figure 2 shows the reaction results according to the change in the content of immobilized lipase (CalB-IM).

고정화 리파아제(CalB-IM)함량 변화에 따른 반응 결과Reaction results according to changes in immobilized lipase (CalB-IM) content nono CalB-IM 함량CalB-IM content Capric acid Capric acid 전환율conversion rate 비고remark (%(w/w))(%(w/w)) (%(w/w))(%(w/w)) (%(w/w))(%(w/w)) 1One 1One 22.3422.34 77.677.6 22 33 12.712.7 87.387.3 33 55 7.77.7 92.392.3 44 1010 0.60.6 99.499.4 55 2020 0.40.4 99.699.6

실험 결과, 다이글리세린 카프레이트(Diglycerin caprate)의 효소적 에스테르 최적반응 조건으로, 고정화효소(CalB-IM)는 다이글리세린과 카프릭산 총량을 기준으로 20%(w/w) 적용 시, 99.5%(w/w) 이상의 전환율을 나타내어 가장 우수하였다.As a result of the experiment, as the optimal reaction conditions for the enzymatic ester of diglycerin caprate, the immobilized enzyme (CalB-IM) was 99.5% when applied at 20% (w/w) based on the total amount of diglycerin and capric acid. (w/w) or higher conversion was the most excellent.

3-3. 용매의 최적화3-3. Solvent optimization

상기 실험을 통해 선정된 최적 몰비 및 효소첨가량을 기초로 하여 용매(Acetonitrile)의 함유량에 따른 반응 정도를 비교하였다. 구체적인 용매 함유량으로는 다이글리세린과 카프릭산 총량을 기준으로 각각 0%(w/w), 25%(w/w), 25%(w/w), 50%(w/w), 100%(w/w), 200%(w/w), 1,800%(w/w)를 첨가하여 반응시켰다.Based on the optimal molar ratio and enzyme addition amount selected through the above experiment, the degree of reaction according to the content of the solvent (Acetonitrile) was compared. Specific solvent content is 0% (w/w), 25% (w/w), 25% (w/w), 50% (w/w), 100%, respectively, based on the total amount of diglycerin and capric acid (w/w), 200% (w/w), and 1,800% (w/w) were added and reacted.

구체적인 실험 방법으로는 500㎖ 둥근바닥 플라스크에 다이글리세린(Diglycerin)과 카프릭산(Capric acid)의 몰비를 3:1이 되도록 첨가한 후, 용매인 아세토나이트릴을 다이글리세린과 카프릭산 총량을 기준으로 각각 0%(w/w)~1800%(w/w) 적용 투입하여, 교반 용융하고, 고정화효소(CalB-IM)는 다이글리세린과 카프릭산 총량을 기준으로 20%(w/w) 첨가하였다. 이후, 플라스크의 마개를 닫고 교반하면서 60℃에서 24시간 동안 반응하였다. 반응 완료 후 여과하여 고정화 리파아제(CalB-IM) 및 용매를 제거한 후 GC(Gas chromatography) 분석을 통하여 미반응 카프릭산 함량 및 에스터 함량을 비교 분석하였다 (표 3, 도 3). 도 3은 용매인 아세토나이트릴(Acetonitrile)함량 변화에 따른 반응 결과를 나타낸 것이다.As a specific experimental method, the molar ratio of diglycerin and capric acid was added to a 500 ml round-bottom flask so that the molar ratio was 3:1, and then acetonitrile as a solvent was added to the total amount of diglycerin and capric acid. 0% (w / w) ~ 1800% (w / w) applied, respectively, as a standard, stirred and melted, and the immobilized enzyme (CalB-IM) was 20% (w / w) based on the total amount of diglycerin and capric acid ) was added. Thereafter, the flask was capped and reacted at 60° C. for 24 hours while stirring. After completion of the reaction, the reaction was filtered to remove the immobilized lipase (CalB-IM) and the solvent, and then the unreacted capric acid content and the ester content were comparatively analyzed through GC (gas chromatography) analysis (Table 3, FIG. 3). Figure 3 shows the reaction results according to the change in the solvent acetonitrile (Acetonitrile) content.

용매인 아세토나이트릴(Acetonitrile)함량 변화에 따른 반응 결과Reaction results according to the change in the solvent acetonitrile content nono 용매 함량(%(w/w))Solvent content (% (w/w)) Capric acidCapric acid Ester 함량(%(w/w))Ester content (% (w/w)) 비고remark %(w/w)% (w/w) MonoMono DiDi TriTri 1One 00 20.920.9 50.850.8 28.328.3 -- 22 2525 11.611.6 62.262.2 26.226.2 -- 33 5050 10.210.2 77.577.5 12.312.3 -- 44 100100 10.110.1 80.880.8 9.19.1 -- 55 200200 2.72.7 86.286.2 11.111.1 -- 66 1,8001,800 4.24.2 89.289.2 6.66.6 --

실험 결과, 다이글리세린 카프레이트(Diglycerin caprate)의 효소적 에스테르 최적반응 조건으로, 적정 용매 비율은 다이글리세린과 카프릭산 총량을 기준으로 200%(w/w) 사용이 가장 반응에 적합하였다.As a result of the experiment, as the optimal reaction conditions for the enzymatic ester of diglycerin caprate, the optimal solvent ratio was 200% (w/w) based on the total amount of diglycerin and capric acid.

3-4. 반응 시간 최적화 3-4. Reaction time optimization

상기 실험을 통해 선정된 몰비, 촉매함량, 용매함량을 기초로 반응 시간 경과에 따른 반응 정도를 확인하였다. 반응시간은 2~24시간까지 반응을 진행하였고, 각 시간에 맞추어 샘플을 취하여 반응 정도를 확인하였다.Based on the molar ratio, catalyst content, and solvent content selected through the above experiment, the degree of reaction according to the lapse of reaction time was confirmed. The reaction time was carried out for 2 to 24 hours, and samples were taken according to each time to check the degree of reaction.

구체적인 실험 방법으로는 500㎖ 둥근바닥 플라스크에 다이글리세린(Diglycerin)과 카프릭산(Capric acid)의 몰비를 3:1이 되도록 첨가한 후, 용매인 아세토나이트릴을 다이글리세린과 카프릭산 총량을 기준으로 200%(w/w) 첨가하여, 교반 용융하고, 고정화효소(CalB-IM)는 다이글리세린과 카프릭산 총량을 기준으로 20%(w/w) 첨가하였다. 플라스크의 마개를 닫고 교반하면서 60℃에서 24시간 동안 반응하였고, 2시간, 4시간, 6시간, 8시간, 10시간, 24시간의 반응 시간에 맞추어 피펫을 이용하여 샘플을 10㎖씩 취하고 여과하였다. 그 후, 용매를 제거한 후 GC(Gas chromatography)분석을 통하여 반응시간에 따른 반응정도를 확인하고 최적 반응시간을 도출 하였다(표 4, 도 4). 도 4는 반응시간에 따른 반응 정도를 비교한 결과이다.As a specific experimental method, a molar ratio of diglycerin and capric acid was added to a 500 ml round-bottom flask so that the molar ratio was 3:1, and then acetonitrile as a solvent was added to the total amount of diglycerin and capric acid. 200% (w/w) was added as a standard, stirred and melted, and 20% (w/w) of the immobilized enzyme (CalB-IM) was added based on the total amount of diglycerin and capric acid. The flask was capped and reacted at 60° C. for 24 hours while stirring, and 10 ml of samples were taken and filtered using a pipette according to the reaction times of 2 hours, 4 hours, 6 hours, 8 hours, 10 hours, and 24 hours. . Then, after removing the solvent, the degree of reaction according to the reaction time was checked through GC (gas chromatography) analysis, and the optimal reaction time was derived (Table 4, FIG. 4). 4 is a result of comparing the degree of reaction according to the reaction time.

반응시간에 따른 반응 정도 비교Comparison of reaction degree according to reaction time nono 반응시간
(hr)
reaction time
(hr)
Capric acidCapric acid Ester 함량(%(w/w))Ester content (% (w/w)) 비고remark
%(w/w)% (w/w) MonoMono DiDi TriTri 1One 22 6.56.5 84.884.8 8.78.7 -- 22 44 5.25.2 85.485.4 9.49.4 -- 33 66 4.54.5 85.385.3 10.210.2 -- 44 88 3.73.7 86.186.1 10.210.2 -- 55 1010 3.33.3 85.985.9 10.810.8 -- 66 2424 2.82.8 86.186.1 11.111.1 --

실험결과, 다이글리세린 카프레이트(Diglycerin caprate)의 효소적 에스테르 최적반응 조건으로, 반응시간은 8시간 동안 반응하는 것이 최적의 반응 시간임을 확인할 수 있었다.As a result of the experiment, it was confirmed that the optimal reaction time was to react for 8 hours as the optimal reaction conditions for the enzymatic ester of diglycerin caprate.

3-5 합성 및 정제 3-5 synthesis and purification

상기 3-1 내지 3-4의 실험 결과를 통해 도출한 최적 조건을 반영하여 실험을 진행하였다. 구체적으로, 3L 둥근바닥플라스크에 다이글리세린(Diglycerin) 498g(3.0mol), 카프릭산(Capric acid) 172.2g(1.0mol), 아세토나이트릴(Acetonitrile) 1,340.4g(200%(w/w)), 고정화 효소(CalB-IM) 134.04g(20%(w/w)), 분자체(Molecularseive) 13.404g(2%(w/w))를 투입한 후, 60℃로 승온 후, 교반하여 8시간 동안 반응하였다. The experiment was conducted by reflecting the optimal conditions derived from the experimental results of 3-1 to 3-4. Specifically, 498 g (3.0 mol) of diglycerin, 172.2 g (1.0 mol) of capric acid, 1,340.4 g (200% (w/w)) of acetonitrile in a 3L round bottom flask , immobilized enzyme (CalB-IM) 134.04g (20% (w/w)), molecular sieve (Molecularseive) 13.404g (2% (w/w)) were added, the temperature was raised to 60° C., and stirred to 8 reacted for hours.

반응 후, 상온으로 냉각하여 에탄올(200g)을 투입하여 용해 후, 여과하여 고정화 효소를 분리하였다. 여액은 65℃/10torr/1hr의 조건으로 감압농축하여 용매를 제거하였고, 농축액은 분액깔때기로 옮겨 에틸아세테이트(Ethyl acetate(300g)), 물(100g) 투입 후 격렬히 흔들고 정체시켜 분리하였다.After the reaction, after cooling to room temperature, ethanol (200 g) was added and dissolved, followed by filtration to separate the immobilized enzyme. The filtrate was concentrated under reduced pressure at 65° C./10 torr/1 hr to remove the solvent, and the concentrate was transferred to a separatory funnel, ethyl acetate (300 g), and water (100 g) were added, followed by vigorous shaking and stagnant separation.

완벽히 분리된 상층액(Ethyl acetate layer)층을 분리하여 65℃/5.0torr/1hr의 조건으로 감압 농축하여 용매를 제거하였다. 80℃/5torr/1hr의 조건으로 질소(N2gas) 퍼지(purge) 하면서 탈취를 진행하고, 산성백토를 이용하여 탈색 후, 여과하여 고순도의 다이글리세린 카프레이트(Diglycerin caprate)를 합성 하였다. 합성 결과물(Diglycerin caprate)의 순도 분석은 GC(Gas chromatography)를 이용하여 분석하였다.The completely separated supernatant (Ethyl acetate layer) layer was separated and concentrated under reduced pressure under the conditions of 65° C./5.0 torr/1 hr to remove the solvent. Deodorization was carried out while purging with nitrogen (N2gas) under the conditions of 80°C/5torr/1hr, and after decolorization using acid clay, high-purity diglycerin caprate was synthesized by filtration. Purity analysis of the synthesis product (Diglycerin caprate) was analyzed using gas chromatography (GC).

실험 결과, 본 발명의 다이글리세린 카프레이트는 85.9%(w/w)의 고순도 모노에스터를 함유하는 것을 확인하였다. 또한, 합성 수율은 무게를 소수점 첫째 자리까지 측정하여 계산한 결과, 75.4%(w/w)의 높은 수율을 확인하였다.As a result of the experiment, it was confirmed that the diglycerin caprate of the present invention contained 85.9% (w/w) of high-purity monoester. In addition, the synthetic yield was calculated by measuring the weight to the first decimal place, and as a result, a high yield of 75.4% (w/w) was confirmed.

Figure 112019066346302-pat00001
Figure 112019066346302-pat00001

* 이론생성량 = 디글리세롤 3몰(Mw. 166g/mol, 166g x 3mol) + 카프릭산 1몰(Mw 172.2, 172.2g) = 디글리세롤 카프레이트 1몰(Mw. 320.2), 이론 생성량 : 320.2g * Theoretical production amount = 3 moles of diglycerol (Mw. 166g/mol, 166g x 3mol) + 1 mole of capric acid (Mw 172.2, 172.2g) = 1 mole of diglycerol caprate (Mw. 320.2), theoretical production amount: 320.2g

Claims (5)

다이글리세린(Diglycerin), 카프릭산(Capric acid)을 첨가하고, 용매로 아세토나이트릴을 이용하며, 고정화된 리파아제로 에스테르화 반응을 유도하며,
상기 다이글리세린과 카프릭산의 합성 몰비는, 2~3:1이고,
상기 고정화된 리파아제는, 상기 다이글리세린과 카프릭산 총량을 기준으로 5~20%(w/w) 첨가되고,
상기 아세토나이트릴은, 상기 다이글리세린과 카프릭산 총량을 기준으로 50~1,800%(w/w) 첨가되며,
상기 반응은, 2~24시간 동안 이루어지는 것을 특징으로 하는 다이글리세린 모노카프레이트(Diglycerin monocaprate)의 합성방법.
Diglycerin and capric acid are added, acetonitrile is used as a solvent, and an esterification reaction is induced with immobilized lipase,
The synthetic molar ratio of diglycerin and capric acid is 2 to 3:1,
The immobilized lipase is added by 5-20% (w/w) based on the total amount of diglycerin and capric acid,
The acetonitrile is added by 50 to 1,800% (w/w) based on the total amount of diglycerin and capric acid,
The reaction is a method of synthesizing diglycerin monocaprate, characterized in that it is carried out for 2 to 24 hours.
삭제delete 삭제delete 삭제delete 삭제delete
KR1020190077569A 2019-06-28 2019-06-28 Method for synthesis of cosmetic emulsifier derived from nature resource with immobilized enzyme KR102273009B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020190077569A KR102273009B1 (en) 2019-06-28 2019-06-28 Method for synthesis of cosmetic emulsifier derived from nature resource with immobilized enzyme

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020190077569A KR102273009B1 (en) 2019-06-28 2019-06-28 Method for synthesis of cosmetic emulsifier derived from nature resource with immobilized enzyme

Publications (2)

Publication Number Publication Date
KR20210002226A KR20210002226A (en) 2021-01-07
KR102273009B1 true KR102273009B1 (en) 2021-07-06

Family

ID=74126758

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020190077569A KR102273009B1 (en) 2019-06-28 2019-06-28 Method for synthesis of cosmetic emulsifier derived from nature resource with immobilized enzyme

Country Status (1)

Country Link
KR (1) KR102273009B1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030008917A1 (en) * 2001-04-20 2003-01-09 Achim Brock Compositions for controlling microorganisms, comprising an effective content of enzymatically prepared esters of polyglycerol
KR100605055B1 (en) 2004-06-18 2006-07-31 서울산업대학교 산학협력단 Method of producing 1,3-diglyceride containing medium chain fatty acid by using lipase in an organic solvent-free system

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3072022B2 (en) * 1995-04-28 2000-07-31 花王株式会社 Diglyceride production method
JP3892928B2 (en) * 1997-02-26 2007-03-14 花王株式会社 Process for producing diglycerides and reactor used in the process
KR19990009251A (en) 1997-07-03 1999-02-05 손경식 Emulsion, dispersion type sensitive makeup cosmetic composition using only natural vegetable emulsifier
KR102014998B1 (en) 2012-10-12 2019-08-27 (주)아모레퍼시픽 Low viscous cosmetic composition using a natural emulsifying agent

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030008917A1 (en) * 2001-04-20 2003-01-09 Achim Brock Compositions for controlling microorganisms, comprising an effective content of enzymatically prepared esters of polyglycerol
KR100605055B1 (en) 2004-06-18 2006-07-31 서울산업대학교 산학협력단 Method of producing 1,3-diglyceride containing medium chain fatty acid by using lipase in an organic solvent-free system

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Appl. Microbiol. Biotechnol., Vol. 100, pp. 6519-6543 (2016.06.08.)*
Bioresource Technology, Vol. 102, pp. 10136-10138 (2011.07.28.)

Also Published As

Publication number Publication date
KR20210002226A (en) 2021-01-07

Similar Documents

Publication Publication Date Title
AU2012244686B2 (en) Cross-linked poly-e-lysine particles
CN107558182B (en) A kind of modified polypropene composite fibre and preparation method thereof
CN101868467A (en) Functionalised materials and uses thereof
JPS58198429A (en) Preparation of polyglycerol
CN1326829C (en) Diisodecyl phthalate preparation method
KR102273009B1 (en) Method for synthesis of cosmetic emulsifier derived from nature resource with immobilized enzyme
CN105384934A (en) Preparation method of terminal hydrogen-containing silicone oil
Palma et al. Immobilization of lipases on lignocellulosic bamboo powder for biocatalytic transformations in batch and continuous flow
WO2007050100A9 (en) Immobilized enzymes and processes for preparing and using same
KR102456406B1 (en) 1,3-fatty diol compounds and derivatives thereof
Phillips et al. Purification and characterization of an extracellular lipase of Galactomyces geotrichum
TW321634B (en)
Roy et al. Continuous biotransformation of pyrogallol to purpurogallin using cross‐linked enzyme crystals of laccase as catalyst in a packed‐bed reactor
Suwasono et al. Synthesis of oligosaccharides using immobilised 1, 2-a-mannosidase from Aspergillus phoenicis: Immobilisation-dependent modulation of product spectrum
CN115845920B (en) Preparation method of solid platinum catalyst and polyether modified methyldimethoxy silane
CN106256821B (en) A kind of alkenyl succinic anhydride and its preparation method and application
KR101492224B1 (en) Immobilizing Method for Enzyme using Aldehyde-Functionalized Mesoporous Carrier
KR100540212B1 (en) Surface-active enzyme, synthetic method thereof and producing method of supported enzyme
KR100285275B1 (en) Modified enzymes and their modifications
US4371456A (en) Catalyst for direct hydration of ethylene to ethyl alcohol and process for preparation thereof
JPS60251891A (en) Method of ester interchange reaction of fat and oil
CN117624212A (en) Method for continuously preparing octyl polymethylsiloxane
JPS58146284A (en) Hydrolysis of oil and fat by lipase
JP5547409B2 (en) Method for decolorizing polyglycerol
GB2562004B (en) Cross-linked poly-e-lysine particles

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant