KR102272560B1 - Hydrogen water manufacturing electrode and manufacturing method thereof - Google Patents

Hydrogen water manufacturing electrode and manufacturing method thereof Download PDF

Info

Publication number
KR102272560B1
KR102272560B1 KR1020180165245A KR20180165245A KR102272560B1 KR 102272560 B1 KR102272560 B1 KR 102272560B1 KR 1020180165245 A KR1020180165245 A KR 1020180165245A KR 20180165245 A KR20180165245 A KR 20180165245A KR 102272560 B1 KR102272560 B1 KR 102272560B1
Authority
KR
South Korea
Prior art keywords
film
electrode
delete delete
manufacturing
hydrogen water
Prior art date
Application number
KR1020180165245A
Other languages
Korean (ko)
Other versions
KR20200076801A (en
KR102272560B9 (en
Inventor
황현배
박상회
서형탁
유일한
Original Assignee
그래메디스 주식회사
아주대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 그래메디스 주식회사, 아주대학교산학협력단 filed Critical 그래메디스 주식회사
Priority to KR1020180165245A priority Critical patent/KR102272560B1/en
Publication of KR20200076801A publication Critical patent/KR20200076801A/en
Application granted granted Critical
Publication of KR102272560B1 publication Critical patent/KR102272560B1/en
Publication of KR102272560B9 publication Critical patent/KR102272560B9/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/46109Electrodes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/467Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction
    • C02F1/4676Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction by electroreduction
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/28Vacuum evaporation by wave energy or particle radiation
    • C23C14/30Vacuum evaporation by wave energy or particle radiation by electron bombardment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/68Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous solutions with pH between 6 and 8
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/322Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer only coatings of metal elements only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/345Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/40Coatings including alternating layers following a pattern, a periodic or defined repetition
    • C23C28/42Coatings including alternating layers following a pattern, a periodic or defined repetition characterized by the composition of the alternating layers
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/48After-treatment of electroplated surfaces
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/46109Electrodes
    • C02F2001/46133Electrodes characterised by the material
    • C02F2001/46138Electrodes comprising a substrate and a coating
    • C02F2001/46142Catalytic coating

Abstract

본 발명은 더 나은 전기분해 특성을 가지는 수소수 생성용 전기분해 전극을 제작할 수 있도록 구현한 수소수 생산용 전극 및 이의 제조 방법에 관한 것으로, Ti 기판(Ti substrate)의 상측에 전기도금 방식을 이용하여 제1막을 형성시키는 단계; E-Beam 진공증착법(Electronic-Beam Evaporator)을 이용하여 상기 제1막의 상측에 제2막을 증착시키는 단계; 상기 제1막을 형성시키는 단계와 상기 제2막을 증착시키는 단계를 교대로 반복 수행하여 상기 Ti 기판의 상측에 다층 구조가 형성된 다층구조 전극을 제조하는 단계; 상기 다층구조 전극에 부동화 피막(passivation film)인 제1피막을 만들어주는 단계; 및 상기 제1피막이 부동화 피막으로 작용할 수 있도록 제1피막이 만들어진 상기 다층구조 전극에 제2피막을 만들어주는 단계를 포함한다.The present invention relates to an electrode for producing hydrogen water and a method for manufacturing the same, which is implemented to produce an electrolysis electrode for generating hydrogen water having better electrolysis characteristics, and uses an electroplating method on the upper side of a Ti substrate to form a first film; depositing a second film on the upper side of the first film by using an E-Beam vacuum deposition method (Electronic-Beam Evaporator); manufacturing a multilayer electrode having a multilayer structure formed on the upper side of the Ti substrate by alternately repeating the steps of forming the first layer and depositing the second layer; forming a first film, which is a passivation film, on the multi-layered electrode; and forming a second film on the multi-layered electrode on which the first film is made so that the first film can act as a passivation film.

Description

수소수 생산용 전극 및 이의 제조 방법{HYDROGEN WATER MANUFACTURING ELECTRODE AND MANUFACTURING METHOD THEREOF}Electrode for producing hydrogen water and method for manufacturing the same {HYDROGEN WATER MANUFACTURING ELECTRODE AND MANUFACTURING METHOD THEREOF}

본 발명은 수소수 생산용 전극 및 이의 제조 방법에 관한 것으로, 더욱 상세하게는 더 나은 전기분해 특성을 가지는 수소수 생성용 전기분해 전극을 제작할 수 있도록 구현한 수소수 생산용 전극 및 이의 제조 방법에 관한 것이다.The present invention relates to an electrode for producing hydrogen water and a method for producing the same, and more particularly, to an electrode for producing hydrogen water and a method for producing the same, which is implemented so that an electrolysis electrode for producing hydrogen water having better electrolysis properties can be produced it's about

현재 국외에서 의학 분야에 수소에 대한 많은 연구가 진행되고 있으며, 이는 활성산소를 제거하는 치료법 중 효과적인 방법으로 연구되고 있다.Currently, a lot of research on hydrogen in the medical field is being conducted abroad, and it is being studied as an effective method among treatments to remove free radicals.

Nature Medicine(2007)을 비롯한 다양한 저명한 해외 논문지에서 500여 건 이상의 논물을 통해 제시되고 있는 것처럼, 수소는 활성 산소를 제거하는데, 특히 가장 반응성이 높은 하이드록실라디칼과 선택적으로 반응하여 물로 전환되고, 이러한 수소를 이용한 헬스 케어는 심혈관질환, 악성신생물, 만성호흡기질활, 뇌혈관질한, 알츠하이머 질환, 인믈루엔자, 폐렴, 당뇨 등 다양한 질환에 사용하는 연구가 진행되고 있다.As suggested through more than 500 papers in various prestigious overseas journals including Nature Medicine (2007), hydrogen removes active oxygen, and in particular, it selectively reacts with the most reactive hydroxyl radical and is converted to water, In health care using hydrogen, research is underway to use it for various diseases such as cardiovascular disease, malignant neoplasm, chronic respiratory disease, cerebrovascular disease, Alzheimer's disease, influenza, pneumonia, and diabetes.

일본에서는 이러한 수소의 건강에 대한 역할로 인해, 수소수음료, 수소캡슐, 수소수정수기, 수소발생스틱, 수소 입욕제, 수소 팩 등등 많은 산업이 발달되었고, 이를 통해 건강을 회복하고, 실생활에서도 많은 음용이 이루어지고 있다.In Japan, due to the role of hydrogen for health, many industries such as hydrogen water drinks, hydrogen capsules, hydrogen water purifiers, hydrogen generating sticks, hydrogen bath products, hydrogen packs, etc. this is being done

국내에서도 여러 피부과에서 피부 노화에 효과가 있는 수소 토닝, 수소 베일과 같은 수소치료가 진행되고 있다.In Korea, hydrogen treatment such as hydrogen toning and hydrogen veil, which are effective for skin aging, is in progress at various dermatology clinics.

그러나, 기존 수소수를 제조하는 기기에 사용하는 전극은, 백금 전극을 두껍게 전해 도금하는 방식을 사용하고 있지만, 백금은 비싼 귀금속에 해당하여 두껍게 전해 도금하는 방식에는 재료비가 많이 든다는 문제점을 가지고 있었다.However, the electrode used in the conventional device for producing hydrogen water uses a thick electrolytic plating method of a platinum electrode, but platinum is an expensive noble metal, and the thick electrolytic plating method has a problem in that the material cost is high.

한편, 전술한 배경 기술은 발명자가 본 발명의 도출을 위해 보유하고 있었거나, 본 발명의 도출 과정에서 습득한 기술 정보로서, 반드시 본 발명의 출원 전에 일반 공중에게 공개된 공지기술이라 할 수는 없다.On the other hand, the above-mentioned background art is technical information that the inventor possessed for the derivation of the present invention or acquired in the process of derivation of the present invention, and it cannot necessarily be said to be a known technique disclosed to the general public before the filing of the present invention. .

한국등록특허 제10-1822465호Korean Patent No. 10-1822465 한국등록특허 제10-1448577호Korean Patent No. 10-1448577

본 발명의 일측면은 수소수 모듈에 적용되어 비싼 귀금속인 기존 Pt 금속을 대체하여 비교적 저렴한 금속들과의 합금화 또는 박막 형성을 통해 가격 경쟁력 있는 수소수 제품을 제작할 수 있도록 구현한 수소수 생산용 전극 및 이의 제조 방법을 제공한다.One aspect of the present invention is applied to a hydrogen water module to replace the existing Pt metal, which is an expensive precious metal, and an electrode for producing hydrogen water that is cost-competitive through alloying with relatively inexpensive metals or forming a thin film and a method for preparing the same.

본 발명의 다른 측면은, 전극을 오래 사용하면 발생하는 전극의 부식 문제를 막기 위해 부동화 피막을 형성하여 장시간 제품을 사용할 수 있도록 하고, 수소수 제품 이외의 소형 수소 생성제품에 활용될 수 있도록 구현한 수소수 생산용 전극 및 이의 제조 방법을 제공한다.Another aspect of the present invention is to form a passivation film to prevent the corrosion problem of the electrode that occurs when the electrode is used for a long time, so that the product can be used for a long time, and it can be used for small hydrogen-generating products other than hydrogen water products. Provided are an electrode for producing hydrogen water and a method for manufacturing the same.

본 발명의 기술적 과제는 이상에서 언급한 기술적 과제로 제한되지 않으며, 언급되지 않은 또 다른 기술적 과제들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.The technical problems of the present invention are not limited to the technical problems mentioned above, and other technical problems not mentioned will be clearly understood by those skilled in the art from the following description.

본 발명의 일 실시예에 따른 수소수 생산용 전극 제조 방법은, Ti 기판(Ti substrate)의 상측에 전기도금 방식을 이용하여 제1막을 형성시키는 단계; E-Beam 진공증착법(Electronic-Beam Evaporator)을 이용하여 상기 제1막의 상측에 제2막을 증착시키는 단계; 상기 제1막을 형성시키는 단계와 상기 제2막을 증착시키는 단계를 교대로 반복 수행하여 상기 Ti 기판의 상측에 다층 구조가 형성된 다층구조 전극을 제조하는 단계; 상기 다층구조 전극에 부동화 피막(passivation film)인 제1피막을 만들어주는 단계; 및 상기 제1피막이 부동화 피막으로 작용할 수 있도록 제1피막이 만들어진 상기 다층구조 전극에 제2피막을 만들어주는 단계를 포함한다.An electrode manufacturing method for producing hydrogen water according to an embodiment of the present invention comprises the steps of: forming a first film on an upper side of a Ti substrate using an electroplating method; depositing a second film on the upper side of the first film by using an E-Beam vacuum deposition method (Electronic-Beam Evaporator); manufacturing a multilayer electrode having a multilayer structure formed on the upper side of the Ti substrate by alternately repeating the steps of forming the first layer and depositing the second layer; forming a first film, which is a passivation film, on the multi-layered electrode; and forming a second film on the multi-layered electrode on which the first film is made so that the first film can act as a passivation film.

일 실시예에서, 상기 제1막을 형성시키는 단계는, 망간(Mn), 철(Fe), 구리(Cu), 니켈(Ni) 중 적어도 하나의 금속을 전기도금하여 제1막을 형성시킬 수 있다.In an embodiment, the forming of the first layer may include electroplating at least one of manganese (Mn), iron (Fe), copper (Cu), and nickel (Ni) to form the first layer.

일 실시예에서, 상기 제2막을 증착시키는 단계는, 백금계 촉매재료를 이용하여 제2막을 증착시킬 수 있다.In an embodiment, the depositing of the second layer may include depositing the second layer using a platinum-based catalyst material.

일 실시예에서, 상기 제2막을 증착시키는 단계는, 백금계 촉매로서 팔라듐(Pd)이 사용될 수 있다.In an embodiment, in the depositing of the second layer, palladium (Pd) may be used as a platinum-based catalyst.

일 실시예에서, 상기 제1피막을 만들어주는 단계는, 부동화 피막 물질로서 메탄올 베이스의 PVB(Poly Vinyl Butyral) 용액을 이용할 수 있다.In one embodiment, in the step of making the first film, a methanol-based polyvinyl butyral (PVB) solution may be used as a passivation film material.

일 실시예에서, 상기 제1피막을 만들어주는 단계는, PVB 용액을 dip coating 또는 drop-casting & spin-coating을 이용하여 제1피막을 만들어줄 수 있다.In an embodiment, the forming of the first film may include forming the first film using dip coating or drop-casting & spin-coating of the PVB solution.

일 실시예에서, 상기 제2피막을 만들어주는 단계는, 극초순수를 이용하여 상기 제2피막을 만들어줄 수 있다.In one embodiment, the step of making the second film may be made using ultrapure water to make the second film.

일 실시예에서, 상기 제2피막을 만들어주는 단계는, 극초순수를 dip coating 또는 drop-casting & spin-coating을 이용하여 제1피막을 만들어줄 수 있다.In one embodiment, the step of forming the second film may include making the first film using ultrapure water dip coating or drop-casting & spin-coating.

일 실시예에서, 본 발명의 일 실시예에 따른 수소수 생산용 전극 제조 방법은, 상기 제1막을 형성시키는 단계 이전에, 상기 Ti 기판을 클리닝하는 공정을 더 포함할 수 있다.In an embodiment, the method for manufacturing an electrode for producing hydrogen water according to an embodiment of the present invention may further include a step of cleaning the Ti substrate before the step of forming the first layer.

또한, 본 발명은 본 발명의 일 실시예에 따른 수소수 생산용 전극 제조 방법에 의하여 제조된 수소수 생산용 전극을 제공한다.In addition, the present invention provides an electrode for producing hydrogen water manufactured by the method for producing an electrode for producing hydrogen water according to an embodiment of the present invention.

상술한 본 발명의 일측면에 따르면, 수소를 전기분해로 생성하는 비백금 전극으로 백금 수준의 효율을 값싼 금속재료와 촉매재료의 다층 구조를 통해 달 수 있고, PVB 부동화 피막을 이용하여 전기분해 촉매 재료의 문제인 내구성을 향상시키는 효과를 제공할 수 있다.According to one aspect of the present invention described above, as a non-platinum electrode that generates hydrogen through electrolysis, platinum-level efficiency can be applied through a multilayer structure of inexpensive metal material and catalyst material, and the electrolysis catalyst using a PVB passivation film It is possible to provide an effect of improving durability, which is a matter of material.

또한, 수소수 기반 헬스케어 제품의 전극 소재로 적용될 수 있을 뿐 아니라, 현재 상용화가 진행되고 있는 수소자동차 분야의 수소 연료 공급 분야에서도 활용 가능하도록 하는 효과를 제공할 수 있다.In addition, it can be applied as an electrode material for hydrogen water-based health care products, and it can provide the effect of making it usable in the hydrogen fuel supply field of the hydrogen vehicle field, which is currently being commercialized.

도 1은 본 발명의 일 실시예에 따른 수소수 생산용 전극 제조 방법을 설명하는 순서도이다.
도 2는 도 1의 본 발명의 일 실시예에 따른 수소수 생산용 전극 제조 방법에 의하여 제조된 수소수 생산용 전극을 보여주는 도면이다.
도 3은 PVB 부동화 피막 적용에 따른 안정화 테스트를 비교한 그래프이다.
1 is a flowchart illustrating a method of manufacturing an electrode for producing hydrogen water according to an embodiment of the present invention.
FIG. 2 is a view showing an electrode for producing hydrogen water manufactured by the method for producing an electrode for producing hydrogen water according to an embodiment of the present invention of FIG. 1 .
3 is a graph comparing the stabilization test according to the PVB passivation coating application.

후술하는 본 발명에 대한 상세한 설명은, 본 발명이 실시될 수 있는 특정 실시예를 예시로서 도시하는 첨부 도면을 참조한다. 이들 실시예는 당업자가 본 발명을 실시할 수 있기에 충분하도록 상세히 설명된다. 본 발명의 다양한 실시예는 서로 다르지만 상호 배타적일 필요는 없음이 이해되어야 한다. 예를 들어, 여기에 기재되어 있는 특정 형상, 구조 및 특성은 일 실시예와 관련하여 본 발명의 정신 및 범위를 벗어나지 않으면서 다른 실시예로 구현될 수 있다. 또한, 각각의 개시된 실시예 내의 개별 구성요소의 위치 또는 배치는 본 발명의 정신 및 범위를 벗어나지 않으면서 변경될 수 있음이 이해되어야 한다. 따라서, 후술하는 상세한 설명은 한정적인 의미로서 취하려는 것이 아니며, 본 발명의 범위는, 적절하게 설명된다면, 그 청구항들이 주장하는 것과 균등한 모든 범위와 더불어 첨부된 청구항에 의해서만 한정된다. 도면에서 유사한 참조부호는 여러 측면에 걸쳐서 동일하거나 유사한 기능을 지칭한다.DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS [0010] DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS [0010] DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS [0023] Reference is made to the accompanying drawings, which show by way of illustration specific embodiments in which the invention may be practiced. These embodiments are described in sufficient detail to enable those skilled in the art to practice the present invention. It should be understood that the various embodiments of the present invention are different but need not be mutually exclusive. For example, certain shapes, structures, and characteristics described herein with respect to one embodiment may be implemented in other embodiments without departing from the spirit and scope of the invention. In addition, it should be understood that the location or arrangement of individual components within each disclosed embodiment may be changed without departing from the spirit and scope of the present invention. Accordingly, the detailed description set forth below is not intended to be taken in a limiting sense, and the scope of the invention, if properly described, is limited only by the appended claims, along with all scope equivalents to those claimed. Like reference numerals in the drawings refer to the same or similar functions throughout the various aspects.

이하, 도면들을 참조하여 본 발명의 바람직한 실시예들을 보다 상세하게 설명하기로 한다.Hereinafter, preferred embodiments of the present invention will be described in more detail with reference to the drawings.

도 1은 본 발명의 일 실시예에 따른 수소수 생산용 전극 제조 방법을 설명하는 순서도이다.1 is a flowchart illustrating a method of manufacturing an electrode for producing hydrogen water according to an embodiment of the present invention.

본 발명은 전기 도금 및 PVD 증착법인 E-beam evaporator를 번갈아 가며 공정하여 수소수 생산용 전극을 제조하기 위한 방법으로서, 도 1을 참조하면, 본 발명의 일 실시예에 따른 수소수 생산용 전극 제조 방법은, 우선, Ti 기판(100)(Ti substrate)의 상측에 전기도금 방식을 이용하여 제1막(200)을 형성시킨다(S110).The present invention is a method for manufacturing an electrode for producing hydrogen water by alternately processing an E-beam evaporator, which is an electroplating and PVD deposition method. Referring to FIG. 1 , an electrode for producing hydrogen water according to an embodiment of the present invention In the method, first, the first film 200 is formed on the upper side of the Ti substrate 100 (Ti substrate) by using an electroplating method (S110).

일 실시예에서, 제1막(200)을 형성시키는 단계(S110)는, 망간(Mn), 철(Fe), 구리(Cu), 니켈(Ni) 중 적어도 하나의 금속을 전기도금하여 제1막(200)을 형성시킬 수 있다.In an embodiment, the step of forming the first layer 200 ( S110 ) may include electroplating at least one metal among manganese (Mn), iron (Fe), copper (Cu), and nickel (Ni) to form the first first layer ( S110 ). A film 200 may be formed.

즉, 본 발명의 증착 기판으로는 상용 전극에 많이 사용되는 Ti 기판을 이용하며, Ti 기판의 클리닝 공정 후 전기도금 방식(electroplating, 電氣鍍金)을 이용하여 망간(Mn), 철(Fe), 구리(Cu), 니켈(Ni) 등과 같이 저가의 비귀금속을 일정 두께의 제1막(200)을 형성하게 된다.That is, as the deposition substrate of the present invention, a Ti substrate, which is often used for commercial electrodes, is used, and after the cleaning process of the Ti substrate, manganese (Mn), iron (Fe), copper A low-cost non-noble metal such as (Cu) or nickel (Ni) is used to form the first layer 200 having a predetermined thickness.

상술한 단계 S110에서 제1막(200)의 형성이 완료되면, E-Beam 진공증착법(Electronic-Beam Evaporator, Electronic-Beam을 이용하여 증발원을 가열시켜 증착시키는 방법으로서, 가판을 만들려는 물질의 용융점이 넓은 경에 많이 사용됨)을 이용하여 제1막(200)의 상측에 제2막(300)을 증착시킨다(S120).When the formation of the first film 200 is completed in the above-described step S110, the E-Beam vacuum evaporation method (Electronic-Beam Evaporator, a method of depositing by heating an evaporation source using an Electronic-Beam, the melting point of the material to be made A second film 300 is deposited on the upper side of the first film 200 by using the wide mirror (which is often used in this case) (S120).

일 실시예에서, 제2막(300)을 증착시키는 단계(S120)는, 백금계 촉매재료인 팔라듐(Pd)을 이용하여 nm 단위의 얇은 박막인 제2막(300)을 증착시킬 수 있다.In one embodiment, in the step of depositing the second layer 300 ( S120 ), the second layer 300 , which is a thin film in nm units, may be deposited using palladium (Pd), which is a platinum-based catalyst material.

제1막(200)을 형성시키는 단계(S110)와 제2막(300)을 증착시키는 단계(S120)를 교대로 반복 수행하여 Ti 기판(100)의 상측에 다층 구조가 형성된 다층구조 전극(400)을 제조한다(S130).The step of forming the first layer 200 ( S110 ) and the step of depositing the second layer 300 ( S120 ) are alternately repeated to form the multilayer electrode 400 having a multilayer structure on the upper side of the Ti substrate 100 . ) is prepared (S130).

상술한 단계 S130에서는, 상술한 단계 S110와 S120를 교대로 수회 반복하여 저가 금속 막과 촉매재료 박막을 다층구조로 쌓아 금속의 계면구조 형성을 통해 효율을 증대시키게 된다.In the above-described step S130, the above-described steps S110 and S120 are alternately repeated several times to stack the low-cost metal film and the catalyst material thin film in a multi-layered structure to increase the efficiency through the formation of the metal interface structure.

같은 두께로 물질을 증착시켰을 때, 단순히 두 개의 층으로 물질을 증착시키는 것에 비하여, 도 2에 도시된 바와 같은 구조로 얇은 막의 다층구조를 형성하는 다층구조 전극(400)을 통해 금속 간의 계면을 형성하면 계면 사이에서의 특성에 의해 더 높은 효율을 얻을 수 있다.When the material is deposited to the same thickness, an interface between metals is formed through the multilayer electrode 400 forming a multilayer structure of a thin film with a structure as shown in FIG. 2 , compared to simply depositing the material in two layers On the other hand, higher efficiency can be obtained due to the characteristics between the interfaces.

다만, 도 2에는 제1막(200)과 제2막(300)이 각각 세 차례 교대(즉, 세 개의 제1막(200-1 내지 200-3)과 세 개의 제2막(300-1 내지 300-3)로 형성된 다층구조 전극(400)에 관하여 도시되었으나, 제1막(200)과 제2막(300)의 교차 적층은 세 차례에 한정되는 것은 아니며, 사용자의 필요에 따라 보다 많게 또는 보다 적게 형성되어도 무방하다.However, in FIG. 2 , the first act 200 and the second act 300 alternate three times (that is, three first acts 200-1 to 200-3 and three second acts 300-1), respectively. to 300-3), but the cross lamination of the first film 200 and the second film 300 is not limited to three times, and may be performed more according to the needs of the user. Or it may be formed less.

상술한 단계 S130에 의해 제작된 다층구조 전극(400)에 부동화 피막(passivation film, 철, 코발트, 니켈 등의 양극 산화막처럼 보통의 화학 반응성을 상실한 상태의 금속 산화 피막)인 제1피막(500)을 만들어준다(S140).The first film 500, which is a passivation film (a metal oxide film in a state in which normal chemical and reactivity is lost like an anode and oxide film of iron, cobalt, nickel, etc.) on the multilayer electrode 400 manufactured by the above-described step S130) makes (S140).

여기서, 제1피막(500)을 만들어주는 단계(S140)에서의 부동화 피막 물질로서 메탄올 베이스의 PVB(Poly Vinyl Butyral, 폴리바이닐부티랄) 용액을 이용할 수 있으며, 다층구조 전극(400)에 PVB 용액을 dip coating 또는 drop-casting & spin-coating을 이용하여 제1피막(500)을 만들어줄 수 있다.Here, a methanol-based PVB (Poly Vinyl Butyral, polyvinyl butyral) solution may be used as the passivation film material in the step (S140) of making the first film 500, and the PVB solution in the multilayer structure electrode 400 The first film 500 may be formed by using dip coating or drop-casting & spin-coating.

상술한 단계 S140에서 만들어준 제1피막(500)이 부동화 피막으로 작용할 수 있도록 제1피막(500)이 만들어진 다층구조 전극(400)에 제2피막(600)을 만들어준다(S150).A second film 600 is made on the multi-layered electrode 400 on which the first film 500 is made so that the first film 500 made in step S140 can act as a passivation film (S150).

여기서, 제2피막(600)을 만들어주는 단계(S150)는, 극초순수를 이용하여 제2피막(600)을 만들어줄 수 있으며, 극초순수를 dip coating 또는 drop-casting & spin-coating을 이용하여 제2피막을 만들어줌으로써, 상술한 단계 S140에서 만들어준 제1피막(500), 즉, PVB막이 전극의 안정성을 늘려주는 부동화 피막으로 작용할 수 있도록 한다.Here, in the step (S150) of making the second film 600, the second film 600 can be made using ultrapure water, and the ultrapure water is applied by dip coating or drop-casting & spin-coating. By making the second film, the first film 500 made in step S140, that is, the PVB film, can act as a passivation film that increases the stability of the electrode.

상술한 바와 같은 단계를 가지는 수소수 생산용 전극 제조 방법은, 제1막(200)을 형성시키는 단계(S110) 이전에, 전극의 수소분해 성능을 향상시키고 정밀도를 향상시키기 위한 Ti 기판(100)을 클리닝하는 공정을 더 포함할 수 있다(설명의 편의상 도면에는 도시하지 않음).In the method for manufacturing an electrode for producing hydrogen water having the steps as described above, before the step of forming the first film 200 ( S110 ), the Ti substrate 100 for improving the hydrogen decomposition performance of the electrode and improving the precision It may further include a process of cleaning the (not shown in the drawings for convenience of description).

상술한 바와 같은 단계를 가지는 수소수 생산용 전극 제조 방법은, 전기도금 방식을 이용하여 값싼 Ni과 같은 금속으로 형성되는 비교적 두꺼운 막과 E-beam evaporator를 이용함으로써, 귀금속 또는 전기 금속 촉매 합금이 쉽게 되지 않아 분해 촉매로서의 사용이 용이하지 않은 금속도 계면 효과를 이용하여 보다 나은 전기분해 특정을 가지도록 할 수 있다.The electrode manufacturing method for producing hydrogen water having the steps as described above uses a relatively thick film and an E-beam evaporator formed of a cheap metal such as Ni using an electroplating method, so that a noble metal or an electric metal catalyst alloy is easily produced Even metals, which are not easily used as decomposition catalysts because they are not made, can have better electrolysis properties by using the interfacial effect.

도 3은 PVB 부동화 피막 적용에 따른 안정화 테스트를 비교한 그래프이다.3 is a graph comparing the stabilization test according to the PVB passivation coating application.

도 3은, 1X2cm 크기로 만들어진 전극에 부동화 피막의 유무에 따라 5V 전압을 12시간 동안 일정하게 가하며 전류 변화를 측정한 것이다.Figure 3 shows the measurement of the current change while constantly applying a voltage of 5V for 12 hours depending on the presence or absence of a passivation film to an electrode made of 1X2cm size.

PVB 부동화 피막 적용 전에는 시간이 지남에 따라 일정하게 전류가 감소하고 15% 정도의 전도도 감소를 보이지만, 본 발명에 따른 PVB 부동화 피막 적용 시에는 전도도가 거의 일정하게 유지됨을 확인할 수 있다.Before the PVB passivation film is applied, the current decreases over time and the conductivity decreases by about 15%, but it can be confirmed that the conductivity is maintained almost constant when the PVB passivation film according to the present invention is applied.

상술한 바와 같이, 본 발명의 일 실시예에 따른 수소수 생산용 전극 제조 방법에 의하여 제조된 수소수 생산용 전극(10)은 도 2에 도시되어 있다.As described above, the electrode 10 for producing hydrogen water manufactured by the method for producing an electrode for producing hydrogen water according to an embodiment of the present invention is shown in FIG. 2 .

즉, 수소수 생산용 전극(10)은, 최하측에 Ti 기판(100)이 위치하고, Ti 기판(100)의 상측에 제1막(200)과 제2막(300)이 다수 교차 적층(도 2의 경우에는 3회 교차 적층)된 다층구조 전극(400)이 형성되고, 다층구조 전극(400)의 상측에 제1피막(500)과 제2피막(600)이 차례로 형성된다.That is, in the electrode 10 for producing hydrogen water, the Ti substrate 100 is positioned on the lowermost side, and a plurality of the first film 200 and the second film 300 are cross-stacked on the upper side of the Ti substrate 100 (Fig. In the case of 2, the multilayer structure electrode 400 (cross-stacked three times) is formed, and the first film 500 and the second film 600 are sequentially formed on the upper side of the multilayer structure electrode 400 .

상술된 실시예들은 예시를 위한 것이며, 상술된 실시예들이 속하는 기술분야의 통상의 지식을 가진 자는 상술된 실시예들이 갖는 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 쉽게 변형이 가능하다는 것을 이해할 수 있을 것이다. 그러므로 상술된 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다. 예를 들어, 단일형으로 설명되어 있는 각 구성 요소는 분산되어 실시될 수도 있으며, 마찬가지로 분산된 것으로 설명되어 있는 구성 요소들도 결합된 형태로 실시될 수 있다.The above-described embodiments are for illustration, and those of ordinary skill in the art to which the above-described embodiments pertain can easily transform into other specific forms without changing the technical idea or essential features of the above-described embodiments. You will understand. Therefore, it should be understood that the above-described embodiments are illustrative in all respects and not restrictive. For example, each component described as a single type may be implemented in a distributed manner, and likewise components described as distributed may be implemented in a combined form.

본 명세서를 통해 보호받고자 하는 범위는 상기 상세한 설명보다는 후술하는 특허청구범위에 의하여 나타내어지며, 특허청구범위의 의미 및 범위 그리고 그 균등 개념으로부터 도출되는 모든 변경 또는 변형된 형태를 포함하는 것으로 해석되어야 한다.The scope to be protected through this specification is indicated by the claims described below rather than the above detailed description, and it should be construed to include all changes or modifications derived from the meaning and scope of the claims and their equivalents. .

10: 수소수 생산용 전극
100: Ti 기판
200: 제1막
300: 제2막
400: 다층구조 전극
500: 제1피막
600: 제2피막
10: electrode for hydrogen water production
100: Ti substrate
200: Act 1
300: Act 2
400: multi-layered electrode
500: first film
600: second film

Claims (10)

Ti 기판을 클리닝하고, 상기 Ti 기판(Ti substrate)의 상측에 전기도금 방식을 이용하여 망간, 철, 구리, 니켈 중 적어도 하나의 금속으로 이루어진 제1막을 형성시키는 단계;
E-Beam 진공증착법(Electronic-Beam Evaporator)을 이용하여 상기 제1막의 상측에 백금계 촉매재료인 팔라듐(Pd)으로 나노 단위의 얇은 제2막을 증착시키는 단계;
상기 제1막을 형성시키는 단계와 상기 제2막을 증착시키는 단계를 교대로 반복 수행하여 상기 Ti 기판의 상측에 3차례 이상의 다층 구조로 쌓아 금속의 계면구조가 형성된 다층구조 전극을 제조하는 단계;
상기 다층구조 전극에 보통의 화학반응을 상실한 금속 산화 피막 형태의 부동화 피막(passivation film)인 제1피막을 만들어주는 단계;
상기 부동화 피막 물질은 메탄올 베이스의 PVB(Poly Vinyl Butyral) 용액을 이용하고;
상기 PVB 용액을 dip coating 또는 drop-casting & spin-coating을 이용하고; 및
상기 제1피막이 부동화 피막으로 작용할 수 있도록 제1피막이 만들어진 상기 다층구조 전극에 극초순수를 dip coating 또는 drop-casting & spin-coating을 이용하여 제2피막을 만들어주는 단계를 포함하는, 수소수 생산용 전극 제조 방법.
cleaning the Ti substrate, and forming a first layer made of at least one of manganese, iron, copper, and nickel on an upper side of the Ti substrate using an electroplating method;
depositing a second nano-thin film using palladium (Pd), a platinum-based catalyst material, on the upper side of the first film using an E-Beam vacuum deposition method;
manufacturing a multilayer electrode having a metal interface structure formed by stacking a multilayer structure on the upper side of the Ti substrate three or more times by alternately repeating the steps of forming the first layer and depositing the second layer;
forming a first film, which is a passivation film in the form of a metal oxide film that has lost a normal chemical reaction, on the multi-layered electrode;
The passivation coating material uses a methanol-based PVB (Poly Vinyl Butyral) solution;
dip coating or drop-casting & spin-coating the PVB solution; and
Including the step of making a second film by using dip coating or drop-casting & spin-coating of ultrapure water on the multi-layered electrode on which the first film is made so that the first film can act as a passivation film, for producing hydrogen water Electrode manufacturing method.
삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete
KR1020180165245A 2018-12-19 2018-12-19 Hydrogen water manufacturing electrode and manufacturing method thereof KR102272560B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020180165245A KR102272560B1 (en) 2018-12-19 2018-12-19 Hydrogen water manufacturing electrode and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020180165245A KR102272560B1 (en) 2018-12-19 2018-12-19 Hydrogen water manufacturing electrode and manufacturing method thereof

Publications (3)

Publication Number Publication Date
KR20200076801A KR20200076801A (en) 2020-06-30
KR102272560B1 true KR102272560B1 (en) 2021-07-06
KR102272560B9 KR102272560B9 (en) 2024-01-16

Family

ID=71121279

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020180165245A KR102272560B1 (en) 2018-12-19 2018-12-19 Hydrogen water manufacturing electrode and manufacturing method thereof

Country Status (1)

Country Link
KR (1) KR102272560B1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018159130A (en) * 2017-03-22 2018-10-11 旭化成株式会社 Electrolysis electrode

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11246985A (en) * 1998-03-04 1999-09-14 Nippon Telegr & Teleph Corp <Ntt> Optical electrode and its manufacture as well as hydrogen producing apparatus
EP2721665B1 (en) * 2011-06-17 2021-10-27 Sion Power Corporation Plating technique for electrode
KR101448577B1 (en) 2012-11-12 2014-10-13 주식회사 파이노 Manufacturing apparatus of Hydrogen water
KR101822465B1 (en) 2016-02-05 2018-03-08 염재섭 Electrode assembly to generate hydrogen water and portable hydrogen water generating device comprising the same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018159130A (en) * 2017-03-22 2018-10-11 旭化成株式会社 Electrolysis electrode

Also Published As

Publication number Publication date
KR20200076801A (en) 2020-06-30
KR102272560B9 (en) 2024-01-16

Similar Documents

Publication Publication Date Title
Ghosh et al. Controlling chemical selectivity in electrocatalysis with chiral CuO-coated electrodes
Tahir et al. Nanostructured α-Fe2O3 thin films for photoelectrochemical hydrogen generation
US10038200B2 (en) Method of producing Pt alloy catalyst using protective coating of carbon layer and ozone
Wang et al. Tantalum nitride nanorod arrays: introducing Ni–Fe layered double hydroxides as a cocatalyst strongly stabilizing photoanodes in water splitting
Qiu et al. CuNi dendritic material: synthesis, mechanism discussion, and application as glucose sensor
CN103889549B (en) The preparation method of palladium-billon gas separation membrane system
CN101522952B (en) Cathode for electrolytic processes
CN102549197B (en) Cathode for electrolytic processes
CN102046851B (en) Cathode for hydrogen generation and method for producing the same
WO2018231998A1 (en) Electrochemical catalysts with enhanced catalytic activity
WO2018085958A1 (en) Material comprising precious metal isolated atoms stable in solution
JPS5938394A (en) Electrode for electrolysis having durability and its production
US11414761B2 (en) Coating surfaces with nanostructures
JP2013013878A (en) Catalyst fine particle, and method for producing the same
Rodney et al. Cu1-xRExO (RE= La, Dy) decorated dendritic CuS nanoarrays for highly efficient splitting of seawater into hydrogen and oxygen fuels
KR102272560B1 (en) Hydrogen water manufacturing electrode and manufacturing method thereof
TW200949873A (en) Capacitor-forming member and printed wiring board comprising capacitor
JP2931812B1 (en) Electrode for electrolysis and method for producing the same
CN101559658A (en) Metal material with electric contact layer and manufacturing method thereof
JP6537363B2 (en) Raw material for chemical vapor deposition comprising an organic iridium compound, chemical vapor deposition method, and method for producing catalyst for electrochemical
CN104428934B (en) Separator for fuel battery, cell of fuel cell, the manufacture method of fuel cell pack and separator for fuel battery
KR101199669B1 (en) Method of Anode Coating for Electrolysis Equipments
Liao et al. Carbon monoxide promoted deposition of ordered Pt adlayer on Au (111) and its electrocatalytic properties
JP2020524365A (en) Method for manufacturing component and component manufactured by this method
KR102286931B1 (en) Method of preparing ultra-thin amorphous carbon film using solution phase

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
X091 Application refused [patent]
AMND Amendment
X701 Decision to grant (after re-examination)
GRNT Written decision to grant
G170 Re-publication after modification of scope of protection [patent]