KR102269939B1 - 포름산 트랜스포터에서 돌연변이를 가진 써모코코스 온누리에누스 wtf-156t 및 이를 이용한 수소 생산 방법 - Google Patents

포름산 트랜스포터에서 돌연변이를 가진 써모코코스 온누리에누스 wtf-156t 및 이를 이용한 수소 생산 방법 Download PDF

Info

Publication number
KR102269939B1
KR102269939B1 KR1020197019704A KR20197019704A KR102269939B1 KR 102269939 B1 KR102269939 B1 KR 102269939B1 KR 1020197019704 A KR1020197019704 A KR 1020197019704A KR 20197019704 A KR20197019704 A KR 20197019704A KR 102269939 B1 KR102269939 B1 KR 102269939B1
Authority
KR
South Korea
Prior art keywords
ton
formic acid
strain
wtf
hydrogen production
Prior art date
Application number
KR1020197019704A
Other languages
English (en)
Other versions
KR20190084140A (ko
Inventor
강성균
이정현
이현숙
이성혁
정해창
권개경
임재규
김태완
Original Assignee
한국해양과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국해양과학기술원 filed Critical 한국해양과학기술원
Publication of KR20190084140A publication Critical patent/KR20190084140A/ko
Application granted granted Critical
Publication of KR102269939B1 publication Critical patent/KR102269939B1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/195Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • C12N1/205Bacterial isolates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P3/00Preparation of elements or inorganic compounds except carbon dioxide
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/01Bacteria or Actinomycetales ; using bacteria or Actinomycetales

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Genetics & Genomics (AREA)
  • Biotechnology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • General Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Virology (AREA)
  • Biomedical Technology (AREA)
  • Inorganic Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

본 발명은 증가된 수소 생산 능력을 가지고, 포름산 트랜스포터의 52번째 위치에서 알라닌이 트레오닌으로 돌연변이화된 Thermococcus onnurineus WTF-156T(기탁번호 KCTC13132BP)를 제공한다. 이에 더하여, 본 발명은 상기 균주를 이용한 수소 생산 방법을 제공한다. 본 발명에 따른 hermococcus onnurineus WTF-156T 균주는 야생현 균주에 비교하여 포름산으로부터 더 많은 수소를 생산할 수 있다. 본 발명에 따른 수소 생산 방법은 낮은 비용으로 수소를 생산할 수 있다.

Description

포름산 트랜스포터에서 돌연변이를 가진 써모코코스 온누리에누스 WTF-156T 및 이를 이용한 수소 생산 방법
본 발명은 Thermococcus onnurineus WTF-156 T 및 이를 수소 생산 방법에 대한 것이다.
수소 에너지는 대체 에너지원으로 관심을 끌고 있다[1, 2], 최근에는 수소의 연간 생산량은 약 0.1 Gton이고, 이의 98%는 화석연료를 개질하여 제조되고[3]: 수소의 40%는 천연가스로부터 제조되고, 30%는 중유 및 나프타로부터 생산되고, 18%는 석탄으로부터 생산되고, 4%는 전기분해로 생산되고, 약 1%가 바이오매스로부터 생산된다[4]. 전통적인 화학적 방법에 비하여 친환경적이고, 비용절감적이라는 이점 때문에, 생물학적 수소 생산은 최근 몇 십년간 심도있게 연구되었다[5,6].
포름산은 여러 저렴한 자원이나 미생물학적 활동의 생산물로부터 효과적으로 생산될 수 있고, 포름산-의존 수소 생산이에 대한 많은 연구가 진행되었다[7,9]. 대장균의 포름산 수소 라이에이즈(formate hydrogen lyase; FHL) 복합체와 같은 FHL를 가진 여러 종류의 미생물이 고세균 및 세균의 계통학적으로 여러 그룹에서 발견이 되었다[9].
혐기적 조건에서 포름산의 CO2 및 H2로의 산화는 25℃의 표준조건에서 흡열반응이다(HCOO- + H2O → HCO3 - + H2, △G25℃ = + 1.3 kJ/mol). 혐기적 신트로픽(syntrophic) 포름산 산화에서, 반응은 메탄을 생성하거나 설페이트 환원 파트너를 사용하여 최종 산물 H2의 제거에 의해서 열역학적을 가능하다[13-16]. 수소를 생산하면서 포름산에서 자라는 순수 배양은 보고되지 않았다. 그러나, 본 발명자들은 심해 열수분출공으로부터 분리한 T. onnurineus NA1이 포름산에서 수소를 생산하며 성장할 수 있다는 것을 보였다[17-19].
T. onnurineus NA1은 fdh1-mfh1-mnh1 클러스터(TON_0282-0266), fdh2-mfh2-mnh2 클러스터(TON_1563-1580) 및 fdh3-sulfI 클러스터(TON_0534-0540)를 포함하여, 포름산 디하이드로게나아제 유전자 클러스터를 3 카피 암호화하고 있다. 이들 유전자 클러스터 중에, fdh2-mfh2-mnh2 유전자 클러스터가 포름산에 의한 성장에 전적으로 필수적인 것으로 보여졌다[17, 19]: Fdh2 모듈은 포름산을 산화시키고, Mfh2 모듈은 전자를 양성자에게 전달하고, 이에 의해 막을 가로질러 양성자 농도 구배를 형성한다. 이 농도 구배가 Mnh2 모듈에 이해 2차적인 나트륨 이온 농도구배를 생성하고, 이 2차적인 나트륨 이온 농도 구배가 Na+-ATP 합성효소에 의해 ATP를 합성하도록 한다. 포름산 트랜스포터(TON-1573) 유전자는 fdh2-mfh2-mnh2 유전자 클러스터의 다운스트림 지역에 암호화되어 있고, 이것이 포름산을 세포질 쪽으로 운반하는데 아마도 역할을 할 것이다[17]. Thermococcales 구성원의 포름산 트랜스포터는 대개 특성이 밝혀지지 않았으나, 진화적으로 관련된 트랜스멤브레인 세균 및 고세균 단백질의 패밀리인, 포름산/니트라이트 트랜스포터(formate/nitrite transporter; FNT) 패밀리에 속할 것으로 예상이 된다[20].
본 발명자들은 실험실적인 적응 진화를 채용하여 포름산에서 T. onnurineus NA1의 세포 성장을 증가시키는 분자적 변화를 탐구하였다. 실험실적인 적응 진화는 가해진 스트레스에 대하여 실험실 환경에서 바람직한 표현형을 선택할 수 있도록 하고, 균주들에서 유익한 표현형 특성을 개발하기 위한 강력한 방법이 될 수 있다[21]. 적응 동안에, 유전적 변화가 모든 염색체를 통해 일어나고, 유용한 돌연변이가 스트레스를 해결하는 능력을 증가시킨다[22]. 이전에, 일산화탄소 조건에서 T. onnurineus NA1의 연속적인 계대가 잠정적인 DNA-결합 단백질인 TON_1525에서의 돌연변이를 포함하는 돌연변이가 동반되어, 일산화탄소에서 그 균주의 내성 및 성장을 크게 증가시켰다[23].
적응 동안에 생리적 및 분자적인 변환에 대한 종합적인 이해를 위하여, 계대동안 생리적인 변화를 모니터하였고, 적응된 돌연변이의 전체 지놈 서열을 그의 모 균주와 비교하여 결정하였다. 적응된 규준에서 발견된 돌연변이의 효과를 결정하였다. 상기 돌연변이 균주의 수소 생산량이 그의 모 균주와 비교하여 측정되었다.
본 발명의 발명자들은 포름산 트랜스포터에서 하나의 돌연변이가 T. onnurineus NA1에서 포름산으로부터 수소 생산을 증가시키는 것을 발견하고 본 발명을 완성하였다.
[선행기술 문헌]
[특허문헌]
특허문헌 1: 한국특허출원 번호 10-2011-0021390 에서는 혐기적 조건에서 Thermococcus 균주를 이용한 수소 가스 생산 방법을 개시하고 있다.
특허문헌 2: 한국특허출원 10-2011-7014737호에서는 신규한 Thermococcus 균주로 부터 분리된 신규한 하이드로게나아제, 이를 암호화하는 유전자 및 이를 이용한 수소 생산 방법을 개시하고 있다.
[비특허문헌]
비특허문헌 1: 배. 에스. 에스 등은 고호열성 균주인 Thermococcus onnurineus 을 사용하여 일산화탄소, 포름산 및 녹말로부터 수소를 생산하는 방법이 개시되어 있다(Biotechnol Lett. 2012 Jan; 34(1):75-9).
비특허문헌 2: 문 와이 제이 등은 Thermococcus onnurineus 균주를 이용하여 프로테옴 분석 데이타를 개시하고 있다(Mol Cell Proteomic. 2012 Jun:11(6):M111.015420).
본 발명의 일시례에서, 본 발명은 포름산 트랜스포터(TON_1573)에서 아미노산 돌연변이를 가진 Thermococcus onnurineus 균주를 제공한다. 바람직하게는 상기 Thermococcus onnurineus 균주는 Thermococcus onnurineus WTF-156T 균주(기탁번호 KCTC13132BP) 이다.
여기에서, "포름산 트랜스포터"의 용어는 세포막을 가로질러 포름산을 운반하는 단백질을 의미한다. 바람직하게는 포름산 트랜스포터는 Thermococcus sp. 로부터 기원한다. 더욱 바람직하게는 포름산 트랜스포터는 서열번호 1의 서열을 가진다.
여기에서 "아미노산 돌연변이"라는 용어는 아미노산 치환, 결실, 삽입 및 변형을 포함하는 것을 의미한다. 치환, 결실, 삽입 및 변형의 어떠한 조합이 최종의 컨스트럭트가 예를 들어 Themococcus sp. 에서 포름산의 운반을 촉진하는 바람직한 성질을 가지는 것을 만족하는 최종의 컨스트럭트가 되도록 되어질 수 있다. 바람직한 아미노산 돌연변이는 아미노산 치환이다. 아미노산 돌연변이는 당업계에 널리 알려진 유전적 및 화학적 방법을 이용하여 만들어질 수 있다. 유전적 방법은 사이트-디렉티드 돌연변이, PCR, 유전자 합성 등을 포함할 수 있다.
바람직하게는, 상기 돌연변이는 포름산 트랜스포터(TON_1573)(서열번호 1) 내의 52번째 위치에서 알라닌이 트레오닌 또는 글루탐산으로 돌연변이 되는 것이다. 더욱 바람직하게는 상기 돌연변이는 상기 알라닌이 트레오닌으로 돌연변이 되는 것이다.
본 발명의 다른 실시예에서, 본 발명은 포름산 트랜스포터(TON_1573)내에 돌연변이를 가진 균주를 사용하여 수소를 생산하는 방법이다. 바람직하게는 상기 방법은 상기 돌연변이가 포름산 트랜스포터(TON_1573)의 52번째 위치에서 알라닌에서 트레오닌 또는 글루탐산으로 돌연변이되는 것이다. 보다 바람직하게는 상기 방법은 사기 돌연변이가 포름산 트랜스포터(TON_1573)의 52번째 위치에서 알라닌에서 트레오닌으로 돌연변이되는 것이다.
본 발명의 다른 실시예에서, 본 발명은 Thermococcus onnurineus WTF-156T 균주(기탁번호 KCTC13132BP)를 사용하여 포름산으로부터 수소를 생산하는 방법이다. 바람직하게는 상기 균주의 수소 생산을 위한 배양 조건은 온도가 60 내지 90℃ 사이에 있고/있거나 압력이 1 내지 3 atm에 있다.
본 발명에 따른 Thermococcus onnurineus WTF-156T 균주는 야생형에 보다 포름산으로 부터 더 높은 수소 생산 능력을 보인다. 본 발명에 따른 수소 생산 방법은 낮은 비용으로 수소를 효과적으로 생산할 수 있다.
도 1은 147mM 소디움 포메이트를 포함하는 신선한 MM1 배지로 연속적인 계대배양을 수행한 후 일어나는 T. onnurineus NA1의 생리적 변화를 보인다. 2 (닫힌 원), 32 (열린 사각형), 62 (닫힌 역 삼각형), 92 (열린 삼각형), 122 (닫힌 사각형) 및 156 (열린 원) 계대 후 세포 밀도(600nm에서 광학 밀도로 표현됨) (a)가 지시된 시간 점에서 측정되었다. 포름산 소비률(b) 및 수소 생산율(c)가 지수성장기에 측정되었다. 모든 실험은 두 번씩 독립적으로 수행되었다.
도 2는 야생형(닫힌 심볼) 및 WTF-1256T(열린 심볼)에서 세포성장(a) 및 수소 생성율(b)의 시간 프로파일을 보인다. (c) 400mM의 소디움 포메이트에서의 회분배양 동안에 야생형(닫힌 심볼) 및 WTF-156T(열린 심볼)에서 잔류 포름산(사각형)의 변화를 보인다. pH 조절제로서 3.5 % NaCl을 함유하는 2N HCl을 사용하여 pH를 6.1-6.2로 조절 하였다.
도 3은 WTF-156T의 게놈에서 발견 된 돌연변이를 도시한다. 원 안팎의 숫자는 각각 게놈 위치 (Mb)와 궤적 태그를 나타냅니다. 돌연변이는 표 3에 요약되어있다.
도 4는 WTF-156T에서 각각의 돌연변이를 회복시킴으로써 각각의 돌연변이의 효과를 결정한 것을 보인다. 리버턴트(Revertant)에서 세포 성장(a), 포름산 소비(b) 및 수소 생산(c)이 늦은 지수성장기(약 6시간 배양 후)에서 야생형의 것과 WTF-156T를 비교하여 분석되었다. 에러 바는 3반복 실험으로부터의 표준편차를 나타낸다.
도 5는 A52T 돌연변이 및 TON_1573 결실의 효과를 보인다. 회분배양 동안에 세포 밀도(600nm에서의 광학 밀도)의 변화(a), 포름산 소비(b) 및 수소 생성(c)가 야생형(닫힌 원), TON_1573(A52T)(열린 원) 및 TON_1573 결실 돌연변이(닫힌 역 삼각형)에서 측정되었다. 에러 바는 독립적인 2 반복 실험의 표준편차를 나타낸다.
도 6은 야생형 포름산 트랜스포터(TON_1573)(a), A52T 돌연변이(b) 및 A52E 돌연변이(c)의 의 3D 모델 구조를 보인다. 닫혀진 중심 포어(pore)내의 2개의 예상된 컨스트릭션(constriction) 사이트가 붉게 하이라이트 되었고, 상기 2개의 컨스트릭션 사이트에 기여하는 아미노산 잔기 Phe 81/Phe 212 및 Leu85/Leu 94가 표5에 보인 멀티플 얼라인먼트에 의해 예측되었다.
도 7은 정치 세포 현탁액을 사용하여 포름산 전환에 대한 포름산 트랜스포터(TON_1573)에 서의 변화 효과를 보인다. 정치 세포 현탁액을 이용하여 A52T 돌연변이 및 TON_1573 결실 돌연변이의 포름산 소비(a) 및 수소 생산(b)을 WTF-156T와 이의 야생형의 것과 비교하여 측정하였다. 에러 바는 독립적인 2 반복 실험의 표준편차를 나타낸다.
이하, 본 발명을 실시 예에 의거하여 더욱 상세하게 설명한다. 그러나, 이들 실시예는 본 발명을 예시하는 것일뿐, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에게 본 발명의 일부인 것으로 이해되며, 이들 실시예는 본 발명의 범위를 한정하는 것으로 해석되어서는 안된다.
실시예 1 포름산에서 계대배양 동안에 T. onnurineus NA1의 생리적 변화
균주, 배지 및 배양조건
T. onnurineus 균주 NA1(KCTC 10859)은 파푸아 뉴기니 - 호주 - 캐나다 - 마누스 (PACMANUS) 필드31의 심해 열수배출구에서 분리되었다. 이 균주는 수정 배지 1 (MM1)[17,32]에서 보통적으로는 배양되었다. 배지의 pH를 2N HCl로 6.5로 조정 하였다. 멸균작업후 평형화을 이루기 위해 혐기성 혐기성 기체 혼합물(N2/H2/CO2, 90:5:5)이 채워진 혐기성 챔버(Coy Laboratory Products, Grass Lake, MI, USA)에 유지 하였다. 실험실 적응진화 연구를 위해, 모 균주를 1% 효모 추출물 및 147 mM 소디움 포메이트를 가진 MM1 배지에서 80 ℃에서 15 시간 동안 배양하고 새로운 배지로 계대하였다. T. onnurineus NA1의 pH-stat 페드 배치 배양은 효모 추출물 4g/L-1 400 mM 소디움 포메이트를 함유한 MM1 배지를 사용하여 1.5L의 작업용량으로 3L 발효기(Fermentec, Cheongwon, Korea)에서 혐기적으로 수행되었다. 배양 온도와 교반 속도는 각각 80 ℃와 300rpm이었고, pH 조절제인 3.5 % NaCl내의 2N HCl로 자동 적정하여 pH를 6.1-6.2로 조절 하였다. 발효기의 배지를 아르곤 가스로 적어도 30분 동안 플러싱하여 접종 전에 혐기성 조건을 유지시켰다.
분석방법
세포 성장은 UV/Vis 분광 광도계(Biophotometer Plus, Eppendorf, Hamburg, Germany)를 사용하여 600 nm에서 광학 밀도(OD 600)를 측정하여 모니터링 하였다. 바이오 매스 농도는 이전 보고서[18]에서 처럼 OD600과 건조 세포 중량(DCW)의 관계성에 의해 측정하였다. 수소는 Molsieve 5A 컬럼(Supelco, Bellefonte, PA, USA), Porapak N 컬럼(Supelco), 열전도도 검출기, 및 불꼿 이온화 검출기가 장착된 YL6100GC 가스 크로마토그래프(YL Instrument Co. 안양, 한국)을 사용하여 측정하였다. 아르콘이 운반 기체로서 30 ml/분의 유속으로 사용되었다. 아웃렛 가스의 총 부피는 매 시간 간격으로 1 기압에서 습식 가스 미터(시나가와, 도쿄, 일본)를 사용하여 측정되었다. 부피당 수소 생산율(HER)(mmol L-1 h-1)는 시간의 함수로서 생성 된 H2의 양에 의해 계산되었다. H2 비생산속도(Specific H2 Producton rate)는 HER을 바이오 매스 농도로 나누어 계산 하였다. 포름산의 농도는 1.0 ml min-1의 유속의 0.1 %(vol/vol)의 H3PO4의 이동상을 갖는 UV 검출기 및 RSpak KC-811 컬럼 (Shodex, Tokyo, Japan)이 장착 된 고성능 액체 크로마토 그래피를 사용하여 측정하였다.
게놈 서열분석
게놈 재-서열분석을 위해, 싱클 클로니 분리 없이 WTF-156T의 배양으로 부터 게놈믹 DNA를 추출하였다. 게놈 서열분석은 PacBio Single Molecule Real-Time (SMRT) 서열분석(Pacific Biosciences, Menlo Park, CA, USA)을 사용하여 수행하였다[33]. 변형체는 대략 100x의 커버리지를 제공하는 10kb 인서트 라이브러리의 SAMtools v0.1.18. PacBio SMRT 서열분석을 사용하여 측정하였다. 어셈블리 및 컨센서스 폴리슁을 각각 SMRTpipe HGAP 및 SMRTpipe Quiver를 이용하여 수행하였다. 모든 돌연변이는 PCR 및 생어 시퀴언싱 및 표1에 리스트화 된 모든 프라이머에 의해 확인되었다.
프라이머 올리고뉴클레오타이드
서열
서열번호
돌연변이의 제조
pUC118_0282del_HMG_fo_inverse_F 5'-gacctgcaggcatgcaagct-3' Seq. ID. No. 2
pUC118_0282del_HMG_fo_inverse_R 5'-gactctagaggatccccggg-3' Seq. ID. No. 3
TON_0820_SLIC_F 5'-ggatcctctagagtccaatactcgggaacctcaag-3' Seq. ID. No. 4
TON_0820_SLIC_R 5'-gcatgcctgcaggtctctgggccgcgtacctctca-3' Seq. ID. No. 5
TON_1084_SLIC_F 5'-ggatcctctagagtctcctgtcgcgtgaaggggct-3' Seq. ID. No. 6
TON_1084_SLIC_R 5'-gcatgcctgcaggtcgctatccttcttccggtctt-3' Seq. ID. No. 7
TON_1561_SLIC_F 5'-ggatcctctagagtcgatacaacgctggcactcat-3' Seq. ID. No. 8
TON_1561_SLIC_R 5'-gcatgcctgcaggtccagcgaaataaagccctcag-3' Seq. ID. No. 9
TON_1573-SLIC-F 5'-tttggtttcctcctgacggtggttgc-3' Seq. ID. No. 10
TON_1573-SLIC-R 5'-ccgctgcaaccaccgtcaggaggaaa-3' Seq. ID. No. 11
1573-point-mutation-F 5'-tttggtttcctcctgacggtggttgc-3' Seq. ID. No. 12
1573-point-mutation-R 5'-ccgctgcaaccaccgtcaggaggaaa-3' Seq. ID. No. 13
TON_1561_insertion(G)-F 5'-ggacatagtccttaaggggggacttc-3' Seq. ID. No. 14
TON_1561_insertion(G)-R 5'-tcgaggaagtccccccttaaggacta-3' Seq. ID. No. 15
컨스트럭트의 확인
TON_1573_point- confirm-R 5'-tgcaaccaccgt-3' Seq. ID. No. 16
TON_0820_ point-confirm-R 5'-agaagacgctgc-3' Seq. ID. No. 17
TON_1084_point-confirm-F 5'-cagaaccccccc-3' Seq. ID. No. 18
TON_1561_point-confirm-F 5'-cttaagggggg-3' Seq. ID. No. 19
코딩 지역의 돌연변이의 확인
TON_0618-F 5'-cctcatttattccaaaacta-3' Seq. ID. No. 20
TON_0618-R 5'-ctaaaataaaactttcagga-3' Seq. ID. No. 21
TON_0820-F 5'-acagaggtgagagagatgcccgttac-3' Seq. ID. No. 22
TON_0820-R 5'-gaaaaaagcaaaggattacttcctga-3' Seq. ID. No. 23
TON_1084-F 5'-ataccctacgagcgctggta-3' Seq. ID. No. 24
TON_1084-R 5'-tgcgttgaagttggccctaa-3' Seq. ID. No. 25
TON_1138-F 5'-cctctacgggagggtgaaga-3' Seq. ID. No. 26
TON_1138-R 5'-ccgaacctcgatcccggggg-3' Seq. ID. No. 27
TON_1555-F 5'-gagatacccctccacagtca-3' Seq. ID. No. 28
TON_1555-R 5'-tggtgatgttatcctataca-3' Seq. ID. No. 29
TON_1561-F 5'-caagggaggagctccttgaa-3' Seq. ID. No. 30
TON_1561-R 5'-tctgcgctctcgcaagcttt-3' Seq. ID. No. 31
TON_1573-F 5'-atccttcgaacggtcatact-3' Seq. ID. No. 32
TON_1573-R 5'-gtctccaacgtggccgaaga-3' Seq. ID. No. 33
TON_1641-F 5'-acagcggtactcctcgcgct-3' Seq. ID. No. 34
TON_1641-R 5'-ttcctagcgttaatcatata-3' Seq. ID. No. 35
TON_RS08635-F 5'-tccttaaaattccagttccc-3' Seq. ID. No. 36
TON_RS08635-R 5'-tagttttttgaacctcaagc-3' Seq. ID. No. 37
비암호화 지역의 돌연변이의 확인  
TON_0901-0902-intergenic region-F 5'-cgccaacccttccgagccgc-3' Seq. ID. No. 38
TON_0901-0902-intergenic region-R 5'-ttctctgtcagaagtcttcc-3' Seq. ID. No. 39
TON_1668-1669-intergenic region-F 5'-cccagcgcatagacatggtg-3' Seq. ID. No. 40
TON_0901-0902-intergenic region-R 5'-cggctattgcagagccgccg-3' Seq. ID. No. 41
돌연변이의 제조
각각의 리버턴트 돌연변이(TON_0820, TON_1084, TON_1561, TON_1573), 및 TON_1561 (G 삽입) 및 TON_1573 (A52T)이 유전자 재조합 시스템을 사용하여 제조하였다. 간략하게 설명하면, 발명자들은 사이트-디렉티드 돌연변이 유발에 의해 염기쌍 치환 및 돌연변이된 유전자에 대한 프라이머 세트를 설계 하였다. 각각의 돌연변이된 유전자 및 이의 플랭크 지역은 원 스텝 서열- 및 리게이션-독립 클로닝(one-step sequence- and ligation-independent cloning ; SLIC)[34]에 의해 연결되고, 후속 돌연변이체는 언마크드 인프레임 딜리션(unmarked in-frame deletion) 방법[35] 및 이전에 Thermococcus kodakarensis KOD1에서 사용된 변형 된 유전자 파괴 시스템을 사용하여[36] 호모로그스 재조합을 통해 생성되었다. T. onnurineus NA1 세포를 형질 전환시키고 선별 마커인 10 μM 심바스타틴의 존재하에 배양 하였다. 유전자 파괴 및 컨스트럭트 검증에 사용 된 프라이머의 서열을 표 1에 나타내었다.
세포 현탁 실험
세포 현탁액을 준비하기 위하여, T. onnurineus NA1을 1 % 효모 추출물과 147 mM 소디움 포메이트가 함유 된 1 L MM1 배지가 들어있는 2-L 스코트-듀란 바틀에서 80 ℃에서 12 시간 동안 혐기적으로 배양하였다. 배양 종료후, 세포를 25℃에서 20분 동안 8,000 Х g 에서 원심분리하여 수확하였다. 세포를 20 mM 이미다졸 -HCl(pH 7.5), 600 mM NaCl, 30 mM MgCl2 및 10 mM KCl을 포함하는 혐기적 완충용액 A에서 재현탁하고, 완충용액 A에서 재현탁하였다.
포름산 소비와 수소 생산을 위해, OD600 = 0.5의 최종 세포 밀도에서 효모 추출물과 소디움 포메이트가 없는 MM1 배지내 세포 현탁액을 사용했다. 세포 현탁액을 80℃에서 30 분간 예비 배양 하였다. 수소 생성을 측정하기 위해 고무로 밀봉 된 유리 바이알을 사용했다. 50mM의 소디움 포메이트을 첨가하여 반응을 개시 하였다. 다양한 시간 간격에서 가스 샘플을 채취하여 수소 분석을 위해 YL6100 GC 가스 크로마토 그래프 (YL Instrument)에서 분석하고, 포름산 농도는 고성능 액체 크로마토 그래피를 사용하여 측정하였다.
3차원 모델 구조
Thermococcus onnurineus NA1의 TON_1573 단백질 서열은 내셜널 센터 와 바이오테크놀로지 인포메이션(National Center of Biotechnology Information: NCBI)의 단백질 서열 데이터베이스로부터 FASTA 포맷으로 추출되었다. 스위스 모델의 자동 모델링 모드를 선택하고 단백질 서열을 입력창에 FASTA 형식으로 입력하고 모델링 요청을 하였다. 구성된 모델의 3 차원 예측을 위한 최적의 템플릿이 저장되고 평가 대상이 되었다. 이렇게 얻어진 모델은 PyMOL을 사용하여 편집되고 시각화되었다.
결과
이전에, 고호열성 고세균 T. onnurineus NA1이 포름산에서 자라 H2를 생산할 수 있다고 보고되었다. fdh2 - mfh2 - mnh2 유전자 클러스터에 암호화된 호흡 복합체는 포름산(formate)에서 수소로의 전환을 중재하고, Na + -특이적 ATP 합성효소에 의한 ATP 생성과 커플링된 계속되는 양성자/나트륨 농도 구배를 생성 하였다[17.19]. 본 발명자들은 포름산-유도 성장을 향상시키는 유익한 변화를 확인하기 위하여 포름산에 대한 T. onnurineus NA1의 적응을 시도하였다. T. onnurineus NA1을 전체의 에너지 소스로 포름산을 포함하는 배지에 접종시기고 안정기까지 배양하였다. 이어, 2 %의 배양액을 동일하고 신선한 배지에 접종하고, 연속적인 계대를 150번 이상 수행하였다. 이와 같은 연속적인 계대 동안에, 세포성장, 수소 생성 및 포름산 소비에서의 변화를 모니터링하였다(도 1). T. onnurineus NA1의 세포 밀도, 수소 생성 및 포름산 소비는 계대를 계속함에 따라 점차적으로 증가되었다. 156번 계대후에, WTF-156T로 지칭되는 적응된 균주가 모균주에 비하여 각각 1.70, 1.93 및 1.91 배의 세포밀도, 수소생성 및 포름산 소비를 보였다.
실시예 2: 포름산 소비 및 수소 생산의 동력학적 분석
비록 상기 균주가 포름산 포함 배지에서 증가된 세포 성장 및 수소 생산이 증가되었지만, 혈청 바이얼에서 정량적으로 변화를 특성화하기는 어려웠다. 배양 배지의 pH는 안정기에서 최종적으로 약 pH 8로 빠르게 증가되었다. 때문에, 모균주의 것과 비교하여 WTF-156T의 동력학적 성질을 pH-조절 생물반응기(pH 6.2)에서 연구되었다. 도 2에서 보이듯이, WTF-156T 균주는 5 시간 후에 0.7-0.8의 광학 밀도(OD600)에 도달 하였다. 또한 모 균주에 비해 최대 바이오매스 수율과 H2 생산율이 각각 1.9 배, 3.8 배 높았다(표 2). 주목할 만하게, WTF-156T는 생물반응기 배양에서 더 짧은 지연기를 보였다(도 2a). 포름산의 소비는 수소 생산과 잘 균형되었다. 모 균주는 16시간 후에 176.8 mM의 포름산을 소비하는 한편, WTF-156T는 7 시간 후에 348.1 mM의 포름산을 소비하여, 소비된 포름산이 모 균주 및 WTF-156T 모두에서 수소로 전환되었다(도 2c).
야생형과 WRF-156T의 동력학적 파라미터
동력학적 파라미터 야생형 균주 WTF-156T 균주
μmax (h-1) 0.3 1.1 (3.7)c
r max (mmol liter-1 h-1) 31.7 109.0 (3.4)c
바이오매스 생산성(g liter-1 h-1)a 0.026 0.101 (3.9)c
q max (mmol g-1 h-1) 198.2 345.7 (1.7)c
H2 생산성 (mmol liter-1 h-1)b 9.5 52.3 (5.5)c
동력학적 파라미터는 도 2의 그래프로부터 얻어진 데이타를 이용해 계산되었다. μmax, 비성장속도(specific growth rate); r max , 최대 수소 생산속도; qmax, 최대 비 수소 생산 속도.
a. 바이오매스 생산량은 전체수율을 양생형 균주의 경우 11시간에서 13시까지 및 WTF-156T 균주의 경우에는 2 내지 4 시간 까지의 시간차에 의해 나누어 결정하였다.
b. 수소 생산성은 전체 수율을 시간으로 나누어 결정하였다.
c. 괄호안에 있는 숫자는 야생형 균주의 것과 비교한 배수(fold) 차이이다.
실시예 3: 게놈-범위 돌연변이 분석
생리 학적 변화의 원인을 이해하기 위해, PacBio 단일 분자 실시간(Single Molecule Real-Time; SMRT) 시퀀싱 기술을 사용한 게놈 시퀀싱에 의해 모 균주의 서열과 비교하여 WTF-156T의 게놈 DNA의 유전적 변이를 분석 하였다. 코딩지역(9 개 사이트) 또는 유전자간 영역(2 개 사이트)에서 11 개의 단일-염기 치환(single-base substitution)이 있었다. 돌연변이에는 삽입 돌연변이(2 개 사이트), 결실 돌연변이(2 개 사이트) 및 복수개의 치환 돌연변이(7 개 사이트)가 포함된다(도 3). 염기 치환 돌연변이는 가상 단백질(TON_0618), 방향족 아미노산 퍼미아제(TON_0820), 또다른 가상 단백질(TON_1084), 3- 포스포쉬키메이트-1-카르복시 비닐 트랜스퍼레이트(TON_1138), 시그널 펩티다아제(TON_1555), F420-환원 하이드로게나제 β 서브유니트 (TON_1561), 포름산 트랜스포터(TON_1573), 세번째 가상 단백질(TON_1641), 짧은 서열의 가상 단백질(TON_RS08535), 및 아미노산 트랜스포터 와 바이오틴-프로테인 리가아제(TON_0901 - TON0902) 사이 및 가상의 단백질과 펩타이드 트랜스포터 (TON_1668-TON_1669) 사이의 비암호화 영역들에서 나타났다(표 3). 적응 기간 동안 각각의 돌연변이에서 돌연변이 시간을 결정하기 위해, 발명자들은 2, 62, 156 번째 계대된 균주에서 각 돌연변이의 분포를 결정하려고 시도했다. WTF-156T의 게놈에서 발견 된 11 개의 돌연변이 중 62 번째 계대된 균주에서 6 개의 돌연변이가 발견되었으며, 다른 돌연변이는 156 번째 계대된 균주에서만 발견되었다.
WTF 156T 게놈에서 돌연변이들
로커스_태그 게놈 위치 돌연변이 유형a 코돈 변화 설명
TON_1555 1427744 치환 Pro to Leu 펩티다아제
TON_1573 1446340 치환 Ala to Thr 포름산 트랜스포터
TON_0820 760913 치환 Gly to Asp 방향종 아미노산 퍼미아제
TON_RS08535 1537688 치환 Gly to Glu 가상단백질
TON_1138 1046432 치환 - 3-포스포쉬키메이트
1-카복시비닐 트랜스퍼라아제
TON_1641 1500400 치환 - 가상단백질 
TON_0618 576102 T 결실 프래임 쉬프트 가상단백질
TON_1084 1005110 C 삽입 프래임 쉬프트 가상단백질
TON_1561 1433065 G 삽입  프래임 쉬프트 조효소 F420 하이드로게나아제
TON_0901 - 0902 832564 A 결실 - 아미노산 트랜스포터 및 바이오틴 프로테인 리가아제 사이
TON_1668 - 1669 1532991 치환 - 가상단백질 및 펩타이드 트랜스포터 사이
a 모든 돌연변이는 PCR 확인 및 생어 시퀀싱에 의해 확인되었다.
표현형 변화에 대한 각각의 돌연변이의 기여도를 평가하기 위해, 방향족 아미노산 퍼미아제(TON_0820), 가상단백질(TON_1084), F420-환원 하이드로게나아제 β 서브유니트(TON_1561) 및 포름산 트랜스포터(TON_1573) 같은 유전자들이 시간이 많이드는 실험적 분석전에 선택되었다. WTF-156T의 각각의 돌연변이가 모 균주의 서열로 재구성되어짐에 따라, 4개의 리버턴트의 성장 속도는 포름산 배지에서 감소하였다(도 4). 특별히, TON_1561 or TON_1573의 2개의 리버턴트가 WTF-156T에서 세포성장 및 수소 생산량을 상당히 의미있게 감소시켰다.
실시예 3: TON_1573(A52T)의 돌연변이는 T. onnurineus NA1 에서 수소 생산량을 증가시킴.
TON_1561(G 삽입) 돌연변이와 TON_1573 (A52T) 돌연변이가 실제로 포름산 (formate)에서의 생장 증가의 이유인 것인지 여부를 시험하기 위해 야생형에 각 돌연변이들을 도입했다. TON_1573(A52T)에서 변경된 결과로 생긴 돌연변이는 향상된 성장, H2 생산 및 포름산 소비를 보였다(도 5). 그러나, TON_1561(G 삽입) 돌연변이는 야생형으로부터 큰 차이를 보이지 않았다. 이전에, 본 발명자들은 T. onnurineus NA1에서 포름산 하이드로젠라이에이즈(formate hydrogenlyase; FHL), 양이온/양성자 안티포터 및 포름산 트랜스포터가 외부의 포름산을 이용한 성장을 할 수 있게하고[17], fdh2-mfh2-mnh2 유전자 클러스터의 발현이 포름산의 존재에서 크게 증가하는 것을 보고했다. TON_1573을 제외하고 유전자 클러스터에서 유전자의 돌연변이는 상기 적응 동안에 발견되지 않았다. 그러나, 포름산 트랜스포터에서의 돌연변이는 WTF-156T에서 수소의 생산을 증가시키도록 하였다. 다른 한편으로는, TON_1573 유전자가 결실된 녹아웃 돌연변이는 포름산에서의 성장이 상당히 의미있게 감소하였다(도 5).
mfh2 유전자 클러스터의 TON_1573은 포름산 운반체로 예측되며 박테리아 균주에서의 FocA와 유사하다. 그러므로, 아마도 외인성 포름산을 세포질로 운반하는 역할을 했을 것이다. 세균성 FocA(PDB ID: 3KLY)의 구조를 기반으로 스위스 모델 소프트웨어를 사용하여 TON_1573의 구조를 예측했다(도 6). 돌연변이된 52 번째 잔기는 중심 포어(pore)쪽으로 내부적으로 향하는 축 방향 채널에서 소수성 패치의 일부로 예측되었다. 이 잔기에서 알라닌에서 트레오닌으로의 변화는 패치의 소수성에 약간 영향을 미칠 수있다(도 6b).
TON_1573에서의 변화(A52T)의 효과를 확인하기 위해, 회분배양 동안 포름산 소비 속도를 균주의 것과 비교했다(도 5). 돌연변이체는 세포 성장의 증가와 관련되어, 포름산 소비 및 H2 생산이 증가되었다. 포름산 소비 속도를 측정하기 위해, 모 균주 및 돌연변이체의 정치 세포 현탁액을 포름산과 함께 배양 하였다. 80 ℃에서 5 분 동안 배양 한 후, WTF-156T 균주는 야생형(257.6mM/g/h)보다 17.4 % 높은 포름산 소비(302.4mM/g/h)를 보였다. 모균주로부터의 TON_1573 (A52T) 돌연변이체는 모균주보다 9.3 % 높은 포름산 소비(281.6 mM/g/h)를 보였으나, TON_1573의 결실은 포름산 소비(187.2 mM/g/h) 및 수소 생산을 상당히 의미있게 감소시켰다(도 7). 이를 종합하면, TON_1573(A52T)는 실험실 적응 진화중에 발생한 하나의 이로운 돌연변이로 확인되었다.
이전에 본 발명자들은 생물 반응조 스케일에서 T. onnurineus NA1의 세포 재순환을 시험했고[24], 높은 세포 농도를 달성하여 야생형 보다 높은 H2 생산율을 달성했다. 동력학적인 분석은 이와 같은 접근이 세포 성장 및 수소생산의 증가를 가져왔다는 것을 명확히 보인다(표 4). 본 발명자들은 세포 재순환 실험에서의 T. onnurineus NA1이 실질적으로 포름산 배지로 여러 번 전달되었다는 것을 깨달았다. 따라서 우리는 세포가 게놈믹 변화에 노출되었다고 추측했다. 이 문제를 확인하기 위해, 재순환 실험에서 균주의 게놈 서열을 PacBio SMRT (Single Molecule Real-Time) 시퀀싱 기술을 사용하여 결정하였다. 이 돌연변이들은 표 5에 열거하였다. 흥미롭게도, TON_1573의 동일한 잔기(52 번째 잔기)에서 돌연변이가 확인되었지만, 이 경우에서는 알라닌이 글루탐산으로 바뀌었다(도 6c). 결론적으로, 혈청 바이얼 또는 생문반응조내에서 반복된 회분배양내에서의 연속적인 계대를 통하여 적응된 균주은 TON_1573의 같은 잔기(52번째 잔기)에서 단일 돌연변이를 가지고 있었고, 이것은 T. onnurineus NA1에서 포름산 흡수와 수소 생산을 증가시키는데 중용한 인자인 것으로 확인되었다.
재순환 실험의 동력학적 분석
동력학적 인자 야생형 균주 재순환 실험에서의 균주*
μmax
(h -1)
0.3 0.43
r max
(mmol liter -1 h -1 )
31.7 85.8
바이오매스 생산율
(g liter-1 h-1)a
0.026 0.085
q max
(mmol g -1 h -1 )
198.2 351.6
H2 생산율
(mmol liter-1 h-1)b
9.5 70.9
동력학적 파라미터는 도 2의 그래프로부터 얻어진 데이타를 이용해 계산되었다. μmax, 비성장속도(specific growth rate); r max , 최대 수소 생산속도; qmax, 최대 비 수소 생산 속도.
a. 바이오매스 생산량은 전체수율을 양생형 균주의 경우 11시간에서 13시까지 및 WTF-156T 균주의 경우에는 2 내지 4 시간 까지의 시간차에 의해 나누어 결정하였다.
b. 수소 생산성은 전체 수율을 시간으로 나누어 결정하였다.
* 동력학적 분석을 위한 데이타는 배 등 (2015)로 부터 채용되었다.
재순환 실험에서의 균주내에서 발견된 돌연변이들
로커스-태그 게놈 위치 돌연변이 유형 코돈 변화 설명 
TON_0865 800143 치환 Leu to Pro 피리딘 뉴클레오타이드-다이설파이드 옥시도리덕타아제
TON_0916 846887 치환 Gly to Asp ATPase C-terminus
TON_1513 1388815 치환 Ala to Val 오로테이트(orotate) 포스포리보실트랜스퍼라아제
TON_1573 1446341 치환 Ala to Glu 포름산 트랜스포터
TON_1779 1645564 치환 Ser to Tyr ATPase
TON_1532 1406368 치환 - 바이오틴-단백질 리가아제
TON_0902 832911 치환 - 리포에이트(lipoate)-단백질 리가아제
TON_1872 1752952 치환 - 잠정적인 비타민 B12 트랜스포터 단백질
TON_1513 1388814 치환 - 오로테이트(orotate) 포스포리보실트랜스퍼라아제
TON_0536 490681 T 결실 프레임 쉬프트 사이토크롬-c3 하이드로게나아제 서브유닛 감마
[사사]
이 연구는 KIOST 인하우스 프로그램(PE99413), 과학기술부에 의해 지원된 대한민국 국가 연구 기금(NRF) C1 가스 정제 프로그램, 대한민국 과학기술정보통신부(2015M3D3A1A01064884) 및 대한민국 해양수산부의 고호열 고세균을 이용한 바이오수소 생산 기술 개발 프로그램에 의해 지원 받았다.
참조문헌
1. Ball, M., Wietschel, M. The future of hydrogen - opportunities and challenges. Int J Hydrogen Energy. 34, 615-627 (2009)
2. Sharma, S., Ghoshal, S. K. Hydrogen the future transportation fuel: From production to applications. Renew. Sustainable Energy Rev. 43, 1151-1158 (2015)
3. Kalinci, Y., Hepbasli, A., Dincer, I. Biomass-based hydrogen production: A review and analysis. Int J Hydrogen Energy. 34, 8799-8817 (2009)
4. Sinha, P., Pandey, A. An evaluative report and challenges for fermentative biohydrogen production. Int J Hydrogen Energy. 36, 7460-7478 (2011)
5. Brentner, L. B., Peccia, J., Zimmerman, J. B. Challenges in developing biohydrogen as a sustainable energy source: implications for a research agenda. Environ Sci Technol. 44, 2243-2254 (2010)
6. Singh, L., Wahid, Z. A. Methods for enhancing bio-hydrogen production from biological process: a review. J Ind Eng Chem. 21, 70-80 (2015)
7. Yoshida, A., Nishimura, T., Kawaguchi, H., Inui, M., Yukawa, H. Enhanced Hydrogen Production from Formic Acid by Formate Hydrogen Lyase-Overexpressing Escherichia coli Strains. Appl. Environ. Microbiol. 71, 6762-6768 (2005)
8. Yishai, O., Lindner, S. N., de la Cruz, J. G., Tenenboim, H. & Bar-Even, A. The formate bio-economy. Curr Opin Chem Biol. 35, 1-9 (2016)
9. Rittman, S. et al. One-carbon substrate-based biohydrogen production: Microbes, mechanism, and productivity. Biotechnol Adv. 33, 165-177 (2015)
10. Sawers, R. G. Formate and its role in hydrogen production in Escherichia coli. Biochem Soc Trans. 33,42-46 (2005)
11. Fan, Z., Yuan, L., Chatterjee, R. Increased Hydrogen Production by Genetic Engineering of Escherichia coli. PloS one. 4, e4432 (2009)
12. Seol, E., Jang, Y., Kim, S., Oh, Y.K., Park, S. Engineering of formate-hydrogen lyase gene cluster for improved hydrogen production in Escherichia coli. Int J Hydrogen Energy. 37, 15045-15051 (2012)
13. Jackson, B. E., McInerney, M. J. Anaerobic microbial metabolism can proceed close to thermodynamic limits. Nature. 415, 454-456 (2002)
14. Mayer, F., Muller, V. Adaptations of anaerobic archaea to life under extreme energy limitation. FEMS Microbiol Rev. 38, 449-472 (2014)
15. Schink, B. Energetics of syntrophic cooperation in methanogenic degradation. Microbiol Mol Biol Rev. 61, 262-280 (1997)
16. Stams, A. J., Plugge, C. M. Electron transfer in syntrophic communities of anaerobic bacteria and archaea. Nat Rev Microbiol. 7, 568-577 (2009)
17. Kim, Y. J. et al. Formate-driven growth coupled with H2 production. Nature 467, 352-355 (2010)
18. Lim, J. K. et al. Thermodynamics of Formate-Oxidizing Metabolism and Implications for H2 Production. Appl Environ Microbiol. 78, 7393-7397 (2012)
19. Lim, J. K., Mayer, F., Kang, S. G., Muller, V. Energy conservation by oxidation of formate to carbon dioxide and hydrogen via a sodium ion current in a hyperthermophilic archaeon. Proc Natl Acad Sci U S A. 111, 11497-11502 (2014)
20. Wang, Y. et al. Structure of the formate transporter FocA reveals a pentameric aquaporin-like channel. Nature. 462, 467-472 (2009)
21. Dragosits, M. & Mattanovich, D. Adaptive laboratory evolution - principles and applications for biotechnology. Microb Cell Fact. 12, 64 (2013)
22. Barrick, J. E. et al. Genome evolution and adaptation in a long-term experiment with Escherichia coli. Nature. 461, 1243-1247 (2009)
23. Lee, S. H. et al. Adaptive engineering of a hyperthermophilic archaeon on CO and discovering the underlying mechanism by multi-omics analysis. Sci. Rep. 6, 22896 (2016)
24. Bae, S. S. et al. Enhancing bio-hydrogen production from sodium formate by hyperthermophilic archaeon, Thermococcus onnurineus NA1. Bioprocess Biosyst Eng. 38, 989-993 (2015)
25. Lee, H. S. et al. The complete genome sequence of Thermococcus onnurineus NA1 reveals a mixed heterotrophic and carboxydotrophic metabolism. J Bacteriol. 190, 7491-7499 (2008)
26. Kim, M. S. et al. CO-Dependent H2 Production by Genetically Engineered Thermococcus onnurineus NA1. Appl Environ Microbiol. 79, 2048-2053 (2013)
27. Mackwan, R. R., Carver, G. T., Kissling, G. E., Drake, J. W. & Grogan, D. W. The rate and character of spontaneous mutation in Thermus thermophilus. Genetics. 180, 17-25 (2008)
28. Grogan, D. W., Carver, G. T. & Drake, J. W. Genetic fidelity under harsh conditions: analysis of spontaneous mutation in the thermoacidophilic archaeon Sulfolobus acidocaldarius. Proc Natl Acad Sci USA. 98, 7928-7933 (2001)
29. Dettman, J. R. et al . Evolutionary insight from whole-genome sequencing of experimentally evolved microbes. Mol Ecol. 21, 2058-2077 (2012)
30. Waight, A. B., Love, J., Wang, D. N. Structure and mechanism of a pentameric formate channel. Nat. Struct. Mol. Biol. 17, 31-37 (2010)
31. Bae, S. S. et al. Thermococcus onnurineus sp. nov., a hyperthermophilic archaeon isolated from a deep-sea hydrothermal vent area at the PACMANUS field. J. Microbiol. Biotechnol. 16, 1826 -1831 (2006)
32. Sokolova, T. G. et al. The first evidence of anaerobic CO oxidation coupled with H2 production by a hyperthermophilic archaeon isolated from a deep-sea hydrothermal vent. Extremophiles. 8, 317-323 (2004)
33. Eid, J. et al. Real-time DNA sequencing from single polymerase molecules. Science. 323, 133-138 (2009)
34. Jeong, J. Y. et al. One-step sequence-and ligation-independent cloning as a rapid and versatile cloning method for functional genomics studies. Appl Environ Microbiol. 78, 5440-5443 (2012)
35. Kim, M. S. et al. A novel CO-responsive transcriptional regulator and enhanced H2 production by an engineered Thermococcus onnurineus NA1 strain. Appl Environ Microbiol. 81, 1708-1714 (2015)
36. Matsumi, R., Manabe, K., Fukui, T., Atomi, H., Imanaka, T. Disruption of a sugar transporter gene cluster in a hyperthermophilic archaeon using a host-marker system based on antibiotic resistance. J Bacteriol. 189, 2683-2691 (2007)
37. Lim, J. K., Kang, S. G., Lebedinsky, A. V., Lee, J. H., Lee, H. S. Identification of a Novel Class of Membrane-Bound [NiFe]-Hydrogenases in Thermococcus onnurineus NA1 by In Silico Analysis. Appl Environ Microbiol. 76, 6286-6289 (2010)
38. Lu, W. et al. The formate/nitrite transporter family of anion channels. Biol Chem.. 394, 715-727 (2013)
<110> Korea Institute of Ocean Science & Technology <120> Thermococcus onnurineus WTF-156T having mutation in formate transporter and methods of hydrogen production using thereof <130> PP160004 <160> 41 <170> KoPatentIn 3.0 <210> 1 <211> 342 <212> PRT <213> Thermococcus sp. <400> 1 Met Ala Glu Thr Lys Glu Lys Ile Leu Tyr Gly Val Asp Thr Thr Phe 1 5 10 15 Glu Ala Val Ala Lys Lys Ala Thr Pro Lys Phe Lys Thr Thr Pro Gly 20 25 30 Arg Leu Leu Phe Ala Gly Phe Met Ala Gly Ala Phe Ile Ala Phe Gly 35 40 45 Phe Leu Leu Ala Val Val Ala Ala Ala Gly Tyr Ser Pro Lys Leu Phe 50 55 60 Pro Asp Thr Gly Asn Ile Ser Thr Phe Lys Ile Leu Leu Gly Ala Val 65 70 75 80 Phe Pro Val Gly Leu Ile Ala Val Ile Leu Ala Gly Ala Asp Leu Trp 85 90 95 Thr Gly Asn Val Gln Phe Leu Ser Ser Ala Lys Ala Lys Gly Tyr Ala 100 105 110 Asp Phe Lys Cys Val Leu Tyr Asn Trp Phe Gly Ser Tyr Gly Gly Asn 115 120 125 Phe Ile Gly Ser Ile Phe Leu Ala Leu Leu Ala Val Pro Leu Thr Gly 130 135 140 Leu Phe Gly His Val Gly Asp Pro Asn Thr Phe Gly Gln Val Thr Val 145 150 155 160 Gly Ile Ala Thr Gly Lys Val Ser Lys Asp Ile Leu Ala Leu Phe Phe 165 170 175 Leu Gly Ile Gly Cys Asn Trp Leu Val Asn Val Ala Ile Trp Gln Ser 180 185 190 Ala Arg Val Gln Asp Gly Ala Gly Lys Ile Leu Ala Ile Trp Phe Pro 195 200 205 Ile Phe Ala Phe Val Ala Ile Gly Phe Glu His Ala Ile Ala Asn Met 210 215 220 Trp Ala Ile Pro Ala Gly Ile Leu Leu Ser Asp Tyr Ala Ile Thr Trp 225 230 235 240 Thr Gln Phe Phe His Asn Val Ile Pro Val Thr Phe Gly Asn Ala Ile 245 250 255 Gly Gly Phe Leu Phe Val Thr Phe Tyr Tyr Trp Tyr Leu Ser His Pro 260 265 270 Glu Leu Thr Thr Asp Arg Leu Ile Lys Glu Ile Ile Asp Phe Leu Ile 275 280 285 Val Phe Ile Ala Phe Trp Ala Val Ala Ala Leu Ile Pro Ala Gly Ile 290 295 300 Gly Ile Ala Leu Asp Gln Ala Leu Gly Lys Gly Ala Met Tyr Leu Val 305 310 315 320 Pro Leu Val Leu Ser Ala Tyr Tyr Ile Val Gly Ala Phe Val Leu Tyr 325 330 335 Lys Lys Ala Arg Pro Ala 340 <210> 2 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> pUC118_0282del_HMG_fo_inverse_F primer <400> 2 gacctgcagg catgcaagct 20 <210> 3 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> pUC118_0282del_HMG_fo_inverse_R primer <400> 3 gactctagag gatccccggg 20 <210> 4 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> TON_0820_SLIC_F primer <400> 4 ggatcctcta gagtccaata ctcgggaacc tcaag 35 <210> 5 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> TON_0820_SLIC_R primer <400> 5 gcatgcctgc aggtctctgg gccgcgtacc tctca 35 <210> 6 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> TON_1084_SLIC_F primer <400> 6 ggatcctcta gagtctcctg tcgcgtgaag gggct 35 <210> 7 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> TON_1084_SLIC_R primer <400> 7 gcatgcctgc aggtcgctat ccttcttccg gtctt 35 <210> 8 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> TON_1561_SLIC_F primer <400> 8 ggatcctcta gagtcgatac aacgctggca ctcat 35 <210> 9 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> TON_1561_SLIC_R primer <400> 9 gcatgcctgc aggtccagcg aaataaagcc ctcag 35 <210> 10 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> TON_1573-SLIC-F primer <400> 10 tttggtttcc tcctgacggt ggttgc 26 <210> 11 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> TON_1573-SLIC-R primer <400> 11 ccgctgcaac caccgtcagg aggaaa 26 <210> 12 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> 1573-point-mutation-F primer <400> 12 tttggtttcc tcctgacggt ggttgc 26 <210> 13 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> 1573-point-mutation-R primer <400> 13 ccgctgcaac caccgtcagg aggaaa 26 <210> 14 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> TON_1561_insertion(G)-F primer <400> 14 ggacatagtc cttaaggggg gacttc 26 <210> 15 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> TON_1561_insertion(G)-R primer <400> 15 tcgaggaagt ccccccttaa ggacta 26 <210> 16 <211> 12 <212> DNA <213> Artificial Sequence <220> <223> TON_1573_point- confirm-R primer <400> 16 tgcaaccacc gt 12 <210> 17 <211> 12 <212> DNA <213> Artificial Sequence <220> <223> TON_0820_ point-confirm-R primer <400> 17 agaagacgct gc 12 <210> 18 <211> 12 <212> DNA <213> Artificial Sequence <220> <223> TON_1084_point-confirm-F primer <400> 18 cagaaccccc cc 12 <210> 19 <211> 11 <212> DNA <213> Artificial Sequence <220> <223> TON_1561_point-confirm-F primer <400> 19 cttaaggggg g 11 <210> 20 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> TON_0618-F primer <400> 20 cctcatttat tccaaaacta 20 <210> 21 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> TON_0618-R primer <400> 21 ctaaaataaa actttcagga 20 <210> 22 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> TON_0820-F primer <400> 22 acagaggtga gagagatgcc cgttac 26 <210> 23 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> TON_0820-R primer <400> 23 gaaaaaagca aaggattact tcctga 26 <210> 24 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> TON_1084-F primer <400> 24 ataccctacg agcgctggta 20 <210> 25 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> TON_1084-R primer <400> 25 tgcgttgaag ttggccctaa 20 <210> 26 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> TON_1138-F primer <400> 26 cctctacggg agggtgaaga 20 <210> 27 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> TON_1138-R primer <400> 27 ccgaacctcg atcccggggg 20 <210> 28 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> TON_1555-F primer <400> 28 gagatacccc tccacagtca 20 <210> 29 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> TON_1555-R primer <400> 29 tggtgatgtt atcctataca 20 <210> 30 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> TON_1561-F primer <400> 30 caagggagga gctccttgaa 20 <210> 31 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> TON_1561-R primer <400> 31 tctgcgctct cgcaagcttt 20 <210> 32 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> TON_1573-F primer <400> 32 atccttcgaa cggtcatact 20 <210> 33 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> TON_1573-R primer <400> 33 gtctccaacg tggccgaaga 20 <210> 34 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> TON_1641-F primer <400> 34 acagcggtac tcctcgcgct 20 <210> 35 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> TON_1641-R primer <400> 35 ttcctagcgt taatcatata 20 <210> 36 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> TON_RS08635-F primer <400> 36 tccttaaaat tccagttccc 20 <210> 37 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> TON_RS08635-R primer <400> 37 tagttttttg aacctcaagc 20 <210> 38 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> TON_0901-0902-intergenic region-F primer <400> 38 cgccaaccct tccgagccgc 20 <210> 39 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> TON_0901-0902-intergenic region-R primer <400> 39 ttctctgtca gaagtcttcc 20 <210> 40 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> TON_1668-1669-intergenic region-F primer <400> 40 cccagcgcat agacatggtg 20 <210> 41 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> TON_0901-0902-intergenic region-R primer <400> 41 cggctattgc agagccgccg 20

Claims (6)

  1. 포름산 트랜스포터(TON_1573)(서열번호 1)의 52번째 알라닌이 트레오닌 또는 글루탐산으로 돌연변이된 Thermococcus onnurineus 균주.
  2. 제 1 항에 따른 Thermococcus onnurineus 에 있어서, 상기 돌연변이는 상기 포름산 트랜스포터 내의 52번째 알라닌이 트레오닌으로 돌연변이된 Thermococcus onnurineus 균주.
  3. 제 1 항에 따른 Thermococcus onnurineus 균주에 있어서, 상기 균주는 WTF-156T(기탁번호 KCTC13132BP)인 Thermococcus onnurineus 균주.
  4. 청구항 제 1 항 내지 제 3 항중 어느 한 항에 따른 Thermococcus onnurineus 균주를 사용하는 수소 생산 방법.
  5. 제 4 항에 있어서, 상기 균주의 수소 생산을 위한 배양 조건은 60 내지 90℃ 사이의 온도를 포함하는 수소 생산 방법.
  6. 제 4 항에 있어서, 상기 균주의 수소 생산을 위한 배양 조건은 1 내지 3 atm에서 상기 균주에 포름산을 제공하는 것을 포함하는 수소 생산 방법.
KR1020197019704A 2016-12-09 2016-12-09 포름산 트랜스포터에서 돌연변이를 가진 써모코코스 온누리에누스 wtf-156t 및 이를 이용한 수소 생산 방법 KR102269939B1 (ko)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2016/014461 WO2018105790A1 (en) 2016-12-09 2016-12-09 Thermococcus onnurineus wtf-156t having mutation in formate transporter and methods of hydrogen production using thereof

Publications (2)

Publication Number Publication Date
KR20190084140A KR20190084140A (ko) 2019-07-15
KR102269939B1 true KR102269939B1 (ko) 2021-06-25

Family

ID=62491088

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020197019704A KR102269939B1 (ko) 2016-12-09 2016-12-09 포름산 트랜스포터에서 돌연변이를 가진 써모코코스 온누리에누스 wtf-156t 및 이를 이용한 수소 생산 방법

Country Status (2)

Country Link
KR (1) KR102269939B1 (ko)
WO (1) WO2018105790A1 (ko)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102245216B1 (ko) * 2019-04-04 2021-04-27 한국해양과학기술원 써모코커스 온누리누스 156t-ld2437 균주 및 이를 이용한 연속배양 방식의 바이오수소 생산방법
KR102430707B1 (ko) * 2020-11-06 2022-08-08 한국해양과학기술원 써모코커스 온누리누스 wtf-350t 균주 및 이를 이용한 수소생산방법

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101833975B1 (ko) * 2008-09-05 2018-03-06 한국해양과학기술원 Thermoccus spp.을 이용하여 수소를 생산하는 방법
KR20150125631A (ko) * 2015-09-30 2015-11-09 한국해양과학기술원 포름산염으로부터 수소생산능이 증가된 써모코코스 돌연변이체 및 이를 이용한 수소생산방법

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Genbank Accession number WP_012572535.1 (2013.05.17.)

Also Published As

Publication number Publication date
KR20190084140A (ko) 2019-07-15
WO2018105790A1 (en) 2018-06-14

Similar Documents

Publication Publication Date Title
Chen et al. Converting Escherichia coli to a synthetic methylotroph growing solely on methanol
Maeda et al. Enhanced hydrogen production from glucose by metabolically engineered Escherichia coli
Luan et al. Genome replication engineering assisted continuous evolution (GREACE) to improve microbial tolerance for biofuels production
US9267115B2 (en) Method of producing hydrogen from Thermococcus spp
Wang et al. Improvement of stress tolerance and riboflavin production of Bacillus subtilis by introduction of heat shock proteins from thermophilic bacillus strains
US20240117386A1 (en) Engineered autotrophic bacteria for co2 conversion to organic materials
Lee et al. Adaptive engineering of a hyperthermophilic archaeon on CO and discovering the underlying mechanism by multi-omics analysis
Jung et al. Adaptive evolution of a hyperthermophilic archaeon pinpoints a formate transporter as a critical factor for the growth enhancement on formate
Belkhelfa et al. Continuous culture adaptation of Methylobacterium extorquens AM1 and TK 0001 to very high methanol concentrations
Sánchez et al. The nitrate‐sensing N as ST system regulates nitrous oxide reductase and periplasmic nitrate reductase in B radyrhizobium japonicum
CN112795582A (zh) 一种适合在微生物中高效合成nad衍生物的酶基因
KR102269939B1 (ko) 포름산 트랜스포터에서 돌연변이를 가진 써모코코스 온누리에누스 wtf-156t 및 이를 이용한 수소 생산 방법
Sun et al. Metabolite-based mutualistic interaction between two novel Clostridial species from pit mud enhances butyrate and caproate production
Chen et al. Integrative multiomics analysis of the acid stress response of Oenococcus oeni mutants at different growth stages
Stock et al. Disruption and complementation of the selenocysteine biosynthesis pathway reveals a hierarchy of selenoprotein gene expression in the archaeon Methanococcus maripaludis
CN111073871A (zh) 热稳定性提高的dna聚合酶突变体及其构建方法和应用
Bender et al. Genetic variation in symbiotic islands of natural variant strains of soybean Bradyrhizobium japonicum and Bradyrhizobium diazoefficiens differing in competitiveness and in the efficiency of nitrogen fixation
Kwon et al. Metabolic changes of the acetogen Clostridium sp. AWRP through adaptation to acetate challenge
US11332763B2 (en) Mutant microorganisms and methods of making and using
KR102472270B1 (ko) 메탄 및 자일로스를 동시 대사하는 메탄자화균의 개발 및 이를 이용한 시노린 생산방법
KR102245274B1 (ko) 최소 유전체를 갖는 신규 미생물 및 이의 제조 방법
US10036072B2 (en) Mercury methylation genes in bacteria and archaea
WO2020081958A2 (en) Compositions and methods for identifying mutations of genes of multi-gene systems having improved function
CN106318917A (zh) 天冬氨酸-β-半醛脱氢酶突变体及其应用
CN110484466B (zh) 一种提高嗜热厌氧杆菌发酵性能的方法

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant