KR102262615B1 - Apparatus for removing carbon particulate material through addition of nitrogen oxide - Google Patents

Apparatus for removing carbon particulate material through addition of nitrogen oxide Download PDF

Info

Publication number
KR102262615B1
KR102262615B1 KR1020190112587A KR20190112587A KR102262615B1 KR 102262615 B1 KR102262615 B1 KR 102262615B1 KR 1020190112587 A KR1020190112587 A KR 1020190112587A KR 20190112587 A KR20190112587 A KR 20190112587A KR 102262615 B1 KR102262615 B1 KR 102262615B1
Authority
KR
South Korea
Prior art keywords
particulate matter
carbon particulate
ozone
nitrogen
reactor
Prior art date
Application number
KR1020190112587A
Other languages
Korean (ko)
Other versions
KR20210031083A (en
Inventor
이대원
이관영
박태욱
Original Assignee
강원대학교 산학협력단
고려대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 강원대학교 산학협력단, 고려대학교 산학협력단 filed Critical 강원대학교 산학협력단
Priority to KR1020190112587A priority Critical patent/KR102262615B1/en
Publication of KR20210031083A publication Critical patent/KR20210031083A/en
Application granted granted Critical
Publication of KR102262615B1 publication Critical patent/KR102262615B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/32Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by electrical effects other than those provided for in group B01D61/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/62Carbon oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/75Multi-step processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/76Gas phase processes, e.g. by using aerosols
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/40Mixed oxides
    • B01D2255/402Perovskites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/80Employing electric, magnetic, electromagnetic or wave energy, or particle radiation
    • B01D2259/818Employing electrical discharges or the generation of a plasma

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Dispersion Chemistry (AREA)
  • Catalysts (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

본 발명은 질소산화물 첨가를 통한 탄소입자상물질 제거 시스템을 개시한다. 본 발명에 따르면, 산소 또는 공기의 산화 반응을 통해 생성된 오존을 공급하는 상압 저온 플라즈마 반응기; 및 ABO3 또는 A2BO4 구조를 갖는 페로브스카이트 촉매가 충진되며, 상기 상압 저온 플라즈마 반응기로 공급되는 오존과 질소산화물을 이용하여 탄소입자상물질을 연소시키는 연소반응기를 포함하는 탄소입자상물질 제거 시스템이 제공된다. The present invention discloses a system for removing carbon particulate matter through addition of nitrogen oxides. According to the present invention, an atmospheric low-temperature plasma reactor for supplying ozone generated through an oxidation reaction of oxygen or air; and a combustion reactor filled with a perovskite catalyst having an ABO 3 or A 2 BO 4 structure, and burning carbon particulate matter using ozone and nitrogen oxide supplied to the atmospheric low-temperature plasma reactor. system is provided.

Description

질소산화물 첨가를 통한 탄소입자상물질 제거 시스템{Apparatus for removing carbon particulate material through addition of nitrogen oxide}System for removing carbon particulate material through addition of nitrogen oxide

본 발명은 질소산화물 첨가를 통한 탄소입자상물질 제거 시스템에 관한 것이다. The present invention relates to a system for removing carbon particulate matter through addition of nitrogen oxides.

미세먼지와 관련된 환경보건 문제가 심각해지고 있는 요즘, 각종 미세먼지 배출원들의 미세먼지 배출량을 저감하기 위한 노력들이 활발히 진행되고 있다.Nowadays, environmental health problems related to fine dust are getting serious. Efforts to reduce fine dust emissions from various sources of fine dust are being actively carried out.

미세먼지는 질소산화물 및 황화산화물로부터 유발되는 하이드레이트 입자들을 포함한 다양한 화학적 성분들이 포함되어 있으나 미세먼지의 상당한 부분은 탄소입자상물질로 구성되어 있다. 탄소입자상물질은 화석연료를 에너지원으로 사용하는 화력발전소, 제철소, 화학공장 등의 고정원과, 내연기관자동차로 대표되는 이동원으로부터 배출된다. Fine dust contains various chemical components including hydrate particles derived from nitrogen oxides and sulfur oxides, but a significant part of fine dust consists of carbon particulate matter. Carbon particulate matter is emitted from fixed sources such as thermal power plants, steel mills and chemical plants that use fossil fuels as energy sources, and mobile sources such as internal combustion engine vehicles.

탄소입자상물질은 해당 공정의 운전에 필요한 열에너지를 얻기 위해 다양한 형태의 화석연료를 연소하는 과정에서 수반되는 불완전연소 반응에 의해 발생되며, 이들의 발생을 원천적으로 줄이기 위해 연소반응기의 설계를 최적화하거나 순산소 연소반응을 도입하는 등의 노력이 일반적으로 시도되고 있다. Carbon particulate matter is generated by incomplete combustion reactions that accompany the process of burning various types of fossil fuels to obtain thermal energy necessary for the operation of the process. Efforts such as introducing an oxygen combustion reaction are generally attempted.

하지만, 이러한 공정개선이 이루어진다고 해도 일부 탄소입자상물질의 생성과 배출이 불가피한 경우가 다수이며, 배출가스 파이프라인에 촉매연소 반응기를 장착하여 탄소입자상물질을 제거하는 후처리 방법이 도입되는 경우가 많다.However, even if such process improvement is made, there are many cases where the generation and discharge of some carbon particulate matter is unavoidable, and a post-treatment method of removing carbon particulate matter by installing a catalytic combustion reactor in the exhaust gas pipeline is often introduced. .

탄소입자상물질의 저온연소를 위해서는 아래와 같이, 오존을 산화제로 도입하는 방법을 고려할 수 있다. For low-temperature combustion of carbon particulate matter, a method of introducing ozone as an oxidizing agent may be considered as follows.

[반응식 1][Scheme 1]

O3 (g) + C(s) → CO2 (g) + 0.5 O2 (g) O 3 (g) + C(s) → CO 2 (g) + 0.5 O 2 (g)

상기한 반응은 이론적으로 상온에서부터 탄소입자상물질을 연소시키는 것으로 알려져 있으며, 온도가 높아질수록 연소속도가 빨라지다가 높아진 온도에 의해 오존이 열분해가 되기 시작하면 연소속도가 줄어든다. 오존이 완전히 분해되는 300~350℃에 이르면 연소반응이 종결된다.The above reaction is theoretically known to burn carbon particulate matter from room temperature, and the combustion rate increases as the temperature increases, and then the combustion rate decreases when ozone starts to be thermally decomposed by the increased temperature. When ozone reaches 300~350℃ where ozone is completely decomposed, the combustion reaction is terminated.

따라서 오존에 의한 탄소입자상물질의 연소반응은 온도에 의해 제한되기 때문에 되도록 주어진 반응온도 조건에서 연소반응 속도를 향상시키기 위한 방법을 강구할 필요가 있다. Therefore, since the combustion reaction of carbon particulate matter by ozone is limited by temperature, it is necessary to devise a method for improving the combustion reaction rate under a given reaction temperature condition.

한국등록특허 10-1863940Korean Patent Registration 10-1863940

상기한 종래기술의 문제점을 해결하기 위해, 본 발명은 저온 조건에서도 오존에 의한 탄소입자상물질의 연소반응 속도를 향상시킬 수 있는 일산화질소 첨가를 통한 탄소입자상물질 제거 시스템을 제안하고자 한다. In order to solve the problems of the prior art, the present invention intends to propose a carbon particulate matter removal system through the addition of nitrogen monoxide that can improve the combustion reaction rate of carbon particulate matter by ozone even at low temperature conditions.

상기한 바와 같은 목적을 달성하기 위하여, 본 발명의 일 실시예에 따르면, 질소산화물 첨가를 통한 탄소입자상물질 제거 시스템으로서, 산소 또는 공기의 산화 반응을 통해 생성된 오존을 공급하는 상압 저온 플라즈마 반응기; 및 ABO3 또는 A2BO4 구조를 갖는 페로브스카이트 촉매가 충진되며, 상기 상압 저온 플라즈마 반응기로 공급되는 오존과 질소산화물을 이용하여 탄소입자상물질을 연소시키는 연소반응기를 포함하는 탄소입자상물질 제거 시스템이 제공된다. In order to achieve the above object, according to an embodiment of the present invention, there is provided a system for removing carbon particulate matter through the addition of nitrogen oxide, comprising: an atmospheric low temperature plasma reactor supplying ozone generated through an oxidation reaction of oxygen or air; and a combustion reactor filled with a perovskite catalyst having an ABO 3 or A 2 BO 4 structure, and burning carbon particulate matter using ozone and nitrogen oxide supplied to the atmospheric low-temperature plasma reactor. system is provided.

상기 연소반응기의 전단에 배치되며, 일산화질소 및 오존이 1:1의 양론비로 공급되어 일산화질소를 이산화질소로 전환하여 배출하는 혼합기를 더 포함할 수 있다. It is disposed in front of the combustion reactor, nitrogen monoxide and ozone are supplied in a stoichiometric ratio of 1:1 may further include a mixer for converting nitrogen monoxide to nitrogen dioxide and discharging.

상기 연소반응기에 공급되는 질소산화물은 상기 오존 대비 0.1 내지 0.2의 농도 범위를 가질 수 있다. The nitrogen oxide supplied to the combustion reactor may have a concentration range of 0.1 to 0.2 compared to the ozone.

상기 탄소입자상물질의 저온 연소는 100 내지 300℃ 범위 내에서 이루어질 수 있다. The low-temperature combustion of the carbon particulate material may be performed within a range of 100 to 300°C.

상기 상압 저온 플라즈마 반응기는 유전체 방전 플라즈마 (Dielectric barrier discharge, 이하 DBD) 반응기일 수 있다. The atmospheric pressure low-temperature plasma reactor may be a dielectric barrier discharge (DBD) reactor.

본 발명의 다른 측면에 따르면, 질소산화물 첨가를 통한 탄소입자상물질 제거 시스템으로서, 일산화질소 및 오존이 1:1의 양론비로 공급되어 일산화질소를 이산화질소로 전환하여 배출하는 혼합기; 및 ABO3 또는 A2BO4 구조를 갖는 페로브스카이트 촉매가 충진되며, 오존과 상기 혼합기에서 전환된 이산화질소를 이용하여 탄소입자상물질을 연소시키는 연소반응기를 포함하는 탄소입자상물질 제거 시스템이 제공된다. According to another aspect of the present invention, there is provided a system for removing carbon particulate matter through the addition of nitrogen oxides, comprising: a mixer in which nitrogen monoxide and ozone are supplied in a stoichiometric ratio of 1:1 to convert nitrogen monoxide into nitrogen dioxide and discharge; and a combustion reactor filled with a perovskite catalyst having an ABO 3 or A 2 BO 4 structure, and combusting carbon particulate matter using ozone and nitrogen dioxide converted in the mixer is provided. .

본 발명에 따르면, 질소산화물 첨가를 통해 오존 공급 및 저온 조건 하에서 탄소입자상물질의 연소반응을 촉진시킬 수 있다. According to the present invention, it is possible to promote the combustion reaction of carbon particulate matter under ozone supply and low-temperature conditions through the addition of nitrogen oxide.

도 1은 본 발명의 일 실시예에 따른 질소산화물 첨가를 통한 탄소입자상물질 제거 시스템 도시한 도면이다.
도 2는 오존의 열분해 실험 결과를 나타낸 것으로서, 반응기체: O2 10%, O3 2500 ppm, N2 balance. 300 cc/min; 온도 상승속도 3℃ /min에서의 오존의 농도 변화를 나타낸 것이다.
도 3은 본 실시예에 따른 PM 저온 연소에 사용될 오존 발생을 위한 DBD 플라즈마 반응기의 구성을 도시한 도면이다.
도 4는 O3 농도 변화에 따른 탄소입자상물질 촉매연소 반응성능의 변화를 나타낸 것이다.
도 5는 NO2 농도 변화에 따른 탄소입자상물질 촉매연소 반응성능의 변화를 나타낸 것이다.
1 is a view showing a carbon particulate matter removal system through the addition of nitrogen oxide according to an embodiment of the present invention.
Figure 2 shows the results of the ozone thermal decomposition experiment, reactive gas: O 2 10%, O 3 2500 ppm, N 2 balance. 300 cc/min; The change in ozone concentration at a temperature rise rate of 3°C/min is shown.
3 is a diagram showing the configuration of a DBD plasma reactor for ozone generation to be used for PM low-temperature combustion according to the present embodiment.
4 shows the change in the carbon particulate matter catalytic combustion reaction performance according to the change in the concentration of O 3 .
5 shows the change in the carbon particulate matter catalyst combustion reaction performance according to the NO 2 concentration change.

본 발명은 다양한 변경을 가할 수 있고 여러 가지 실시예를 가질 수 있는 바, 특정 실시예들을 도면에 예시하고 상세하게 설명하고자 한다.Since the present invention can have various changes and can have various embodiments, specific embodiments are illustrated in the drawings and described in detail.

그러나, 이는 본 발명을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다. However, this is not intended to limit the present invention to specific embodiments, and it should be understood to include all modifications, equivalents and substitutes included in the spirit and scope of the present invention.

도 1은 본 발명의 일 실시예에 따른 질소산화물 첨가를 통한 탄소입자상물질 제거 시스템 도시한 도면이다. 1 is a view showing a carbon particulate matter removal system through the addition of nitrogen oxide according to an embodiment of the present invention.

도 1에 도시된 바와 같이, 본 실시예에 따른 탄소입자상물질 제거 장치는 혼합기 및 연소반응기(필터)를 포함할 수 있다. As shown in FIG. 1 , the apparatus for removing carbon particulate matter according to the present embodiment may include a mixer and a combustion reactor (filter).

본 실시예에 따른 혼합기에는 탄소입자상물질이 포함된 배출가스와 일산화질소 및 오존이 유입되며, 이산화질소 및 오존을 배출한다. The exhaust gas containing carbon particulate matter, nitrogen monoxide and ozone are introduced into the mixer according to this embodiment, and nitrogen dioxide and ozone are discharged.

본 실시예에 따른 혼합기는 일산화질소 및 오존이 1:1의 양론비로 공급되어 상기 일산화질소를 이산화질소로 전환하여 배출한다. In the mixer according to this embodiment, nitrogen monoxide and ozone are supplied in a stoichiometric ratio of 1:1, and the nitrogen monoxide is converted into nitrogen dioxide and discharged.

전력소모량이 적은 오존 발생 시스템을 위해, 본 실시예에 따르면, 저온 플라즈마 방식 중 하나인 유전체 방전 플라즈마 (Dielectric barrier discharge, 이하 DBD) 반응기가 이용된다. For an ozone generating system that consumes less power, according to the present embodiment, a dielectric barrier discharge (DBD) reactor, which is one of low-temperature plasma methods, is used.

혼합기에서 배출된 이산화질소 및 오존은 촉매가 코팅된 연소반응기로 유입된다. 본 실시예에 따른 필터는 탄소입자상물질을 포집하며, 이산화질소, 오존과 촉매반응을 통해 이산화탄소를 배출한다. The nitrogen dioxide and ozone discharged from the mixer enter the catalyst-coated combustion reactor. The filter according to this embodiment collects carbon particulate matter and discharges carbon dioxide through a catalytic reaction with nitrogen dioxide and ozone.

본 실시예에서는 일산화질소를 공급하여 이를 오존과의 반응을 통해 이산화질소로 전환시켜 준 후 (반응 2), 필터에 해당하는 입자상물질 연소반응기에 공급하고, ABO3 (A = La, B = Mn) 또는 A2BO4 구조의 페로브스카이트 촉매가 적용된 상태에서 오존에 의한 탄소입자상물질 연소를 시도함으로써 (반응 3) 탄소입자상물질의 연소반응속도를 향상시킨다. In this embodiment, nitrogen monoxide is supplied and converted into nitrogen dioxide through a reaction with ozone (reaction 2), then supplied to a particulate matter combustion reactor corresponding to a filter, and ABO 3 (A = La, B = Mn) Alternatively, the combustion reaction rate of the carbon particulate matter is improved by attempting to burn the carbon particulate matter by ozone in a state in which the perovskite catalyst having the A 2 BO 4 structure is applied (Reaction 3).

[반응식 2][Scheme 2]

O3 (g) + NO (g) → NO2 (g) + O2 (g) O 3 (g) + NO (g) → NO 2 (g) + O 2 (g)

[반응식 3][Scheme 3]

NO2 (g) + O3 (g) + C(s) → CO2 (g) + O2 (g) + NONO 2 (g) + O 3 (g) + C(s) → CO 2 (g) + O 2 (g) + NO

본 실시예에 따른 페로브스카이트 촉매는 ABO3 또는 A2BO4 구조를 가질 수 있다. The perovskite catalyst according to this embodiment may have an ABO 3 or A 2 BO 4 structure.

여기서, A site는 La, Pr, Ce, Sr, Ba, Li, K, 및 Mg 중 하나 또는 두 개 이상의 금속의 혼합으로 선택되고, 상기 A site는 상기 금속 중 하나를 주성분으로 하고, 상기 주성분이 나머지 금속 중 하나로 부분치환될 수 있다. Here, A site is selected as one or a mixture of two or more metals from La, Pr, Ce, Sr, Ba, Li, K, and Mg, and the A site has one of the metals as a main component, and the main component is It may be partially substituted with one of the remaining metals.

또한, B site는 Mn, Fe, Co, Zr, Cr, Ti, Cu 및 V 중 하나 또는 두 개 이상의 금속의 혼합으로 선택될 수 있다. In addition, the B site may be selected as one of Mn, Fe, Co, Zr, Cr, Ti, Cu and V or a mixture of two or more metals.

B site는 상기 금속 중 하나를 주성분으로 하고, 상기 주성분이 나머지 금속 중 하나로 부분치환될 수 있다. B site has one of the metals as a main component, and the main component may be partially substituted with one of the other metals.

이하에서는 ABO3 구조의 페로브스카이트 촉매에 대한 실시예를 상세하게 설명한다. Hereinafter, examples of the perovskite catalyst having the ABO 3 structure will be described in detail.

[실시예 1] ABO[Example 1] ABO 33 구조의 페로브스카이트(Perovskite) 촉매(A = La, B = Mn)의 합성 Synthesis of Structured Perovskite Catalyst (A = La, B = Mn)

촉매를 구성하는 A site 및 B site 금속의 metal acetate 수용액들을 일정 농도로 제조하고, 합성하고자 하는 촉매의 구성원소 별로 양론비에 맞춰 수용액들을 혼합한 후 상온에서 30분간 교반하였다. 수용액 제조 단계에서 금속 이온과 동일한 양의 구연산 (Citric Acid)를 첨가할 수도 있다. 교반된 용액을 50℃ 조건에서 증발건조 하여 입자 형태의 침전물을 얻어낸 후, 공기 조건에서 120℃에서 24시간 건조, 400℃에서 1차 소성, 950℃에서 2차 소성을 거쳐 ABO3형태의 촉매를 제조하였다.Metal acetate aqueous solutions of A site and B site metals constituting the catalyst were prepared at a certain concentration, and the aqueous solutions were mixed according to the stoichiometric ratio for each element of the catalyst to be synthesized, followed by stirring at room temperature for 30 minutes. Citric Acid may be added in the same amount as the metal ion in the aqueous solution preparation step. The stirred solution was evaporated to dryness at 50°C to obtain a particle-form precipitate, dried at 120°C under air conditions for 24 hours, primary calcined at 400°C, and secondary calcined at 950°C to obtain ABO 3 catalyst. prepared.

[실시예 2] 오존농도 유지구간의 탐색[Example 2] Search for ozone concentration maintenance section

오존 (O3) 농도 2,500 ppm, 반응기체 유속 300 cc/min의 조건에서 온도를 상온에서 3℃/min으로 상승시키면서 O3 농도 변화를 관찰하였다. O 3 concentration change was observed while increasing the temperature from room temperature to 3° C./min at the ozone (O 3 ) concentration of 2,500 ppm and the reaction gas flow rate of 300 cc/min.

도 2는 오존의 열분해 실험 결과를 나타낸 것으로서, 반응기체: O2 10%, O3 2500 ppm, N2 balance. 300 cc/min; 온도 상승속도 3℃ /min에서의 오존의 농도 변화를 나타낸 것이다. Figure 2 shows the results of the ozone thermal decomposition experiment, reactive gas: O 2 10%, O 3 2500 ppm, N 2 balance. 300 cc/min; The change in ozone concentration at a temperature rise rate of 3°C/min is shown.

온도가 100℃부터 O3 전환율(O3 Conversion)이 발생하기 시작하여 온도가 증가됨에 따라 오존 전환율이 지속적으로 상승하다가 300℃에 이르면 O3 전환율이 100%, 즉 O3이 모두 열분해되는 것을 확인할 수 있었다.Confirmed that the temperature began to occur O 3 conversion (O 3 Conversion) from 100 ℃ the temperature is increased ozone conversion rate while continued to rise O 3 conversion rate is all thermally decomposed 100%, that O 3 reaches 300 ℃ according to could

따라서 O3 농도가 유지되어 O3에 의한 탄소입자상물질 연소반응을 기대할 수 있는 온도는 300℃ 이하이다.Therefore, the O 3 concentration is maintained and the temperature at which the carbon particulate matter combustion reaction by O 3 can be expected is 300° C. or less.

[실시예 3] 오존 농도의 변화에 따른 탄소입자상 물질의 ABO[Example 3] ABO of carbon particulate matter according to change in ozone concentration 33 촉매 연소 반응 catalytic combustion reaction

탄소입자상물질 10 mg과 촉매물질인 ABO3 (A=La, B=Mn; 이하 LaMnO3) 20 mg을 혼합한 입자 혼합물을 원통형 석영 반응기(입자상물질 연소반응기) 중앙에 충전시켰다. 이 반응기 전단에 NO를 250 ppm 농도가 되도록 공급하고 250 ppm O3을 공급하여 NO를 모두 250 ppm의 NO2로 전환시켰다. 혹은 이 단계를 거치지 않고 250 ppm의 NO2를 직접 공급하여도 무방하다. 이 상태에서 O3을 추가로 공급했는데, 반응기체 상에서의 O3 농도를 500, 1250, 1500, 2500 ppm으로 단계적으로 변화시켜 가며 각각의 농도에서 탄소입자상물질의 연소반응을 수행하였다. 반응기체는 NO, O3 외에 산소(O2)가 10% 포함되어 있었고 총유속은 300 cc/min이었다.A particle mixture of 10 mg of carbon particulate matter and 20 mg of ABO 3 (A=La, B=Mn; hereinafter LaMnO 3 ) as a catalyst material was charged in the center of a cylindrical quartz reactor (particulate matter combustion reactor). NO was supplied to the front end of the reactor to a concentration of 250 ppm, and 250 ppm O 3 was supplied to convert all NO to 250 ppm of NO 2 . Alternatively, 250 ppm of NO 2 may be directly supplied without going through this step. In this state, O 3 was additionally supplied, and the combustion reaction of carbon particulate matter was carried out at each concentration while the O 3 concentration in the reaction gas was changed stepwise to 500, 1250, 1500, and 2500 ppm. The reactive gas contained 10% oxygen (O 2 ) in addition to NO and O 3 , and the total flow rate was 300 cc/min.

도 3은 본 실시예에 따른 PM 저온 연소에 사용될 오존 발생을 위한 DBD 플라즈마 반응기의 구성을 도시한 도면이다. 3 is a diagram showing the configuration of a DBD plasma reactor for ozone generation to be used for PM low-temperature combustion according to the present embodiment.

플라즈마 반응기의 전극은 SUS Mesh와 Cu Rod를 이용하였으며 유전체로 Quartz Tube를 이용하였다. 전원 공급에 이용된 Power Supplier는 주파수 범위 50 Hz ~ 1 Khz, 1차 전압 범위 0~15 Kv, 최대 전력 300 W의 성능을 가지며, Oscilloscope(Tektronix TDS 220)를 이용하여 플라즈마 반응기에 공급되는 전압 및 전류를 관찰하였다. The electrode of the plasma reactor used SUS Mesh and Cu Rod, and Quartz Tube was used as the dielectric. The Power Supplier used for power supply has a frequency range of 50 Hz to 1 Khz, a primary voltage range of 0 to 15 Kv, and a maximum power of 300 W. The voltage supplied to the plasma reactor using an oscilloscope (Tektronix TDS 220) and The current was observed.

도 4는 O3 농도 변화에 따른 탄소입자상물질 촉매연소 반응성능의 변화를 나타낸 것이다. 4 shows the change in the carbon particulate matter catalytic combustion reaction performance according to the change in the concentration of O 3 .

도 4에서, 고정층: 탄소입자상물질 (Printex-U) 10mg + LaMnO3 20 mg: 반응기체: NO2 250 ppm, O2 10%, O3 500, 1250, 1500 혹은 2500 ppm, N2 balance. 300 cc/min; 온도 상승속도 3℃ /min이다.In FIG. 4, fixed bed: carbon particulate matter (Printex-U) 10 mg + LaMnO 3 20 mg: reactive gas: NO 2 250 ppm, O 2 10%, O 3 500, 1250, 1500 or 2500 ppm, N 2 balance. 300 cc/min; The temperature rise rate is 3°C/min.

도 4를 참조하면, O3 농도가 유지되는 300℃ 이하 온도 영역에서 일산화탄소(CO)와 이산화탄소(CO2)의 생성이 감지됨에 따라 O3에 의한 탄소입자상물질의 연소반응이 진행됨을 확인할 수 있다. O3 농도가 500, 1250, 1500, 2500 ppm으로 증가될수록 300℃ 이하 온도 구간에서의 탄소입자상물질 연소반응은 더욱 빠른 속도로 진행되어 생성되는 CO, CO2의 농도가 높아지는 것이 확인되었다.Referring to FIG. 4 , it can be confirmed that the combustion reaction of carbon particulate matter by O 3 proceeds as the generation of carbon monoxide (CO) and carbon dioxide (CO 2 ) is sensed in a temperature region below 300° C. in which the concentration of O 3 is maintained. . As the O 3 concentration was increased to 500, 1250, 1500, and 2500 ppm, it was confirmed that the carbon particulate matter combustion reaction proceeded at a faster rate in the temperature range below 300 °C, resulting in higher concentrations of CO and CO 2 produced.

[실시예 4] 일산화질소 첨가에 따른 오존에 의한 탄소입자상물질의 ABO[Example 4] ABO of carbon particulate matter by ozone following addition of nitrogen monoxide 33 촉매 연소반응속도의 개선 Improvement of catalytic combustion reaction rate

실시예 3과 동일하게 탄소입자상물질 10 mg과 LaMnO3 촉매 20 mg을 혼합한 충전층에 O3 농도를 2500 ppm에서 고정시키고 NO2 농도를 0, 250, 500, 1250, 2500 ppm으로 변화시켜가며 반응실험을 수행하였다. (실시예 3과 동일하게 O2 농도는 10%, 반응기체의 유속은 300 cc/min이었다.) 여기서 각각 설정된 NO2 농도들은 해당 농도를 구현할 수 있는 NO2 기체를 직접 공급하거나, NO 기체와 1:1 양론비 이상의 O3을 반응시킴으로써 구현이 가능하다.In the same manner as in Example 3 , the O 3 concentration was fixed at 2500 ppm in a packed bed in which 10 mg of carbon particulate matter and 20 mg of LaMnO 3 catalyst were mixed, and the NO 2 concentration was changed to 0, 250, 500, 1250, 2500 ppm. A reaction experiment was performed. (Same as in Example 3, the O 2 concentration was 10%, and the flow rate of the reaction gas was 300 cc/min.) Here, the NO 2 concentrations set respectively are directly supplying NO 2 gas capable of implementing the corresponding concentration, or NO gas and It can be implemented by reacting O 3 or more in a stoichiometric ratio of 1:1.

도 5는 NO2 농도 변화에 따른 탄소입자상물질 촉매연소 반응성능의 변화를 나타낸 것이다. 5 shows the change in the carbon particulate matter catalyst combustion reaction performance according to the NO 2 concentration change.

도 5에서, 고정층: 탄소입자상물질 (Printex-U) 10mg + LaMnO3 20 mg: 반응기체: NO2 0, 250, 500, 1250, 혹은 2500 ppm, O2 10%, O3 2500 ppm, N2 balance. 300 cc/min; 온도 상승속도 3℃ /min이다. In FIG. 5, fixed bed: carbon particulate matter (Printex-U) 10 mg + LaMnO3 20 mg: reactive gas: NO2 0, 250, 500, 1250, or 2500 ppm, O2 10%, O3 2500 ppm, N2 balance. 300 cc/min; The temperature rise rate is 3°C/min.

도 5를 참조하면, NO2가 포함되어 있지 않았을 때 (0 ppm) 대비 NO2 농도가 250 및 500 ppm 조건에서 CO, CO2의 농도가 높아지는 것을 확인할 수 있다. NO2 농도가 1250 및 2500 ppm 일 경우는 NO2 0 ppm 대비 오히려 연소반응의 성능 (CO, CO2 농도 수준) 이 감소하였는데, 이는 촉매 상에 NO2가 과량 흡착되면서 촉매가 O3을 흡착하여 활성화산소를 만들어내는 작용을 방해하기 때문이다.Referring to FIG. 5 , when NO 2 is not included (0 ppm) compared to when the NO 2 concentration is 250 and 500 ppm, it can be seen that the concentrations of CO and CO 2 are increased. If the NO 2 concentration is 1250 and 2500 ppm is NO 2 0 ppm contrast rather performance (CO, CO 2 concentration level) of the combustion reaction, were reduced, which while NO 2 is adsorbed excess to the catalyst and the catalyst is adsorbed O 3 This is because it interferes with the production of active oxygen.

따라서 오존농도 2500 ppm 대비 10%인 250 ppm 내지 20%인 500 ppm 에 해당되는 농도의 이산화질소 (NO2)를 공급할 때 오존에 의한 탄소입자상물질의 ABO3 촉매 연소반응 속도를 향상시킬 수 있는 것을 알 수 있다. Therefore, it was found that the ABO 3 catalytic combustion reaction rate of carbon particulate matter caused by ozone can be improved when nitrogen dioxide (NO 2 ) at a concentration corresponding to 500 ppm, which is 10% of the ozone concentration of 2500 ppm, is supplied. can

즉, 질소산화물의 농도가 오존 농도 대비 0.1 내지 0.2 범위를 가지는 경우, 연소반응 속도가 개선되는 것을 확인할 수 있다. That is, when the concentration of nitrogen oxide has a range of 0.1 to 0.2 compared to the ozone concentration, it can be confirmed that the combustion reaction rate is improved.

또는 NO2 대신 동일한 농도의 일산화질소 (NO)를 공급하고 양론비 1:1 이상 농도의 오존과 반응하여 NO2 공급하여도 동일한 효과를 기대할 수 있다.Or NO 2 instead of supplying the nitrogen monoxide (NO) in the same concentration and stoichiometric ratio 1: 1 can be reacted with an ozone concentration of more than expected, the same effect also by NO 2 supply.

상기한 본 발명의 실시예는 예시의 목적을 위해 개시된 것이고, 본 발명에 대한 통상의 지식을 가지는 당업자라면 본 발명의 사상과 범위 안에서 다양한 수정, 변경, 부가가 가능할 것이며, 이러한 수정, 변경 및 부가는 하기의 특허청구범위에 속하는 것으로 보아야 할 것이다.The above-described embodiments of the present invention have been disclosed for purposes of illustration, and various modifications, changes, and additions will be possible within the spirit and scope of the present invention by those skilled in the art having ordinary knowledge of the present invention, and such modifications, changes and additions should be regarded as belonging to the following claims.

Claims (6)

질소산화물 첨가를 통한 탄소입자상물질 제거 시스템으로서,
산소 또는 공기의 산화 반응을 통해 생성된 오존을 공급하는 상압 저온 플라즈마 반응기; 및
ABO3 또는 A2BO4 구조를 갖는 페로브스카이트 촉매가 충진되며, 상기 상압 저온 플라즈마 반응기로 공급되는 오존과 질소산화물을 이용하여 탄소입자상물질을 연소시키는 연소반응기를 포함하되,
상기 연소반응기에 공급되는 질소산화물은 상기 오존 대비 0.1 내지 0.2의 농도 범위를 갖는 탄소입자상물질 제거 시스템.
A system for removing carbon particulate matter through nitrogen oxide addition,
an atmospheric low-temperature plasma reactor supplying ozone generated through an oxidation reaction of oxygen or air; and
ABO 3 or A 2 BO 4 A perovskite catalyst having a structure is filled, including a combustion reactor for burning carbon particulate matter using ozone and nitrogen oxide supplied to the atmospheric low-temperature plasma reactor,
The nitrogen oxide supplied to the combustion reactor is a carbon particulate matter removal system having a concentration range of 0.1 to 0.2 compared to the ozone.
제1항에 있어서,
상기 연소반응기의 전단에 배치되며, 일산화질소 및 오존이 1:1의 양론비로 공급되어 일산화질소를 이산화질소로 전환하여 배출하는 혼합기를 더 포함하는 탄소입자상물질 제거 시스템.
According to claim 1,
The carbon particulate matter removal system further comprising a mixer disposed at the front end of the combustion reactor, wherein nitrogen monoxide and ozone are supplied in a stoichiometric ratio of 1:1 to convert nitrogen monoxide into nitrogen dioxide and discharge.
삭제delete 제1항에 있어서,
상기 탄소입자상물질의 저온 연소는 100 내지 300℃ 범위 내에서 이루어지는 탄소입자상물질 제거 시스템.
According to claim 1,
The low-temperature combustion of the carbon particulate matter is made within the range of 100 to 300 ℃ carbon particulate matter removal system.
제1항에 있어서,
상기 상압 저온 플라즈마 반응기는 유전체 방전 플라즈마 (Dielectric barrier discharge, 이하 DBD) 반응기인 탄소입자상물질 제거 시스템.
According to claim 1,
The atmospheric low-temperature plasma reactor is a carbon particulate matter removal system that is a dielectric barrier discharge (DBD) reactor.
질소산화물 첨가를 통한 탄소입자상물질 제거 시스템으로서,
일산화질소 및 오존이 1:1의 양론비로 공급되어 일산화질소를 이산화질소로 전환하여 배출하는 혼합기; 및
ABO3 또는 A2BO4 구조를 갖는 페로브스카이트 촉매가 충진되며, 오존과 상기 혼합기에서 전환된 이산화질소를 이용하여 탄소입자상물질을 연소시키는 연소반응기를 포함하되,
상기 연소반응기에 공급되는 이산화질소는 상기 오존 대비 0.1 내지 0.2의 농도 범위를 갖는 탄소입자상물질 제거 시스템.

As a system for removing carbon particulate matter through addition of nitrogen oxide,
a mixer in which nitrogen monoxide and ozone are supplied in a stoichiometric ratio of 1:1 to convert nitrogen monoxide into nitrogen dioxide and discharge; and
ABO 3 or A 2 BO 4 A perovskite catalyst having a structure is filled, including a combustion reactor that burns carbon particulate matter using ozone and nitrogen dioxide converted in the mixer,
The nitrogen dioxide supplied to the combustion reactor is a carbon particulate matter removal system having a concentration range of 0.1 to 0.2 compared to the ozone.

KR1020190112587A 2019-09-11 2019-09-11 Apparatus for removing carbon particulate material through addition of nitrogen oxide KR102262615B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020190112587A KR102262615B1 (en) 2019-09-11 2019-09-11 Apparatus for removing carbon particulate material through addition of nitrogen oxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020190112587A KR102262615B1 (en) 2019-09-11 2019-09-11 Apparatus for removing carbon particulate material through addition of nitrogen oxide

Publications (2)

Publication Number Publication Date
KR20210031083A KR20210031083A (en) 2021-03-19
KR102262615B1 true KR102262615B1 (en) 2021-06-09

Family

ID=75261904

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020190112587A KR102262615B1 (en) 2019-09-11 2019-09-11 Apparatus for removing carbon particulate material through addition of nitrogen oxide

Country Status (1)

Country Link
KR (1) KR102262615B1 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050024839A (en) * 2003-09-05 2005-03-11 대한민국 (소관: 제주대학교) Apparatus and method for simultaneous removal of air pollutants using corona discharge plasma and sodium sulfite
KR101863940B1 (en) 2017-03-17 2018-06-01 삼성엔지니어링 주식회사 Method and apparatus for denoxing exhaust gas
KR102044604B1 (en) * 2017-10-26 2019-11-13 강원대학교산학협력단 Perovskite catalyst for low temperature combustion of Particulate Matter emitted in diesel engine and ozone oxidation system using the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Korean Chem. Eng. Res., 56(5), 752-760 (2018)(2018.10.1.)*

Also Published As

Publication number Publication date
KR20210031083A (en) 2021-03-19

Similar Documents

Publication Publication Date Title
Jiang et al. Plasma-catalytic destruction of xylene over Ag-Mn mixed oxides in a pulsed sliding discharge reactor
RU2502883C2 (en) Method of processing nox components and electric power generation system
KR102044604B1 (en) Perovskite catalyst for low temperature combustion of Particulate Matter emitted in diesel engine and ozone oxidation system using the same
Cai et al. Plasma-catalytic decomposition of ethyl acetate over LaMO3 (M= Mn, Fe, and Co) perovskite catalysts
CN105209382A (en) Method for oxidising ammonia and system suitable therefor
US3884837A (en) Catalyst containing a perovskite-like manganite
US8997459B2 (en) NOx emission reduction system and method
US7468171B2 (en) Process using microwave energy and a catalyst to decompose nitrogen oxides
KR20170133177A (en) Plasma and Catalyst Hybrid Dry Treating System and its operation method for Hazardous Gas
US8807988B2 (en) Regenerable MgO promoted metal oxide oxygen carriers for chemical looping combustion
CN106867623A (en) A kind of application of oxygen carrier in burning chemistry chains
JP2019210260A (en) Methane production apparatus, control method of methane production apparatus, and methane production method
Snoeckx et al. Suppressing the formation of NO x and N 2 O in CO 2/N 2 dielectric barrier discharge plasma by adding CH 4: scavenger chemistry at work
KR102262615B1 (en) Apparatus for removing carbon particulate material through addition of nitrogen oxide
KR20220053775A (en) Perovskite catalyst capable of burning carbon particulate matter at low temperature and ozone oxidation system of carbon particulate matter using the same
KR20220019518A (en) Perovskite catalyst with gold-supported and ozone oxidation system of carbon particulate material using the same
CN111173597A (en) Method for the aftertreatment of exhaust gases of an internal combustion engine and internal combustion engine
KR20040034526A (en) Method for abatement of waste oxide gas emissions
Hong Catalytic removal of carbon particulates over MgF 2 O 4 catalysts
CN105289263A (en) Hydrogen peroxide denitration process and denitration system
KR102457079B1 (en) Simultaneous removal system of complex harmful substances
WO2022171663A1 (en) Electrochemical device for converting nitrogen oxides nox into ammonia and/or hydrogen
JP4720592B2 (en) Electrochemical catalyst for exhaust gas purification
Chang et al. Nonthermal plasma coupled with Mn/N-doped carbon catalysts for highly efficient removal of toluene
KR102621368B1 (en) Water splitting material, composition for water splitting material and manufacturing method for water splitting material using the same

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant