WO2022171663A1 - Electrochemical device for converting nitrogen oxides nox into ammonia and/or hydrogen - Google Patents

Electrochemical device for converting nitrogen oxides nox into ammonia and/or hydrogen Download PDF

Info

Publication number
WO2022171663A1
WO2022171663A1 PCT/EP2022/053115 EP2022053115W WO2022171663A1 WO 2022171663 A1 WO2022171663 A1 WO 2022171663A1 EP 2022053115 W EP2022053115 W EP 2022053115W WO 2022171663 A1 WO2022171663 A1 WO 2022171663A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel electrode
nitrogen oxides
electrochemical device
ammonia
electrode
Prior art date
Application number
PCT/EP2022/053115
Other languages
French (fr)
Inventor
Julian Dailly
Aayan BANERJEE
Olaf Deutschmann
Original Assignee
Electricite De France
Karlsruher Institut für Technologie
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Electricite De France, Karlsruher Institut für Technologie filed Critical Electricite De France
Publication of WO2022171663A1 publication Critical patent/WO2022171663A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • C25B1/042Hydrogen or oxygen by electrolysis of water by electrolysis of steam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/32Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by electrical effects other than those provided for in group B01D61/00
    • B01D53/326Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by electrical effects other than those provided for in group B01D61/00 in electrochemical cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8621Removing nitrogen compounds
    • B01D53/8625Nitrogen oxides
    • B01D53/8631Processes characterised by a specific device
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/27Ammonia
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/02Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form
    • C25B11/03Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form perforated or foraminous
    • C25B11/031Porous electrodes
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/042Electrodes formed of a single material
    • C25B11/047Ceramics
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/052Electrodes comprising one or more electrocatalytic coatings on a substrate
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/075Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of a single catalytic element or catalytic compound
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/075Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of a single catalytic element or catalytic compound
    • C25B11/077Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of a single catalytic element or catalytic compound the compound being a non-noble metal oxide
    • C25B11/0773Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of a single catalytic element or catalytic compound the compound being a non-noble metal oxide of the perovskite type
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B13/00Diaphragms; Spacing elements
    • C25B13/04Diaphragms; Spacing elements characterised by the material
    • C25B13/05Diaphragms; Spacing elements characterised by the material based on inorganic materials
    • C25B13/07Diaphragms; Spacing elements characterised by the material based on inorganic materials based on ceramics
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/17Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof
    • C25B9/19Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms
    • C25B9/23Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms comprising ion-exchange membranes in or on which electrode material is embedded
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/40Nitrogen compounds
    • B01D2257/404Nitrogen oxides other than dinitrogen oxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/01Engine exhaust gases
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Definitions

  • the present invention relates to the field of electrochemical devices for the conversion of nitrogen oxides into ammonia and dihydrogen.
  • Nitrogen oxides including nitric oxide NO, nitrogen dioxide N0 2 and nitrous oxide N 2 0, are well-known air pollutants.
  • the presence of nitrogen oxides in the atmosphere contributes to the formation of smog (thick haze limiting visibility), fine particles and acid rain, as well as to the destruction of the ozone layer and leads to risks health issues such as, for example, respiratory diseases.
  • smog thin haze limiting visibility
  • fine particles fine particles and acid rain
  • ozone layer leads to risks health issues such as, for example, respiratory diseases.
  • Health issues such as, for example, respiratory diseases.
  • Nitrogen oxides are generally produced by the reaction between nitrogen and oxygen at high temperatures during the combustion of fuels such as diesel, hydrogen or natural gas. Reducing the quantity of nitrogen oxides present in the atmosphere is a major challenge for industrialized countries to enable technological advances in the field of combustion and for all technologies involving the formation of nitrogen oxides to be pursued. .
  • SCR selective catalytic reduction
  • gaseous ammonia and urea to convert nitrogen oxides into nitrogen and water.
  • SCR is the most used solution in thermal power plants burning biomass, waste or coal, in petrochemical industries, in iron and steel industries but also in transport such as boats, trucks and cars diesels due to reduction in reactor size and lower catalyst prices.
  • urea as a reagent results in the formation of carbon dioxide
  • ammonia results in the indirect formation of greenhouse gases via the Haber-Bosch process for synthesizing ammonia .
  • SCR products are not strategic components that can be recovered and converted into an energy source.
  • NOx absorbers also called NOx traps (LNT)
  • LNT are composed of catalysts based on platinum or ruthenium and an absorbent such as barium oxide.
  • the catalyst allows the oxidation of NOx to nitrogen dioxides which are then fixed by the barium to form Ba(N0 3 ) 2 .
  • a purge phase then takes place under a reduced atmosphere during which the NOx is reduced to nitrogen.
  • LNTs are cyclic processes consisting of a trap phase followed by a purge phase, and are mainly used in transports.
  • Exhaust gas recirculation is a technique which consists of returning the exhaust gases to the engine cylinders; it is mainly used in transport.
  • Flameless burners prevent the formation of nitrogen oxides. They differ from conventional burners in the ability to recirculate the exhaust gases into the combustion chamber and mix them with the combustion air, thus preventing the formation of a flame front. Thanks to a high temperature (at least 800°C) as well as a homogeneous distribution of the temperature distribution, the formation of nitrogen oxides, which generally occurs at the tip of the combustion flame due to its temperature peak, can be limited.
  • Nitrogen monoxide represents about 95% of nitrogen oxides and can be oxidized or reduced by removing electrons from it or giving it electrons. Nitric oxide can therefore be converted into an environmentally friendly nitrogen compound. When it is oxidized by receiving electrons, it can be converted into nitrite ion (N0 2 ) and nitrate ion (N0 3 ). When reduced, it can be converted into dinitrogen (N 2 ), hydroxylamine (NH 2 OH), hydrazine (N 2 H 4 ) and ammonia (NH 3 ). Nitrogen monoxide can be selectively converted into a specific nitrogenous compound, for example ammonia, provided that the operating parameters used are precisely controlled. [0010] American patent applications No.
  • metal oxide complexes makes it possible to promote the conversion of nitrogen oxides into ammonia rather than into dihydrogen at low temperature and to use inexpensive reagents such as water and air. Indeed, the reaction leading to the production of dihydrogen consumes a large part of the energy supplied to the system and reduces the quantity of nitrogen oxides converted into ammonia. In order to reduce as much as possible the quantity of nitrogen oxides converted into dihydrogen, the electrochemical cell described in these applications requires the use of noble materials (such as silver or platinum) for the electrodes as well as catalysts which are very selective.
  • noble materials such as silver or platinum
  • the present invention therefore provides, according to a first aspect, an electrochemical device for the conversion of nitrogen oxides NOx into ammonia and / or hydrogen comprising an air electrode, a fuel electrode and a solid electrolyte disposed between the air electrode and the fuel electrode characterized in that the fuel electrode comprises particles of a nitride-based material.
  • the inventors have indeed demonstrated that the presence of nitrides in the fuel electrode made it possible to promote the adsorption of nitrogen oxides on this electrode, thus promoting their conversion. Such a process makes it possible to obtain excellent levels of conversion of nitrogen oxides into ammonia and/or hydrogen, by operating with electrodes made of inexpensive materials such as ceramics.
  • the subject of the invention is an electrochemical process for the production of ammonia and dihydrogen from nitrogen oxides comprising:
  • the reactions implemented in the process of the invention can thus be carried out at high temperature (between 200 and 700° C.), thus significantly accelerating the electrochemical and electro-catalytic kinetics, and allowing the use of catalysts well less selective.
  • the method according to the invention also guarantees an excellent level of safety for its large-scale implementation due to the use of a solid electrolyte.
  • the device and the method according to the invention allow the production of ammonia and dihydrogen with great selectivity by the reduction of nitrogen oxides from the exhaust gases, without producing organic pollutants or toxic waste, using just water and electricity. Nitrogen oxides are thus converted into highly recoverable components, harmless to the environment.
  • FIG. 1 is a schematic representation of a fuel cell according to one embodiment of the invention.
  • the present invention provides an electrochemical device for the conversion of nitrogen oxides NOx into ammonia and/or dihydrogen.
  • the device includes an air electrode, a fuel electrode, and a solid electrolyte disposed between the air electrode and the fuel electrode.
  • the fuel electrode includes particles of a nitride material.
  • the electrochemical device comprises an air electrode forming an anode.
  • the air electrode preferably has a porous structure.
  • the air electrode allows the formation of protons during the oxidation of the proton donor compound.
  • the air electrode can thus be made of any material capable of allowing proton formation by oxidation of a proton donor compound.
  • the air electrode is made of a ceramic material.
  • the air electrode may in particular be composed of a material of the perovskite type, for example (Pr-)BaSrCoFe0 3 -d or LaSrCoFe0 3 -d, as well as its derivatives. It can also be composed of materials of the Ruddlesden-Popper type, for example (AB) 2 -xNi0 +d (where A may be praseodymium, niobium or lanthanum and B barium or strontium) or La 4 Ni 3 Oi 0 , as well as its derivatives. It may also be composed of oxides such as Pr 6 On or of double perovskite materials such as BaGdLaCoOe, Ba 2 FeMo0 6 as well as its derivatives. [0023]
  • the electrochemical device of [Fig. 1] further comprises a fuel electrode comprising particles of a nitride material.
  • the fuel electrode forms a cathode and preferably also has a porous structure.
  • the fuel electrode must allow ionic conduction, preferably proton, as well as electronic conduction. It can therefore be made of the same material allowing both ionic conduction, preferably proton, and electronic conduction.
  • the materials allowing ionic conduction, preferably protonic, can for example be a ceramic material.
  • the proton-conducting ceramics belong in particular to the family of perovskites of formula AB0 3 in which A is an element chosen from group II of the periodic table, B is an element chosen from cerium or group IVB of the periodic table. More particularly, perovskites in which A is chosen from barium Ba or strontium Sr, B is chosen from zirconium Zr or cerium Ce. These ceramics can be doped with yttrium (Y) or ytterbium (Yb).
  • the material of perovskite type is chosen from BaCeZrY(Yb)0 3 or Sr(Ce,Zr)X0 3 where X is a metal with or without doping, as well as its derivatives.
  • the material allowing ionic conduction, preferably proton can be an ABB ⁇ 3 type material, in which A is an element chosen from group II of the periodic table, B is an element chosen from cerium or the group IVB of the periodic table, B' is an element chosen from among the lanthanides or the group VIIIB of the periodic table. More particularly, materials of the ABB ⁇ 3 type, in which A is chosen from barium Ba or strontium Sr, B is chosen from zirconium Zr or cerium Ce, and B' is chosen from praseodymium Pr, vanadium V, Cobalt Co or neodymium Nd. These ceramics can be doped with yttrium (Y) or ytterbium (Yb).
  • the material allowing ionic conduction preferably protonic, can also be composed of materials based on Nd 2 Ce 2 0 7 with or without doping, as well as its derivatives.
  • the material allowing ionic conduction, preferably protonic, of the fuel electrode is the same as that constituting the electrolyte, which facilitates chemical compatibility.
  • the material allowing the ionic conduction, preferably protonic, of the fuel electrode can be different from that constituting the electrolyte.
  • the materials allowing the electronic conduction of the fuel electrode can themselves be metallic or ceramic materials.
  • the fuel electrode may consist of a single ceramic material, simultaneously allowing ionic and electronic conduction, or a mixture of at least one ionic conductive material, preferably proton conductor and at least one electronic conductive material.
  • this material will preferably be different from that of the air electrode.
  • the fuel electrode may be composed of a material of the ceramic-metal composite type (cermet) comprising for example nickel and an ionic material.
  • ceramic-metal composite type comprising for example nickel and an ionic material.
  • the fuel electrode when the fuel electrode consists of a single ceramic material, simultaneously allowing ionic and electronic conduction, it can also be composed of a material from the perovskite family of formula ABX 3 , where A is a rare earth and BX a metal, as well as its derivatives.
  • the fuel electrode can be manufactured in different ways.
  • the fuel electrode also serves as a mechanical support for the electrochemical device, it can be manufactured by “tape casting”, which consists of mixing electrode powders and/or organic compounds which are then cast under film form and then sintered. It can also be manufactured by “pressing”, which consists of compacting the electrode powders and then sintering them.
  • the fuel electrode is a thin layer, it can be manufactured by wet chemical means, that is to say by screen printing, by thermal spraying, by centrifugal coating or by induction by soaking a mixture electrode powders and/or organic compounds on the electrolyte layer. It can also be fabricated by physical routes, i.e. by physical vapor deposition or by chemical vapor deposition of precursors of the electrode material on the surface of the electrolyte.
  • the fuel electrode comprises particles of a nitride-based material.
  • the nitride-based material may be a metal nitride-based material preferably obtained from non-precious metals such as rare earths.
  • metals with oxidation number +III can be zirconium, titanium, tantalum, niobium, scandium, chromium, vanadium, manganese, copper, yttrium, molybdenum, silver, hafnium, gold, iron, cobalt, nickel, ruthenium, cesium, rhodium, palladium, platinum, osmium and iridium.
  • the choice of metal can be made according to their catalytic activity as well as the desired reaction product.
  • scandium and cesium are, for example, catalysts with high activity and selectivity towards ammonia under certain operating conditions.
  • the materials based on nitrides incorporated into the structure of the fuel electrode are in the form of particles, preferably nanoparticles, that is to say particles whose size is of the order of the nanometer.
  • their size and shape can vary, as long as the particles remain homogeneously present in the structure of the fuel electrode.
  • the larger the surface area of these nanoparticles (and therefore the smaller and smaller the particle size) the faster the kinetics of conversion of nitrogen oxides into ammonia and/or dihydrogen.
  • the materials based on nitrides can be prepared by heat treatment of nitride precursors, for example metal salts, under an atmosphere of ammonia or any other molecule containing nitrogen. Their size can be controlled by an appropriate adjustment of the heat treatment parameters (heating rate, temperature), or by the nature of the metallic precursors. Other parameters can also impact the particle size of materials based on nitride, such as for example the nature of the atmosphere during the heat treatment, the quantity of precursor, the microstructure of the electrode to be infiltrated.
  • nitrides or nitride precursors thus prepared can then be incorporated directly into the mixture making it possible to manufacture the fuel electrode, or alternatively infiltrated into the porous electrode.
  • the nitride-based material is preferably distributed homogeneously in the structure of the fuel electrode. This distribution makes it possible to increase the number of contact points allowing the reaction and therefore to provide a maximum reaction surface making it possible to increase the reaction kinetics of conversion of nitrogen oxides into ammonia and/or dihydrogen.
  • the device of the invention uses a solid electrolyte placed between the air electrode and the fuel electrode, and in contact with them.
  • the solid electrolyte allows the diffusion of protons from the air electrode to the fuel electrode and the separation between the anode and cathode compartments.
  • the electrolyte must be sufficiently dense and therefore weakly porous, or even non-porous.
  • the solid electrolyte may consist of a ceramic material, different from the material constituting the air electrode.
  • the proton-conducting ceramics can, as indicated above, be the same as those used for the fuel electrode. These proton-conducting ceramics belong in particular to the family of perovskites of formula AB0 3 in which A is an element chosen from group II of the periodic table, B is an element chosen from cerium or group IVB of the periodic table. More particularly, perovskites in which A is chosen from barium Ba or strontium Sr, B is chosen from zirconium Zr or cerium Ce. These ceramics can be doped with yttrium (Y) or ytterbium (Yb).
  • the material of perovskite type is chosen from BaCeZrY(Yb)0 3 or Sr(Ce,Zr)X0 3 where X is a metal with or without doping, as well as its derivatives.
  • ABB ⁇ 3 type in which A is an element chosen from group II of the periodic table, B is an element chosen from cerium or group IVB from the table periodic table, B' is an element chosen from the lanthanides or group VIIIB of the periodic table.
  • materials of the ABB ⁇ 3 type in which A is chosen from barium Ba or strontium Sr, B is chosen from zirconium Zr or cerium Ce, and B' is chosen from praseodymium Pr, vanadium V, cobalt Co or neodymium Nd. These ceramics can be doped with yttrium (Y) or ytterbium (Yb).
  • the electrolyte can also be composed of materials based on Nd 2 Ce 2 0 7 with or without doping, as well as its derivatives.
  • These categories of materials presented above for the manufacture of the electrolyte have the advantage of being suitable for the operating temperatures typically encountered in PCFC proton-conducting ceramic fuel cells, between 300° C. and 700° C. C, under reducing atmosphere and steam. They also possess a suitable crystallographic structure making it possible to obtain a barrier effect to contaminants, while possessing desired properties of preferentially exclusive conduction of protons.
  • these compounds thus offer great mechanical and physico-chemical stability to the electrochemical device with a proton conductor which is equipped with them.
  • the electrochemical device according to the invention can be used as a fuel cell. More particularly, it may be an electrolyser or a protonic ceramic cell (PCC for “Protonic Ceramic Cell”), in particular a protonic conductive fuel cell (PCFC, protonic conductive fuel cell) or a protonic conductive ceramic electrolytic cell (PCEC for “Protonic Ceramic Electrolysis Cell”), the latter allowing the production of pure dihydrogen from water.
  • PCC Protonic Ceramic Cell
  • PCFC protonic conductive fuel cell
  • PCEC protonic conductive ceramic electrolytic cell
  • the invention proposes an electrochemical process for the production of ammonia and dihydrogen from nitrogen oxides comprising:
  • the electrochemical process is preferably operated exclusively in the gas phase, that is to say that all the reactants and products are in the gas phase.
  • the nitrogen oxides can be composed of a mixture of nitric oxide of formula NO, of nitrogen dioxide of formula N0 2 and/or of nitrous oxide of formula N 2 0. They can be generalized under the formula N y O x.
  • the proton donor compound used in the electrochemical process of the invention can be any compound capable of releasing a proton during its oxidation at the air electrode.
  • the proton donor compound can, for example, be water, dihydrogen, methane, etc.
  • the proton donor compound is water, more preferably in the form of water vapour.
  • the oxidation of the water vapor at the level of the air electrode further leads to the formation of a water vapor enriched in dioxygen, which can also be recoverable.
  • FIG. 1 schematically illustrates the supply of water vapor at the level of the air electrode. Water vapor is oxidized to dioxygen according to the following half-equation of [Reaction Formula 1]:
  • the molecules of the proton donor, and in particular water, are oxidized to produce protons, dioxygen and electrons.
  • the stoichiometry of the products formed may vary.
  • the protons having passed through the electrolyte react with the nitrogen atoms of the particles of the nitride-based material arranged in the structure of the fuel electrode in order to form ammonia.
  • the ammonia thus formed is desorbed leaving behind a nitrogen atom vacancy on the fuel electrode.
  • the nitrogen oxides of formula N y O x in the gas phase brought to the level of the fuel electrode are adsorbed via their nitrogen on the gap created in the fuel electrode.
  • the oxygen atoms of the adsorbed N y O x also react with the protons, thus leading to the dissociation of the N y O x and producing water vapour.
  • the electrochemical process for converting nitrogen oxides into ammonia and/or dihydrogen can be carried out at high temperature, in particular at a temperature between 200° C. and 700° C., preferably between 250° C. and 650° C. °C and even more preferably between 300°C and 600°C. This temperature range makes it possible to maximize the proton conduction of the solid electrolyte as well as the electrochemical and electrocatalytic kinetics.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Environmental & Geological Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Analytical Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Catalysts (AREA)
  • Inert Electrodes (AREA)

Abstract

The present invention relates to an electrochemical device for converting nitrogen oxides NOx into ammonia and/or dihydrogen. The device comprises an air electrode, a fuel electrode and a solid electrolyte which is arranged between the air electrode and the fuel electrode. The fuel electrode comprises particles of a nitride-based material on its surface in contact with the electrolyte. The invention also relates to a method for producing ammonia and dihydrogen from nitrogen oxides by means of the electrochemical device.

Description

Description Description
Titre : Dispositif électrochimique pour la conversion d’oxydes d’azotes NOx en ammoniac et/ou hydrogène Title: Electrochemical device for the conversion of nitrogen oxides NOx into ammonia and/or hydrogen
Domaine technique [0001] La présente invention relève du domaine des dispositifs électrochimiques pour la conversion d’oxydes d’azote en ammoniac et dihydrogène. Technical field [0001] The present invention relates to the field of electrochemical devices for the conversion of nitrogen oxides into ammonia and dihydrogen.
Technique antérieure Prior technique
[0002] Les oxydes d’azote (NOx), notamment le monoxyde d’azote NO, le dioxyde d’azote N02 et le protoxyde d’azote N20, sont des polluants atmosphériques bien connus. La présence d’oxydes d’azote dans l’atmosphère contribue à la formation de smog (brume épaisse limitant la visibilité), de particules fines et de pluies acides, ainsi qu’à la destruction de la couche d’ozone et entraîne des risques sanitaires importants comme, par exemple, des maladies respiratoires. En particulier, dans les pays tels que la Chine et l’Inde où l’économie croît rapidement, les activités industrielles excessives entraînent l’émission d’une grande quantité d’oxydes d’azote, affectant aussi bien le pays à l’origine de ces émissions que les pays voisins. Les oxydes d’azote sont généralement produits par la réaction entre l’azote et l’oxygène à haute température pendant la combustion de carburants tels que le diesel, l’hydrogène ou le gaz naturel. La réduction de la quantité d’oxydes d’azote présents dans l’atmosphère est un défi majeur des pays industrialisés pour permettre de poursuivre les avancées technologiques dans le domaine de la combustion et pour toutes les technologies impliquant la formation d’oxydes d’azotes. Nitrogen oxides (NOx), including nitric oxide NO, nitrogen dioxide N0 2 and nitrous oxide N 2 0, are well-known air pollutants. The presence of nitrogen oxides in the atmosphere contributes to the formation of smog (thick haze limiting visibility), fine particles and acid rain, as well as to the destruction of the ozone layer and leads to risks health issues such as, for example, respiratory diseases. In particular, in countries such as China and India where the economy is growing rapidly, excessive industrial activities lead to the emission of a large amount of nitrogen oxides, affecting both the country of origin of these emissions than neighboring countries. Nitrogen oxides are generally produced by the reaction between nitrogen and oxygen at high temperatures during the combustion of fuels such as diesel, hydrogen or natural gas. Reducing the quantity of nitrogen oxides present in the atmosphere is a major challenge for industrialized countries to enable technological advances in the field of combustion and for all technologies involving the formation of nitrogen oxides to be pursued. .
[0003] La décomposition des oxydes d’azote par réduction sélective catalytique (SCR) utilise de l’ammoniac gazeux et de l’urée pour convertir les oxydes d’azote en azote et en eau. La SCR est la solution la plus utilisée dans les centrales thermiques brûlant de la biomasse, des déchets ou du charbon, dans les industries pétrochimiques, dans les industries de fer et d’acier mais aussi dans les transports comme les bateaux, les camions et voitures diesels du fait de la réduction de la taille du réacteur et de la diminution des prix du catalyseur. Cependant, l’utilisation de l’urée comme réactif entraîne la formation de dioxyde de carbone, tandis que l’utilisation d’ammoniac entraîne la formation indirecte de gaz à effet de serre via le procédé de Haber-Bosch permettant de synthétiser l’ammoniac. Dans les deux cas, les produits issus de la SCR ne sont pas des composants stratégiques pouvant être valorisés et convertis en source d’énergie. [0003] The decomposition of nitrogen oxides by selective catalytic reduction (SCR) uses gaseous ammonia and urea to convert nitrogen oxides into nitrogen and water. SCR is the most used solution in thermal power plants burning biomass, waste or coal, in petrochemical industries, in iron and steel industries but also in transport such as boats, trucks and cars diesels due to reduction in reactor size and lower catalyst prices. However, the use of urea as a reagent results in the formation of carbon dioxide, while the use of ammonia results in the indirect formation of greenhouse gases via the Haber-Bosch process for synthesizing ammonia . In both cases, SCR products are not strategic components that can be recovered and converted into an energy source.
[0004] Outre la SCR, il existe d’autres techniques permettant l’élimination des oxydes d’azote. [0005] Les absorbants de NOx, aussi appelés piège à NOx (LNT), sont composés de catalyseurs à base de platine ou de ruthénium et d’un absorbant tel que l’oxyde baryum. Le catalyseur permet l’oxydation des NOx en dioxydes d’azote qui sont ensuite fixés par le baryum pour former du Ba(N03)2. Une phase de purge a ensuite lieu sous atmosphère réduite durant laquelle les NOx sont réduits en azote. Les LNT sont des procédés cycliques composés d’une phase de piège suivi d’une phase de purge, et sont principalement utilisés dans les transports. [0004] In addition to SCR, there are other techniques allowing the elimination of nitrogen oxides. [0005] NOx absorbers, also called NOx traps (LNT), are composed of catalysts based on platinum or ruthenium and an absorbent such as barium oxide. The catalyst allows the oxidation of NOx to nitrogen dioxides which are then fixed by the barium to form Ba(N0 3 ) 2 . A purge phase then takes place under a reduced atmosphere during which the NOx is reduced to nitrogen. LNTs are cyclic processes consisting of a trap phase followed by a purge phase, and are mainly used in transports.
[0006] La recirculation des gaz d’échappement (EGR) est une technique qui consiste à renvoyer les gaz d’échappement vers les cylindres moteurs ; elle est principalement utilisée dans les transports. [0006] Exhaust gas recirculation (EGR) is a technique which consists of returning the exhaust gases to the engine cylinders; it is mainly used in transport.
[0007] Les brûleurs sans flamme (FLOX® burners) permettent d’empêcher la formation d’oxydes d’azote. Ils diffèrent des brûleurs conventionnels par la capacité de faire recirculer les gaz d’échappements dans la chambre de combustion et de les mélanger avec l’air de combustion permettant ainsi d’empêcher la formation d’un front de flamme. Grâce à une température élevée (d’au moins 800°C) ainsi que d’une répartition homogène de la distribution de température, la formation d’oxydes d’azote, qui intervient généralement à la pointe de la flamme de combustion du fait de son pic de température, peut être limitée. [0007] Flameless burners (FLOX® burners) prevent the formation of nitrogen oxides. They differ from conventional burners in the ability to recirculate the exhaust gases into the combustion chamber and mix them with the combustion air, thus preventing the formation of a flame front. Thanks to a high temperature (at least 800°C) as well as a homogeneous distribution of the temperature distribution, the formation of nitrogen oxides, which generally occurs at the tip of the combustion flame due to its temperature peak, can be limited.
[0008] Pour les centrales utilisant du fioul lourd, les brûleurs sans flamme à eux seuls ne permettent pas d’atteindre les diminutions d’émissions de polluants requises. En effet, le fioul lourd, lors de sa combustion, n’est pas brûlé complètement. L’utilisation d’une émulsion d’eau dans le fioul permet ainsi de brûler complètement le fioul lourd. Les gouttelettes d’eau explosent dès que le fioul commence à brûler entraînant la fragmentation du fioul en microgouttelettes pouvant être correctement brûlées. Cette combustion complète permet de réduire les émissions de polluants, dont celles d’oxydes d’azote. [0008] For power plants using heavy fuel oil, flameless burners alone do not make it possible to achieve the reductions in pollutant emissions required. Indeed, heavy fuel oil, during its combustion, is not completely burned. The use of a water-in-fuel emulsion thus makes it possible to completely burn heavy fuel oil. The water droplets explode as soon as the fuel oil begins to burn causing the fuel oil to break down into micro-droplets that can be properly burned. This complete combustion reduces pollutant emissions, including nitrogen oxides.
[0009] Le monoxyde d’azote (NO) représente environ 95% des oxydes d’azote et peut être oxydé ou réduit en lui retirant ou en lui donnant des électrons. Le monoxyde d’azote peut donc être converti en un composé azoté sans danger pour l’environnement. Quand il est oxydé en recevant des électrons, il peut être converti en ion nitrite (N02 ) et en ion nitrate (N03 ). Quand il est réduit, il peut être converti en diazote (N2), en hydroxylamine (NH2OH), en hydrazine (N2H4) et en ammoniac (NH3). Le monoxyde d’azote peut être sélectivement converti en un composé azoté spécifique, par exemple, l’ammoniac à condition de contrôler précisément les paramètres opératoires mis en oeuvre. [0010] Les demandes de brevet américain No. 2020/0002180 et coréen No. 20200090668 décrivent, par exemple, un système électrochimique permettant de produire de l’ammoniac à partir d’oxydes d’azote. Plus précisément, ces documents proposent une cellule électrochimique permettant la réduction des oxydes d’azote à la cathode, pendant que de l’eau est oxydée à l’anode. Un électrolyte permet quant à lui la conduction des protons. La cellule électrochimique fonctionne à température ambiante sous pression atmosphérique, et permet la formation d’ammoniac et de dihydrogène. Pour favoriser la sélectivité en ammoniac, l’invention présentée dans ces documents propose de complexer les oxydes d’azote avec des complexes métalliques présents dans l’électrolyte, les complexes d’oxydes d’azotes ainsi formés seront ensuite réduits. L’utilisation de complexes d’oxydes métalliques permet de favoriser la conversion d’oxydes d’azotes en ammoniac plutôt qu’en dihydrogène à basse température et d’utiliser des réactifs peu coûteux comme l’eau et l’air. En effet, la réaction conduisant à la production de dihydrogène consomme une grande partie de l’énergie apportée au système et diminue la quantité d’oxydes d’azote convertie en ammoniac. Afin de réduire au maximum la quantité d’oxydes d’azote convertie en dihydrogène, la cellule électrochimique décrite dans ces demandes nécessite la mise en oeuvre de matériaux nobles (tels que l’argent ou le platine) pour les électrodes ainsi que des catalyseurs très sélectifs. [0009] Nitrogen monoxide (NO) represents about 95% of nitrogen oxides and can be oxidized or reduced by removing electrons from it or giving it electrons. Nitric oxide can therefore be converted into an environmentally friendly nitrogen compound. When it is oxidized by receiving electrons, it can be converted into nitrite ion (N0 2 ) and nitrate ion (N0 3 ). When reduced, it can be converted into dinitrogen (N 2 ), hydroxylamine (NH 2 OH), hydrazine (N 2 H 4 ) and ammonia (NH 3 ). Nitrogen monoxide can be selectively converted into a specific nitrogenous compound, for example ammonia, provided that the operating parameters used are precisely controlled. [0010] American patent applications No. 2020/0002180 and Korean patent application No. 20200090668 describe, for example, an electrochemical system making it possible to produce ammonia from nitrogen oxides. More precisely, these documents propose an electrochemical cell allowing the reduction of nitrogen oxides at the cathode, while water is oxidized at the anode. An electrolyte allows the conduction of protons. The electrochemical cell operates at ambient temperature under atmospheric pressure, and allows the formation of ammonia and dihydrogen. To promote ammonia selectivity, the invention presented in these documents proposes complexing the nitrogen oxides with metal complexes present in the electrolyte, the nitrogen oxide complexes thus formed will then be reduced. The use of metal oxide complexes makes it possible to promote the conversion of nitrogen oxides into ammonia rather than into dihydrogen at low temperature and to use inexpensive reagents such as water and air. Indeed, the reaction leading to the production of dihydrogen consumes a large part of the energy supplied to the system and reduces the quantity of nitrogen oxides converted into ammonia. In order to reduce as much as possible the quantity of nitrogen oxides converted into dihydrogen, the electrochemical cell described in these applications requires the use of noble materials (such as silver or platinum) for the electrodes as well as catalysts which are very selective.
[0011] Il demeure donc un besoin pour un procédé permettant la conversion d’oxydes d’azote en composés valorisables tels que l’ammoniac et le dihydrogène, qui soit économique, en particulier qui n’impose pas la mise en oeuvre de matériaux coûteux tels que des métaux nobles pour la préparation des électrodes, ni d’opérer avec des catalyseurs hautement sélectifs, tout en garantissant des niveaux de conversion suffisamment élevés. Résumé [0011] There therefore remains a need for a process allowing the conversion of nitrogen oxides into recoverable compounds such as ammonia and dihydrogen, which is economical, in particular which does not require the use of expensive materials. such as noble metals for the preparation of the electrodes, nor to operate with highly selective catalysts, while guaranteeing sufficiently high levels of conversion. Summary
[0012] La présente invention propose donc, selon un premier aspect, un dispositif électrochimique pour la conversion d’oxydes d’azote NOx en ammoniac et/ou hydrogène comprenant une électrode à air, une électrode à combustible et un électrolyte solide disposé entre l’électrode à air et l’électrode à combustible caractérisé en ce que l’électrode à combustible comprend des particules d’un matériau à base de nitrures. The present invention therefore provides, according to a first aspect, an electrochemical device for the conversion of nitrogen oxides NOx into ammonia and / or hydrogen comprising an air electrode, a fuel electrode and a solid electrolyte disposed between the air electrode and the fuel electrode characterized in that the fuel electrode comprises particles of a nitride-based material.
[0013] Les inventeurs ont en effet mis en évidence que la présence de nitrures dans l’électrode à combustible permettait de favoriser l’adsorption des oxydes d’azotes sur cette électrode, favorisant ainsi leur conversion. Un tel procédé permet d’obtenir d’excellents niveaux de conversion des oxydes d’azote en ammoniac et/ou en hydrogène, en opérant avec des électrodes constituées de matériaux peu onéreux tels que des céramiques. [0013] The inventors have indeed demonstrated that the presence of nitrides in the fuel electrode made it possible to promote the adsorption of nitrogen oxides on this electrode, thus promoting their conversion. Such a process makes it possible to obtain excellent levels of conversion of nitrogen oxides into ammonia and/or hydrogen, by operating with electrodes made of inexpensive materials such as ceramics.
[0014] Selon un second aspect, l’invention a pour objet un procédé électrochimique de production d’ammoniac et de dihydrogène à partir d’oxydes d’azote comprenant : According to a second aspect, the subject of the invention is an electrochemical process for the production of ammonia and dihydrogen from nitrogen oxides comprising:
- l’oxydation, au niveau de l’électrode à air, d’un composé donneur de protons pour former des protons, - the oxidation, at the level of the air electrode, of a proton donor compound to form protons,
- la circulation des protons formés au niveau de l’électrode à l’air à travers l’électrolyte solide vers l’électrode à combustible et - the circulation of the protons formed at the air electrode through the solid electrolyte towards the fuel electrode and
- la réduction des oxydes d’azote, au niveau de l’électrode à combustible, pour former de l’ammoniac et/ou du dihydrogène ainsi que de l’eau et du diazote. - the reduction of nitrogen oxides, at the level of the fuel electrode, to form ammonia and/or dihydrogen as well as water and dinitrogen.
[0015] Les réactions mises en oeuvre dans le procédé de l’invention peuvent ainsi être opérées à haute température (entre 200 et 700°C), accélérant ainsi significativement les cinétiques électrochimiques et électro-catalytiques, et permettant l’utilisation de catalyseurs bien moins sélectifs. Le procédé selon l’invention garantit en outre un excellent niveau de sécurité pour sa mise en oeuvre à grande échelle du fait de l’utilisation d’un électrolyte solide. The reactions implemented in the process of the invention can thus be carried out at high temperature (between 200 and 700° C.), thus significantly accelerating the electrochemical and electro-catalytic kinetics, and allowing the use of catalysts well less selective. The method according to the invention also guarantees an excellent level of safety for its large-scale implementation due to the use of a solid electrolyte.
[0016] Le dispositif et le procédé selon l’invention permettent la production d’ammoniac et de dihydrogène avec une grande sélectivité par la réduction des oxydes d’azote provenant des gaz d’échappement, sans produire de polluants organiques ou de déchets toxiques, en utilisant simplement de l’eau et de l’électricité. Les oxydes d’azote sont ainsi convertis en composants hautement valorisables, sans danger pour l’environnement.The device and the method according to the invention allow the production of ammonia and dihydrogen with great selectivity by the reduction of nitrogen oxides from the exhaust gases, without producing organic pollutants or toxic waste, using just water and electricity. Nitrogen oxides are thus converted into highly recoverable components, harmless to the environment.
Brève description des dessins Brief description of the drawings
[0017] D’autres caractéristiques, détails et avantages de la présente invention apparaîtront à la lecture de la description détaillée ci-après, et à l’analyse des dessins annexés, sur lesquels : Other characteristics, details and advantages of the present invention will appear on reading the detailed description below, and on analyzing the appended drawings, in which:
[0018] [Fig. 1] est une représentation schématique d’une pile à combustible selon un mode de réalisation de l’invention. [0018] [Fig. 1] is a schematic representation of a fuel cell according to one embodiment of the invention.
Description des modes de réalisation Description of embodiments
[0019] La présente invention propose un dispositif électrochimique pour la conversion d’oxydes d’azote NOx en ammoniac et/ou en dihydrogène. Le dispositif comprend une électrode à air, une électrode à combustible et un électrolyte solide disposé entre l’électrode à air et l’électrode à combustible. L’électrode à combustible comprend des particules d’un matériau à base de nitrures. [0020] Comme illustré sur la [Fig. 1], le dispositif électrochimique comprend une électrode à air formant une anode. L’électrode à air présente de préférence une structure poreuse. The present invention provides an electrochemical device for the conversion of nitrogen oxides NOx into ammonia and/or dihydrogen. The device includes an air electrode, a fuel electrode, and a solid electrolyte disposed between the air electrode and the fuel electrode. The fuel electrode includes particles of a nitride material. [0020] As illustrated in [Fig. 1], the electrochemical device comprises an air electrode forming an anode. The air electrode preferably has a porous structure.
[0021] De préférence, l’électrode à air permet la formation de protons lors de l’oxydation du composé donneur de protons. L’électrode à air peut ainsi être constituée de tout matériau capable de permettre la formation de proton par oxydation d’un composé donneur de proton. De préférence, l’électrode à air est constituée d’un matériau céramique. [0021] Preferably, the air electrode allows the formation of protons during the oxidation of the proton donor compound. The air electrode can thus be made of any material capable of allowing proton formation by oxidation of a proton donor compound. Preferably, the air electrode is made of a ceramic material.
[0022] L’électrode à air peut notamment être composée d’un matériau de type pérovskite, par exemple du (Pr-)BaSrCoFe03-d ou du LaSrCoFe03-d, ainsi que de ses dérivés. Elle peut aussi être composé de matériaux de type Ruddlesden-Popper, par exemple du (AB)2-xNi0 +d (où A peut-être du praséodyme, du niobium ou du lanthane et B du baryum ou du strontium) ou du La4Ni3Oi0, ainsi que de ses dérivés. Elle peut encore être composée d’oxydes tel que du Pr6On ou de matériaux pérovskites doubles tels que du BaGdLaCoOe du Ba2FeMo06 ainsi que de ses dérivés. [0023] Le dispositif électrochimique de la [Fig. 1] comprend en outre une électrode à combustible comprenant des particules d’un matériau à base de nitrures. The air electrode may in particular be composed of a material of the perovskite type, for example (Pr-)BaSrCoFe0 3 -d or LaSrCoFe0 3 -d, as well as its derivatives. It can also be composed of materials of the Ruddlesden-Popper type, for example (AB) 2 -xNi0 +d (where A may be praseodymium, niobium or lanthanum and B barium or strontium) or La 4 Ni 3 Oi 0 , as well as its derivatives. It may also be composed of oxides such as Pr 6 On or of double perovskite materials such as BaGdLaCoOe, Ba 2 FeMo0 6 as well as its derivatives. [0023] The electrochemical device of [Fig. 1] further comprises a fuel electrode comprising particles of a nitride material.
[0024] L’électrode à combustible forme une cathode et présente de préférence également une structure poreuse. L’électrode à combustible doit permettre la conduction ionique, de préférence protonique, ainsi que la conduction électronique. Elle peut donc être constituée d’un même matériau permettant à la fois la conduction ionique, de préférence protonique, et la conduction électronique. The fuel electrode forms a cathode and preferably also has a porous structure. The fuel electrode must allow ionic conduction, preferably proton, as well as electronic conduction. It can therefore be made of the same material allowing both ionic conduction, preferably proton, and electronic conduction.
[0025] Les matériaux permettant la conduction ionique, de préférence protonique, peuvent par exemple être un matériau céramique. The materials allowing ionic conduction, preferably protonic, can for example be a ceramic material.
[0026] Les céramiques conductrices de protons appartiennent notamment à la famille des pérovskites de formule AB03 dans lequel A est un élément choisi parmi le groupe II du tableau périodique, B est un élément choisi parmi le cérium ou le groupe IVB du tableau périodique. Plus particulièrement, des pérovskites dans lesquelles A est choisi parmi le baryum Ba ou le strontium Sr, B est choisi parmi le zirconium Zr ou le cérium Ce. Ces céramiques peuvent être dopées à l'yttrium (Y) ou l'ytterbium (Yb). De préférence, le matériau de type pérovskite est choisi parmi BaCeZrY(Yb)03 ou du Sr(Ce,Zr)X03 où X est un métal avec ou sans dopage, ainsi que de ses dérivés. The proton-conducting ceramics belong in particular to the family of perovskites of formula AB0 3 in which A is an element chosen from group II of the periodic table, B is an element chosen from cerium or group IVB of the periodic table. More particularly, perovskites in which A is chosen from barium Ba or strontium Sr, B is chosen from zirconium Zr or cerium Ce. These ceramics can be doped with yttrium (Y) or ytterbium (Yb). Preferably, the material of perovskite type is chosen from BaCeZrY(Yb)0 3 or Sr(Ce,Zr)X0 3 where X is a metal with or without doping, as well as its derivatives.
[0027] Alternativement, le matériau permettant la conduction ionique, de préférence protonique, peut être un matériau de type ABBΌ3, dans lequel A est un élément choisi parmi le groupe II du tableau périodique, B est un élément choisi parmi le cérium ou le groupe IVB du tableau périodique, B' est un élément choisi parmi les lanthanides ou le groupe VIIIB du tableau 10 périodique. Plus particulièrement, des matériaux de type ABBΌ3, dans lesquels A est choisi parmi le baryum Ba ou le strontium Sr, B est choisi parmi le zirconium Zr ou le cérium Ce, et B' est choisi parmi le praséodyme Pr, le vanadium V, le Cobalt Co ou le néodyme Nd. Ces céramiques peuvent être dopées à l'yttrium (Y) ou l'ytterbium (Yb). Alternatively, the material allowing ionic conduction, preferably proton, can be an ABBΌ3 type material, in which A is an element chosen from group II of the periodic table, B is an element chosen from cerium or the group IVB of the periodic table, B' is an element chosen from among the lanthanides or the group VIIIB of the periodic table. More particularly, materials of the ABBΌ3 type, in which A is chosen from barium Ba or strontium Sr, B is chosen from zirconium Zr or cerium Ce, and B' is chosen from praseodymium Pr, vanadium V, Cobalt Co or neodymium Nd. These ceramics can be doped with yttrium (Y) or ytterbium (Yb).
[0028] Enfin, le matériau permettant la conduction ionique, de préférence protonique, peut aussi être composé de matériaux à base de Nd2Ce207 avec ou sans dopage, ainsi que de ses dérivés. Finally, the material allowing ionic conduction, preferably protonic, can also be composed of materials based on Nd 2 Ce 2 0 7 with or without doping, as well as its derivatives.
[0029] Selon un mode préféré de réalisation, le matériau permettant la conduction ionique, de préférence protonique, de l’électrode à combustible est le même que celui constituant l’électrolyte ce qui facilite la compatibilité chimique. Alternativement, le matériau permettant la conduction ionique, de préférence protonique, de l’électrode à combustible peut être différent de celui constituant l’électrolyte. According to a preferred embodiment, the material allowing ionic conduction, preferably protonic, of the fuel electrode is the same as that constituting the electrolyte, which facilitates chemical compatibility. Alternatively, the material allowing the ionic conduction, preferably protonic, of the fuel electrode can be different from that constituting the electrolyte.
[0030] Les matériaux permettant la conduction électronique de l’électrode à combustible peuvent quant à eux être des matériaux métalliques ou céramiques. [0030] The materials allowing the electronic conduction of the fuel electrode can themselves be metallic or ceramic materials.
[0031] Ainsi, l’électrode à combustible peut être constituée d’un unique matériau céramique, permettant simultanément la conduction ionique et électronique, ou un mélange d’au moins un matériau conducteur ionique, de préférence conducteur protonique et d’au moins un matériau conducteur électronique. Lorsque l’électrode à combustible est constituée d’un unique matériau céramique, permettant simultanément la conduction ionique et électronique, celui-ci sera de préférence différent de celui de l’électrode à air. Thus, the fuel electrode may consist of a single ceramic material, simultaneously allowing ionic and electronic conduction, or a mixture of at least one ionic conductive material, preferably proton conductor and at least one electronic conductive material. When the fuel electrode consists of a single ceramic material, simultaneously allowing ionic and electronic conduction, this material will preferably be different from that of the air electrode.
[0032] Selon un mode particulier de réalisation, l’électrode à combustible peut être composée d’un matériau de type composite céramique-métal (cermet) comprenant par exemple du nickel et un matériau ionique. [0032] According to a particular embodiment, the fuel electrode may be composed of a material of the ceramic-metal composite type (cermet) comprising for example nickel and an ionic material.
[0033] Selon un mode plus particulier de réalisation, lorsque l’électrode à combustible est constituée d’un unique matériau céramique, permettant simultanément la conduction ionique et électronique, elle peut aussi être composée d’un matériau de la famille des pérovskites de formule ABX3, où A est une terre rare et BX un métal, ainsi que de ses dérivés. [0033] According to a more particular embodiment, when the fuel electrode consists of a single ceramic material, simultaneously allowing ionic and electronic conduction, it can also be composed of a material from the perovskite family of formula ABX 3 , where A is a rare earth and BX a metal, as well as its derivatives.
[0034] L’électrode à combustible peut être fabriquée de différentes manières. [0034] The fuel electrode can be manufactured in different ways.
[0035] Si l’électrode à combustible sert aussi de support mécanique pour le dispositif électrochimique, elle peut être fabriqué par « tape casting » qui consiste à mélanger des poudres d’électrodes et/ou des composés organiques qui sont ensuite coulées sous forme de film puis frittées. Elle peut aussi être fabriquée par « pressing », qui consiste à réaliser un compactage des poudres d’électrode puis de les fritter. If the fuel electrode also serves as a mechanical support for the electrochemical device, it can be manufactured by "tape casting", which consists of mixing electrode powders and/or organic compounds which are then cast under film form and then sintered. It can also be manufactured by "pressing", which consists of compacting the electrode powders and then sintering them.
[0036] Si l’électrode à combustible est une couche mince, elle peut être fabriquée par voies chimiques humides, c’est-à-dire par sérigraphie, par projection thermique, par enduction centrifuge ou encore par induction par trempage d’un mélange de poudres d’électrode et/ou de composés organiques sur la couche d’électrolyte. Elle peut aussi être fabriquée par des routes physiques, c’est-à-dire par dépôt physique par phase vapeur ou par dépôt chimique en phase vapeur de précurseurs du matériau d’électrode sur la surface de l’électrolyte. [0037] L’électrode à combustible comprend des particules d’un matériau à base de nitrures. Le matériau à base de nitrures peut être un matériau à base de nitrures métalliques obtenu de préférence à partir de métaux non précieux tels que les terres rares. De manière non exhaustive, les métaux de nombre d’oxydation +III peuvent être le zirconium, le titane, le tantale, le niobium, le scandium, le chrome, le vanadium, le manganèse, le cuivre, l’yttrium, le molybdène, l’argent, l’hafnium, l’or, le fer, le cobalt, le nickel, le ruthénium, le césium, le rhodium, le palladium, le platine, l’osmium et l’iridium. Le choix du métal peut se faire en fonction de leur activité catalytique ainsi que du produit de réaction recherché. Ainsi, le scandium et le césium sont par exemple, des catalyseurs avec une forte activité et une sélectivité envers l’ammoniac dans certaines conditions opératoires. If the fuel electrode is a thin layer, it can be manufactured by wet chemical means, that is to say by screen printing, by thermal spraying, by centrifugal coating or by induction by soaking a mixture electrode powders and/or organic compounds on the electrolyte layer. It can also be fabricated by physical routes, i.e. by physical vapor deposition or by chemical vapor deposition of precursors of the electrode material on the surface of the electrolyte. [0037] The fuel electrode comprises particles of a nitride-based material. The nitride-based material may be a metal nitride-based material preferably obtained from non-precious metals such as rare earths. Non-exhaustively, metals with oxidation number +III can be zirconium, titanium, tantalum, niobium, scandium, chromium, vanadium, manganese, copper, yttrium, molybdenum, silver, hafnium, gold, iron, cobalt, nickel, ruthenium, cesium, rhodium, palladium, platinum, osmium and iridium. The choice of metal can be made according to their catalytic activity as well as the desired reaction product. Thus, scandium and cesium are, for example, catalysts with high activity and selectivity towards ammonia under certain operating conditions.
[0038] Les matériaux à base de nitrures incorporés dans la structure de l’électrode à combustible, se présentent sous la forme de particules, de préférence de nanoparticules, c’est-à-dire des particules dont la taille est de l’ordre du nanomètre. Leur taille et leur forme peuvent toutefois varier, tant que les particules restent présentes de manière homogène dans la structure de l’électrode à combustible. Il faut cependant garder à l’esprit que plus la surface de ces nanoparticules est grande (et donc plus la taille des particules et petite), plus la cinétique de conversion des oxydes d’azote en ammoniac et/ou en dihydrogène est rapide. The materials based on nitrides incorporated into the structure of the fuel electrode, are in the form of particles, preferably nanoparticles, that is to say particles whose size is of the order of the nanometer. However, their size and shape can vary, as long as the particles remain homogeneously present in the structure of the fuel electrode. However, it should be borne in mind that the larger the surface area of these nanoparticles (and therefore the smaller and smaller the particle size), the faster the kinetics of conversion of nitrogen oxides into ammonia and/or dihydrogen.
[0039] Les matériaux à base de nitrures peuvent être préparés par traitement thermique de précurseurs de nitrures, par exemple des sels métalliques, sous atmosphère d’ammoniac ou de toute autre molécule contenant de l’azote. Leur taille peut être contrôlée par un ajustement approprié des paramètres du traitement thermique (vitesse de chauffe, température), ou par la nature des précurseurs métalliques. D’autres paramètres peuvent également impacter la taille des particules de matériaux à base de nitrure, comme par exemple la nature de l’atmosphère lors du traitement thermique, la quantité de précurseur, la microstructure de l’électrode à infiltrer. The materials based on nitrides can be prepared by heat treatment of nitride precursors, for example metal salts, under an atmosphere of ammonia or any other molecule containing nitrogen. Their size can be controlled by an appropriate adjustment of the heat treatment parameters (heating rate, temperature), or by the nature of the metallic precursors. Other parameters can also impact the particle size of materials based on nitride, such as for example the nature of the atmosphere during the heat treatment, the quantity of precursor, the microstructure of the electrode to be infiltrated.
[0040] Les nitrures ou les précurseurs de nitrures ainsi préparés peuvent ensuite être incorporés directement dans le mélange permettant de fabriquer l’électrode à combustible, ou alternativement infiltrés dans l’électrode poreuse. The nitrides or nitride precursors thus prepared can then be incorporated directly into the mixture making it possible to manufacture the fuel electrode, or alternatively infiltrated into the porous electrode.
[0041] Le matériau à base de nitrure est, de préférence, réparti de manière homogène dans la structure de l’électrode à combustible. Cette répartition permet d'augmenter le nombre de points contacts permettant la réaction et donc de fournir une surface réactionnelle maximale permettant d’augmenter la cinétique réactionnelle de conversion des oxydes d’azote en ammoniac et/ou en dihydrogène. The nitride-based material is preferably distributed homogeneously in the structure of the fuel electrode. This distribution makes it possible to increase the number of contact points allowing the reaction and therefore to provide a maximum reaction surface making it possible to increase the reaction kinetics of conversion of nitrogen oxides into ammonia and/or dihydrogen.
[0042] Outre l’électrode à air et l’électrode à combustible, le dispositif de l’invention met en oeuvre un électrolyte solide disposé entre l’électrode à air et l’électrode à combustible, et en contact avec celles-ci. L’électrolyte solide permet la diffusion des protons depuis l’électrode à air vers l’électrode à combustible et la séparation entre les compartiments anodique et cathodique. Pour séparer efficacement les phases gazeuses des deux compartiments, l’électrolyte doit être suffisamment dense et donc faiblement poreux, voire non poreux. In addition to the air electrode and the fuel electrode, the device of the invention uses a solid electrolyte placed between the air electrode and the fuel electrode, and in contact with them. The solid electrolyte allows the diffusion of protons from the air electrode to the fuel electrode and the separation between the anode and cathode compartments. To effectively separate the gaseous phases of the two compartments, the electrolyte must be sufficiently dense and therefore weakly porous, or even non-porous.
[0043] L’électrolyte solide peut être constituée d’un matériau céramique, différent du matériau constituant l’électrode à air. The solid electrolyte may consist of a ceramic material, different from the material constituting the air electrode.
[0044] Les céramiques conductrices de protons peuvent, comme indiqué précédemment, être les mêmes que celles mises en oeuvre pour l’électrode à combustible. Ces céramiques conductrices de protons appartiennent notamment à la famille des pérovskites de formule AB03 dans lequel A est un élément choisi parmi le groupe II du tableau périodique, B est un élément choisi parmi le cérium ou le groupe IVB du tableau périodique. Plus particulièrement, des pérovskites dans lesquelles A est choisi parmi le baryum Ba ou le strontium Sr, B est choisi parmi le zirconium Zr ou le cérium Ce. Ces céramiques peuvent être dopées à l'yttrium (Y) ou l'ytterbium (Yb). De préférence, le matériau de type pérovskite est choisi parmi BaCeZrY(Yb)03 ou du Sr(Ce,Zr)X03 où X est un métal avec ou sans dopage, ainsi que de ses dérivés. The proton-conducting ceramics can, as indicated above, be the same as those used for the fuel electrode. These proton-conducting ceramics belong in particular to the family of perovskites of formula AB0 3 in which A is an element chosen from group II of the periodic table, B is an element chosen from cerium or group IVB of the periodic table. More particularly, perovskites in which A is chosen from barium Ba or strontium Sr, B is chosen from zirconium Zr or cerium Ce. These ceramics can be doped with yttrium (Y) or ytterbium (Yb). Preferably, the material of perovskite type is chosen from BaCeZrY(Yb)0 3 or Sr(Ce,Zr)X0 3 where X is a metal with or without doping, as well as its derivatives.
[0045] Alternativement, il est également possible de réaliser l’électrolyte en un matériau de type ABBΌ3, dans lequel A est un élément choisi parmi le groupe II du tableau périodique, B est un élément choisi parmi le cérium ou le groupe IVB du tableau périodique, B' est un élément choisi parmi les lanthanides ou le groupe VIIIB du tableau 10 périodique. Plus particulièrement, des matériaux de type ABBΌ3, dans lesquels A est choisi parmi le baryum Ba ou le strontium Sr, B est choisi parmi le zirconium Zr ou le cérium Ce, et B' est choisi parmi le praséodyme Pr, le vanadium V, le Cobalt Co ou le néodyme Nd. Ces céramiques peuvent être dopées à l'yttrium (Y) ou l'ytterbium (Yb). Alternatively, it is also possible to produce the electrolyte in a material of ABBΌ3 type, in which A is an element chosen from group II of the periodic table, B is an element chosen from cerium or group IVB from the table periodic table, B' is an element chosen from the lanthanides or group VIIIB of the periodic table. More particularly, materials of the ABBΌ3 type, in which A is chosen from barium Ba or strontium Sr, B is chosen from zirconium Zr or cerium Ce, and B' is chosen from praseodymium Pr, vanadium V, cobalt Co or neodymium Nd. These ceramics can be doped with yttrium (Y) or ytterbium (Yb).
[0046] Enfin, l’électrolyte peut aussi être composé de matériaux à base de Nd2Ce207 avec ou sans dopage, ainsi que de ses dérivés. [0047] Ces catégories de matériaux présentées ci-dessus pour la fabrication de l’électrolyte présentent l’avantage d’être adaptés aux températures de fonctionnement typiquement rencontrées dans des piles à combustibles à céramiques conductrices protoniques PCFC, comprises 300°C et 700°C, sous atmosphère réductrice et vapeur d’eau. Ils possèdent en outre une structure cristallographique adaptée permettant d'obtenir un effet barrière aux contaminants, tout en possédant des propriétés recherchées de conduction préférentiellement exclusive de protons. Enfin, ces composés offrent ainsi une grande stabilité mécanique et physico-chimique au dispositif électrochimique à conducteur protonique qui en est équipé. Finally, the electrolyte can also be composed of materials based on Nd 2 Ce 2 0 7 with or without doping, as well as its derivatives. These categories of materials presented above for the manufacture of the electrolyte have the advantage of being suitable for the operating temperatures typically encountered in PCFC proton-conducting ceramic fuel cells, between 300° C. and 700° C. C, under reducing atmosphere and steam. They also possess a suitable crystallographic structure making it possible to obtain a barrier effect to contaminants, while possessing desired properties of preferentially exclusive conduction of protons. Finally, these compounds thus offer great mechanical and physico-chemical stability to the electrochemical device with a proton conductor which is equipped with them.
[0048] Le dispositif électrochimique selon l’invention peut être utilisé en tant que pile à combustible. Plus particulièrement, il peut s’agir d’un électrolyseur ou d’une cellule à céramique protonique (PCC pour « Protonic Ceramic Cell »), en particulier une pile à combustible à céramiques conductrices protoniques (PCFC, protonic conductive fuel cell) ou une cellule électrolytique céramiques conductrices protoniques (PCEC pour « Protonic Ceramic Electrolysis Cell »), cette dernière permettant la production de dihydrogène pur à partir d’eau. The electrochemical device according to the invention can be used as a fuel cell. More particularly, it may be an electrolyser or a protonic ceramic cell (PCC for “Protonic Ceramic Cell”), in particular a protonic conductive fuel cell (PCFC, protonic conductive fuel cell) or a protonic conductive ceramic electrolytic cell (PCEC for “Protonic Ceramic Electrolysis Cell”), the latter allowing the production of pure dihydrogen from water.
[0049] Selon un second aspect, l’invention propose un procédé électrochimique de production d’ammoniac et de dihydrogène à partir d’oxydes d’azote comprenant : According to a second aspect, the invention proposes an electrochemical process for the production of ammonia and dihydrogen from nitrogen oxides comprising:
- l’oxydation, au niveau de l’électrode à air, d’un composé donneur de protons pour former des protons, - la circulation des protons formés au niveau de l’électrode à air au travers de l’électrolyte solide vers l’électrode à combustible et - the oxidation, at the level of the air electrode, of a proton donor compound to form protons, - the circulation of the protons formed at the level of the air electrode through the solid electrolyte towards the fuel electrode and
- la réduction des oxydes d’azote, au niveau de l’électrode à combustible, pour former de l’ammoniac et/ou du dihydrogène ainsi que de l’eau et du diazote. - the reduction of nitrogen oxides, at the level of the fuel electrode, to form ammonia and/or dihydrogen as well as water and dinitrogen.
[0050] Le procédé électrochimique est de préférence opéré exclusivement en phase gazeuse, c’est-à-dire que l’ensemble des réactifs et des produits sont en phase gazeuse. The electrochemical process is preferably operated exclusively in the gas phase, that is to say that all the reactants and products are in the gas phase.
[0051] Les oxydes d’azote peuvent être composés d’un mélange de monoxyde d’azote de formule NO, de dioxyde d’azote de formule N02 et/ou de protoxyde d’azote de formule N20. Ils peuvent être généralisés sous la formule NyOx. The nitrogen oxides can be composed of a mixture of nitric oxide of formula NO, of nitrogen dioxide of formula N0 2 and/or of nitrous oxide of formula N 2 0. They can be generalized under the formula N y O x.
[0052] Le composé donneur de protons mis en oeuvre dans le procédé électrochimique de l’invention peut être tout composé susceptible de libérer un proton lors de son oxydation au niveau de l’électrode à air. Le composé donneur de proton peut, par exemple, être de l’eau, du dihydrogène, du méthane... De préférence, le composé donneur de proton est de l’eau, plus préférentiellement sous forme de vapeur d’eau. L’oxydation de la vapeur d’eau au niveau de l’électrode à air entraîne en outre la formation d’une vapeur d’eau enrichie en dioxygène, qui peut également être valorisable. The proton donor compound used in the electrochemical process of the invention can be any compound capable of releasing a proton during its oxidation at the air electrode. The proton donor compound can, for example, be water, dihydrogen, methane, etc. Preferably, the proton donor compound is water, more preferably in the form of water vapour. The oxidation of the water vapor at the level of the air electrode further leads to the formation of a water vapor enriched in dioxygen, which can also be recoverable.
[0053] La [Fig. 1] illustre schématiquement l’apport de vapeur d’eau au niveau de l’électrode à air. La vapeur d’eau est oxydée en dioxygène selon la demi-équation de [Formule de réaction 1] suivante : [0053] The [Fig. 1] schematically illustrates the supply of water vapor at the level of the air electrode. Water vapor is oxidized to dioxygen according to the following half-equation of [Reaction Formula 1]:
[0054] [Formule de réaction 1] [0054] [Reaction formula 1]
2y + 2x 4y + 4x , y + x 4y + 4x — - H20 = — - H+ + - - 02 + — - e~ y y y y 2y + 2x 4y + 4x , y + x 4y + 4x — - H 2 0 = — - H + + - - 0 2 + — - e ~ yyyy
[0055] Les molécules du donneur de proton, et notamment de l’eau sont oxydées pour produire des protons, du dioxygène et des électrons. Selon la nature de l'oxyde d'azote traité, la stœchiométrie des produits formés peut varier. The molecules of the proton donor, and in particular water, are oxidized to produce protons, dioxygen and electrons. Depending on the nature of the nitrogen oxide treated, the stoichiometry of the products formed may vary.
[0056] Les protons produits par la [Formule de réaction 1] traversent l’électrolyte afin d’atteindre l’électrode à combustible. [0056] The protons produced by [Reaction Formula 1] pass through the electrolyte in order to reach the fuel electrode.
[0057] Au niveau de l’électrode à combustible, les protons ayant traversés l’électrolyte réagissent avec les atomes d’azote des particules du matériau à base de nitrures disposés dans la structure de l’électrode à combustible afin de former de l’ammoniac. L’ammoniac ainsi formé se désorbe laissant derrière lui une lacune en atome d’azote sur l’électrode à combustible. Les oxydes d’azote de formule NyOx en phase gazeuse amenés au niveau de l’électrode à combustible s’adsorbent via leur azote sur la lacune créée dans l’électrode à combustible. Les atomes d’oxygène des NyOx adsorbés réagissent également avec les protons, entraînant ainsi la dissociation des NyOx et produisant de la vapeur d’eau. L’atome d’azote adsorbé pourra à son tour réagir avec les protons provenant de l’électrolyte afin de produire de l’ammoniac permettant de former un cycle catalytique. Enfin, les protons dissociés des particules du matériau à base de nitrures peuvent se recombiner et se désorber en phase gazeuse sous la forme de dihydrogène. Ces différentes réactions sont résumées dans la demi-réaction [Formule de réaction 2] suivante : At the level of the fuel electrode, the protons having passed through the electrolyte react with the nitrogen atoms of the particles of the nitride-based material arranged in the structure of the fuel electrode in order to form ammonia. The ammonia thus formed is desorbed leaving behind a nitrogen atom vacancy on the fuel electrode. The nitrogen oxides of formula N y O x in the gas phase brought to the level of the fuel electrode are adsorbed via their nitrogen on the gap created in the fuel electrode. The oxygen atoms of the adsorbed N y O x also react with the protons, thus leading to the dissociation of the N y O x and producing water vapour. The adsorbed nitrogen atom can in turn react with the protons coming from the electrolyte in order to produce ammonia making it possible to form a catalytic cycle. Finally, the protons dissociated from the particles of the nitride-based material can recombine and desorb in the gas phase in the form of dihydrogen. These different reactions are summarized in the following half-reaction [Reaction Formula 2]:
[0058] [Formule de réaction 2] 1 1 220 + - 2 H2 + - 2 N2
Figure imgf000012_0001
[0059] La réaction globale du procédé électrochimique obtenue en combinant la [Formule de réaction 1] et la [Formule de réaction 2] est reprise dans la [Formule de réaction 3]la suivante :
[0058] [Reaction formula 2] 1 1 2 2 0 + - 2 H 2 + - 2 N 2
Figure imgf000012_0001
The overall reaction of the electrochemical process obtained by combining [Reaction Formula 1] and [Reaction Formula 2] is shown in the following [Reaction Formula 3]:
[0060] [Formule de réaction [0060] [Reaction formula
2 -Ny0x
Figure imgf000013_0001
2 -N y 0 x
Figure imgf000013_0001
[0061] Le procédé électrochimique de conversion des oxydes d’azote en ammoniac et/ou en dihydrogène peut être conduit à haute température, notamment à une température comprise entre 200°C et 700°C, de manière préférée entre 250°C et 650°C et de manière encore plus préférée entre 300°C et 600°C. Cette plage de température permet de maximiser la conduction protonique de l’électrolyte solide ainsi que les cinétiques électrochimiques et électrocatalytiques. The electrochemical process for converting nitrogen oxides into ammonia and/or dihydrogen can be carried out at high temperature, in particular at a temperature between 200° C. and 700° C., preferably between 250° C. and 650° C. °C and even more preferably between 300°C and 600°C. This temperature range makes it possible to maximize the proton conduction of the solid electrolyte as well as the electrochemical and electrocatalytic kinetics.

Claims

Revendications Claims
[Revendication 1] Dispositif électrochimique pour la conversion d’oxydes d’azotes NOx en ammoniac et/ou hydrogène, comprenant : [Claim 1] Electrochemical device for the conversion of nitrogen oxides NOx into ammonia and/or hydrogen, comprising:
- une électrode à air ; - une électrode à combustible, et - an air electrode; - a fuel electrode, and
- un électrolyte solide disposé entre l’électrode à air et l’électrode à combustible, ledit électrolyte solide étant constitué d’un matériau céramique, caractérisé en ce que l’électrode à combustible comprend des particules d’un matériau à base de nitrures. - a solid electrolyte disposed between the air electrode and the fuel electrode, said solid electrolyte consisting of a ceramic material, characterized in that the fuel electrode comprises particles of a nitride-based material.
[Revendication 2] Dispositif électrochimique selon la revendication 1 , dans lequel le matériau à base de nitrures est un matériau à base de nitrures métalliques, obtenus de préférence à partir de métaux non précieux tels que les terres rares. [Claim 2] Electrochemical device according to claim 1, in which the material based on nitrides is a material based on metal nitrides, preferably obtained from non-precious metals such as rare earths.
[Revendication 3] Dispositif électrochimique selon l’une quelconque des revendications précédentes, dans lequel les particules de matériau à base de nitrures sont des nanoparticules. [Claim 3] An electrochemical device according to any preceding claim, wherein the particles of nitride material are nanoparticles.
[Revendication 4] Dispositif électrochimique selon l’une quelconque des revendications précédentes, dans lequel le matériau à base de nitrures est réparti de manière homogène dans la structure de l’électrode à combustible. [Claim 4] An electrochemical device according to any preceding claim, wherein the nitride material is homogeneously distributed in the structure of the fuel electrode.
[Revendication 5] Dispositif électrochimique selon l’une quelconque des revendications précédentes, dans lequel l’électrode à air est constituée d’un matériau céramique. [Claim 5] An electrochemical device according to any preceding claim, wherein the air electrode is made of a ceramic material.
[Revendication 6] Dispositif électrochimique selon l’une quelconque des revendications précédentes, dans lequel l’électrode à combustible est constituée d’un matériau de type composite céramique-métal (cermet) comprenant par exemple du nickel et un matériau ionique. [Claim 6] Electrochemical device according to any one of the preceding claims, in which the fuel electrode is made of a material of the ceramic-metal composite type (cermet) comprising for example nickel and an ionic material.
[Revendication 7] Dispositif électrochimique selon l’une quelconque des revendications précédentes, caractérisé en ce que ledit dispositif est un électrolyseur ou une cellule à céramique protonique, en particulier une pile à combustible à céramiques conductrices protoniques ou une cellule électrolytique céramiques conductrices protoniques. [Claim 7] Electrochemical device according to any one of the preceding claims, characterized in that the said device is an electrolyser or a proton-ceramic cell, in particular a proton-conducting ceramic fuel cell or a proton-conducting ceramic electrolytic cell.
[Revendication 8] Procédé électrochimique de production d’ammoniac et de dihydrogène à partir d’oxydes d’azote au moyen du dispositif électrochimique selon l’une quelconque des revendications précédentes, comprenant : [Claim 8] An electrochemical process for the production of ammonia and dihydrogen from nitrogen oxides by means of the electrochemical device according to any one of the preceding claims, comprising:
- l’oxydation, au niveau de l’électrode à air, d’un composé donneur de protons pour former des protons, - the oxidation, at the level of the air electrode, of a proton donor compound to form protons,
- la circulation desdits protons formés au niveau de l’électrode à air, à travers l’électrolyte solide, vers l’électrode à combustible, et - the circulation of said protons formed at the level of the air electrode, through the electrolyte solid, to the fuel electrode, and
- la réduction des oxydes d’azote au niveau de l’électrode à combustible, pour former de l’ammoniac et/ou du dihydrogène ainsi que de l’eau et du diazote. - the reduction of nitrogen oxides at the fuel electrode, to form ammonia and/or dihydrogen as well as water and dinitrogen.
[Revendication 9] Procédé électrochimique selon la revendication 8, caractérisé en ce qu’il est conduit à une température comprise entre 200°C et 700°C, de manière préférée entre 250°C et 650°C et de manière encore plus préférée entre 300°C et 600°C. [Claim 9] Electrochemical process according to Claim 8, characterized in that it is carried out at a temperature of between 200°C and 700°C, preferably between 250°C and 650°C and even more preferably between 300°C and 600°C.
[Revendication 10] Procédé électrochimique selon la revendication 8 ou 9, caractérisé en ce qu’il est opéré en phase gazeuse, c’est-à-dire que l’ensemble des réactifs et produits sont en phase gazeuse. [Claim 10] Electrochemical process according to claim 8 or 9, characterized in that it is carried out in the gas phase, that is to say that all the reactants and products are in the gas phase.
[Revendication 11] Procédé électrochimique selon l’une quelconque des revendications 8 à 10, caractérisé en ce que le composé donneur de protons est de l’eau et où l’oxydation au niveau de l’électrode à air entraîne la formation d’un flux de vapeur d’eau enrichie en oxygène. [Claim 11] Electrochemical process according to any one of Claims 8 to 10, characterized in that the proton donor compound is water and in which the oxidation at the level of the air electrode causes the formation of a flow of oxygen-enriched water vapor.
[Revendication 12] Procédé électrochimique selon l’une quelconque des revendications 8 à 11 , caractérisé en ce que les oxydes d’azotes sont du monoxyde d’azote, du dioxyde d’azote et/ou du protoxyde d’azote. [Claim 12] Electrochemical process according to any one of Claims 8 to 11, characterized in that the nitrogen oxides are nitrogen monoxide, nitrogen dioxide and/or nitrous oxide.
PCT/EP2022/053115 2021-02-10 2022-02-09 Electrochemical device for converting nitrogen oxides nox into ammonia and/or hydrogen WO2022171663A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FRFR2101256 2021-02-10
FR2101256A FR3119553B1 (en) 2021-02-10 2021-02-10 Electrochemical device for the conversion of nitrogen oxides NOx into ammonia and/or hydrogen

Publications (1)

Publication Number Publication Date
WO2022171663A1 true WO2022171663A1 (en) 2022-08-18

Family

ID=75539523

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2022/053115 WO2022171663A1 (en) 2021-02-10 2022-02-09 Electrochemical device for converting nitrogen oxides nox into ammonia and/or hydrogen

Country Status (2)

Country Link
FR (1) FR3119553B1 (en)
WO (1) WO2022171663A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024083850A1 (en) 2022-10-18 2024-04-25 ETH Zürich Electrocatalyst

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015088736A1 (en) * 2013-12-13 2015-06-18 General Electric Company Apparatus and method for decomposing nitrogen oxide
WO2015189865A1 (en) * 2014-06-13 2015-12-17 Háskóli Íslands Electrolytic production of ammonia
US20160122886A1 (en) * 2014-10-31 2016-05-05 General Electric Company Electrode composition, apparatus and method for removing nitrogen oxide
DE102018105115A1 (en) * 2018-03-06 2019-09-12 Deutsches Zentrum für Luft- und Raumfahrt e.V. Electrode, cell unit and electrolyzer
US20200002180A1 (en) 2018-06-29 2020-01-02 Korea Research Institute Of Chemical Technology Electrochemical system for producing ammonia from nitrogen oxides and preparation method thereof
KR20200090668A (en) 2020-07-15 2020-07-29 한국화학연구원 Electrochemical system for producing ammonia from nitrogen oxides and preparation method thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015088736A1 (en) * 2013-12-13 2015-06-18 General Electric Company Apparatus and method for decomposing nitrogen oxide
WO2015189865A1 (en) * 2014-06-13 2015-12-17 Háskóli Íslands Electrolytic production of ammonia
US20160122886A1 (en) * 2014-10-31 2016-05-05 General Electric Company Electrode composition, apparatus and method for removing nitrogen oxide
DE102018105115A1 (en) * 2018-03-06 2019-09-12 Deutsches Zentrum für Luft- und Raumfahrt e.V. Electrode, cell unit and electrolyzer
US20200002180A1 (en) 2018-06-29 2020-01-02 Korea Research Institute Of Chemical Technology Electrochemical system for producing ammonia from nitrogen oxides and preparation method thereof
KR20200090668A (en) 2020-07-15 2020-07-29 한국화학연구원 Electrochemical system for producing ammonia from nitrogen oxides and preparation method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024083850A1 (en) 2022-10-18 2024-04-25 ETH Zürich Electrocatalyst

Also Published As

Publication number Publication date
FR3119553A1 (en) 2022-08-12
FR3119553B1 (en) 2023-07-14

Similar Documents

Publication Publication Date Title
Stalder et al. Supported palladium catalysts for the reduction of sodium bicarbonate to sodium formate in aqueous solution at room temperature and one atmosphere of hydrogen
Fukuzumi et al. Catalytic activity of metal-based nanoparticles for photocatalytic water oxidation and reduction
EP2110873B1 (en) Titanates with perovskite or derivative structure and applications thereof
EP2349564B1 (en) Method for preparing of oxidation catalysts and catalysts prepared by the method
JP2014532119A (en) Method for generating hydrogen and oxygen by electrolysis of water vapor
Zhang et al. PdO/Pd system equilibrium phase diagram under a gas mixture of oxygen and nitrogen
US5352337A (en) Method for reducing nitrogen oxides
WO2022171663A1 (en) Electrochemical device for converting nitrogen oxides nox into ammonia and/or hydrogen
EP1565952B1 (en) Metal alloy for electrochemical oxidation reactions and method of production thereof
Abebe et al. Synthesis of copper–silver–zinc oxide nanocomposites for 4-nitrophenol reduction: doping and heterojunction
US20090220413A1 (en) Catalyst For Methane Steam Reformation, Method Of Producing The Same, And Method Of Producing Hydrogen Using The Same
FR3045950A1 (en) ELECTROCHEMICAL DEVICE WITH PROTONIC CONDUCTION WITH INTEGRATED REFORMING AND METHOD OF MANUFACTURING THE SAME
EP1663462B1 (en) Oxygen conducting membranes, preparation method thereof, and reactor and method using same
Fu et al. Defective ZrO 2− x supported Ru nanoparticles as a Mott–Schottky photocatalyst for efficient ammonia synthesis under ambient conditions
KR20220019518A (en) Perovskite catalyst with gold-supported and ozone oxidation system of carbon particulate material using the same
JP4720592B2 (en) Electrochemical catalyst for exhaust gas purification
CN109621972B (en) Method for catalytically eliminating CO by using CuMnOx catalyst
JP6496932B2 (en) Combustion component oxidation catalyst in gas to be treated, method for producing oxidation catalyst for combustible component in gas to be treated, method for oxidizing combustible component in gas to be treated, and method for removing nitrogen oxide in gas to be treated
EP4187651A1 (en) Electrochemical device
CN114289065B (en) Preparation method and application of metal ion doped x-MOF-74 photocatalyst
JP4918995B2 (en) Method for producing solid oxide fuel cell
Busch et al. Synthesis of Active Carbon-Based Catalysts by Chemical Vapor Infiltration for Nitrogen Oxide Conversion
EP3542887A1 (en) Device and process for the treatment of engine flue gases with high oxygen excess
Park et al. Highly efficient and reusable nanostructured porous Ni/La2O2CO3 tandem catalyst for hydrogen and methane production from subcritical hydrothermal treatment of nitrocellulose
Romito et al. Dye‐Sensitized Photocatalysis: Hydrogen Evolution and Alcohol‐to‐Aldehyde Oxidation without Sacrifical Electron Donor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22705046

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE