KR102257223B1 - Process for preparing acetoin using methanotrophs or transformant thereof - Google Patents
Process for preparing acetoin using methanotrophs or transformant thereof Download PDFInfo
- Publication number
- KR102257223B1 KR102257223B1 KR1020190083341A KR20190083341A KR102257223B1 KR 102257223 B1 KR102257223 B1 KR 102257223B1 KR 1020190083341 A KR1020190083341 A KR 1020190083341A KR 20190083341 A KR20190083341 A KR 20190083341A KR 102257223 B1 KR102257223 B1 KR 102257223B1
- Authority
- KR
- South Korea
- Prior art keywords
- acetoin
- genus
- gene encoding
- gene
- methanogens
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N1/00—Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
- C12N1/20—Bacteria; Culture media therefor
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P7/00—Preparation of oxygen-containing organic compounds
- C12P7/24—Preparation of oxygen-containing organic compounds containing a carbonyl group
- C12P7/26—Ketones
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y101/00—Oxidoreductases acting on the CH-OH group of donors (1.1)
- C12Y101/01—Oxidoreductases acting on the CH-OH group of donors (1.1) with NAD+ or NADP+ as acceptor (1.1.1)
- C12Y101/01244—Methanol dehydrogenase (1.1.1.244)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y114/00—Oxidoreductases acting on paired donors, with incorporation or reduction of molecular oxygen (1.14)
- C12Y114/13—Oxidoreductases acting on paired donors, with incorporation or reduction of molecular oxygen (1.14) with NADH or NADPH as one donor, and incorporation of one atom of oxygen (1.14.13)
- C12Y114/13025—Methane monooxygenase (1.14.13.25)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y401/00—Carbon-carbon lyases (4.1)
- C12Y401/02—Aldehyde-lyases (4.1.2)
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Zoology (AREA)
- Health & Medical Sciences (AREA)
- Wood Science & Technology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Genetics & Genomics (AREA)
- General Health & Medical Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Biochemistry (AREA)
- Biotechnology (AREA)
- Microbiology (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Tropical Medicine & Parasitology (AREA)
- Virology (AREA)
- Biomedical Technology (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
Abstract
본 발명은 야생형 메탄자화균 또는 ack(acetate kinase)를 코딩하는 유전자, pta(phosphoate acetyltransferase)를 코딩하는 유전자, acs(acetyl-coenzyme A synthetase)를 코딩하는 유전자 및/또는 aor(aldehyde ferredoxin oxidoreductase)를 코딩하는 유전자가 불활성화된 형질전환 메탄자화균을, 에탄을 포함하는 대기조건 또는 에탄을 포함하는 배지에서 배양하는 단계를 포함하는 아세토인 생산방법, 상기 유전자가 불활성화된 아세토인 생산용 형질전환 메탄자화균, 상기 형질전환 메탄자화균을 포함하는 아세토인 생산용 조성물 및 상기 조성물을 포함하는 아세토인 생산용 키트에 관한 것이다. 본 발명에서 제공하는 형질전환 메탄자화균을 이용하여 에탄으로부터 아세토인을 생산하는 방법을 이용하면, 메탄자화균으로부터 생성되는 아세트산의 생산량을 감소시키면서, 아세토인의 생산성을 향상시킬 수 있으므로, 에탄 뿐만 아니라 에탄을 포함하는 천연가스, 세일가스 등의 원료로부터 아세토인을 생성할 수 있으므로, 아세토인의 경제적인 생산에 널리 활용될 수 있을 것이다.The present invention comprises a wild-type methanogen or a gene encoding ack (acetate kinase), a gene encoding pta (phosphoate acetyltransferase), a gene encoding acs (acetyl-coenzyme A synthetase) and/or aor (aldehyde ferredoxin oxidoreductase). Acetoin production method comprising the step of culturing the transgenic methanogens in which the encoding gene is inactivated in an atmospheric condition containing ethane or in a medium containing ethane, transformation for production of acetoin in which the gene is inactivated It relates to a methanogen, a composition for producing acetoin comprising the transformed methanogen, and a kit for producing acetoin comprising the composition. If the method of producing acetoin from ethane using the transformed methanogens provided in the present invention is used, the productivity of acetoin can be improved while reducing the production amount of acetic acid produced from the methanogens. In addition, since acetoin can be produced from raw materials such as natural gas and sail gas including ethane, it will be widely used for economical production of acetoin.
Description
본 발명은 메탄자화균 또는 그의 형질전환체를 이용한 아세토인 생산방법에 관한 것으로, 보다 구체적으로, 본 발명은 야생형 메탄자화균 또는 ack(acetate kinase)를 코딩하는 유전자, pta(phosphoate acetyltransferase)를 코딩하는 유전자, acs(acetyl-coenzyme A synthetase)를 코딩하는 유전자 및/또는 aor(aldehyde ferredoxin oxidoreductase)를 코딩하는 유전자가 불활성화된 형질전환 메탄자화균을, 에탄을 포함하는 대기조건 또는 에탄을 포함하는 배지에서 배양하는 단계를 포함하는 아세토인 생산방법, 상기 유전자가 불활성화된 아세토인 생산용 형질전환 메탄자화균, 상기 형질전환 메탄자화균을 포함하는 아세토인 생산용 조성물 및 상기 조성물을 포함하는 아세토인 생산용 키트에 관한 것이다.The present invention relates to a method for producing acetoin using a methanogen or a transformant thereof, and more specifically, the present invention encodes a wild-type methanogen or a gene encoding ack (acetate kinase), pta (phosphoate acetyltransferase) Transgenic methanogens in which the gene encoding the gene, acs (acetyl-coenzyme A synthetase) and/or the gene encoding aor (aldehyde ferredoxin oxidoreductase) are inactivated, atmospheric conditions containing ethane, or containing ethane. Acetoin production method comprising the step of culturing in a medium, a transgenic methanogen for production of acetoin in which the gene is inactivated, a composition for producing acetoin containing the transgenic methanogen, and aceto comprising the composition It relates to a kit for the production of phosphorus.
세계적으로 지구온난화에 대한 관심이 높아지고 있으며 주요 원인은 이산화탄소와 메탄 등의 온실효과로 알려져 있다. 이를 해결하기 위하여 이산화탄소를 사용하는 미생물을 활용하여 이산화탄소로부터 고부가가치 산물을 생산하는 연구가 활발히 수행되고 있으며, 최근 이산화탄소를 전환하기 위하여 컴퓨터로 계산하여 설계한 합성 생촉매를 만들고 이를 활용한 대사 경로를 재구축하는 연구가 수행되었다.The interest in global warming is increasing worldwide, and the main causes are known as the greenhouse effect such as carbon dioxide and methane. To solve this problem, research on producing high value-added products from carbon dioxide using microorganisms that use carbon dioxide is being actively conducted. Recently, to convert carbon dioxide, a synthetic biocatalyst designed by computer calculation was created, and the metabolic pathway using this was developed. A reconstruction study was conducted.
메탄의 주요 발생원은 혐기성소화의 산물인 바이오가스와 자연적으로 생성된 천연가스이다. 바이오가스의 주요성분은 메탄과 이산화탄소이고, 천연가스의 70~90%는 메탄이며 나머지는 5~15%의 에탄과 소량의 프로판 등으로 구성되어있다. 최근, 셰일 층에서 생산되는 천연가스인 셰일가스의 생산량이 급증하여 메탄 및 에탄의 사용에 대한 관심이 높은 상황이다. 그에 따라 메탄을 활용할 수 있는 능력을 가진 미생물인 메탄자화균에 대한 연구가 활발하게 진행되고 있으며, 메탄자화균이 보유한 메탄산화효소(methane monooxygenase, MMO)는 넓은 범위의 기질을 사용할 수 있어 메탄 뿐만 아니라 에탄과 같은 보다 긴 알칸(alkane)을 산화시킬 수 있는 능력을 보유하고 있으며, 메탄올 탈수소효소(methanol dehydrogenase, MDH) 역시 보다 넓은 범위의 기질을 사용할 수 있어, 다중 탄소 알콜도 산화시킬 수 있다고 알려져 있다.The main sources of methane are biogas, a product of anaerobic digestion, and naturally generated natural gas. The main components of biogas are methane and carbon dioxide, 70-90% of natural gas is methane, and the rest is composed of 5-15% ethane and a small amount of propane. Recently, the production of shale gas, which is a natural gas produced in the shale layer, has rapidly increased, and interest in the use of methane and ethane is high. As a result, research on methane-sugar bacteria, a microorganism with the ability to utilize methane, is actively being conducted, and methane monooxygenase (MMO) possessed by methane-sugar bacteria can use a wide range of substrates, so not only methane is used. In addition, it has the ability to oxidize longer alkanes such as ethane, and methanol dehydrogenase (MDH) is also known to be able to oxidize multi-carbon alcohols as it can use a wider range of substrates. have.
한편, 아세토인은 광범위하게 산업적으로 이용되고 있는데, 2,3-부탄디올로 전환되어 프린트 잉크, 화장품, 합성수지를 합성을 위한 용매제 등 다양한 제조 산업에서 이용되고 있다. 또한 생물학적으로 생산된 2,3-부탄디올은 탈수과정을 통해 메틸에틸케톤(용매제)과 1,3-부타디엔(합성고무 생산에 사용) 등 유용한 물질로 변환이 가능하다는 장점이 있다. 이같은 아세토인은 에어로박터 에어로제네스(Aerobacter aerogenes), 크렙시엘라 유모니아(Klebsiella pneumonia), 크렙시엘라 옥시티카(Klebsiella oxytoca), 바실러스 폴리믹사(Bacillus polymyxa) 등과 같은 미생물로부터 글루코스를 원료로 하여 생산되고 있다. 그러나, 상기 미생물을 이용할 경우에는, 아세토인 뿐만 아니라, 부산물로 에탄올, 락테이트, 아세테이트 등이 함께 생산되고 있어, 아세토인의 생산수율이 낮다는 단점이 있었다. 이러한 단점을 극복하고자, 다양한 연구가 수행되고 있다. 예를 들어, 한국등록특허 제1562866호에는 재조합 크렙시엘라 옥시토카 M1 균주를 사용하여 같은 부산물의 함량을 감소시키고 아세토인의 수율을 증가시키는 방법이 개시되어 있다.On the other hand, acetoin is widely used industrially, and it is converted into 2,3-butanediol and is used in various manufacturing industries such as printing ink, cosmetics, and solvents for synthesizing synthetic resins. In addition, biologically produced 2,3-butanediol has the advantage that it can be converted into useful substances such as methyl ethyl ketone (solvent) and 1,3-butadiene (used in the production of synthetic rubber) through a dehydration process. Such acetoin is produced using glucose as a raw material from microorganisms such as Aerobacter aerogenes, Klebsiella pneumonia, Klebsiella oxytoca, and Bacillus polymyxa. Has become. However, when the microorganisms are used, not only acetoin, but also ethanol, lactate, acetate, etc. are produced as by-products, and there is a disadvantage in that the production yield of acetoin is low. In order to overcome these shortcomings, various studies have been conducted. For example, Korean Patent No. 1562866 discloses a method of reducing the content of the same by-product and increasing the yield of acetoin using a recombinant Krebsiella oxytoca M1 strain.
이러한 배경하에서, 본 발명자들은 메탄자화균을 이용하여 보다 효과적으로 아세토인을 생산하는 방법을 개발하기 위하여, 예의 연구노력한 결과, 야생형 메탄자화균 또는 ack(acetate kinase)를 코딩하는 유전자, pta(phosphoate acetyltransferase)를 코딩하는 유전자, acs(acetyl-coenzyme A synthetase)를 코딩하는 유전자, aor(aldehyde ferredoxin oxidoreductase)를 코딩하는 유전자 등이 불활성화된 형질전환 메탄자화균을 이용하면 에탄 또는 상기 에탄을 포함하는 천연가스, 셰일가스 등의 원료로부터 보다 효과적으로 아세토인을 생산할 수 있음을 확인하고, 본 발명을 완성하였다.Under this background, in order to develop a method for producing acetoin more effectively using methanogens, the present inventors, as a result of intensive research efforts, showed that a gene encoding a wild-type methanogen or ack (acetate kinase), phosphorate acetyltransferase (pta). ) Encoding gene, acs (acetyl-coenzyme A synthetase) encoding gene, aor (aldehyde ferredoxin oxidoreductase) encoding gene, etc. It was confirmed that acetoin can be produced more effectively from raw materials such as gas and shale gas, and the present invention was completed.
본 발명의 하나의 목적은 야생형 메탄자화균 또는 ack 유전자, pta 유전자, acs 유전자 및/또는 aor 유전자가 불활성화된 형질전환 메탄자화균을 이용하여 아세토인을 생산하는 방법을 제공하는 것이다.One object of the present invention is to provide a method for producing acetoin using wild-type methanogens or transgenic methanogens in which the ack gene, pta gene, acs gene and/or aor gene are inactivated.
본 발명의 다른 목적은 ack 유전자, pta 유전자, acs 유전자, aor 유전자 등이 결실된 아세토인 생산용 형질전환 메탄자화균을 제공하는 것이다.Another object of the present invention is to provide a transgenic methanogen production for the production of acetoin in which the ack gene, the pta gene, the acs gene, the aor gene, and the like are deleted.
본 발명의 또 다른 목적은 상기 형질전환 메탄자화균을 포함하는 아세토인 생산용 조성물을 제공하는 것이다.Another object of the present invention is to provide a composition for producing acetoin comprising the transformed methanogens.
본 발명의 또 다른 목적은 상기 조성물을 포함하는 아세토인 생산용 키트를 제공하는 것이다.Another object of the present invention is to provide a kit for producing acetoin comprising the composition.
상술한 목적을 달성하기 위한 본 발명의 일 실시양태는 야생형 메탄자화균 또는One embodiment of the present invention for achieving the above object is a wild-type methanogen or ack(acetate kinase)를 코딩하는 유전자, pta(phosphoate acetyltransferase)를 코딩하는 유전자, acs(acetyl-coenzyme A synthetase)를 코딩하는 유전자, aor(aldehyde ferredoxin oxidoreductase)를 코딩하는 유전자 및 이들의 조합으로 구성된 군으로부터 선택되는 유전자가 불활성화된 형질전환 메탄자화균을, 에탄을 포함하는 대기조건 또는 에탄을 포함하는 배지에서 배양하는 단계를 포함하는, 아세토인 생산방법을 제공한다.A group consisting of a gene encoding ack (acetate kinase), a gene encoding pta (phosphoate acetyltransferase), a gene encoding acetyl-coenzyme A synthetase (acs), a gene encoding aldehyde ferredoxin oxidoreductase (aor), and combinations thereof It provides a method for producing acetoin comprising the step of culturing the transformed methanogens, in which the gene selected from is inactivated, in an atmospheric condition containing ethane or in a medium containing ethane.
본 발명의 용어 "메탄자화균(methanotrophs)"이란, 메탄산화세균이라고도 호칭되며, 메탄을 유일탄소원으로 이용하여 생육하는 원핵생물을 의미한다. 대부분의 메탄자화균은 대기중의 메탄을 탄소원으로서 사용하는데, 대체로 메탄을 피루브산의 형태로 전환시킨 후, 생체내 대사에 사용한다.The term "methanotrophs" of the present invention is also referred to as methane-oxidizing bacteria, and refers to prokaryotes that grow using methane as the sole carbon source. Most of the methanogens use methane in the atmosphere as a carbon source, but after converting methane into the form of pyruvic acid, they are used for metabolism in vivo.
본 발명에 있어서, 상기 메탄자화균은 에탄으로부터 아세토인을 생산할 수 있는 메탄자화균을 의미하는 것으로 해석될 수 있는데, 야생형 메탄자화균이 될 수도 있고, 상기 야생형 메탄자화균의 유전체에 아세토인 생산과 관련된 다양한 유전자가 도입되거나 또는 상기 야생형 메탄자화균의 유전체에 존재하는 아세토인 생산과 관련된 다양한 유전자가 불활성화된 형질전환 메탄자화균이 될 수도 있다.In the present invention, the methanogens can be interpreted as meaning a methanogens capable of producing acetoin from ethane, and may be a wild-type methanogens, or acetoin production in the genome of the wild-type methanogens. A variety of genes related to is introduced, or various genes related to acetoin production present in the genome of the wild-type methanogens may be inactivated transgenic methanogens.
예를 들어, 본 발명에서 사용되는 메탄자화균은 에탄으로부터 아세토인의 생산성을 향상시킬 수 있는 한 특별히 이에 제한되지 않으나, 일 예로서, 메틸로모나스(Methylomonas) 속, 메틸로박터(Methylobacter) 속, 메틸로코커스(Methylococcus) 속, 메틸로마이크로븀(Methylomicrobium) 속, 메틸로스페라(Methylosphaera) 속, 메틸로칼덤(Methylocaldum) 속, 메틸로글로버스(Methyloglobus) 속, 메틸로사르시나(Methylosarcina) 속, 메틸로프로펀더스(Methyloprofundus) 속, 메틸로썰머스(Methylothermus) 속, 메틸로할로비우스(Methylohalobius) 속, 메틸로게아(Methylogaea) 속, 메틸로마리넘(Methylomarinum) 속, 메틸로벌럼(Methylovulum) 속, 메틸로마리노범(Methylomarinovum) 속, 메틸로러브럼(Methylorubrum) 속, 메틸로파라코커스(Methyloparacoccus) 속, 메틸로시너스(Methylosinus) 속, 메틸로시스티스(Methylocystis) 속, 메틸로셀라(Methylocella) 속, 메틸로캡사(Methylocapsa) 속, 메틸로퍼룰라(Methylofurula) 속, 메틸아시디필럼(Methylacidiphilum) 속, 메틸아시디마이크로븀(Methylacidimicrobium) 속 등에 속하는 균주가 될 수 있고, 다른 예로서, 메틸로마이크로븀(Methylomicrobium) 속 균주가 될 수 있다. For example, methane magnetization bacteria to be used in the present invention, but particularly one that can improve the productivity of the acetonide of ethane are not limited to, as an example, Pseudomonas (Methylomonas) in, in bakteo (Methylobacter) methyl methyl , methyl Rhodococcus (Methylococcus) in methyl micro byum (Methylomicrobium) in methyl Los Blow (Methylosphaera) in methyl local bushes (Methylocaldum) in, Sar with a bus (Methyloglobus), a methylglutaryl methyl or when (Methylosarcina ) Genus, Methyloprofundus genus, Methylothermus genus, Methylohalobius genus, Methylogaea genus, Methylomarinum genus, methyl a beolreom Marino penalized by (Methylovulum) in methyl (Methylomarinovum), a Love column (Methylorubrum) genus Paracoccus (Methyloparacoccus) in, in city seutiseu (Methylocystis) as a Sinners (Methylosinus) in methyl methyl methyl methyl , it is a cellar (Methylocella) genus, methyl kaepsa (Methylocapsa) in methyl hydroperoxide Lula (Methylofurula) in methyl O CD pilreom (Methylacidiphilum) in the strain belonging like methyl O CD micro byum (Methylacidimicrobium) in methyl and , As another example, it may be a strain of the genus Methylomicrobium.
본 발명에서 제공하는 형질전환 메탄자화균은 상기 야생형 메탄자화균의 유전체에 존재하는 아세토인 생산과 관련된 다양한 유전자가 불활성화된 형태의 형질전환체인 것으로 해석될 수 있는데, 일 예로서, 야생형 메탄자화균의 유전체에서 ack(acetate kinase)를 코딩하는 유전자, pta(phosphoate acetyltransferase)를 코딩하는 유전자, acs(acetyl-coenzyme A synthetase)를 코딩하는 유전자 및 aor(aldehyde ferredoxin oxidoreductase)를 코딩하는 유전자가 각각 개별적으로 또는 복합적으로 불활성화된 형태의 형질전환 균주인 것으로 해석될 수 있다.The transformed methanogens provided by the present invention can be interpreted as being a transformant in which various genes related to acetoin production present in the genome of the wild-type methanogens are inactivated. In the genome of the fungus, the gene coding for ack (acetate kinase), the gene coding for phosphoate acetyltransferase (pta), the gene coding for acetyl-coenzyme A synthetase (acs), and the gene coding for aldehyde ferredoxin oxidoreductase (aor) are each individually. It can be interpreted as being a transformed strain in an inactivated form or in combination.
상기 불활성화된 유전자는 상기 유전자가 코딩하는 각 단백질을 발현하지 못하게 하거나 또는 상기 각 단백질을 구성하는 아미노산 서열의 하나 이상의 위치에서의 1개 또는 다수개(단백질의 아미노산 잔기의 입체 구조에 있어서의 위치나 종류에 따라서 상이하지만, 구체적으로는 2 내지 20개, 바람직하게는 2 내지 10개, 보다 바람직하게는 2 내지 5개)의 아미노산이 치환, 결실, 삽입, 첨가 또는 역위되도록 변이된 형태로 단백질을 발현시켜서, 상기 단백질이 발현되어도 정상적인 기능을 수행하지 못하게 할 수 있다.The inactivated gene prevents the expression of each protein encoded by the gene, or is one or more at one or more positions in the amino acid sequence constituting each protein (position in the three-dimensional structure of amino acid residues of the protein). B, depending on the type, but specifically 2 to 20 amino acids, preferably 2 to 10, more preferably 2 to 5) amino acids in the form of substitution, deletion, insertion, addition or inversion of a protein in a mutated form By expressing the protein, even if the protein is expressed, it may be prevented from performing its normal function.
상기 메탄자화균 뿐만 아니라 형질전환 메탄자화균은 대기중의 에탄을 흡수하여 에탄올로 전환시킬 수 있으므로, 상기 에탄이 배지에 포함되어 있을 경우 뿐만 아니라, 배지에 에탄이 포함되어 있지 않고 에탄을 포함하는 대기조건을 사용할 경우에도, 아세토인을 생산할 수 있다.Since the transgenic methanogens as well as the methanogens can absorb ethane in the atmosphere and convert them into ethanol, not only when the ethane is included in the medium, but also the medium does not contain ethane and contains ethane. Even when atmospheric conditions are used, acetoin can be produced.
아울러, 상기 메탄자화균 또는 형질전환 메탄자화균은 아세토인의 생산성을 향상시키기 위하여, FLS(formolase)를 코딩하는 유전자가 추가로 도입된 형태가 될 수 있다. 상기 FLS(formolase)는 아세트알데히드를 아세토인으로 전환시킬 수 있다고 알려져 있으므로, 상기 FLS(formolase)를 코딩하는 유전자가 추가로 도입된 형질전환 메탄자화균은 아세토인의 생산성을 추가로 향상시킬 수 있다.In addition, in order to improve the productivity of acetoin, the methanogens or transformed methanogens may have a form in which a gene encoding FLS (formolase) is additionally introduced. Since the FLS (formolase) is known to be capable of converting acetaldehyde to acetoin, the transformed methanogens into which a gene encoding the FLS (formolase) is additionally introduced can further improve the productivity of acetoin. .
이때, 상기 대기조건에 포함된 에탄의 농도는 특별히 이에 제한되지 않으나, 일 예로서 0.01 내지 6%(v/v)가 될 수 있고, 다른 예로서, 0.1 내지 2%(v/v)가 될 수 있으며, 또 다른 예로서, 1.7%(v/v)가 될 수 있다. 또한, 배지에 에탄이 포함된 경우, 배지에 포함된 에탄의 농도는 특별히 이에 제한되지 않으나, 일 예로서 0.01 내지 90%(v/v)가 될 수 있고, 다른 예로서, 0.1 내지 50%(v/v)가 될수 있으며, 또 다른 예로서, 22%(v/v)가 될 수 있다.At this time, the concentration of ethane included in the atmospheric condition is not particularly limited thereto, but as an example, it may be 0.01 to 6% (v/v), and as another example, it may be 0.1 to 2% (v/v). And, as another example, it may be 1.7% (v/v). In addition, when the medium contains ethane, the concentration of ethane contained in the medium is not particularly limited thereto, but may be 0.01 to 90% (v/v) as an example, and as another example, 0.1 to 50% ( v/v), and as another example, it could be 22% (v/v).
본 발명의 용어 "배양"이란, 상기 야생형 메탄자화균 또는 형질전환 메탄자화균을 적당히 인공적으로 조절한 환경조건에서 생육시키는 방법을 의미한다. The term "culture" of the present invention means a method of growing the wild-type methanogens or transformed methanogens under appropriately artificially controlled environmental conditions.
본 발명에 있어서, 상기 야생형 메탄자화균 또는 형질전환 메탄자화균을 배양하는 방법은 당업계에 널리 알려져 있는 방법을 이용하여 수행할 수 있다. 구체적으로 상기 배양은 상기 야생형 메탄자화균 또는 형질전환 메탄자화균을 사용하여 에탄으로부터 아세토인을 생산할 수 있는 한 특별히 이에 제한되지 않으나, 배치 공정 또는 주입 배치 또는 반복 주입 배치 공정(fed batch or repeated fed batch process)에서 연속식으로 배양할 수 있다.In the present invention, the method of culturing the wild-type methanogens or transformed methanogens may be performed using a method widely known in the art. Specifically, the culture is not particularly limited as long as acetoin can be produced from ethane using the wild-type methanogens or transformed methanogens, but a batch process or injection batch or repeated injection batch process (fed batch or repeated fed) batch process) can be cultured continuously.
배양에 사용되는 배지는 적당한 탄소원, 질소원, 아미노산, 비타민 등을 함유한 통상의 배지 내에서 호기성 조건 하에서 온도, pH 등을 조절하면서 적절한 방식으로 특정 균주의 요건을 충족해야 한다. 사용될 수 있는 탄소원으로는 메탄, 글루코즈, 자일로즈, 수크로즈, 락토즈, 프락토즈, 말토즈, 전분, 셀룰로즈와 같은 당 및 탄수화물, 대두유, 해바라기유, 피마자유, 코코넛유 등과 같은 오일 및 지방, 팔미트산, 스테아린산, 리놀레산과 같은 지방산, 글리세롤, 에탄올과 같은 알코올, 아세트산과 같은 유기산 등을 부가적으로 사용할 수 있는데, 이들 물질은 개별적으로 또는 혼합물로서 사용될 수 있다. 사용될 수 있는 질소원으로는 암모니아, 황산암모늄, 염화암모늄, 초산암모늄, 인산암모늄, 탄산안모늄, 및 질산 암모늄과 같은 무기질소원; 글루탐산, 메티오닌, 글루타민과 같은 아미노산 및 펩톤, NZ-아민, 육류 추출물, 효모 추출물, 맥아 추출물, 옥수수 침지액, 카세인 가수분해물, 어류 또는 그의 분해생성물, 탈지 대두 케이크 또는 그의 분해생성물 등 유기질소원이 사용될 수 있다. 이들 질소원은 단독 또는 조합되어 사용될 수 있다. 상기 배지에는 인원으로서 인산 제1칼륨, 인산 제2칼륨 및 대응되는 소듐-함유 염이 포함될 수 있다. 사용될 수 있는 인원으로는 인산이수소칼륨 또는 인산수소이칼륨 또는 상응하는 나트륨-함유 염이 포함된다. 또한, 무기화합물로는 염화나트륨, 염화칼슘, 염화철, 황산마그네슘, 황산철, 황산망간 및 탄산칼슘 등이 사용될 수 있다. 마지막으로, 상기 물질에 더하여 아미노산 및 비타민과 같은 필수 성장 물질이 사용될 수 있다.The medium used for cultivation must meet the requirements of a specific strain in an appropriate manner while controlling temperature, pH, etc. under aerobic conditions in a conventional medium containing an appropriate carbon source, nitrogen source, amino acid, vitamin, and the like. Carbon sources that can be used include sugars and carbohydrates such as methane, glucose, xylose, sucrose, lactose, fructose, maltose, starch, cellulose, oils and fats such as soybean oil, sunflower oil, castor oil, coconut oil, etc. Fatty acids such as palmitic acid, stearic acid, linoleic acid, alcohols such as glycerol, ethanol, organic acids such as acetic acid, and the like may additionally be used, and these substances may be used individually or as a mixture. Nitrogen sources that can be used include inorganic nitrogen sources such as ammonia, ammonium sulfate, ammonium chloride, ammonium acetate, ammonium phosphate, anmonium carbonate, and ammonium nitrate; Amino acids such as glutamic acid, methionine, glutamine, and organic nitrogen sources such as peptone, NZ-amine, meat extract, yeast extract, malt extract, corn steep liquor, casein hydrolyzate, fish or its degradation products, skim soybean cake or its degradation products, etc. I can. These nitrogen sources may be used alone or in combination. The medium may contain first potassium phosphate, second potassium phosphate, and a corresponding sodium-containing salt as personnel. Personnel that may be used include potassium dihydrogen phosphate or dipotassium hydrogen phosphate or the corresponding sodium-containing salt. In addition, sodium chloride, calcium chloride, iron chloride, magnesium sulfate, iron sulfate, manganese sulfate and calcium carbonate may be used as the inorganic compound. Finally, in addition to the above substances, essential growth substances such as amino acids and vitamins can be used.
또한, 배양 배지에 적절한 전구체들이 사용될 수 있다. 상기된 원료들은 배양과정에서 배양물에 적절한 방식에 의해 회분식, 유가식 또는 연속식으로 첨가될 수 있으나, 특별히 이에 제한되지는 않는다. 수산화나트륨, 수산화칼륨, 암모니아와 같은 기초 화합물 또는 인산 또는 황산과 같은 산 화합물을 적절한 방식으로 사용하여 배양물의 pH를 조절할 수 있다.In addition, precursors suitable for the culture medium may be used. The above-described raw materials may be added in a batch, fed-batch, or continuous manner to the culture during the cultivation process, but are not particularly limited thereto. Basic compounds such as sodium hydroxide, potassium hydroxide, ammonia, or acid compounds such as phosphoric acid or sulfuric acid can be used in an appropriate manner to adjust the pH of the culture.
또한, 지방산 폴리글리콜 에스테르와 같은 소포제를 사용하여 기포 생성을 억제할 수 있다. 호기 상태를 유지하기 위해 배양물 내로 산소 또는 산소-함유 기체(예, 공기)를 주입한다. 배양물의 온도는 보통 27℃ 내지 37℃, 바람직하게는 30℃ 내지 35℃이다. 배양은 상기 펩타이드의 생성량이 최대로 얻어질 때까지 계속한다. 이러한 목적으로 보통 10 내지 100 시간에서 달성된다.In addition, foaming can be suppressed by using an antifoaming agent such as fatty acid polyglycol ester. Oxygen or an oxygen-containing gas (eg air) is injected into the culture to maintain an aerobic condition. The temperature of the culture is usually 27°C to 37°C, preferably 30°C to 35°C. The cultivation is continued until the maximum amount of the peptide is obtained. For this purpose it is usually achieved in 10 to 100 hours.
또한, 상기 배양을 통해 수득한 배양물로부터 아세토인을 회수하는 단계를 추가로 포함할 수 있는데, 상기 배양물로부터 아세토인을 회수하는 단계는 투석, 원심분리, 여과, 용매추출, 크로마토그래피, 결정화 등의 당업계에 공지된 방법에 의해 수행될 수 있다. 예를 들면, 상기 배양물을 원심분리하여 야생형 메탄자화균 또는 형질전환 메탄자화균이 제거된 상등액을 수득하고, 상기 수득한 상등액을 용매추출법에 적용하여 목적하는 아세토인을 회수하는 방법을 사용할 수 있고, 이외에도 상기 목적하는 아세토인의 특성에 맞추어 공지된 실험방법을 조합하여 상기 아세토인을 회수할 수 있는 방법이라면 특별히 제한되지 않고 사용될 수 있다.In addition, it may further include the step of recovering acetoin from the culture obtained through the culture, the step of recovering acetoin from the culture is dialysis, centrifugation, filtration, solvent extraction, chromatography, crystallization It can be carried out by methods known in the art, such as. For example, the culture is centrifuged to obtain a supernatant from which wild-type methanogens or transformed methanogens are removed, and the obtained supernatant is applied to a solvent extraction method to recover the desired acetoin. In addition, any method capable of recovering the acetoin by combining known experimental methods according to the properties of the desired acetoin may be used without particular limitation.
본 발명의 다른 실시양태는 ack(acetate kinase)를 코딩하는 유전자, pta(phosphoate acetyltransferase)를 코딩하는 유전자, acs(acetyl-coenzyme A synthetase)를 코딩하는 유전자, aor(aldehyde ferredoxin oxidoreductase)를 코딩하는 유전자 및 이들의 조합으로 구성된 군으로부터 선택되는 유전자가 불활성화된 아세토인 생산용 형질전환 메탄자화균, 상기 형질전환 메탄자화균을 포함하는 아세토인 생산용 조성물 및 상기 조성물을 포함하는 아세토인 생산용 키트를 제공한다.Another embodiment of the present invention is a gene encoding ack (acetate kinase), a gene encoding pta (phosphoate acetyltransferase), a gene encoding acs (acetyl-coenzyme A synthetase), a gene encoding aor (aldehyde ferredoxin oxidoreductase) And a gene selected from the group consisting of a combination thereof is inactivated acetoin production transgenic methanogens, acetoin production composition comprising the transgenic methanogens, and acetoin production kit comprising the composition Provides.
상술한 바와 같이, 상기 3종의 유전자가 각각 개별적으로 또는 복합적으로 불활성화된 형질전환 메탄자화균은 에탄으로부터 아세토인을 효과적으로 생산할 수 있으므로, 상기 형질전환 메탄자화균 또는 이의 배양물을 이용하면 에탄 뿐만 아니라 에탄을 포함하는 천연가스, 세일가스 등의 원료로부터 아세토인을 높은 수율로 생산할 수 있다.As described above, since the transformed methanogens in which the three genes are individually or complexly inactivated can effectively produce acetoin from ethane, the use of the transformed methanogens or a culture thereof may result in ethane. In addition, acetoin can be produced in high yield from raw materials such as natural gas and sail gas including ethane.
본 발명에 있어서, 상기 형질전환 메탄자화균의 배양산물은 에탄으로부터 아세토인을 높은 수율로 생산하는데 사용될 수 있는 한, 특별히 이에 제한되지 않으나, 일 예로서, 상기 형질전환 메탄자화균의 배양물, 배양상등액, 파쇄물, 이들의 분획물 등이 될 수 있고, 다른 예로서, 상기 형질전환 메탄자화균의 배양물을 원심분리하여 수득한 배양상등액, 형질전환 미생물을 물리적으로 또는 초음파처리하여 수득한 파쇄물, 상기 배양물, 배양상등액, 파쇄물 등을 원심분리, 크로마토그래피 등의 방법에 적용하여 수득한 분획물 등이 될 수 있다.In the present invention, as long as the culture product of the transformed methanase bacteria can be used to produce acetoin from ethane in a high yield, it is not particularly limited thereto, but as an example, the culture product of the transformed methanase bacteria, It may be a culture supernatant, a lysate, a fraction thereof, and the like, and as another example, a culture supernatant obtained by centrifuging the culture of the transformed methanogens, a lysate obtained by physically or ultrasonically treating a transformed microorganism It may be a fraction obtained by applying the culture, culture supernatant, lysate, etc. to a method such as centrifugation or chromatography.
한편, 본 발명의 아세토인 생산용 키트는 상기 아세토인 생산용 조성물을 포함하여 아세토인을 생산하는데 사용될 수 있는데, 특별히 이에 제한되지 않으나, 상기 반응에 적합한 한 종류 또는 그 이상의 다른 구성 성분 조성물, 용액 또는 장치가 포함될 수 있고, 구체적인 예로 상기 아세토인 생산에 사용되는 완충액, 상기 아세토인 생산을 수행하기 위한 반응용기, 상기 아세토인 생산을 수행하기 위한 진탕배양기, 상기 아세토인 생산 반응을 수행하기 위한 타이머 등을 포함할 수 있다. On the other hand, the kit for producing acetoin of the present invention may be used to produce acetoin, including the composition for producing acetoin, but is not particularly limited thereto, but one kind or more suitable for the reaction Or an apparatus may be included, and specific examples include a buffer solution used for the production of acetoin, a reaction vessel for performing the acetoin production, a shaking incubator for performing the acetoin production, and a timer for performing the acetoin production reaction And the like.
본 발명에서 제공하는 형질전환 메탄자화균을 이용하여 에탄으로부터 아세토인을 생산하는 방법을 이용하면, 메탄자화균으로부터 생성되는 아세트산의 생산량을 감소시키면서, 아세토인의 생산성을 향상시킬 수 있으므로, 에탄 뿐만 아니라 에탄을 포함하는 천연가스, 세일가스 등의 원료로부터 아세토인을 생성할 수 있으므로, 아세토인의 경제적인 생산에 널리 활용될 수 있을 것이다.If the method of producing acetoin from ethane using the transformed methanogens provided in the present invention is used, the productivity of acetoin can be improved while reducing the production amount of acetic acid produced from the methanogens. In addition, since acetoin can be produced from raw materials such as natural gas and sail gas including ethane, it will be widely used for economical production of acetoin.
도 1은 메탄산화효소, 메탄올탈수소효소 및 알데하이드 라이에이즈를 발현하는 3종의 서로다른 야생형 메탄자화균(Methylomonas sp. DH-1 균주(A); Methylomicrobium alcaliphilum 20Z 균주(B); Methylosinus trichosporium OB3b 균주(C))을 대상으로 메탄(좌측) 또는 에탄(우측)을 기질로 제공하여 배양할 경우, 이의 배양물로부터 생산되는 아세토인 및 기타 성분의 농도를 비교한 결과를 나타내는 그래프이다.
도 2는 FLS 유전자와 BudC 유전자가 도입된 형질전환 메탄자화균 M. alcaliphilum strain 20Z를 대상으로 에탄을 기질로 제공하여 배양할 경우, 이의 배양물로부터 생산되는 아세토인 및 기타 성분의 농도를 비교한 결과를 나타내는 그래프로서 (A)는 대조군인 야생형 메탄자화균 M. alcaliphilum strain 20Z의 배양물을 나타내고, (B)는 형질전환 메탄자화균 M. alcaliphilum strain 20Z의 배양물을 나타낸다.
도 3은 acetate kinase (ack), phosphate acetyltransferase (pta), acetyl-coenzyme A synthetase (acs) 또는 aldehyde ferredoxin oxidoreductase (aor)가 결실된 각각의 메탄자화균에 에탄을 공급하면서 배양하여 수득한 각 배양물에 포함된 아세토인과 아세트산의 농도를 비교한 결과를 나타내는 그래프이다.1 shows three different wild-type methanogens (Methylomonas sp. DH-1 strain (A); Methylomicrobium alcaliphilum 20Z strain (B)); Methylosinus trichosporium OB3b strain expressing methane oxidase, methanol dehydrogenase, and aldehyde lyase. (C)) is a graph showing the result of comparing the concentrations of acetoin and other components produced from the culture when methane (left) or ethane (right) is provided as a substrate and cultured.
2 is a comparison of the concentrations of acetoin and other components produced from the culture of the FLS gene and the BudC gene introduced transgenic methanogen M. alcaliphilum strain 20Z, when cultured by providing ethane as a substrate. As a graph showing the results, (A) represents a culture of wild-type methanogens M. alcaliphilum strain 20Z as a control, and (B) represents a culture of transformed methanogens M. alcaliphilum strain 20Z.
Figure 3 is each culture obtained by culturing while supplying ethane to each of the methane-sugar bacteria in which acetate kinase (ack), phosphate acetyltransferase (pta), acetyl-coenzyme A synthetase (acs) or aldehyde ferredoxin oxidoreductase (aor) is deleted This is a graph showing the results of comparing the concentrations of acetoin and acetic acid contained in.
이하 본 발명을 실시예를 통하여 보다 상세하게 설명한다. 그러나 이들 실시예는 본 발명을 예시적으로 설명하기 위한 것으로 본 발명의 범위가 이들 실시예에 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail through examples. However, these examples are for illustrative purposes only, and the scope of the present invention is not limited to these examples.
실시예 1: 야생형 메탄자화균을 이용한 아세토인의 생산Example 1: Production of acetoin using wild-type methanogens
실시예 1-1: 야생형 메탄자화균의 배양Example 1-1: Cultivation of wild-type methanogens
3종의 야생형 메탄자화균(Methylomonas sp. DH-1 균주; Methylomicrobium alcaliphilum 20Z 균주; 및 Methylosinus trichosporium OB3b 균주)을 각각 NMS 배지에 접종한 후, 플라스크 내의 대기중에 메탄을 주입하여 메탄자화균을 배양하였다.Three wild-type methanogens (Methylomonas sp. DH-1 strain; Methylomicrobium alcaliphilum 20Z strain; and Methylosinus trichosporium OB3b strain) were each inoculated into the NMS medium, and methane was injected into the atmosphere in the flask to cultivate the methanogens. .
실시예 1-2: 메탄을 이용하여 배양한 배양액의 아세토인 농도 측정Example 1-2: Measurement of acetoin concentration in culture broth cultured using methane
상기 실시예 1-1에서 배양한 세 가지 종류의 메탄자화균에 메탄을 공급하면서 배양한 후, 배양내의 균체 농도 및 아세토인 농도의 변화를 측정하였다(도 1).After culturing while supplying methane to the three types of methanogens cultured in Example 1-1, changes in the cell concentration and acetoin concentration in the culture were measured (FIG. 1).
실시예 1-3: 메탄을 이용하여 배양한 배양체에 에탄을 주입한 후의 아세토인 농도 측정Example 1-3: Measurement of acetoin concentration after injecting ethane into a culture medium cultured using methane
상기 실시예 1-1에서 배양한 세 가지 종류의 메탄자화균에 에탄을 공급하면서 배양한 후, 배양시간의 경과에 따른, 배양물 내에 존재하는 균체 농도, 아세트알데히드, 아세토인 및 아세트산의 농도 변화를 측정하였다(도 1).After culturing while supplying ethane to the three types of methanogens cultured in Example 1-1, changes in the concentration of cells present in the culture, acetaldehyde, acetoin, and acetic acid as the cultivation time elapses Was measured (Fig. 1).
도 1은 메탄산화효소, 메탄올탈수소효소 및 알데하이드 라이에이즈를 발현하는 3종의 서로다른 야생형 메탄자화균(Methylomonas sp. DH-1 균주(A); Methylomicrobium alcaliphilum 20Z 균주(B); Methylosinus trichosporium OB3b 균주(C))을 대상으로 메탄(좌측) 또는 에탄(우측)을 기질로 제공하여 배양할 경우, 이의 배양물로부터 생산되는 아세토인 및 기타 성분의 농도를 비교한 결과를 나타내는 그래프이다.1 shows three different wild-type methanogens (Methylomonas sp. DH-1 strain (A); Methylomicrobium alcaliphilum 20Z strain (B)); Methylosinus trichosporium OB3b strain expressing methane oxidase, methanol dehydrogenase, and aldehyde lyase. (C)) is a graph showing the result of comparing the concentrations of acetoin and other components produced from the culture when methane (left) or ethane (right) is provided as a substrate and cultured.
상기 도 1에서 보듯이, 메탄산화효소, 메탄올탈수소효소, 알데하이드 라이에이즈를 발현하는 각각의 야생형 메탄자화균은 상기 발현된 효소의 연쇄반응을 통해, 에탄로부터 아세토인을 생산할 수 있음을 확인하였다.As shown in FIG. 1, it was confirmed that each wild-type methanogen expressing methane oxidase, methanol dehydrogenase, and aldehyde lyase can produce acetoin from ethane through a chain reaction of the expressed enzyme.
실시예 2: 유전자가 도입된 메탄자화균을 이용한 아세토인의 생산Example 2: Production of acetoin using a gene-introduced methanogen
formolase (FLS) 유전자와 acetoin reductase (BudC) 유전자가 도입된 메탄자화균을 이용하여 아세토인을 생산하였다.Acetoin was produced by using the formolase (FLS) gene and the acetoin reductase (BudC) gene.
실시예 2-1: 형질전환 벡터의 제작Example 2-1: Construction of transformation vector
먼저, 아세트알데히드를 아세토인으로 전환하는 효소인 formolase (FLS)를 코딩하는 유전자를 주형으로 하고, 하기 프라이머를 사용한 PCR을 수행하여 FLS 유전자 증폭산물을 수득하였다.First, a gene encoding formolase (FLS), an enzyme that converts acetaldehyde to acetoin, was used as a template, and PCR was performed using the following primers to obtain a FLS gene amplification product.
FLS_F: 5'-GAAACAGCTATGGCTATGATTACTGGTGG-3'(서열번호 1)FLS_F: 5'-GAAACAGCTATGGCTATGATTACTGGTGG-3' (SEQ ID NO: 1)
FLS_R: 5'-tgtgatgacTCACGCGCCGGATTGGAAAT-3'(서열번호 2)FLS_R: 5'-tgtgatgacTCACGCGCCGGATTGGAAAT-3' (SEQ ID NO: 2)
또한, 아세토인을 2,3-부탄디올(2,3-BDO)로 전환하는 효소인 acetoin reductase (BudC)를 코딩하는 유전자를 주형으로 하고, 하기 프라이머를 사용한 PCR을 수행하여 BudC 유전자 증폭산물을 수득하였다.In addition, a gene encoding acetoin reductase (BudC), an enzyme that converts acetoin to 2,3-butanediol (2,3-BDO), was used as a template, and PCR was performed using the following primers to obtain a BudC gene amplification product. I did.
BudC_F: 5'-GGCGCGTGAgtcatcacaataaggaaaga-3'(서열번호 3)BudC_F: 5'-GGCGCGTGAgtcatcacaataaggaaaga-3' (SEQ ID NO: 3)
BudC_R: 5'-CGACAACTATTAGTTAAACACCATGCCGC-3'(서열번호 4)BudC_R: 5'-CGACAACTATTAGTTAAACACCATGCCGC-3' (SEQ ID NO: 4)
끝으로, pAWP89 벡터를 주형으로 하고, 하기 프라이머를 사용한 PCR을 수행하여 pAWP89 벡터의 증폭산물을 수득하였다.Finally, using the pAWP89 vector as a template, PCR was performed using the following primers to obtain an amplification product of the pAWP89 vector.
pAWP89_F: 5'- GGCGCGTGATTGTCGGGAAGATGCGTGAT-3'(서열번호 5)pAWP89_F: 5'- GGCGCGTGATTGTCGGGAAGATGCGTGAT-3' (SEQ ID NO: 5)
pAWP89_R: 5'- TTTAACTAATAGTTGTCGGGAAGATGCGT-3'(서열번호 6)pAWP89_R: 5'- TTTAACTAATAGTTGTCGGGAAGATGCGT-3' (SEQ ID NO: 6)
상기 수득한 FLS 유전자 증폭산물과 BudC 유전자 증폭산물(서열번호 7)을 pAWP89 벡터에 도입하여, 메탄자화균 형질전환 벡터를 제작하였다.The obtained FLS gene amplification product and the BudC gene amplification product (SEQ ID NO: 7) were introduced into the pAWP89 vector to prepare a methanogen transformation vector.
실시예 2-2: 형질전환 메탄자화균을 이용한 아세토인의 생산Example 2-2: Production of acetoin using transformed methanogens
상기 실시예 2-1에서 제작된 형질전환 벡터를 전기천공법 (electroporation)을 이용하여 야생형 메탄자화균 M. alcaliphilum strain 20Z에 도입하였다.The transformation vector prepared in Example 2-1 was introduced into the wild-type methanogen M. alcaliphilum strain 20Z by electroporation.
대략적으로, M. alcaliphilum strain 20Z 배양 후, 물로 3회 세척 후, 발현 벡터 제조실험에서 설계한 발현 벡터 1μg을 Gene Pulser XcellTM Electropotation system(Bio-rad)을 이용하여 형질전환을 수행하였다. 전기천공법 후 세포를 회수하여 10 ml NMS 배지에 옮겨 메탄 기질을 공급하여 안정화시킨 후 카나마이신 (kanamycin)이 첨가된 고체 NMS 배지에 도말한 후 배양하여, 형질전환된 메탄자화균을 수득하였다.Approximately, after culturing M. alcaliphilum strain 20Z, after washing three times with water, 1 μg of the expression vector designed in the expression vector production experiment was transformed using the Gene Pulser XcellTM Electropotation system (Bio-rad). After electroporation, the cells were recovered, transferred to 10 ml NMS medium, stabilized by supplying methane substrate, plated on solid NMS medium supplemented with kanamycin, and cultured to obtain transformed methanogens.
상기 수득한 형질전환된 메탄자화균에 에탄을 공급하면서 배양한 후, 배양시간의 경과에 따른, 배양물 내에 존재하는 2,3-부탄디올(2,3-BDO), 아세트알데히드, 아세토인 및 아세트산의 농도 변화를 측정하였다(도 2). 이때, 대조군으로는 형질전환되지 않은 야생형 메탄자화균 M. alcaliphilum strain 20Z의 배양물을 사용하였다.2,3-butanediol (2,3-BDO), acetaldehyde, acetoin, and acetic acid present in the culture after culturing while supplying ethane to the obtained transformed methanogens. The change in concentration of was measured (Fig. 2). At this time, as a control, a culture of untransformed wild-type methanogen M. alcaliphilum strain 20Z was used.
도 2는 FLS 유전자와 BudC 유전자가 도입된 형질전환 메탄자화균 M. alcaliphilum strain 20Z를 대상으로 에탄을 기질로 제공하여 배양할 경우, 이의 배양물로부터 생산되는 아세토인 및 기타 성분의 농도를 비교한 결과를 나타내는 그래프로서 (A)는 대조군인 야생형 메탄자화균 M. alcaliphilum strain 20Z의 배양물을 나타내고, (B)는 형질전환 메탄자화균 M. alcaliphilum strain 20Z의 배양물을 나타낸다.2 is a comparison of the concentrations of acetoin and other components produced from the culture of the FLS gene and the BudC gene introduced transgenic methanogen M. alcaliphilum strain 20Z, when cultured by providing ethane as a substrate. As a graph showing the results, (A) represents a culture of wild-type methanogens M. alcaliphilum strain 20Z as a control, and (B) represents a culture of transformed methanogens M. alcaliphilum strain 20Z.
도 2에서 보듯이, 배양물내의 아세트알데히드와 아세트산의 농도는 야생형 균주와 형질전환 균주 사이에 별다른 차이를 나타내지 않았으나, 2,3-부탄디올(2,3-BDO)과 아세토인의 농도는 야생형 균주에 비하여, 형질전환 균주에서 현저히 증가됨을 확인하였다. 야생형 균주에서는 2,3-부탄디올(2,3-BDO)이 생산되지 않고, 아세토인은 최대 15mg/L가 생산되었으나, 형질전환 균주에서는 2,3-부탄디올(2,3-BDO)이 최대 1.1mg/L로 생산되고, 아세토인이 최대 30mg/L로 생산됨을 확인하였다.As shown in FIG. 2, the concentration of acetaldehyde and acetic acid in the culture did not show any difference between the wild-type strain and the transformed strain, but the concentration of 2,3-butanediol (2,3-BDO) and acetoin was a wild-type strain. Compared to, it was confirmed that it was significantly increased in the transformed strain. In the wild-type strain, 2,3-butanediol (2,3-BDO) was not produced, and acetoin was produced at a maximum of 15 mg/L, but in the transformed strain, 2,3-butanediol (2,3-BDO) was produced at a maximum of 1.1. It was confirmed that it was produced at mg/L, and acetoin was produced at a maximum of 30 mg/L.
실시예 3: 유전자가 결실된 메탄자화균을 이용한 아세토인의 생산Example 3: Production of acetoin using a gene-deleted methanogen
acetate kinase (ack), phosphate acetyltransferase (pta), acetyl-coenzyme A synthetase (acs) 또는 aldehyde ferredoxin oxidoreductase (aor)가 결실된 메탄자화균을 이용하여 아세토인을 생산하였다.Acetoin was produced by using a methane magnetizing bacteria in which acetate kinase (ack), phosphate acetyltransferase (pta), acetyl-coenzyme A synthetase (acs) or aldehyde ferredoxin oxidoreductase (aor) was deleted.
실시예 3-1: ack 유전자가 결실된 형질전환 메탄자화균의 제작Example 3-1: Preparation of transgenic methanogens in which the ack gene was deleted
먼저, 메탄자화균 M. alcaliphilum strain 20Z 균주의 유전체에 존재하는 acetate kinase (ack)를 코딩하는 유전자(서열번호 8)의 upstream 750bp를 주형으로 하고, 하기 프라이머를 사용한 PCR을 수행하여 증폭산물을 수득하였다.First, the upstream 750bp of the gene (SEQ ID NO: 8) encoding acetate kinase (ack) present in the genome of the M. alcaliphilum strain 20Z strain was used as a template, and PCR was performed using the following primers to obtain an amplification product. I did.
ack_up_F: 5'-ttggtctgacagttaccaTGCATGTGCGGGGCTATAAA-3'(서열번호 9)ack_up_F: 5'-ttggtctgacagttaccaTGCATGTGCGGGGCTATAAA-3' (SEQ ID NO: 9)
ack_up_R: 5'-cccgatttcTTGATTGAGGAACTGCCGCT-3'(서열번호 10)ack_up_R: 5'-cccgatttcTTGATTGAGGAACTGCCGCT-3' (SEQ ID NO: 10)
다음으로, 메탄자화균 M. alcaliphilum strain 20Z 균주의 유전체에 존재하는 acetate kinase (ack)를 코딩하는 유전자의 downstream 750bp를 주형으로 하고, 하기 프라이머를 사용한 PCR을 수행하여 증폭산물을 수득하였다.Next, the downstream 750 bp of the gene encoding acetate kinase (ack) present in the genome of the M. alcaliphilum strain 20Z strain was used as a template, and PCR was performed using the following primers to obtain an amplification product.
ack_down_F: 5'-ctcaatcaaGAAATCGGGCTTGCCGAAAG-3'(서열번호 11)ack_down_F: 5'-ctcaatcaaGAAATCGGGCTTGCCGAAAG-3' (SEQ ID NO: 11)
ack_down_R: 5'-caccgacaacctgcacatCGACCCGCCTTATTACACGA-3'(서열번호 12)ack_down_R: 5'-caccgacaacctgcacatCGACCCGCCTTATTACACGA-3' (SEQ ID NO: 12)
끝으로, pCM433kanT 벡터를 주형으로 하고, 하기 프라이머를 사용한 PCR을 수행하여 pCM433kanT 벡터의 증폭산물을 수득하였다.Finally, using the pCM433kanT vector as a template, PCR was performed using the following primers to obtain an amplification product of the pCM433kanT vector.
pCM433kanT_F: 5'-ATGTGCAGGTTGTCGGTGTC-3'(서열번호 13)pCM433kanT_F: 5'-ATGTGCAGGTTGTCGGTGTC-3' (SEQ ID NO: 13)
pCM433kanT_R: 5'-TGGTAACTGTCAGACCAAGTTTACTC-3'(서열번호 14)pCM433kanT_R: 5'-TGGTAACTGTCAGACCAAGTTTACTC-3' (SEQ ID NO: 14)
상기 수득한 upstream 증폭산물과 downstream 증폭산물을 pCM433kanT 벡터에 도입하여 재조합 벡터를 수득한 다음, 상기 재조합 벡터를 주형으로 하고, 서열번호 9 및 12의 프라이머를 사용한 PCR을 수행하여 1500bp의 유전자 단편을 수득하였다.The obtained upstream amplification product and downstream amplification product were introduced into the pCM433kanT vector to obtain a recombinant vector, and then PCR was performed using the recombinant vector as a template and primers of SEQ ID NOs: 9 and 12 to obtain a gene fragment of 1500 bp. I did.
상기 수득한 1500bp의 유전자 단편을 pCM433kanT 벡터에 도입하여 ack 결실용 형질전환 벡터를 제작하였다.The 1500bp gene fragment obtained above was introduced into the pCM433kanT vector to prepare a transformation vector for ack deletion.
상기 제작된 ack 결실용 형질전환 벡터를 전기천공법 (electroporation)을 이용하여 야생형 메탄자화균 M. alcaliphilum strain 20Z에 도입하였다.The prepared transformation vector for ack deletion was introduced into the wild-type methanogen M. alcaliphilum strain 20Z by electroporation.
대략적으로, M. alcaliphilum strain 20Z 배양하고, 물로 3회 세척 후, ack 결실용 형질전환 벡터 1μg을 Gene Pulser XcellTM Electropotation system(Bio-rad)을 이용하여 형질전환을 수행하였다. 전기천공법 후 세포를 회수하여 10 ml NMS 배지에 옮겨 메탄 기질을 공급하여 안정화시킨 후 카나마이신 (kanamycin)이 첨가된 고체 NMS 배지에 도말한 후 배양하여, 단일 콜로니를 수득하였다. 상기 수득한 단일 콜로니를 수크로즈(sucrose)가 첨가된 고체 NMS 배지에 재 도말하여 균체를 수득하였다. 상기 수득한 균체의 유전체를 주형으로 하고, 서열번호 9 및 12의 프라이머를 사용한 PCR을 수행하여 1500bp의 유전자 단편이 증폭되지 않은 형질전환체를 최종 선발하였다.Approximately, M. alcaliphilum strain 20Z was cultured, washed three times with water, and then 1 μg of a transformation vector for ack deletion was transformed using a Gene Pulser XcellTM Electropotation system (Bio-rad). After the electroporation, the cells were recovered, transferred to 10 ml NMS medium, stabilized by supplying methane substrate, plated on solid NMS medium to which kanamycin was added, and cultured to obtain a single colony. The obtained single colony was re-sprayed on a solid NMS medium to which sucrose was added to obtain cells. Using the obtained genome of the cells as a template, PCR was performed using primers of SEQ ID NOs: 9 and 12 to finally select transformants in which the 1500 bp gene fragment was not amplified.
실시예 3-2: pta 유전자가 결실된 형질전환 메탄자화균의 제작Example 3-2: Preparation of transgenic methanogens in which the pta gene was deleted
먼저, 메탄자화균 M. alcaliphilum strain 20Z 균주의 유전체에 존재하는 phosphate acetyltransferase (pta)를 코딩하는 유전자(서열번호 15)의 upstream 750bp를 주형으로 하고, 하기 프라이머를 사용한 PCR을 수행하여 증폭산물을 수득하였다.First, 750bp upstream of the gene (SEQ ID NO: 15) encoding phosphate acetyltransferase (pta) present in the genome of M. alcaliphilum strain 20Z as a template, and PCR using the following primers to obtain an amplification product I did.
pta_up_F: 5'-ttggtctgacagttaccatcaacgaccgattgaaa-3'(서열번호 16)pta_up_F: 5'-ttggtctgacagttaccatcaacgaccgattgaaa-3' (SEQ ID NO: 16)
pta_up_R: 5'-gtaagtcggcggcgatacaggctcaa-3'(서열번호 17)pta_up_R: 5'-gtaagtcggcggcgatacaggctcaa-3' (SEQ ID NO: 17)
다음으로, 메탄자화균 M. alcaliphilum strain 20Z 균주의 유전체에 존재하는 phosphate acetyltransferase (pta)를 코딩하는 유전자의 downstream 750bp를 주형으로 하고, 하기 프라이머를 사용한 PCR을 수행하여 증폭산물을 수득하였다.Next, 750 bp downstream of the gene encoding phosphate acetyltransferase (pta) present in the genome of the M. alcaliphilum strain 20Z strain was used as a template, and PCR was performed using the following primers to obtain an amplification product.
pta_down_F: 5'-gtatcgccgccgacttaccgctgccc-3'(서열번호 18)pta_down_F: 5'-gtatcgccgccgacttaccgctgccc-3' (SEQ ID NO: 18)
pta_down_R: 5'-CACCGACAACCTGCACATacctttttcgtgcaaaa-3'(서열번호 19)pta_down_R: 5'-CACCGACAACCTGCACATacctttttcgtgcaaaa-3' (SEQ ID NO: 19)
상기 수득한 upstream 증폭산물과 downstream 증폭산물을 pCM433kanT 벡터에 도입하여 재조합 벡터를 수득한 다음, 상기 재조합 벡터를 주형으로 하고, 서열번호 16 및 19의 프라이머를 사용한 PCR을 수행하여 1500bp의 유전자 단편을 수득하였다.The obtained upstream amplification product and downstream amplification product were introduced into the pCM433kanT vector to obtain a recombinant vector, and then PCR was performed using the recombinant vector as a template and primers of SEQ ID NOs: 16 and 19 to obtain a gene fragment of 1500 bp. I did.
상기 수득한 1500bp의 유전자 단편을 pCM433kanT 벡터에 도입하여 pta 결실용 형질전환 벡터를 제작하였다.The 1500bp gene fragment obtained above was introduced into the pCM433kanT vector to prepare a transformation vector for pta deletion.
상기 제작된 pta 결실용 형질전환 벡터를 전기천공법 (electroporation)을 이용하여 야생형 메탄자화균 M. alcaliphilum strain 20Z에 도입하였다.The prepared transformation vector for pta deletion was introduced into the wild-type methanogen M. alcaliphilum strain 20Z by electroporation.
대략적으로, M. alcaliphilum strain 20Z 배양하고, 물로 3회 세척 후, ack 결실용 형질전환 벡터 1μg을 Gene Pulser XcellTM Electropotation system(Bio-rad)을 이용하여 형질전환을 수행하였다. 전기천공법 후 세포를 회수하여 10 ml NMS 배지에 옮겨 메탄 기질을 공급하여 안정화시킨 후 카나마이신 (kanamycin)이 첨가된 고체 NMS 배지에 도말한 후 배양하여, 단일 콜로니를 수득하였다. 상기 수득한 단일 콜로니를 수크로즈(sucrose)가 첨가된 고체 NMS 배지에 재 도말하여 균체를 수득하였다. 상기 수득한 균체의 유전체를 주형으로 하고, 서열번호 16 및 19의 프라이머를 사용한 PCR을 수행하여 1500bp의 유전자 단편이 증폭되지 않은 형질전환체를 최종 선발하였다.Approximately, M. alcaliphilum strain 20Z was cultured, washed three times with water, and then 1 μg of a transformation vector for ack deletion was transformed using a Gene Pulser XcellTM Electropotation system (Bio-rad). After the electroporation, the cells were recovered, transferred to 10 ml NMS medium, stabilized by supplying methane substrate, plated on solid NMS medium to which kanamycin was added, and cultured to obtain a single colony. The obtained single colony was re-sprayed on a solid NMS medium to which sucrose was added to obtain cells. Using the genome of the obtained cells as a template, PCR was performed using primers of SEQ ID NOs: 16 and 19 to finally select transformants in which the 1500 bp gene fragment was not amplified.
실시예 3-3: acs 유전자가 결실된 형질전환 메탄자화균의 제작Example 3-3: Preparation of transgenic methanogens in which the acs gene was deleted
먼저, 메탄자화균 M. alcaliphilum strain 20Z 균주의 유전체에 존재하는 acetyl-coenzyme A synthetase (acs)를 코딩하는 유전자(서열번호 20)의 upstream 750bp를 주형으로 하고, 하기 프라이머를 사용한 PCR을 수행하여 증폭산물을 수득하였다.First, 750bp upstream of the gene (SEQ ID NO: 20) encoding acetyl-coenzyme A synthetase (acs) present in the genome of M. alcaliphilum strain 20Z as a template, and amplified by performing PCR using the following primers The product was obtained.
acsA_up_F: 5'-TTGGTCTGACAGTTACCAtaattaccgactcgcacg-3'(서열번호 21)acsA_up_F: 5'-TTGGTCTGACAGTTACCAtaattaccgactcgcacg-3' (SEQ ID NO: 21)
acsA_up_R: 5'-gaggcgactttccggtgtaatgtgagc-3'(서열번호 22)acsA_up_R: 5'-gaggcgactttccggtgtaatgtgagc-3' (SEQ ID NO: 22)
다음으로, 메탄자화균 M. alcaliphilum strain 20Z 균주의 유전체에 존재하는 acetyl-coenzyme A synthetase (acs)를 코딩하는 유전자의 downstream 750bp를 주형으로 하고, 하기 프라이머를 사용한 PCR을 수행하여 증폭산물을 수득하였다.Next, the downstream 750 bp of the gene encoding acetyl-coenzyme A synthetase (acs) present in the genome of the M. alcaliphilum strain 20Z strain was used as a template, and PCR was performed using the following primers to obtain an amplified product. .
acsA_down_F: 5'-acaccggaaagtcgcctcgaacgaaat-3'(서열번호 23)acsA_down_F: 5'-acaccggaaagtcgcctcgaacgaaat-3' (SEQ ID NO: 23)
acsA_down_R: 5'-CACCGACAACCTGCACATggatttttcttcgtcgcg-3'(서열번호 24)acsA_down_R: 5'-CACCGACAACCTGCACATggatttttcttcgtcgcg-3' (SEQ ID NO: 24)
상기 수득한 upstream 증폭산물과 downstream 증폭산물을 pCM433kanT 벡터에 도입하여 재조합 벡터를 수득한 다음, 상기 재조합 벡터를 주형으로 하고, 서열번호 21 및 24의 프라이머를 사용한 PCR을 수행하여 1500bp의 유전자 단편을 수득하였다.The obtained upstream amplification product and the downstream amplification product were introduced into the pCM433kanT vector to obtain a recombinant vector, and then PCR was performed using the recombinant vector as a template and primers of SEQ ID NOs: 21 and 24 to obtain a gene fragment of 1500 bp. I did.
상기 수득한 1500bp의 유전자 단편을 pCM433kanT 벡터에 도입하여 acs 결실용 형질전환 벡터를 제작하였다.The 1500bp gene fragment obtained above was introduced into the pCM433kanT vector to prepare a transformation vector for acs deletion.
상기 제작된 acs 결실용 형질전환 벡터를 전기천공법 (electroporation)을 이용하여 야생형 메탄자화균 M. alcaliphilum strain 20Z에 도입하였다.The prepared transformation vector for acs deletion was introduced into the wild-type methanogen M. alcaliphilum strain 20Z by electroporation.
대략적으로, M. alcaliphilum strain 20Z 배양하고, 물로 3회 세척 후, ack 결실용 형질전환 벡터 1μg을 Gene Pulser XcellTM Electropotation system(Bio-rad)을 이용하여 형질전환을 수행하였다. 전기천공법 후 세포를 회수하여 10 ml NMS 배지에 옮겨 메탄 기질을 공급하여 안정화시킨 후 카나마이신 (kanamycin)이 첨가된 고체 NMS 배지에 도말한 후 배양하여, 단일 콜로니를 수득하였다. 상기 수득한 단일 콜로니를 수크로즈(sucrose)가 첨가된 고체 NMS 배지에 재 도말하여 균체를 수득하였다. 상기 수득한 균체의 유전체를 주형으로 하고, 서열번호 21 및 24의 프라이머를 사용한 PCR을 수행하여 1500bp의 유전자 단편이 증폭되지 않은 형질전환체를 최종 선발하였다.Approximately, M. alcaliphilum strain 20Z was cultured, washed three times with water, and then 1 μg of a transformation vector for ack deletion was transformed using a Gene Pulser XcellTM Electropotation system (Bio-rad). After the electroporation, the cells were recovered, transferred to 10 ml NMS medium, stabilized by supplying methane substrate, plated on solid NMS medium to which kanamycin was added, and cultured to obtain a single colony. The obtained single colony was re-sprayed on a solid NMS medium to which sucrose was added to obtain cells. Using the obtained genome of the cells as a template, PCR was performed using primers of SEQ ID NOs: 21 and 24 to finally select transformants in which the 1500 bp gene fragment was not amplified.
실시예 3-4: aor 유전자가 결실된 형질전환 메탄자화균의 제작Example 3-4: Preparation of transgenic methanogens in which the aor gene was deleted
먼저, 메탄자화균 M. alcaliphilum strain 20Z 균주의 유전체에 존재하는 aldehyde ferredoxin oxidoreductase (aor)를 코딩하는 유전자(서열번호 25)의 upstream 750bp를 주형으로 하고, 하기 프라이머를 사용한 PCR을 수행하여 증폭산물을 수득하였다.First, the upstream 750bp of the gene (SEQ ID NO: 25) encoding the aldehyde ferredoxin oxidoreductase (aor) present in the genome of the M. alcaliphilum strain 20Z strain was used as a template, and PCR was performed using the following primers to obtain the amplified product. Obtained.
aor_up_F: 5'-TTGGTCTGACAGTTACCActaacgcaaaccgatga-3'(서열번호 26)aor_up_F: 5'-TTGGTCTGACAGTTACCActaacgcaaaccgatga-3' (SEQ ID NO: 26)
aor_up_R: 5'-tagtgcctcctatagcgatttaatcga-3'(서열번호 27)aor_up_R: 5'-tagtgcctcctatagcgatttaatcga-3' (SEQ ID NO: 27)
다음으로, 메탄자화균 M. alcaliphilum strain 20Z 균주의 유전체에 존재하는 aldehyde ferredoxin oxidoreductase (aor)를 코딩하는 유전자의 downstream 750bp를 주형으로 하고, 하기 프라이머를 사용한 PCR을 수행하여 증폭산물을 수득하였다.Next, 750 bp downstream of the gene encoding aldehyde ferredoxin oxidoreductase (aor) present in the genome of the M. alcaliphilum strain 20Z strain was used as a template, and PCR was performed using the following primers to obtain an amplified product.
aor_down_F: 5'-tcgctataggaggcactatgcattatg-3'(서열번호 28)aor_down_F: 5'-tcgctataggaggcactatgcattatg-3' (SEQ ID NO: 28)
aor_down_R: 5'-ACCGACAACCTGCACATcgcttccttccaaaaaat-3'(서열번호 29)aor_down_R: 5'-ACCGACAACCTGCACATcgcttccttccaaaaaat-3' (SEQ ID NO: 29)
상기 수득한 upstream 증폭산물과 downstream 증폭산물을 pCM433kanT 벡터에 도입하여 재조합 벡터를 수득한 다음, 상기 재조합 벡터를 주형으로 하고, 서열번호 26 및 29의 프라이머를 사용한 PCR을 수행하여 1500bp의 유전자 단편을 수득하였다.The obtained upstream amplification product and the downstream amplification product were introduced into the pCM433kanT vector to obtain a recombinant vector, and then PCR was performed using the recombinant vector as a template and primers of SEQ ID NOs: 26 and 29 to obtain a gene fragment of 1500 bp. I did.
상기 수득한 1500bp의 유전자 단편을 pCM433kanT 벡터에 도입하여 aor 결실용 형질전환 벡터를 제작하였다.The 1500bp gene fragment obtained above was introduced into the pCM433kanT vector to prepare a transformation vector for aor deletion.
상기 제작된 aor 결실용 형질전환 벡터를 전기천공법 (electroporation)을 이용하여 야생형 메탄자화균 M. alcaliphilum strain 20Z에 도입하였다.The prepared transformation vector for aor deletion was introduced into the wild-type methanogen M. alcaliphilum strain 20Z by electroporation.
대략적으로, M. alcaliphilum strain 20Z 배양하고, 물로 3회 세척 후, ack 결실용 형질전환 벡터 1μg을 Gene Pulser XcellTM Electropotation system(Bio-rad)을 이용하여 형질전환을 수행하였다. 전기천공법 후 세포를 회수하여 10 ml NMS 배지에 옮겨 메탄 기질을 공급하여 안정화시킨 후 카나마이신 (kanamycin)이 첨가된 고체 NMS 배지에 도말한 후 배양하여, 단일 콜로니를 수득하였다. 상기 수득한 단일 콜로니를 수크로즈(sucrose)가 첨가된 고체 NMS 배지에 재 도말하여 균체를 수득하였다. 상기 수득한 균체의 유전체를 주형으로 하고, 서열번호 26 및 29의 프라이머를 사용한 PCR을 수행하여 1500bp의 유전자 단편이 증폭되지 않은 형질전환체를 최종 선발하였다.Approximately, M. alcaliphilum strain 20Z was cultured, washed three times with water, and then 1 μg of a transformation vector for ack deletion was transformed using a Gene Pulser XcellTM Electropotation system (Bio-rad). After the electroporation, the cells were recovered, transferred to 10 ml NMS medium, stabilized by supplying methane substrate, plated on solid NMS medium to which kanamycin was added, and cultured to obtain a single colony. The obtained single colony was re-sprayed on a solid NMS medium to which sucrose was added to obtain cells. Using the obtained genome of the cells as a template, PCR was performed using primers of SEQ ID NOs: 26 and 29 to finally select transformants in which the 1500 bp gene fragment was not amplified.
실시예 3-5: 유전자가 결실된 형질전환 메탄자화균을 이용한 아세토인의 생산Example 3-5: Production of acetoin using transgenic methanogens with deletion of genes
상기 실시예 3-1 내지 3-4에서 제작된 각각의 형질전환 메탄자화균에 에탄을 공급하면서 배양한 후, 배양시간의 경과에 따른, 배양물 내에 존재하는 아세토인 및 아세트산의 농도 변화를 측정하였다(도 3). 이때, 대조군으로는 형질전환되지 않은 야생형 메탄자화균 M. alcaliphilum strain 20Z의 배양물을 사용하였다.After culturing while supplying ethane to each of the transformed methanogens prepared in Examples 3-1 to 3-4, changes in the concentration of acetoin and acetic acid present in the culture were measured as the cultivation time elapsed. Was done (Fig. 3). At this time, as a control, a culture of untransformed wild-type methanogen M. alcaliphilum strain 20Z was used.
도 3은 acetate kinase (ack), phosphate acetyltransferase (pta), acetyl-coenzyme A synthetase (acs) 또는 aldehyde ferredoxin oxidoreductase (aor)가 결실된 각각의 메탄자화균에 에탄을 공급하면서 배양하여 수득한 각 배양물에 포함된 아세토인과 아세트산의 농도를 비교한 결과를 나타내는 그래프이다.Figure 3 is each culture obtained by culturing while supplying ethane to each of the methane-sugar bacteria in which acetate kinase (ack), phosphate acetyltransferase (pta), acetyl-coenzyme A synthetase (acs) or aldehyde ferredoxin oxidoreductase (aor) is deleted. This is a graph showing the result of comparing the concentrations of acetoin and acetic acid contained in.
도 3에서 보듯이, 야생형 균주의 경우, 아세트산이 가장 높은 농도로 생산되는 반면, 아세토인의 농도는 상대적으로 가장 낮은 수준을 나타내었다. 이에 반하여, 유전자가 결실된 각각의 형질전환 메탄자화균에서는 야생형에 비하여 상대적으로 높은 수준의 아세토인 농도 및 상대적으로 낮은 수준의 아세트산 농도를 나타내었다. 특히, aor가 결실된 형질전환 메탄자화균에서는 아세트산 보다 높은 농도로 아세토인이 생산됨을 확인하였다.As shown in FIG. 3, in the case of the wild-type strain, acetic acid was produced at the highest concentration, while the concentration of acetoin was relatively the lowest. In contrast, each of the transgenic methanogens in which the gene was deleted showed a relatively high concentration of acetoin and a relatively low concentration of acetic acid compared to the wild type. In particular, it was confirmed that acetoin was produced in a higher concentration than acetic acid in the transgenic methanogens in which aor was deleted.
이상의 설명으로부터, 본 발명이 속하는 기술 분야의 당업자는 본 발명이 그 기술적 사상이나 필수적 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 이와 관련하여, 이상에서 기술한 실시 예들은 모든 면에서 예시적인 것이며 한정적인 것이 아닌 것으로서 이해해야만 한다. 본 발명의 범위는 상기 상세한 설명보다는 후술하는 특허 청구범위의 의미 및 범위 그리고 그 등가 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.From the above description, those skilled in the art to which the present invention pertains will be able to understand that the present invention can be implemented in other specific forms without changing the technical spirit or essential features thereof. In this regard, the embodiments described above are illustrative in all respects and should be understood as non-limiting. The scope of the present invention should be construed that all changes or modifications derived from the meaning and scope of the claims to be described later rather than the above detailed description and equivalent concepts are included in the scope of the present invention.
<110> University-Industry Cooperation Group of Kyung Hee University <120> Process for preparing acetoin using transformed methanotrophs <130> KPA180803-KR-P1 <150> KR 10-2018-0080668 <151> 2018-07-11 <160> 29 <170> KopatentIn 2.0 <210> 1 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 1 gaaacagcta tggctatgat tactggtgg 29 <210> 2 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 2 tgtgatgact cacgcgccgg attggaaat 29 <210> 3 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 3 ggcgcgtgag tcatcacaat aaggaaaga 29 <210> 4 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 4 cgacaactat tagttaaaca ccatgccgc 29 <210> 5 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 5 ggcgcgtgat tgtcgggaag atgcgtgat 29 <210> 6 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 6 tttaactaat agttgtcggg aagatgcgt 29 <210> 7 <211> 2522 <212> DNA <213> Artificial Sequence <220> <223> recombinant DNA <400> 7 atggctatga ttactggtgg tgaactggtt gttcgtaccc tgattaaagc tggcgtagaa 60 catctgtttg gcctgcatgg cattcatatt gacaccattt ttcaggcttg cctggaccac 120 gacgtcccaa tcattgatac tcgccacgaa gcggcggcag gccacgctgc ggaaggttat 180 gcccgcgcgg gcgctaaact gggtgttgcc ctggtgaccg ctggcggtgg ctttaccaat 240 gccgttacgc cgatcgcgaa cgctcggacc gatcgcactc cggttctgtt cctgaccggt 300 tctggtgctc ttcgtgatga cgaaaccaac accctgcagg ccggtattga tcaggtggcc 360 atggcggccc cgatcacgaa atgggctcat cgtgttatgg caactgaaca catcccgcgt 420 ctggttatgc aggccattcg tgccgctctg agcgccccac gtggcccggt gctgctggat 480 ctgccatggg acatcctgat gaaccaaatc gatgaagatt ccgttatcat cccagacctg 540 gtgctgtctg ctcacggtgc ccatccagac ccggctgacc tggaccaggc tctggcactg 600 ctgcgtaaag ccgaacgccc agttatcgta ctgggctccg aggcgtcccg caccgcacgc 660 aagaccgcac tgagcgcatt cgtagcggcg accggtgtac cggttttcgc tgactatgaa 720 ggcctgtcca tgctgagcgg cctgccggac gctatgcgtg gcggcctggt gcagaacctg 780 tactcctttg caaaagctga tgcagctccg gacctggtac tgatgctggg tgctcgtttc 840 ggtctgaaca ccggtcatgg ttccggtcaa ctgatcccgc attctgctca ggtgatccag 900 gtggatccag acgcgtgtga actgggtcgc ctgcaaggca tcgcgctggg tatcgtggct 960 gatgtaggtg gcaccattga agcgctggct caggcgaccg cacaggacgc cgcgtggccg 1020 gaccgcggcg actggtgcgc caaggtaact gacctggccc aggagcgtta cgcttccatc 1080 gcggctaaat ccagctctga acatgcgctg cacccgttcc acgcttctca ggttatcgcg 1140 aaacacgtgg acgcaggcgt gaccgtcgtt gcggatggtg gcctgactta tctgtggctg 1200 tccgaagtta tgtctcgtgt caaaccaggc ggcttcctgt gccacggcta tctgaacagc 1260 atgggtgtag gcttcggtac tgccctgggt gcgcaggttg cggatctgga ggcaggtcgt 1320 cgtaccatcc tggtgaccgg cgacggctct gttggttatt ccattggcga attcgacacc 1380 ctggtacgca aacagctgcc gctgattgta attatcatga acaaccagtc ttggggctgg 1440 accctgcact ttcagcagct ggccgttggt cctaaccgtg tcaccggcac ccgcctggaa 1500 aatggttcct atcacggcgt tgctgcggca ttcggtgctg atggttacca cgtcgactct 1560 gtcgagagct tcagcgccgc tctggctcag gcactggcac acaaccgccc ggcatgcatc 1620 aacgttgctg tggccctgga cccgatcccg ccggaggaac tgatcctgat tggcatggac 1680 ccgtttgcgg gctccacgga gaatctgtat ttccaatccg gcgcgtgagt catcacaata 1740 aggaaagaaa aatgaaaaaa gtcgcacttg ttaccggcgc cggccagggg attggtaaag 1800 ctatcgccct tcgtctggtg aaggatggat ttgccgtggc cattgccgat tataacgacg 1860 ccaccgccaa agcggtcgcc tccgaaatca accaggccgg cggccgcgcc atggcggtga 1920 aagtggatgt ttctgaccgc gaccaggtat ttgccgccgt cgaacaggcg cgcaaaacgc 1980 tgggcggctt cgacgtcatc gtcaacaacg ccggcgtggc gccatccacg ccgatcgagt 2040 ccattacccc ggagattgtc gacaaagtct acaacatcaa cgtcaaaggg gtgatctggg 2100 gcatccaggc agcggtcgag gcctttaaga aagagggtca cggcgggaaa atcatcaacg 2160 cctgttccca ggccggccac gtcggcaacc cggagctggc ggtatatagc tcgagtaaat 2220 tcgcggtacg cggcttaacc cagaccgccg ctcgcgacct cgcgccgctg ggcatcacgg 2280 tcaacggcta ctgcccgggg attgtcaaaa cgccgatgtg ggccgaaatt gaccgccagg 2340 tgtccgaagc cgccggtaaa ccgctgggct acggtaccgc cgagttcgcc aaacgcatca 2400 ccctcggccg cctgtccgag ccggaagatg tcgccgcctg cgtctcctat cttgccagcc 2460 cggattctga ttatatgacc ggtcagtcat tgctgatcga cggcggcatg gtgtttaact 2520 aa 2522 <210> 8 <211> 1206 <212> DNA <213> Artificial Sequence <220> <223> recombinant DNA <400> 8 atgacaatac caaacggcaa cattctcgtg atcaacagcg gcagttcctc aatcaagtat 60 cgattgattg ctctgccgca agagcaggta ctggcagacg gcttgctgga acgcatcgga 120 gaacaggaaa gcaggatcat tcatagagcc gacgattcgg gtcgtttaaa tgaaatcaag 180 cagtcggtca tcgctgccga tcatcaccaa gccttcaagg cagtcttcga gattttgggc 240 gaaaattgct cggtcgatgc aataggccac cgcgtcgtgc atggcggcga tcggttctcc 300 ggccctgcct tggtcgatga cgatacgata gcgtcgatgc gcgcactctg ccgaatagcg 360 ccgctgcata atccggttaa cttgcttggc atcgagagtt gcttggctca tttcccgggc 420 gtaccacagg tggcggtatt cgatacggca tttcaccaaa cgatgccgcc ccacgcctat 480 cgttatgcga ttccggaaac ttggtatagc gattacggca tacgccgatt cggttttcac 540 ggcacctctc atcattatgt ggcgagacgg gccgccgaat ttatcggtaa acctttcgat 600 cgcagccatc tgattacttt gcatttgggc aatggcgcga gcgcaacagc gattgcaaac 660 ggccgctccg tcgatacgtc gatggggttt acgccgctgg aaggtttggt aatgggcacg 720 cgtagcggcg atttggaccc ggcaataccg ctatttgtcg aacaaaccga aaataccgac 780 acggacgcaa tcgaccgggc attgaaccgc gaatccggat taaaaggctt atgtggtacc 840 aacgacttaa gaaccgtgct cgaacaaaca aatgcaggcg atgaacgagc ccgcttggct 900 ctcgatctgt attgctatcg aatcaagaaa tatatcggcg cttactacgc ggtactcggc 960 gaagtcgacg ctctggtttt taccggcggc gtcggcgaaa acgcggccga agtgcgccgt 1020 ttagcctgcg aaggcctgtc gcgtctcggc atcgccattg atgaagcggc caatagcgac 1080 gtgaccggag ctatcgccga aatcgggctt gccgaaagtc gaacccgtat tctagtcatt 1140 aaaactgacg aagaattgca aattgcccgg gaagccatgg ctgtgcttga taaagatcac 1200 gcatga 1206 <210> 9 <211> 38 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 9 ttggtctgac agttaccatg catgtgcggg gctataaa 38 <210> 10 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 10 cccgatttct tgattgagga actgccgct 29 <210> 11 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 11 ctcaatcaag aaatcgggct tgccgaaag 29 <210> 12 <211> 38 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 12 caccgacaac ctgcacatcg acccgcctta ttacacga 38 <210> 13 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 13 atgtgcaggt tgtcggtgtc 20 <210> 14 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 14 tggtaactgt cagaccaagt ttactc 26 <210> 15 <211> 2115 <212> DNA <213> Artificial Sequence <220> <223> recombinant DNA <400> 15 ctaagcagcc ggttttcgac cggtttcttg agcctgtatc gccgtgatca caacggtatt 60 gacgatatcg tttacggtac agcctcggct taaatcgttg accggtttat tcaagccttg 120 caaaataggc ccgatggcaa tcgctccgga cgagcgctga actgctttat aagtattgtt 180 gccggtattt agatcgggaa aaataaatac gttcgcttgc cctgccacct cgctgtccgg 240 cattttggtc ttggcaacac ggctatcgat cgccgcatcg tattgaatcg gcccttccag 300 tttcaattcc ggtttcaatc gtttagccaa ttcgactgcc gacctaacct tatcgaccgc 360 ctcgcctttt ccggactcgc cggttgaata agaaagcatc gcaacgcgtg gcgtgatatt 420 gaacatactc gcggtttgcg cggaactaat cgcaatatcg gctaattgtc tggaattagg 480 attcggattg accgcgcaat ccccataaac cagcacccgg tcttccaagc acatgaaaaa 540 aacgctagag acgatcgatg ttcccggttt ggttttgatg atttcaaagg ccggcctgat 600 cgtatgctgg gtcgtatgta ttgacccgga aaccattccg tcggcaagat tatggtgtac 660 catcatcgtc ccgaaaaaac tgacatctgt cataagatca aacgccaatt cgtaatgaac 720 gcccttatgc ttgcgtaact cgaaataagt ttcggcaaat ttctgacgca gttcggaagt 780 catcggatcg ataatctcga tgtcttctaa ttgcaaagcc atcgcagcga ttttttgctt 840 gatcgtttct tcattaccta gcagcgtcaa cttgacggct cccctaagga aaaggatttc 900 ggctgccctt aaaatgcgct cttcctcgcc ttcaggcaaa acaatatgct gcggattggc 960 tttggctcgc tgcaaaattt catattcgaa catgatcggc gtcacgcgcg gcgttttacg 1020 cgtaaacagg cgctgctgca gctcctgcat gttgatatta tcttcgacca aactcaaggc 1080 cgtggcgatc ttgcgttcat tattggaatt taaacgcgca tgtactcgag taacgttcat 1140 cgccgtcgtg aaggtgtcgg tggcgacacc taaaacggca aacggcaaag cccctaatcc 1200 ctcgattaag tattgcacct gcggcgcggg ctcttgctct ccagtcaaca gtaaaccggc 1260 aatttgcgga taacttttcg agtgataagc catcaaacaa gccagaatga tatccgaacg 1320 atccccgggc gtaatgatca aatcgccttt ctcaatgtag tcgagaaaat ccgaaactaa 1380 catcgccgca accttgtagt tataaacttc aaggttgagc gtttcgaaat catgcgataa 1440 aaactttgca ttcaacgacc tggcaatatc gcccatgctg ggcttttcca gtgacggttc 1500 ggagggtacg acataaacag gaaagttgga ttgcggatcg tgtccgaatt gatctctaag 1560 ttcgccaacc tgagccgccg gaacactgtt gatcaccgtt gccaacagga cagcattttt 1620 ttcctgaata tcatgtcgga gcccggccaa agcatcgatt atttgttcat tggatcgatt 1680 gcctccttga ataattggca tcaacagaca atctaaattg ttcgcgacat cggcattaaa 1740 atcgaactca aaaatcgact cgccgctttt ataatcggaa ccgacacaaa tcacatgatc 1800 cgattgaatt tttaagcttc ggtatttagc gagaatcagt tttattaaat cgtcataacg 1860 atcatgagcc aataggcgcc gagcttcctc atcggtgcat ccgtacatcg attcgtacgg 1920 ccactcgagc tgataacgat aggttactag ctcaatcaag tcgtcttttt cctctccggc 1980 atgaataata gggcgaaaaa aaccgatctt ttgggcaaaa ccggaaaaca tttccatcat 2040 agctagcatg atgaccgact taccgctgcc ctgctcggca ccggttatat aaatattttt 2100 agagacttgg gacat 2115 <210> 16 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 16 ttggtctgac agttaccatc aacgaccgat tgaaa 35 <210> 17 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 17 gtaagtcggc ggcgatacag gctcaa 26 <210> 18 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 18 gtatcgccgc cgacttaccg ctgccc 26 <210> 19 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 19 caccgacaac ctgcacatac ctttttcgtg caaaa 35 <210> 20 <211> 1938 <212> DNA <213> Artificial Sequence <220> <223> recombinant DNA <400> 20 atgactgaag tgaaaaccta tcctgtcgat cccgaactgt cagcccgagc tcacattaca 60 ccggaacgct ataaaacact ttatcgacaa tcgatcgatg aaccggaatc cttttgggcc 120 gaacaagccg aacaatttct cgactggttc aagccttggg ataaagtcat ggattacgac 180 tattcgaaag gctacatccg ctggttcgaa ggcggcgaac tcaatgtcag ctacaattgc 240 ttggaccggc atttagccac acgaggcgac caaactgcga ttatctggga aagcgacgat 300 cccgctcaag acaaaaaagt cagttaccgt gaattgcacc gagaagtttg caaattcgcc 360 aatgttctaa aaagccaagg cgtcaaaaaa ggcgaccgag tctgtattta cctgccgatg 420 atcgtcgaag cggccgtcgc caccctggcc tgtgcccgaa tcggcgcagt ccactccatc 480 gtgttcggcg gtttttcggc cgactcttta cgcgaccgca tacaagacgc cgactgccac 540 actgttatct gcgccgatga agggcttcgc ggcggcaaaa agataccgct caaaaccagt 600 gtcgaccagg cgatttcaca ctgcccgaat gtcaaaactg tcatcgtcat caaaaacacc 660 ggaaatgata ttccgtggac gccgaaacgc gatatttggt atcacgaagc gatgaaaacc 720 gcatcggaca actgcccgcc cgagacccta tccgccgaag acccgttatt cattctttac 780 acatcgggtt ctaccggtaa accgaagggc ctgctgcaca ccacgggcgg atatttatta 840 ttcgccgcga tgacgcataa atatgtattc gattatcacg acggcgatat ttattggtgc 900 accgccgata tcggctgggt caccggccat tcttacatca tttacggacc gctctgcaac 960 ggcgcaacga ctttgatgtt cgaaggtatt ccgacctacc ccgagcccga ccgattttgg 1020 cgcatcgtcg ataaacacca agtcaatatt ttttataccg cgccaactgc aattcgcgcc 1080 ttgatggcgc aaggcaacga ctttgtcaat cgcaccgacc gcagcagttt aagaatcctc 1140 ggcacggtcg gcgaaccgat caaccccgaa gcgtgggaat ggtattatca catcgtcggc 1200 aacgaacgct gccctatcat ggatacttgg tggcaaaccg aaaccggggg cattttgatc 1260 acgccgctgc ccggcgccat agcattgaaa ccgggctcgg cgacactgcc gttcttcggc 1320 gttaaaccgg aaattctcga caatgccggt aatgtactcg aaggcgaagc tgagggggtt 1380 ctagtattga gccgcccgtg gccgggtcag gccagaagta tttacggcga tcacaaccgt 1440 tttatcgaca cctattttaa aaattttccg ggctattatt ttgccggcga cggcgctcgc 1500 cgcgacaggg acggttatta ctggatcacc ggccgcgtcg atgatgtaat caatgtttcg 1560 ggccatcgca tggggaccgc agaagtcgaa agtgcgctgg tcttgcatga agacgtcgcc 1620 gaagccgccg tggtgggcta cccgcatcct atcaagggcc agggcattta tgcttatgtc 1680 acgctcaatt ccggcgttca cgcaagcgaa gctctcaagc aggaattggt cgatctggtt 1740 agaaaagaaa tcggagccat cgcccacccc gatatcattc aatgggcacc gggccttccg 1800 aaaacgcgct caggaaaaat catgcggcgt attttaagaa aagtcgcctc gaacgaaatc 1860 gacagcctag gcgatacctc cacgctggca gacccatcgg ttgtagatga aatcatcgat 1920 catagagcca ataaataa 1938 <210> 21 <211> 36 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 21 ttggtctgac agttaccata attaccgact cgcacg 36 <210> 22 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 22 gaggcgactt tccggtgtaa tgtgagc 27 <210> 23 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 23 acaccggaaa gtcgcctcga acgaaat 27 <210> 24 <211> 36 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 24 caccgacaac ctgcacatgg atttttcttc gtcgcg 36 <210> 25 <211> 1851 <212> DNA <213> Artificial Sequence <220> <223> recombinant DNA <400> 25 atggcctgga ccggaaacgt actacgcgtc aatttgaccg aacgtacctg cagcaaagaa 60 ccgcttaaca aagactgggc gctgagctat ttaggccagc gaggcctggc gactaaatat 120 ctaaccgaag aaatcgaccc caaaatcgat gctctatcgc cggacaataa attgattatg 180 gcaacagggc ctctgaccgg cacgccggca tcgaccgccg ggcgctattc ggttatcacc 240 aaaagcccgt tgaccggtac ggtcgcctgc tcgaattccg gcggttttat cggcatggaa 300 ttcaaaaacg ccggctggga tatgattatc ttcgaaggca aggcttcttc tccggtttat 360 ttgtatttgg aaaacgaaaa ggctcaattg ctgccggctg acgaaatctg gggtcagtcg 420 gtttggcagg ccgacgaatg gctgcataat cgtcatcaag atcccttatt gcggatcgcg 480 gcggttggtc gttccgccga acaaggttgt ttgttttcag ggatcatcaa tgatttacac 540 cgagctgccg ggcgttcagg cgtcggcacc gtgatggcag cgaaaaatct caaggccgtc 600 gctgttcgcg gcacgcgagg cgtcggcaat atcaaagacc cggttgcctt tatgcaagca 660 gtcaatgccg gtaaaaaagt actggctgag gggcctgtga ctgccgaagg cttgccgact 720 tacggtacgc aagtcttgat gaatgtcatc aacgaagtcg gcgcgatgcc tacccgaaat 780 ttcaaggacg tgcaattcga aggcgccgcg aagatttccg ccgaagcgat gcacgatccg 840 cgcccttcgg acggcaaacc gaatctggtc acgaatgccg cctgcttcgg ctgcacgatc 900 gcgtgcggac gcatttcgac gatagccggc ggccatttta cgatcacaaa caaaccgcaa 960 taccggggcg catcgggcgg tttggaatac gaggcggcct gggcattggg gtcggatacc 1020 ggcgtcgacg atctcgatgc gctgacctat gtcaatttct tatgcaacga agacggcatg 1080 gatccgattt cgctcggttc gacgatcgca gcggcgatgg agttatacga atccggagcg 1140 atcacgattg aacagaccgg tggcatcgaa ttgaaattcg gttcggccga agcgctggtt 1200 aaattgaccg agttgactgc taaaggcgaa ggcttcggac gcgaaatcgg tctcggctcg 1260 aaacgcttat gcgaaaaata cgggcgtccc gaattgtcga tgacggtcaa gggccaggag 1320 tttccggcat acgacccgcg cggcattcaa ggcatggggc tggcctatgc gacctcgaat 1380 cgcggcgcct gtcatttaag aggttatacg gtttcatcgg aaatcatggg tttgccggaa 1440 aagaccgacc ccttgattac cgacggcaaa gccgccttgg tgaaagcctt tcaggatgcg 1500 accgcagcgg tggactcagc cggattgtgc gtgttttcga ccttctcatg gacgatggcc 1560 gatatcgcgc cacagatcgc cgcagcctgc gacggcgact ggaccgtcga tagcttgctc 1620 gaaaccggcg agcgcatctg gaatttggag cgaaaattta atttggatgc gggcctcacc 1680 ggcgccgacg acaatttgcc cgagcgtttg ttaaaagaag ccgccaaaac ggggccggct 1740 aaaggcaagg tcaacgactt ggccaaaatg ctccccgaat attaccaatt gcgcggctgg 1800 acggcagacg gcataccgaa agccgaaacc ttgtcgcggc tgtcggtgta g 1851 <210> 26 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 26 ttggtctgac agttaccact aacgcaaacc gatga 35 <210> 27 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 27 tagtgcctcc tatagcgatt taatcga 27 <210> 28 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 28 tcgctatagg aggcactatg cattatg 27 <210> 29 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 29 accgacaacc tgcacatcgc ttccttccaa aaaat 35 <110> University-Industry Cooperation Group of Kyung Hee University <120> Process for preparing acetoin using transformed methanotrophs <130> KPA180803-KR-P1 <150> KR 10-2018-0080668 <151> 2018-07-11 <160> 29 <170> KopatentIn 2.0 <210> 1 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 1 gaaacagcta tggctatgat tactggtgg 29 <210> 2 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 2 tgtgatgact cacgcgccgg attggaaat 29 <210> 3 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 3 ggcgcgtgag tcatcacaat aaggaaaga 29 <210> 4 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 4 cgacaactat tagttaaaca ccatgccgc 29 <210> 5 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 5 ggcgcgtgat tgtcgggaag atgcgtgat 29 <210> 6 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 6 tttaactaat agttgtcggg aagatgcgt 29 <210> 7 <211> 2522 <212> DNA <213> Artificial Sequence <220> <223> recombinant DNA <400> 7 atggctatga ttactggtgg tgaactggtt gttcgtaccc tgattaaagc tggcgtagaa 60 catctgtttg gcctgcatgg cattcatatt gacaccattt ttcaggcttg cctggaccac 120 gacgtcccaa tcattgatac tcgccacgaa gcggcggcag gccacgctgc ggaaggttat 180 gcccgcgcgg gcgctaaact gggtgttgcc ctggtgaccg ctggcggtgg ctttaccaat 240 gccgttacgc cgatcgcgaa cgctcggacc gatcgcactc cggttctgtt cctgaccggt 300 tctggtgctc ttcgtgatga cgaaaccaac accctgcagg ccggtattga tcaggtggcc 360 atggcggccc cgatcacgaa atgggctcat cgtgttatgg caactgaaca catcccgcgt 420 ctggttatgc aggccattcg tgccgctctg agcgccccac gtggcccggt gctgctggat 480 ctgccatggg acatcctgat gaaccaaatc gatgaagatt ccgttatcat cccagacctg 540 gtgctgtctg ctcacggtgc ccatccagac ccggctgacc tggaccaggc tctggcactg 600 ctgcgtaaag ccgaacgccc agttatcgta ctgggctccg aggcgtcccg caccgcacgc 660 aagaccgcac tgagcgcatt cgtagcggcg accggtgtac cggttttcgc tgactatgaa 720 ggcctgtcca tgctgagcgg cctgccggac gctatgcgtg gcggcctggt gcagaacctg 780 tactcctttg caaaagctga tgcagctccg gacctggtac tgatgctggg tgctcgtttc 840 ggtctgaaca ccggtcatgg ttccggtcaa ctgatcccgc attctgctca ggtgatccag 900 gtggatccag acgcgtgtga actgggtcgc ctgcaaggca tcgcgctggg tatcgtggct 960 gatgtaggtg gcaccattga agcgctggct caggcgaccg cacaggacgc cgcgtggccg 1020 gaccgcggcg actggtgcgc caaggtaact gacctggccc aggagcgtta cgcttccatc 1080 gcggctaaat ccagctctga acatgcgctg cacccgttcc acgcttctca ggttatcgcg 1140 aaacacgtgg acgcaggcgt gaccgtcgtt gcggatggtg gcctgactta tctgtggctg 1200 tccgaagtta tgtctcgtgt caaaccaggc ggcttcctgt gccacggcta tctgaacagc 1260 atgggtgtag gcttcggtac tgccctgggt gcgcaggttg cggatctgga ggcaggtcgt 1320 cgtaccatcc tggtgaccgg cgacggctct gttggttatt ccattggcga attcgacacc 1380 ctggtacgca aacagctgcc gctgattgta attatcatga acaaccagtc ttggggctgg 1440 accctgcact ttcagcagct ggccgttggt cctaaccgtg tcaccggcac ccgcctggaa 1500 aatggttcct atcacggcgt tgctgcggca ttcggtgctg atggttacca cgtcgactct 1560 gtcgagagct tcagcgccgc tctggctcag gcactggcac acaaccgccc ggcatgcatc 1620 aacgttgctg tggccctgga cccgatcccg ccggaggaac tgatcctgat tggcatggac 1680 ccgtttgcgg gctccacgga gaatctgtat ttccaatccg gcgcgtgagt catcacaata 1740 aggaaagaaa aatgaaaaaa gtcgcacttg ttaccggcgc cggccagggg attggtaaag 1800 ctatcgccct tcgtctggtg aaggatggat ttgccgtggc cattgccgat tataacgacg 1860 ccaccgccaa agcggtcgcc tccgaaatca accaggccgg cggccgcgcc atggcggtga 1920 aagtggatgt ttctgaccgc gaccaggtat ttgccgccgt cgaacaggcg cgcaaaacgc 1980 tgggcggctt cgacgtcatc gtcaacaacg ccggcgtggc gccatccacg ccgatcgagt 2040 ccattacccc ggagattgtc gacaaagtct acaacatcaa cgtcaaaggg gtgatctggg 2100 gcatccaggc agcggtcgag gcctttaaga aagagggtca cggcgggaaa atcatcaacg 2160 cctgttccca ggccggccac gtcggcaacc cggagctggc ggtatatagc tcgagtaaat 2220 tcgcggtacg cggcttaacc cagaccgccg ctcgcgacct cgcgccgctg ggcatcacgg 2280 tcaacggcta ctgcccgggg attgtcaaaa cgccgatgtg ggccgaaatt gaccgccagg 2340 tgtccgaagc cgccggtaaa ccgctgggct acggtaccgc cgagttcgcc aaacgcatca 2400 ccctcggccg cctgtccgag ccggaagatg tcgccgcctg cgtctcctat cttgccagcc 2460 cggattctga ttatatgacc ggtcagtcat tgctgatcga cggcggcatg gtgtttaact 2520 aa 2522 <210> 8 <211> 1206 <212> DNA <213> Artificial Sequence <220> <223> recombinant DNA <400> 8 atgacaatac caaacggcaa cattctcgtg atcaacagcg gcagttcctc aatcaagtat 60 cgattgattg ctctgccgca agagcaggta ctggcagacg gcttgctgga acgcatcgga 120 gaacaggaaa gcaggatcat tcatagagcc gacgattcgg gtcgtttaaa tgaaatcaag 180 cagtcggtca tcgctgccga tcatcaccaa gccttcaagg cagtcttcga gattttgggc 240 gaaaattgct cggtcgatgc aataggccac cgcgtcgtgc atggcggcga tcggttctcc 300 ggccctgcct tggtcgatga cgatacgata gcgtcgatgc gcgcactctg ccgaatagcg 360 ccgctgcata atccggttaa cttgcttggc atcgagagtt gcttggctca tttcccgggc 420 gtaccacagg tggcggtatt cgatacggca tttcaccaaa cgatgccgcc ccacgcctat 480 cgttatgcga ttccggaaac ttggtatagc gattacggca tacgccgatt cggttttcac 540 ggcacctctc atcattatgt ggcgagacgg gccgccgaat ttatcggtaa acctttcgat 600 cgcagccatc tgattacttt gcatttgggc aatggcgcga gcgcaacagc gattgcaaac 660 ggccgctccg tcgatacgtc gatggggttt acgccgctgg aaggtttggt aatgggcacg 720 cgtagcggcg atttggaccc ggcaataccg ctatttgtcg aacaaaccga aaataccgac 780 acggacgcaa tcgaccgggc attgaaccgc gaatccggat taaaaggctt atgtggtacc 840 aacgacttaa gaaccgtgct cgaacaaaca aatgcaggcg atgaacgagc ccgcttggct 900 ctcgatctgt attgctatcg aatcaagaaa tatatcggcg cttactacgc ggtactcggc 960 gaagtcgacg ctctggtttt taccggcggc gtcggcgaaa acgcggccga agtgcgccgt 1020 ttagcctgcg aaggcctgtc gcgtctcggc atcgccattg atgaagcggc caatagcgac 1080 gtgaccggag ctatcgccga aatcgggctt gccgaaagtc gaacccgtat tctagtcatt 1140 aaaactgacg aagaattgca aattgcccgg gaagccatgg ctgtgcttga taaagatcac 1200 gcatga 1206 <210> 9 <211> 38 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 9 ttggtctgac agttaccatg catgtgcggg gctataaa 38 <210> 10 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 10 cccgatttct tgattgagga actgccgct 29 <210> 11 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 11 ctcaatcaag aaatcgggct tgccgaaag 29 <210> 12 <211> 38 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 12 caccgacaac ctgcacatcg acccgcctta ttacacga 38 <210> 13 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 13 atgtgcaggt tgtcggtgtc 20 <210> 14 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 14 tggtaactgt cagaccaagt ttactc 26 <210> 15 <211> 2115 <212> DNA <213> Artificial Sequence <220> <223> recombinant DNA <400> 15 ctaagcagcc ggttttcgac cggtttcttg agcctgtatc gccgtgatca caacggtatt 60 gacgatatcg tttacggtac agcctcggct taaatcgttg accggtttat tcaagccttg 120 caaaataggc ccgatggcaa tcgctccgga cgagcgctga actgctttat aagtattgtt 180 gccggtattt agatcgggaa aaataaatac gttcgcttgc cctgccacct cgctgtccgg 240 cattttggtc ttggcaacac ggctatcgat cgccgcatcg tattgaatcg gcccttccag 300 tttcaattcc ggtttcaatc gtttagccaa ttcgactgcc gacctaacct tatcgaccgc 360 ctcgcctttt ccggactcgc cggttgaata agaaagcatc gcaacgcgtg gcgtgatatt 420 gaacatactc gcggtttgcg cggaactaat cgcaatatcg gctaattgtc tggaattagg 480 attcggattg accgcgcaat ccccataaac cagcacccgg tcttccaagc acatgaaaaa 540 aacgctagag acgatcgatg ttcccggttt ggttttgatg atttcaaagg ccggcctgat 600 cgtatgctgg gtcgtatgta ttgacccgga aaccattccg tcggcaagat tatggtgtac 660 catcatcgtc ccgaaaaaac tgacatctgt cataagatca aacgccaatt cgtaatgaac 720 gcccttatgc ttgcgtaact cgaaataagt ttcggcaaat ttctgacgca gttcggaagt 780 catcggatcg ataatctcga tgtcttctaa ttgcaaagcc atcgcagcga ttttttgctt 840 gatcgtttct tcattaccta gcagcgtcaa cttgacggct cccctaagga aaaggatttc 900 ggctgccctt aaaatgcgct cttcctcgcc ttcaggcaaa acaatatgct gcggattggc 960 tttggctcgc tgcaaaattt catattcgaa catgatcggc gtcacgcgcg gcgttttacg 1020 cgtaaacagg cgctgctgca gctcctgcat gttgatatta tcttcgacca aactcaaggc 1080 cgtggcgatc ttgcgttcat tattggaatt taaacgcgca tgtactcgag taacgttcat 1140 cgccgtcgtg aaggtgtcgg tggcgacacc taaaacggca aacggcaaag cccctaatcc 1200 ctcgattaag tattgcacct gcggcgcggg ctcttgctct ccagtcaaca gtaaaccggc 1260 aatttgcgga taacttttcg agtgataagc catcaaacaa gccagaatga tatccgaacg 1320 atccccgggc gtaatgatca aatcgccttt ctcaatgtag tcgagaaaat ccgaaactaa 1380 catcgccgca accttgtagt tataaacttc aaggttgagc gtttcgaaat catgcgataa 1440 aaactttgca ttcaacgacc tggcaatatc gcccatgctg ggcttttcca gtgacggttc 1500 ggagggtacg acataaacag gaaagttgga ttgcggatcg tgtccgaatt gatctctaag 1560 ttcgccaacc tgagccgccg gaacactgtt gatcaccgtt gccaacagga cagcattttt 1620 ttcctgaata tcatgtcgga gcccggccaa agcatcgatt atttgttcat tggatcgatt 1680 gcctccttga ataattggca tcaacagaca atctaaattg ttcgcgacat cggcattaaa 1740 atcgaactca aaaatcgact cgccgctttt ataatcggaa ccgacacaaa tcacatgatc 1800 cgattgaatt tttaagcttc ggtatttagc gagaatcagt tttattaaat cgtcataacg 1860 atcatgagcc aataggcgcc gagcttcctc atcggtgcat ccgtacatcg attcgtacgg 1920 ccactcgagc tgataacgat aggttactag ctcaatcaag tcgtcttttt cctctccggc 1980 atgaataata gggcgaaaaa aaccgatctt ttgggcaaaa ccggaaaaca tttccatcat 2040 agctagcatg atgaccgact taccgctgcc ctgctcggca ccggttatat aaatattttt 2100 agagacttgg gacat 2115 <210> 16 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 16 ttggtctgac agttaccatc aacgaccgat tgaaa 35 <210> 17 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 17 gtaagtcggc ggcgatacag gctcaa 26 <210> 18 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 18 gtatcgccgc cgacttaccg ctgccc 26 <210> 19 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 19 caccgacaac ctgcacatac ctttttcgtg caaaa 35 <210> 20 <211> 1938 <212> DNA <213> Artificial Sequence <220> <223> recombinant DNA <400> 20 atgactgaag tgaaaaccta tcctgtcgat cccgaactgt cagcccgagc tcacattaca 60 ccggaacgct ataaaacact ttatcgacaa tcgatcgatg aaccggaatc cttttgggcc 120 gaacaagccg aacaatttct cgactggttc aagccttggg ataaagtcat ggattacgac 180 tattcgaaag gctacatccg ctggttcgaa ggcggcgaac tcaatgtcag ctacaattgc 240 ttggaccggc atttagccac acgaggcgac caaactgcga ttatctggga aagcgacgat 300 cccgctcaag acaaaaaagt cagttaccgt gaattgcacc gagaagtttg caaattcgcc 360 aatgttctaa aaagccaagg cgtcaaaaaa ggcgaccgag tctgtattta cctgccgatg 420 atcgtcgaag cggccgtcgc caccctggcc tgtgcccgaa tcggcgcagt ccactccatc 480 gtgttcggcg gtttttcggc cgactcttta cgcgaccgca tacaagacgc cgactgccac 540 actgttatct gcgccgatga agggcttcgc ggcggcaaaa agataccgct caaaaccagt 600 gtcgaccagg cgatttcaca ctgcccgaat gtcaaaactg tcatcgtcat caaaaacacc 660 ggaaatgata ttccgtggac gccgaaacgc gatatttggt atcacgaagc gatgaaaacc 720 gcatcggaca actgcccgcc cgagacccta tccgccgaag acccgttatt cattctttac 780 acatcgggtt ctaccggtaa accgaagggc ctgctgcaca ccacgggcgg atatttatta 840 ttcgccgcga tgacgcataa atatgtattc gattatcacg acggcgatat ttattggtgc 900 accgccgata tcggctgggt caccggccat tcttacatca tttacggacc gctctgcaac 960 ggcgcaacga ctttgatgtt cgaaggtatt ccgacctacc ccgagcccga ccgattttgg 1020 cgcatcgtcg ataaacacca agtcaatatt ttttataccg cgccaactgc aattcgcgcc 1080 ttgatggcgc aaggcaacga ctttgtcaat cgcaccgacc gcagcagttt aagaatcctc 1140 ggcacggtcg gcgaaccgat caaccccgaa gcgtgggaat ggtattatca catcgtcggc 1200 aacgaacgct gccctatcat ggatacttgg tggcaaaccg aaaccggggg cattttgatc 1260 acgccgctgc ccggcgccat agcattgaaa ccgggctcgg cgacactgcc gttcttcggc 1320 gttaaaccgg aaattctcga caatgccggt aatgtactcg aaggcgaagc tgagggggtt 1380 ctagtattga gccgcccgtg gccgggtcag gccagaagta tttacggcga tcacaaccgt 1440 tttatcgaca cctattttaa aaattttccg ggctattatt ttgccggcga cggcgctcgc 1500 cgcgacaggg acggttatta ctggatcacc ggccgcgtcg atgatgtaat caatgtttcg 1560 ggccatcgca tggggaccgc agaagtcgaa agtgcgctgg tcttgcatga agacgtcgcc 1620 gaagccgccg tggtgggcta cccgcatcct atcaagggcc agggcattta tgcttatgtc 1680 acgctcaatt ccggcgttca cgcaagcgaa gctctcaagc aggaattggt cgatctggtt 1740 agaaaagaaa tcggagccat cgcccacccc gatatcattc aatgggcacc gggccttccg 1800 aaaacgcgct caggaaaaat catgcggcgt attttaagaa aagtcgcctc gaacgaaatc 1860 gacagcctag gcgatacctc cacgctggca gacccatcgg ttgtagatga aatcatcgat 1920 catagagcca ataaataa 1938 <210> 21 <211> 36 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 21 ttggtctgac agttaccata attaccgact cgcacg 36 <210> 22 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 22 gaggcgactt tccggtgtaa tgtgagc 27 <210> 23 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 23 acaccggaaa gtcgcctcga acgaaat 27 <210> 24 <211> 36 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 24 caccgacaac ctgcacatgg atttttcttc gtcgcg 36 <210> 25 <211> 1851 <212> DNA <213> Artificial Sequence <220> <223> recombinant DNA <400> 25 atggcctgga ccggaaacgt actacgcgtc aatttgaccg aacgtacctg cagcaaagaa 60 ccgcttaaca aagactgggc gctgagctat ttaggccagc gaggcctggc gactaaatat 120 ctaaccgaag aaatcgaccc caaaatcgat gctctatcgc cggacaataa attgattatg 180 gcaacagggc ctctgaccgg cacgccggca tcgaccgccg ggcgctattc ggttatcacc 240 aaaagcccgt tgaccggtac ggtcgcctgc tcgaattccg gcggttttat cggcatggaa 300 ttcaaaaacg ccggctggga tatgattatc ttcgaaggca aggcttcttc tccggtttat 360 ttgtatttgg aaaacgaaaa ggctcaattg ctgccggctg acgaaatctg gggtcagtcg 420 gtttggcagg ccgacgaatg gctgcataat cgtcatcaag atcccttatt gcggatcgcg 480 gcggttggtc gttccgccga acaaggttgt ttgttttcag ggatcatcaa tgatttacac 540 cgagctgccg ggcgttcagg cgtcggcacc gtgatggcag cgaaaaatct caaggccgtc 600 gctgttcgcg gcacgcgagg cgtcggcaat atcaaagacc cggttgcctt tatgcaagca 660 gtcaatgccg gtaaaaaagt actggctgag gggcctgtga ctgccgaagg cttgccgact 720 tacggtacgc aagtcttgat gaatgtcatc aacgaagtcg gcgcgatgcc tacccgaaat 780 ttcaaggacg tgcaattcga aggcgccgcg aagatttccg ccgaagcgat gcacgatccg 840 cgcccttcgg acggcaaacc gaatctggtc acgaatgccg cctgcttcgg ctgcacgatc 900 gcgtgcggac gcatttcgac gatagccggc ggccatttta cgatcacaaa caaaccgcaa 960 taccggggcg catcgggcgg tttggaatac gaggcggcct gggcattggg gtcggatacc 1020 ggcgtcgacg atctcgatgc gctgacctat gtcaatttct tatgcaacga agacggcatg 1080 gatccgattt cgctcggttc gacgatcgca gcggcgatgg agttatacga atccggagcg 1140 atcacgattg aacagaccgg tggcatcgaa ttgaaattcg gttcggccga agcgctggtt 1200 aaattgaccg agttgactgc taaaggcgaa ggcttcggac gcgaaatcgg tctcggctcg 1260 aaacgcttat gcgaaaaata cgggcgtccc gaattgtcga tgacggtcaa gggccaggag 1320 tttccggcat acgacccgcg cggcattcaa ggcatggggc tggcctatgc gacctcgaat 1380 cgcggcgcct gtcatttaag aggttatacg gtttcatcgg aaatcatggg tttgccggaa 1440 aagaccgacc ccttgattac cgacggcaaa gccgccttgg tgaaagcctt tcaggatgcg 1500 accgcagcgg tggactcagc cggattgtgc gtgttttcga ccttctcatg gacgatggcc 1560 gatatcgcgc cacagatcgc cgcagcctgc gacggcgact ggaccgtcga tagcttgctc 1620 gaaaccggcg agcgcatctg gaatttggag cgaaaattta atttggatgc gggcctcacc 1680 ggcgccgacg acaatttgcc cgagcgtttg ttaaaagaag ccgccaaaac ggggccggct 1740 aaaggcaagg tcaacgactt ggccaaaatg ctccccgaat attaccaatt gcgcggctgg 1800 acggcagacg gcataccgaa agccgaaacc ttgtcgcggc tgtcggtgta g 1851 <210> 26 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 26 ttggtctgac agttaccact aacgcaaacc gatga 35 <210> 27 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 27 tagtgcctcc tatagcgatt taatcga 27 <210> 28 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 28 tcgctatagg aggcactatg cattatg 27 <210> 29 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 29 accgacaacc tgcacatcgc ttccttccaa aaaat 35
Claims (10)
Any selected from the group consisting of a gene encoding ack (acetate kinase), a gene encoding pta (phosphoate acetyltransferase), a gene encoding acetyl-coenzyme A synthetase (acs), and a gene encoding aldehyde ferredoxin oxidoreductase (aor). A method for producing acetoin comprising the step of culturing the transformed methanogens in which one gene is inactivated in an atmospheric condition containing ethane or a medium containing ethane.
상기 메탄자화균은 메틸로모나스(Methylomonas) 속, 메틸로박터(Methylobacter) 속, 메틸로코커스(Methylococcus) 속, 메틸로마이크로븀(Methylomicrobium) 속, 메틸로스페라(Methylosphaera) 속, 메틸로칼덤(Methylocaldum) 속, 메틸로글로버스(Methyloglobus) 속, 메틸로사르시나(Methylosarcina) 속, 메틸로프로펀더스(Methyloprofundus) 속, 메틸로썰머스(Methylothermus) 속, 메틸로할로비우스(Methylohalobius) 속, 메틸로게아(Methylogaea) 속, 메틸로마리넘(Methylomarinum) 속, 메틸로벌럼(Methylovulum) 속, 메틸로마리노범(Methylomarinovum) 속, 메틸로러브럼(Methylorubrum) 속, 메틸로파라코커스(Methyloparacoccus) 속, 메틸로시너스(Methylosinus) 속, 메틸로시스티스(Methylocystis) 속, 메틸로셀라(Methylocella) 속, 메틸로캡사(Methylocapsa) 속, 메틸로퍼룰라(Methylofurula) 속, 메틸아시디필럼(Methylacidiphilum) 속 또는 메틸아시디마이크로븀(Methylacidimicrobium) 속 균주인 것인, 아세토인 생산방법.
The method of claim 1,
The methane magnetization bacteria methyl Pseudomonas (Methylomonas) genus, methyl bakteo (Methylobacter) in methyl in Rhodococcus (Methylococcus) in micro byum (Methylomicrobium) in methyl Los Blow (Methylosphaera) in methyl local extra methyl ( Methylocaldum ) genus, Methyloglobus genus, Methylosarcina genus, Methyloprofundus genus, Methylothermus genus, Methylohalobius Genus, Methylogaea genus, Methylomarinum genus, Methylovulum genus, Methylomarinovum genus, Methylorubrum genus, Methyloparacoccus Methyloparacoccus ) genus, Methylosinus genus, Methylocystis genus, Methylocella genus, Methylocapsa genus, Methylofurula genus, Methylacidiphilum ( Methylacidiphilum ) genus or methyl acidimicrobium (Methylacidimicrobium) genus strain that is, acetoin production method.
상기 ack(acetate kinase)를 코딩하는 유전자는 서열번호 8의 염기서열로 이루어지고, 상기 pta(phosphoate acetyltransferase)를 코딩하는 유전자는 서열번호 15의 염기서열로 이루어지며, 상기 acs(acetyl-coenzyme A synthetase)를 코딩하는 유전자는 서열번호 20의 염기서열로 이루어지고, 상기 aor(aldehyde ferredoxin oxidoreductase)를 코딩하는 유전자는 서열번호 25의 염기서열로 이루어진 것인, 아세토인 생산방법.
The method of claim 1,
The gene encoding ack (acetate kinase) consists of the nucleotide sequence of SEQ ID NO: 8, the gene encoding the pta (phosphoate acetyltransferase) consists of the nucleotide sequence of SEQ ID NO: 15, and the acs (acetyl-coenzyme A synthetase) ) The gene encoding is composed of the nucleotide sequence of SEQ ID NO: 20, and the gene encoding the aor (aldehyde ferredoxin oxidoreductase) is composed of the nucleotide sequence of SEQ ID NO: 25, acetoin production method.
상기 배지 내의 에탄의 농도는 0.01% 내지 90%(v/v)인 것인, 아세토인 생산방법.
The method of claim 1,
The concentration of ethane in the medium is 0.01% to 90% (v / v) that, acetoin production method.
상기 형질전환 메탄자화균은 FLS(formolase)를 코딩하는 유전자가 추가로 도입된 것인, 아세토인 생산방법.
The method of claim 1,
The transgenic methanogen production method is that the gene encoding FLS (formolase) is additionally introduced.
상기 형질전환 메탄자화균을 배양한 다음, 이의 배양물로부터 아세토인을 회수하는 단계를 추가로 포함하는 것인, 아세토인 생산방법.
The method of claim 1,
The method of producing acetoin further comprising the step of culturing the transformed methanogens and then recovering acetoin from the culture.
Any selected from the group consisting of a gene encoding ack (acetate kinase), a gene encoding pta (phosphoate acetyltransferase), a gene encoding acetyl-coenzyme A synthetase (acs), and a gene encoding aldehyde ferredoxin oxidoreductase (aor). Transgenic methanogens for the production of acetoin in which one gene is inactivated.
A composition for producing acetoin, comprising the transformed methanogens of claim 7 or a culture product thereof.
상기 배양산물은 상기 형질전환 메탄자화균의 배양물, 배양상등액, 파쇄물, 이들의 분획물 및 이들의 조합으로 구성된 군으로부터 선택되는 것인, 아세토인 생산용 조성물.
The method of claim 8,
The culture product is selected from the group consisting of a culture product of the transformed methanogens, a culture supernatant, a lysate, a fraction thereof, and a combination thereof, a composition for producing acetoin.
A kit for producing acetoin, comprising the composition for producing acetoin of claim 8.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR20180080668 | 2018-07-11 | ||
KR1020180080668 | 2018-07-11 |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20200006936A KR20200006936A (en) | 2020-01-21 |
KR102257223B1 true KR102257223B1 (en) | 2021-05-28 |
Family
ID=69369741
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020190083341A KR102257223B1 (en) | 2018-07-11 | 2019-07-10 | Process for preparing acetoin using methanotrophs or transformant thereof |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR102257223B1 (en) |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20170335351A1 (en) * | 2013-03-14 | 2017-11-23 | Intrexon Corporation | Biological production of multi-carbon compounds from methane |
-
2019
- 2019-07-10 KR KR1020190083341A patent/KR102257223B1/en active IP Right Grant
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20170335351A1 (en) * | 2013-03-14 | 2017-11-23 | Intrexon Corporation | Biological production of multi-carbon compounds from methane |
Non-Patent Citations (2)
Title |
---|
GenBank: FO082060.1, 2015.03.27. |
Journal of Bacteriology. 2012, vol. 194, no. 2, pp. 551-552. |
Also Published As
Publication number | Publication date |
---|---|
KR20200006936A (en) | 2020-01-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
ES2620770T3 (en) | Fermentation process that uses yeast cells that have an altered route from dihydroxyacetone phosphate to glycerol | |
EP2396401B1 (en) | Novel microbial succinic acid producers and purification of succinic acid | |
JP6085023B2 (en) | Novel D-lactic acid producing strain and use thereof | |
Kumar et al. | Effects of mutation of 2, 3-butanediol formation pathway on glycerol metabolism and 1, 3-propanediol production by Klebsiella pneumoniae J2B | |
KR102140597B1 (en) | Acid Resistant Yeast Inhibited Ethanol Production and Method for Preparing Lactic Acid Using The Same | |
EP2202294A1 (en) | Bacterial cells having a glyoxylate shunt for the manufacture of succinic acid | |
CN105431520A (en) | 3-hydroxypropionic acid production by recombinant yeasts expressing an insect aspartate 1-decarboxylase | |
US8883466B2 (en) | Bacterial cells exhibiting formate dehydrogenase activity for the manufacture of succinic acid | |
CN105899664A (en) | Recombinant microorganism for improved production of fine chemicals | |
Wang et al. | Propionic acid fermentation | |
KR20230172193A (en) | Development of Methylotuvimicrobium alcaliphilum 20Z microbial biocatalysts to make (R)-3-hydroxybutyrate and poly(3-hydroxybutyrate) from methane | |
RU2694041C1 (en) | Embodiment of o-acetyl-homoserine-sulfhydrylase and method of producing l-methionine using this embodiment | |
KR102257223B1 (en) | Process for preparing acetoin using methanotrophs or transformant thereof | |
CN116376995B (en) | Method for preparing glycine, acetyl-CoA and acetyl-CoA derivatives by using threonine | |
KR101214632B1 (en) | Recombinant Microorganism Producing Taurine and Method for Preparing Taurine Using the Same | |
DE102007059248A1 (en) | Recombinant cell capable of converting bicarbonate to organic compounds utilizes a 16-step metabolic pathway starting with acetyl coenzyme A | |
KR102028161B1 (en) | Process for preparing 2,3-butanediol using transformant | |
KR102481504B1 (en) | Engineered methanotrophs for producing 2,3-BOD | |
KR102202694B1 (en) | Novel methylotrophic bacteria variant with overexpression of ftfL gene and method for producing PHB using the same | |
KR101773123B1 (en) | Genetically engineered yeast cell producing 2,3-butanediol and method of producing 2,3-butanediol using the same | |
KR102005664B1 (en) | Transformed methanotrophs for producing aminolevulinic acid and uses thereof | |
EP3489361B1 (en) | Microorganism having activity of acyltransferase and use thereof | |
KR102030122B1 (en) | Methanotroph mutant for producing squalene | |
US20120088280A1 (en) | Gene encoding polymer synthase and a process for producing polymer | |
KR102245145B1 (en) | Transformants with enhanced productivity of biomass and a method of production biomass using thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right |