KR102253939B1 - Guide RNA for editing tyrosinase gene and use thereof - Google Patents

Guide RNA for editing tyrosinase gene and use thereof Download PDF

Info

Publication number
KR102253939B1
KR102253939B1 KR1020200077857A KR20200077857A KR102253939B1 KR 102253939 B1 KR102253939 B1 KR 102253939B1 KR 1020200077857 A KR1020200077857 A KR 1020200077857A KR 20200077857 A KR20200077857 A KR 20200077857A KR 102253939 B1 KR102253939 B1 KR 102253939B1
Authority
KR
South Korea
Prior art keywords
gene
tyrosinase
guide rna
flounder
editing
Prior art date
Application number
KR1020200077857A
Other languages
Korean (ko)
Inventor
이제희
김명진
정수미
Original Assignee
제주대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 제주대학교 산학협력단 filed Critical 제주대학교 산학협력단
Priority to KR1020200077857A priority Critical patent/KR102253939B1/en
Application granted granted Critical
Publication of KR102253939B1 publication Critical patent/KR102253939B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/10Processes for the isolation, preparation or purification of DNA or RNA
    • C12N15/102Mutagenizing nucleic acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • C12N15/8509Vectors or expression systems specially adapted for eukaryotic hosts for animal cells for producing genetically modified animals, e.g. transgenic
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/16Hydrolases (3) acting on ester bonds (3.1)
    • C12N9/18Carboxylic ester hydrolases (3.1.1)
    • C12N9/20Triglyceride splitting, e.g. by means of lipase
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; CARE OF BIRDS, FISHES, INSECTS; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2227/00Animals characterised by species
    • A01K2227/40Fish
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; CARE OF BIRDS, FISHES, INSECTS; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K67/00Rearing or breeding animals, not otherwise provided for; New breeds of animals
    • A01K67/027New breeds of vertebrates
    • A01K67/0275Genetically modified vertebrates, e.g. transgenic
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/20Type of nucleic acid involving clustered regularly interspaced short palindromic repeats [CRISPRs]

Abstract

The present invention relates to a method for producing melanin-deficient Paralichthys olivaceus by correcting tyrosinase of Paralichthys olivaceus with gene scissors. Therefore, when the tyrosinase gene is corrected using the guide RNA of the present invention, the pigment-deficient Paralichthys olivaceus has a golden or yellow body color, thereby being usefully used for mass production of high value-added mutant body color Paralichthys olivaceus.

Description

티로시나아제 유전자 교정용 가이드 RNA 및 이의용도{Guide RNA for editing tyrosinase gene and use thereof}Guide RNA for editing tyrosinase gene and use thereof {Guide RNA for editing tyrosinase gene and use thereof}

본 발명은 티로시나아제 유전자 교정용 가이드 RNA 및 이을 이용한 멜라닌 결핍 넙치의 제조방법에 관한 것이다. The present invention relates to a guide RNA for tyrosinase gene correction and a method for producing melanin-deficient flounder using the same.

넙치는 한국의 주요양식어종으로 중국, 일본을 포함하여 미국, 베트남, 캐나다로 수출되는 주요 수산수출품이다(2018 수산물 수출평가 및 2019년 전망). 해양수산부 발표 자료에 따르면, 짙은 회색을 띠는 일반 넙치와 달리 몸 전체가 황금색을 띠는 체색 돌연변이인 황금넙치는 일반넙치에 비해 1.5배 이상 높은 가격에 거래가 되고 있으며, 현재 국내에서 생산되는 체색 돌연변이 황금넙치는 자연적으로 발생한 돌연변이 개체의 암수를 교배하여 확보한 것으로 자손세대는 20%의 확률로 황금넙치를 생산하는 것으로 알려져 있다. 자손 세대에서 100% 체색변이 개체를 생산할 수 있도록 멜라닌색소가 결핍된 돌연변이 넙치를 개발하는 것은 고부가가치의 멜라닌색소 결핍 넙치의 대량생산을 위해 해결해야할 과제이다.Flounder is a major aquaculture species in Korea, and is a major aquatic export product exported to the United States, Vietnam, and Canada, including China and Japan (2018 Seafood Export Evaluation and Outlook for 2019). According to data released by the Ministry of Oceans and Fisheries, gold flounder, which is a body color mutant that has a golden color in its entire body, unlike ordinary flounder that has a dark gray color, is traded at a price more than 1.5 times higher than that of ordinary flounder, and is currently produced in Korea. Golden flounder is obtained by crossing male and female of naturally occurring mutant individuals, and it is known that the descendant generation produces golden flounder with a 20% probability. The development of a mutant flounder deficient in melanin pigment so that the offspring can produce 100% body color mutant individuals is a task to be solved for mass production of high value-added melanin-deficient flounder.

티로시나아제(Tyrosinase) 유전자는 멜라닌색소 형성 유전자로 이의 결핍은 검은색에 가까운 짙은 회색의 체색을 상실하게 만들고 어류의 경우 노란색 또는 황금색의 체색을 띠게 만든다.The tyrosinase gene is a melanin-pigmenting gene, and its deficiency causes a dark gray body color that is close to black to be lost, and a yellow or golden body color in fish.

유전체 교정(Genome Editing)이란 생명체의 유전정보를 자유롭게 교정하는 기술이다. 유전자 가위는 원하는 유전정보를 정확히 자를 수 있도록 설계되어 만들어진 분자 도구로, 유전체 교정 기술에서 핵심역할을 하고 있다. 유전자 서열분석 분야를 한 차원 발전시켰던 차세대 시퀀싱(Next generation sequencing) 기술과 같이, 유전자 가위는 유전정보 활용의 속도와 그 범위를 확장시키고 새로운 산업 분야를 창출해 내는 핵심 기술이 되고 있다.Genome Editing is a technology that freely edits the genetic information of living organisms. Genetic scissors are molecular tools designed and made to accurately cut desired genetic information and play a key role in genome editing technology. Like the next generation sequencing technology that took the field of gene sequencing to the next level, gene scissors are becoming a key technology that expands the speed and range of using genetic information and creates new industrial fields.

지금까지 개발된 유전자 가위는 그 순서에 따라 3세대로 나눌 수 있다. 1세대 유전자 가위는 ZFN(Zinc Finger Nuclease), 2세대 유전자 가위는 TALEN(Transcription Activator-Like Effector Nuclease), 가장 최근에 연구된 CRISPR(크리스퍼, Clustered regularly interspaced short palindromic repeat)-Cas(CRISPRassociated) 9은 3세대 유전자 가위다. CRISPRs (Clustered Regularly Interspaced Short Palindromic Repeats)는 유전자 서열이 밝혀진 박테리아의 대략 40% 및 유전자 서열이 밝혀진 고세균의 90%의 유전체에서 발견되는 좌위이다. The genetic scissors developed so far can be divided into three generations according to their order. ZFN (Zinc Finger Nuclease) for the first-generation gene scissors, TALEN (Transcription Activator-Like Effector Nuclease) for the second-generation gene scissors, the most recently studied CRISPR (Cluster regularly interspaced short palindromic repeat)-Cas (CRISPR associated) 9 Is the third generation of gene scissors. CRISPRs (Clustered Regularly Interspaced Short Palindromic Repeats) are loci found in the genome of approximately 40% of gene sequenced bacteria and 90% of gene sequenced archaea.

플라스미드 및 파지 등의 외인성 유전적 요소에 저항성을 부여한다는 점에서, CRISPR는 원핵 면역 시스템으로서 기능한다. CRISPR 시스템은 획득 면역의 한 형태를 제공한다. 스페이서(spacers)라고 불리는 외인성 DNA의 짧은 부분은 CRISPR 반복 사이의 게놈에 편입되고, 과거 노출을 기억하는 역할을 한다. 그때 CRISPR 스페이서는 진핵 유기체에서 RNAi와 유사한 방식으로 외인성 유전적 요소를 인지하고 묵살(silence)하는데 사용된다.CRISPR functions as a prokaryotic immune system in that it confers resistance to exogenous genetic elements such as plasmids and phages. The CRISPR system provides a form of acquired immunity. Short portions of exogenous DNA called spacers are incorporated into the genome between CRISPR repeats and serve to remember past exposures. The CRISPR spacer is then used in eukaryotic organisms to recognize and silence exogenous genetic elements in a manner similar to RNAi.

Type II CRISPR/Cas 시스템에서 필수적인 단백질 요소인 Cas9은, CRISPR RNA (crRNA) 및 trans-activating crRNA(tracrRNA)로 명명된 두 개의 RNA와 복합체를 형성했을 때, 활성 엔도뉴클레아제(endonuclease)를 형성하고, 그렇게 함으로써 파지 또는 플라스미드의 침입에서 외부 유전적 요소를 묵살하여 숙주 세포를 보호한다. crRNA는 전달에 외부 침입자로부터 점유되었던 숙주 유전체의 CRISPR 요소로부터 전사된다. Cas9, an essential protein element in the Type II CRISPR/Cas system, forms an active endonuclease when it forms a complex with two RNAs named CRISPR RNA (crRNA) and trans-activating crRNA (tracrRNA). And, by doing so, protects the host cell by ignoring foreign genetic elements from invasion of the phage or plasmid. The crRNA is transcribed from the CRISPR element of the host genome that has been occupied by foreign invaders for delivery.

최근 Jinek et al.은 crRNA 및 tracrRNA에서 필수적인 부분의 융합에 의해 생산된 단일 사슬 키메라 RNA(chimeric RNA)가 Cas9/RNA 복합체에서 두 개의 RNA를 대체할 수 있어서 기능 엔도뉴클레아제를 형성한다는 것을 입증하였다. 뉴클레오타이드 결합 CRISPR-Cas 단백질의 위치 특이성(site specificity)은 디자인 및 합성하기에 더 까다로울 수 있는 DNA-결합 단백질 대신 RNA 분자에 의해 통제되기 때문에, CRISPR/Cas 시스템은 ZFN(zinc finger nuclease, 1세대 유전자 가위) 및 TALEN (transcription activator-like effector nuclease, 2세대 유전자 가위)에 비해 이점을 제공한다.Recently, Jinek et al. demonstrated that single-chain chimeric RNA produced by the fusion of essential parts of crRNA and tracrRNA can replace two RNAs in the Cas9/RNA complex, thereby forming a functional endonuclease. I did. Because the site specificity of the nucleotide-binding CRISPR-Cas protein is controlled by an RNA molecule instead of a DNA-binding protein, which can be more difficult to design and synthesize, the CRISPR/Cas system is the first generation gene (ZFN). Scissors) and transcription activator-like effector nuclease (TALEN).

적극적인 유전형질의 변화 및 제거를 통한 품종개발을 위해서는 최신 유전자편집 기술인 CRISPR/Cas9 시스템의 도입이 효과적이다.The introduction of the latest gene editing technology, CRISPR/Cas9 system, is effective for the development of varieties through active genotypic change and removal.

이에 본 발명자는 유전자 가위기술의 적용하여 멜라닌 색소가 결핍된 황금 넙치를 제조하는 방법을 개발하였다. Accordingly, the present inventors developed a method of manufacturing golden flounder deficient in melanin pigment by applying genetic scissors technology.

대한민국 등록특허 제 10-1961332 호Korean Patent Registration No. 10-1961332

A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E.Science. 2012 Aug 17;337(6096):816-21. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E. Science. 2012 Aug 17;337(6096):816-21.

본 발명의 해결하고자 하는 과제는 티로시나아제 유전자 교정용 가이드 RNA, 상기 가이드 RNA를 포함하는 재조합 벡터, 유전자 교정용 조성물 및 이를 이용하여 멜라닌 결핍 넙치의 제조방법을 제공하는 것이다. An object to be solved of the present invention is to provide a guide RNA for tyrosinase gene correction, a recombinant vector including the guide RNA, a composition for gene correction, and a method for producing melanin-deficient flounder using the same.

상기의 과제를 해결하기 위해 본 발명은 서열번호3과 동일하거나 이와 상보적인 염기서열을 포함하는 티로시나아제 유전자 교정용 가이드 RNA를 제공한다. In order to solve the above problems, the present invention provides a guide RNA for correcting a tyrosinase gene comprising a nucleotide sequence identical to or complementary to SEQ ID NO: 3.

상기 티로시나아제 유전자는 넙치의 티로시나아제 유전자일 수 있다. The tyrosinase gene may be a tyrosinase gene of flounder.

또한, 본 발명은 상기 가이드 RNA를 포함하는 티로시나아제 유전자 교정용 재조합 벡터를 제공한다. In addition, the present invention provides a recombinant vector for tyrosinase gene editing comprising the guide RNA.

또한 본 발명은 상기 가이드 RNA 또는 상기 재조합 벡터를 포함하는 티로시나아제 유전자 교정용 조성물을 제공한다. In addition, the present invention provides a composition for correcting a tyrosinase gene comprising the guide RNA or the recombinant vector.

상기 조성물은 Cas9 단백질을 더 포함할 수 있다. The composition may further include a Cas9 protein.

상기 조성물은 염료를 더 포함할 수 있다. The composition may further include a dye.

또한, 본 발명은 넙치 수정란에 상기 유전자 교정용 조성물을 주입하는 단계를 포함하는, 멜라닌 결핍 넙치의 제조방법을 제공한다. In addition, the present invention provides a method for producing a melanin-deficient flounder comprising the step of injecting the gene editing composition into a fertilized flounder egg.

본 발명의 가이드 RNA(guide RNA, gRNA)를 이용하여 넙치의 tyrosinase 유전자 교정시 멜라닌 색소 결핍 넙치는 황금색 또는 노란색의 체색을 가지게 됨으로써, 고부가가치의 돌연변이 체색 황금넙치의 대량생산에 유용하게 활용할 수 있다.When the tyrosinase gene of flounder is corrected using the guide RNA (gRNA) of the present invention, the melanin pigment-deficient flounder has a golden or yellow body color, so it can be usefully used for mass production of high-value mutant color golden flounder. .

도 1은 넙치 수정란의 시간별 발생단계 및 이들의 이미지이다.
도 2는 넙치 수정란의 발생 단계에 따른 티로시나아제 유전자(tyrosinase) 발현을 RT-PCR 분석한 결과이다.
도 3은 넙치의 발생단계별 티로시나아제 유전자(tyrosinase) 발현양상을 in situ hybridization으로 분석한 결과이다.
도 4는 넙치의 티로시나아제 유전자(tyrosinase) 서열을 다른 6종의 서열과 비교한 것이다.
도 5는 유전자 가위 타겟 부위의 가이드 RNA 디자인(A) 및 이를 수정란에 미세주입(B)하는 것이다.
도 6은 넙치 수정란에 미세주입한 후 주입물질의 위치 (A), 주입 위치에 따른 유전자 편집 여부 (B) 및 유전자 편집 돌연변이의 염기서열 (C)을 확인한 결과이다.
도 7은 유전자 교정에 의한 멜라닌 색소 변화를 멜라닌 생산세포(melanophore)의 수를 측정하여 확인한 결과로, 유전자 교정 수정란의 24시간, 48시간 뒤 세포의 사진(A), 유전자 편집 여부(B) 및 멜라닌 생산세포(melanophore)의 수(C)를 분석한 결과이다.
도 8 내지 10은 넙치 유래 티로시나아제 전사물(tyrosinase transcript)의 변이형(variant, X1: 서열번호8, X2: 서열번호9, 및 X3: 서열번호10)의 염기서열을 나타낸 것이다.
1 is a time-dependent generation step of a flatfish fertilized egg and an image thereof.
2 is a result of RT-PCR analysis of tyrosinase gene expression according to the stage of development of fertilized flounder eggs.
FIG. 3 is a result of analyzing the expression patterns of tyrosinase genes according to development stages of flounder by in situ hybridization.
Figure 4 is a comparison of the sequence of the tyrosinase gene (tyrosinase) of the flounder with the other six kinds of sequences.
5 is a guide RNA design (A) of the target site of the genetic scissors and microinjection (B) it into a fertilized egg.
6 is a result of confirming the location of the injection material (A) after microinjection into the fertilized halibut, the gene editing status according to the injection location (B), and the nucleotide sequence of the gene editing mutation (C).
7 is a result of confirming the change of melanin pigment by gene correction by measuring the number of melanophores, photographs (A) of cells after 24 hours and 48 hours of genetically corrected fertilized eggs (B), and This is the result of analyzing the number (C) of melanophores.
Figures 8 to 10 show the nucleotide sequence of the variant (X1: SEQ ID NO: 8, X2: SEQ ID NO: 9, and X3: SEQ ID NO: 10) of the tyrosinase transcript derived from flounder.

본 발명은 서열번호3과 동일하거나 이와 상보적인 염기서열을 포함하는 티로시나아제 유전자 교정용 가이드 RNA를 제공한다. The present invention provides a guide RNA for correcting a tyrosinase gene comprising a nucleotide sequence identical to or complementary to SEQ ID NO: 3.

본 발명에서“티로시나아제”는 멜라닌 색소 합성 단백질을 암호화하는 유전자로, 티로시나아제 유전자는 넙치의 티로시나아제 유전자일 수 있으며, 구체적으로 서열번호8 내지 10으로 이루어진 것일 수 있다.In the present invention, "tyrosinase" is a gene encoding a melanin pigment synthesis protein, and the tyrosinase gene may be a tyrosinase gene of flounder, and specifically, may be composed of SEQ ID NOs: 8 to 10.

본 발명에서 “유전자 교정(gene editing)”은 목표 유전자인 티로시나아제 유전자 내의 표적 부위에 이중가닥 절단(double-stranded DNA cleavage)을 발생시켜서 뉴클레오타이드의 변이를 유발하는 작용을 의미한다. In the present invention, "gene editing" refers to an action of causing nucleotide mutation by generating double-stranded DNA cleavage at a target site in a target gene, a tyrosinase gene.

상기 변이는 목표 유전자 내의 뉴클레오타이드가 전부 또는 일부의 결실, 역위(inversion), 치환 (conversion) 또는 외인성 유전자의 삽입을 포함하며, 그 결과 목표 유전자의 기능이 상실된다. 상기 기능의 상실이란, 목표 유전자가 변형이 없는 경우에 통상적으로 수행하는 생물학적 기능 또는 역할의 전부 또는 일부가 없어진 것을 의미하며, 예를 들어, 목적 유전자에 의해 발현되는 단백질이 조기에 종결되거나, 단백질로서의 정상 기능을 상실한 것이다.The mutation includes deletion of all or part of the nucleotides in the target gene, inversion, conversion, or insertion of an exogenous gene, as a result of which the function of the target gene is lost. The loss of the function means that all or part of a biological function or role normally performed when the target gene is not modified, for example, the protein expressed by the target gene is terminated early, or the protein It has lost its normal function.

구체적으로, 상기 유전자 교정은 표적 부위에 종료코돈을 생성시키거나, 야생형과 다른 아미노산을 코딩하는 코돈을 생성시킴으로써, 목표 유전자를 녹아웃(knock-out) 시키거나, 단백질을 생성하지 않는 비코딩 DNA 서열에 변이를 도입하는 등 다양한 형태일 수 있으나, 이에 제한되는 것은 아니다.Specifically, the gene correction is a non-coding DNA sequence that knocks out a target gene or does not produce a protein by generating a stop codon at the target site or by generating a codon encoding an amino acid different from the wild type. It may be in various forms, such as introducing a mutation to, but is not limited thereto.

본 발명의 유전자 교정은 생체 외(in vitro) 또는 생체 내(in vivo)에서 수행되는 것일 수 있다.The gene correction of the present invention may be performed in vitro or in vivo.

본 발명의 가이드 RNA는 티로시나아제 유전자 교정하여 티로시나아제의 발현을 억제하기 위한 것이다. The guide RNA of the present invention is for suppressing the expression of tyrosinase by modifying the tyrosinase gene.

상기 가이드 RNA는 서열번호3과 동일하거나 이와 상보적인 염기서열을 포함한다. The guide RNA includes a nucleotide sequence identical to or complementary to SEQ ID NO: 3.

상기 가이드 RNA는 Cas9 뉴클레아제가 서열 특이적으로 인식하는 부위인 프로토스페이서 인접 모티프(protospacer adjacent motif: PAM) 서열을 포함한다. PAM 서열은 5‘-NGG-3’(상보적 염기서열 5‘-CCN-3’포함)을 의미하고 염기서열 N은 A, T, G, C의 어떤 핵산 염기 서열도 선택될 수 있다.The guide RNA includes a protospacer adjacent motif (PAM) sequence, which is a site specifically recognized by the Cas9 nuclease. The PAM sequence means 5'-NGG-3' (including the complementary nucleotide sequence 5'-CCN-3'), and the nucleotide sequence N can be any nucleotide sequence of A, T, G, or C.

본 발명에서 “가이드 RNA”는 RNA 편집(editing)을 통해 세포내에서 표적 DNA를 절단, 삽입, 또는 연결시키는 폴리뉴클레오티드를 말한다. 상기 가이드 RNA는 단일-사슬 가이드 RNA(single-chain guide RNA: sgRNA)일 수 있다. 상기 가이드 RNA는target 염기 서열에 특이적인 crRNA(CRISPR RNA)일 수 있다. 상기 가이드 RNA는 Cas9 뉴클레아제와 상호작용하는 tracrRNA(trans-activating crRNA)를 더 포함할 수 있다. 상기 tracrRNA는 루프(loop) 구조를 형성하는 폴리뉴클레오티드를 포함할 수 있다. In the present invention, "guide RNA" refers to a polynucleotide that cuts, inserts, or links target DNA in cells through RNA editing. The guide RNA may be a single-chain guide RNA (sgRNA). The guide RNA may be crRNA (CRISPR RNA) specific for a target nucleotide sequence. The guide RNA may further include a tracrRNA (trans-activating crRNA) that interacts with the Cas9 nuclease. The tracrRNA may include a polynucleotide forming a loop structure.

상기 가이드 RNA는 RNA, DNA, PNA, 또는 이들의 조합을 포함할 수 있다. 상기 가이드 RNA는 화학적으로 변형된 것일 수 있다.The guide RNA may include RNA, DNA, PNA, or a combination thereof. The guide RNA may be chemically modified.

상기 가이드 RNA는 세포의 유전체에서 비상동성 말단-접합(non-homologous end-joining: NHEJ)에 의해 티로시나아제 유전자의 일부 서열을 편집할 수 있으며 구체적으로 제거 또는 변형할 수 있다.The guide RNA can edit some sequences of the tyrosinase gene by non-homologous end-joining (NHEJ) in the genome of the cell, and specifically can be removed or modified.

본 발명의 일실시예에서 gRNA(50 ng/㎕)과 Cas9 단백질(100 ng/㎕), 0.5% 로다민 덱스트란(rhodamine dextran, 10,000 MW, neutral), 0.05% 페놀 레드(phenol red), 0.1M KCl을 혼합하여 유전자 교정을 위한 주입 조성물을 제조하고, 넙치 수정란(2 내지 8 세포기)에 주입한 후 티로시나아제 교정을 확인한 결과, 수정란에 주입된 경우만, 티로시나아제 유전자 교정이 일어남을 확인하였으며, 멜라닌 생산세포(melanophore) 수가 감소함을 확인하였다. In one embodiment of the present invention, gRNA (50 ng/µl) and Cas9 protein (100 ng/µl), 0.5% rhodamine dextran (10,000 MW, neutral), 0.05% phenol red, 0.1 M KCl was mixed to prepare an injection composition for gene editing, and after injecting it into a halibut fertilized egg (2 to 8 cell phase), tyrosinase correction was confirmed. As a result, only when injected into a fertilized egg, tyrosinase gene correction occurs. Was confirmed, and it was confirmed that the number of melanin-producing cells (melanophore) decreased.

따라서 본 발명의 서열번호3을 포함하는 gRNA를 이용하여 넙치에서 티로시나아제 유전자를 교정할 수 있으며, 멜라닌 색소 결핍 넙치 제조에 활용이 가능하다. Therefore, it is possible to correct the tyrosinase gene in the flounder using the gRNA comprising SEQ ID NO: 3 of the present invention, and it can be utilized in the production of melanin pigment-deficient flounder.

또한, 본 발명은 상기 가이드 RNA를 포함하는 티로시나아제 유전자 교정용 재조합 벡터를 제공한다. In addition, the present invention provides a recombinant vector for tyrosinase gene editing comprising the guide RNA.

본 발명에서 티로시나아제, 유전자 교정, 가이드 RNA에 관한 설명은 전술한 바와 같다. In the present invention, the description of tyrosinase, gene editing, and guide RNA is as described above.

본 발명의 “재조합 벡터”는 상기 목표 유전자를 특이적으로 인식하는 가이드 RNA(gRNA)를 암호화하는 유전자 염기서열을 포함하며, 가이드 RNA(gRNA)가 발현될 수 있도록, 발현조절 서열과 기능적으로 연결되어 있다. 예를 들어, gRNA 발현 벡터는 프로모터, 오퍼레이터, 개시코돈, 종결코돈, 폴리아데닐화 시그널, 인핸서 같은 발현 조절 요소 외에도 막 표적화 또는 분비를 위한 신호서열 또는 리더 서열을 포함하며 목적에 따라 다양하게 제조될 수 있다. The “recombinant vector” of the present invention includes a gene sequence encoding a guide RNA (gRNA) that specifically recognizes the target gene, and is functionally linked with an expression control sequence so that guide RNA (gRNA) can be expressed. Has been. For example, the gRNA expression vector includes a signal sequence or leader sequence for membrane targeting or secretion in addition to expression control elements such as a promoter, an operator, an initiation codon, a stop codon, a polyadenylation signal, and an enhancer, and can be prepared in various ways according to the purpose. I can.

상기 gRNA 발현 벡터는 RNA의 전사를 가능하게 하는 프로모터를 포함할 수 있으며, 구체적으로 RNA 폴리머라아제의 프로모터를 포함하며, 더욱 구체적 U3, U6, H1 프로모터를 포함할 수 있다.The gRNA expression vector may include a promoter that enables transcription of RNA, specifically includes a promoter of RNA polymerase, and more specifically includes U3, U6, and H1 promoters.

또한, gRNA 발현 벡터는 선택성 마커를 포함할 수 있으며, 벡터는 자가 복제하거나 숙주 DNA에 통합될 수 있다. 본 발명의 벡터는 당해 기술 분야에서 잘 알려진 유전자 재조합 기술을 이용하여 제조할 수 있으며, 부위-특이적 DNA 절단 및 연결은 당해 기술 분야에서 일반적으로 알려진 효소 등을 사용한다.In addition, the gRNA expression vector may contain a selectable marker, and the vector may be self-replicating or integrated into the host DNA. The vector of the present invention can be prepared using gene recombination techniques well known in the art, and site-specific DNA cleavage and ligation use enzymes generally known in the art.

또한 본 발명은 상기 가이드 RNA 또는 상기 재조합 벡터를 포함하는 티로시나아제 유전자 교정용 조성물을 제공한다. In addition, the present invention provides a composition for correcting a tyrosinase gene comprising the guide RNA or the recombinant vector.

본 발명의 유전자 교정용 조성물은 서열번호3과 동일하거나 이와 상보적인 염기서열을 포함하는 가이드 RNA 또는 이를 포함하는 재조합 벡터를 포함한다. The composition for gene editing of the present invention includes a guide RNA comprising a nucleotide sequence identical to or complementary to SEQ ID NO: 3 or a recombinant vector comprising the same.

상기 가이드 RNA는 Cas9 단백질과 세포에 주입하면, 목표 유전자인 티로시나아제 유전자를 교정할 수 있다. When the guide RNA is injected into the Cas9 protein and cells, the target gene, tyrosinase gene, can be corrected.

본 발명의 전술한 실시예에서 gRNA(50 ng/㎕)과 Cas9 단백질(100 ng/㎕), 0.5% 로다민 덱스트란(rhodamine dextran, 10,000 MW, neutral), 0.05% 페놀 레드(phenol red), 0.1M KCl을 혼합하여 유전자 교정을 위한 주입 조성물을 제조하였다. In the above-described embodiment of the present invention, gRNA (50 ng/µl) and Cas9 protein (100 ng/µl), 0.5% rhodamine dextran (10,000 MW, neutral), 0.05% phenol red, 0.1M KCl was mixed to prepare an injection composition for gene correction.

따라서 상기 조성물은 Cas9 단백질을 더 포함할 수 있다. Therefore, the composition may further include a Cas9 protein.

본 발명에서 Cas9 단백질은 목표 유전자의 특정 서열(protospacer associated motif, PAM)을 인식하고 뉴클레오티드 절단 활성을 가져 목표 유전자에서 인델(insertion and/or deletion, Indel)을 야기할 수 있는 모든 Cas9들 중에서 선택된 1종 이상일 수 있다. In the present invention, the Cas9 protein recognizes a specific sequence (protospacer associated motif, PAM) of the target gene and has a nucleotide cleavage activity, and is selected from among all Cas9s capable of causing insertion and/or deletion (Indel) in the target gene. It can be more than a species.

구체적으로 상기 Cas9 단백질은, 스트렙토코커스(Streptococcus) 속, 구체적으로, 스트렙토코커스 써모필러스(Streptococcus thermophiles), 스트렙토코커스 아우레우스(Streptocuccus aureus) 또는 스트렙토코커스 피요게네스(Streptococcus pyogenes) 유래의 Cas9 단백질; 캄필로박터(Campylobacter) 속, 구체적으로, 캄필로박터 제주니(Campylobacter jejuni) 유래의 Cas9 단백질; 네이세리아(Neisseria) 속, 구체적으로 네이세리아 메닝기디티스(Neisseria meningitidis) 유래의 Cas9 단백질; 파스테우렐라(Pasteurella) 속, 구체적으로, 파스테우렐라 물토시다 (Pasteurella multocida) 유래의 Cas9 단백질; 프란시셀라(Francisella) 속, 구체적으로, 프란시셀라 노비시다(Francisella novicida) 유래의 Cas9 단백질으로 이루어진 군에서 선택된 하나 이상일 수 있으나, 이에 제한되는 것은 아니다.Specifically, the Cas9 protein is a Cas9 protein derived from the genus Streptococcus , specifically, Streptococcus thermophiles , Streptocuccus aureus , or Streptococcus pyogenes. ; Campylobacter genus, specifically, Campylobacter jejuni Cas9 protein derived from; Ney ceria (Neisseria), A specifically Ney ceria mening gidi tooth (Neisseria meningitidis) derived Cas9 protein; Cas9 protein derived from the genus Pasteurella , specifically, Pasteurella multocida; Fran when cellar (Francisella) in, in particular, when Francisco Cellar Novi Let (Francisella novicida), but may be one or more selected from the group consisting of Cas9 protein derived from, without being limited thereto.

상기 Cas9 단백질 또는 유전자 정보는 NCBI(National Center for Biotechnology Information)의 GenBank와 같은 공지의 데이터 베이스에서 얻을 수 있다. The Cas9 protein or gene information can be obtained from a known database such as GenBank of the National Center for Biotechnology Information (NCBI).

상기 Cas9 단백질은 유전체 DNA의 표적 부위로 안내하기 위한 목표 유전자 특이적 가이드 RNA와 함께 사용된다. 상기 Cas9 단백질은 가이드 RNA와 복합체를 형성하여 리보핵산 단백질(RNP) 형태로 작용할 수 있다. The Cas9 protein is used together with a target gene-specific guide RNA for guiding to a target site of genomic DNA. The Cas9 protein may form a complex with a guide RNA to act in the form of ribonucleic acid protein (RNP).

또한, 상기 조성물은 염료를 더 포함할 수 있다. 상기 염료는 fluorescein-dextran, Bodipy-FL-dextran, Oregon Green-dextran을 포함할 수 있다. In addition, the composition may further include a dye. The dye may include fluorescein-dextran, Bodipy-FL-dextran, or Oregon Green-dextran.

또한, 본 발명은 넙치 수정란에 상기 유전자 교정용 조성물을 주입하는 단계를 포함하는, 멜라닌 결핍 넙치의 제조방법을 제공한다. In addition, the present invention provides a method for producing a melanin-deficient flounder comprising the step of injecting the gene editing composition into a fertilized flounder egg.

본 발명에서 유전자 교정용 조성물에 관한 설명은 전술한 바와 같다.The description of the composition for gene editing in the present invention is as described above.

본 발명의 “멜라닌 결핍 넙치의 제조방법”은 넙치 수정란에 상기 유전자 교정용 조성물을 주입하는 단계를 포함한다. The "method for producing melanin-deficient halibut" of the present invention includes the step of injecting the gene editing composition into fertilized halibut.

본 발명의 일실시예에서 gRNA과 Cas9 단백질을 포함하는 조성물을 넙치 수정란(2 내지 8 세포기)에 주입한 후 티로시나아제 교정을 확인한 결과, 수정란에 주입된 경우만, 티로시나아제 유전자 교정이 일어남을 확인하였으며, 멜라닌 생산세포(melanophore) 수가 감소함을 확인하였다. In one embodiment of the present invention, after injecting a composition containing gRNA and Cas9 protein into a flatfish fertilized egg (2 to 8 cell phase), tyrosinase correction was confirmed. As a result, only when injected into a fertilized egg, tyrosinase gene correction is It was confirmed that it occurred, and it was confirmed that the number of melanin-producing cells (melanophore) decreased.

본 발명의 실시예에서 넙치의 란(알)을 획득 및 수거한 넙치의 란을 멸균 해수로 옮긴 후, 죽었거나 수정되지 않은 난을 제외하기 위하여 해수의 표면으로 떠오르는 부상란(정상)을 일차로 선별하였다. 1세포기에 들어가면 현미경 관찰을 통해 미수정란과 수정란으로 정확하게 구분하고 선별된 난을 미세주입을 위해 1% 아가로즈 몰드에 배열 하였고 미세주입 하였다. 즉, 미세주입시 수정란의 단계는 2 세포기이며 이후 8 세포기까지 실험을 진행하였다.In an embodiment of the present invention, after obtaining and transferring the collected halibut eggs to sterilized seawater, the wounded eggs (normal) that rise to the surface of the seawater are first selected to exclude dead or unfertilized eggs. I did. After entering the 1st cell phase, it was accurately classified into unfertilized eggs and fertilized eggs through microscopic observation, and the selected eggs were arranged in a 1% agarose mold for microinjection and microinjected. In other words, the stage of the fertilized egg during microinjection was the 2 cell stage, and the experiment was carried out up to the 8 cell stage.

따라서 상기 주입하는 단계는 조성물을 2 내지 8 세포기의 수정란에 gRNA과 Cas9 단백질을 주입하는 것일 수 있다. Therefore, the step of injecting may include injecting the gRNA and Cas9 protein into the fertilized eggs of the 2 to 8 cell stage.

이하, 실시예를 통하여 본 발명의 구성 및 효과를 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 예시하기 위한 것일 뿐, 본 발명의 범위가 이들 실시예에 의해 한정되는 것은 아니다.Hereinafter, the configuration and effects of the present invention will be described in more detail through examples. These examples are for illustrative purposes only, and the scope of the present invention is not limited by these examples.

1. 넙치 수정란의 발생단계에 따른 티로시나아제 발현 양상1. Expression patterns of tyrosinase according to the stage of development of fertilized flounder eggs

넙치 수정란의 유전자 교정을 위해 넙치 수정란의 시간별 발생 진행단계의 확인이 필요하다. 따라서 넙치 수정란을 19.5±0.5℃ 배양기에서 배양하면서 시간별 발생단계를 확인하였다(도 1). 이를 토대로 단계별 수정란 20마리씩을 샘플링하고 RNA를 추출(RNeasy mini kit, Qiagen) 한 후 이들로부터 cDNA를 합성 (PrimeScript 1st strand cDNA synthesis kit, Takara) 하였다. For genetic correction of fertilized flounder eggs, it is necessary to check the stages of development of fertilized flounder eggs over time. Therefore, while culturing the fertilized flounder eggs in an incubator at 19.5±0.5° C., the stages of occurrence were confirmed by time (FIG. 1 ). Based on this, 20 fertilized eggs were sampled at each stage, RNA was extracted (RNeasy mini kit, Qiagen), and cDNA was synthesized from them (PrimeScript 1st strand cDNA synthesis kit, Takara).

앞서 확보한 cDNA를 이용하여 티로시나아제 유전자(tyrosinase)의 발현 양상을 분석하기 위하여 전체적인 샘플의 양이 균등하게 준비되었는지 확인하기 위해 EF-1a를 대조군(control)으로 사용하여 RT-PCR을 수행하였다(도 2A). 확인된 발생단계별 cDNA를 주형으로 사용하여 티로시나아제 유전자(tyrosinase)의 발생단계별 발현 양상을 확인하였다(도 2B). 그 결과, 티로시나아제(tyrosinase) 유전자는 모계 유전자(maternal gene)으로써 발현량은 낮지만 4-세포 단계에서부터 발현을 관찰되었으며, 발현량이 점차 증가하여 80% epiboly 단계가 지나면서 부터는 높은 수준으로 수정 후 48 시간까지 계속해서 유지되고 있음을 확인하였다. In order to analyze the expression pattern of the tyrosinase gene using the previously obtained cDNA, RT-PCR was performed using EF-1a as a control to confirm whether the total amount of the sample was prepared equally. (Figure 2A). Using the identified cDNA for each stage of development as a template, the expression pattern for each stage of development of the tyrosinase gene (tyrosinase) was confirmed (FIG. 2B). As a result, the tyrosinase gene was a maternal gene, and the expression level was low, but expression was observed from the 4-cell stage, and the expression level gradually increased and was modified to a high level after the 80% epiboly stage passed. It was confirmed that it was maintained continuously until 48 hours after that.

다음으로 티로시나아제(tyrosinase) 유전자의 공간적인 발현양상을 분석하기 위하여 현장혼성화(in situ hybridization) 분석을 수행하였다. Next, in situ hybridization analysis was performed to analyze the spatial expression pattern of the tyrosinase gene.

이를 위하여 티로시나아제(tyrosinase)에 특이적인 프라이머 세트(서열번호1: 정방향5’-CCATGTCAGGCCGTGGTTTCT-3’,서열번호2: 역방향 5’-GAACCCTGCAGGCACCAGAT-3)를 이용하여 tyrosinase 유전자의 ORF 안쪽으로 1003 bp의 클론(clone)을 확보하고, 이들로부터 dig-labeled antisense RNA 프로브(probe)를 합성(DIG RNA Labeling kit, Roche) 했다. 발생단계별 수정란은 4% 파라포름알데하이드(paraformaldehyde)에 고정하였고 48 시간 이전의 각 샘플은 고정액으로 고정 후 24 시간에 난막을 제거하고 MeOH로 옮긴 후 실험 전까지 -20℃에 보관하였다. 샘플은 농도 단계별로 PBS buffer로 옮긴 후 70℃ 에서 합성한 프로브(probe)와 12 시간 반응시킨 후 세척하였다. 5% 면양혈청(sheep serum)을 이용하여 블락킹(blocking) 단계를 거치고, dig-Ab와 상온에서 2 시간 반응 후 비특이적 반응의 제거하기 위해 PBS 버퍼로 세척하였다. 이 후 BCIP/NBT(substrate)와의 반응을 통해 발색시키고, 현미경을 이용하여 사진을 촬영하였다(도 3). To this end, 1003 bp inside the ORF of the tyrosinase gene using a tyrosinase-specific primer set (SEQ ID NO: 1: forward 5'-CCATGTCAGGCCGTGGTTTCT-3', SEQ ID NO: 2: reverse 5'-GAACCCTGCAGGCACCAGAT-3) A clone of was obtained, and a dig-labeled antisense RNA probe was synthesized therefrom (DIG RNA Labeling kit, Roche). Fertilized eggs for each stage of development were fixed in 4% paraformaldehyde, and each sample 48 hours before was fixed with a fixative, the egg membrane was removed 24 hours, transferred to MeOH, and stored at -20°C until the experiment. The sample was transferred to the PBS buffer in steps of concentration, reacted with the synthesized probe at 70° C. for 12 hours, and washed. A blocking step was performed using 5% sheep serum, followed by reaction with dig-Ab at room temperature for 2 hours, followed by washing with PBS buffer to remove non-specific reactions. Thereafter, the color was developed through reaction with BCIP/NBT (substrate), and a picture was taken using a microscope (FIG. 3).

RT-PCR 결과와 같이 4-세포 단계의 수정란에서부터 티로시나아제(tyrosinase) 유전자 발현을 관찰할 수 있고, 수정란의 세포 전반적으로 발현하던 양상이 shield 단계가 지나면서 한정되어짐을 확인하였다. 80% epiboly 단계에서는 몸통(body truck)의 양 옆쪽으로 티로시나아제(tyrosinase)가 발현되기 시작하였다. 이 세포들은 이후 유멜라닌(eumelanin)을 합성하여 검은색의 색소를 가지는 멜라닌 생성세포(melanophore)가 된다. As shown in the RT-PCR result, tyrosinase gene expression can be observed from the four-cell stage fertilized egg, and it was confirmed that the overall expression of the fertilized egg cells was limited as the shield stage passed. At the 80% epiboly stage, tyrosinase began to be expressed on both sides of the body truck. These cells then synthesize eumelanin to become melanophores with black pigment.

발생이 진행됨에 따라 멜라닌 생성세포(melanophore)의 수가 증가하고 수정 후 28시간이 지난 22 체절(somite) 단계에서는 멜라닌을 가지는 세포가 생성되어 있음을 확인하였다. As the development progressed, the number of melanophores increased, and it was confirmed that cells having melanin were generated at the 22 somite stage 28 hours after fertilization.

2. 넙치의 티로시나아제 유전자 분석2. Analysis of tyrosinase gene in flounder

티로시나아제(tyrosinase)는 검은색의 멜라닌 색소 형성과정에 중요한 역할을 하는 유전자로 잘 알려져 있으며 이를 타겟(target)으로 할 경우 주입(injection)을 수행한 F0 세대에서 배아의 표피 멜라닌 색소의 감소를 확인함으로써 유전자 편집이 일어났는지 예측하기가 용이하다. 본 발명에서는 넙치의 티로시나아제(tyrosinase) 유전자를 타겟(target)하는 sgRNA를 합성하고 이를 이용하여 CRISPR/Cas9 시스템의 도입하여 티로시나아제 유전자를 편집하기 위해 넙치의 티로시나아제 유전자를 분석하였다. Tyrosinase (tyrosinase) is well known as a gene that plays an important role in the process of forming black melanin pigment. When it is used as a target, the reduction of epidermal melanin pigment in embryos in the F0 generation after injection is performed. By checking, it is easy to predict whether gene editing has occurred. In the present invention, the tyrosinase gene of flounder was analyzed to edit the tyrosinase gene by synthesizing sgRNA targeting the tyrosinase gene of flounder and using this to introduce the CRISPR/Cas9 system.

도 4는 멜라닌 색소결핍 넙치를 만들기 위해 이용한 넙치(Paralichthys olivaceus)의 티로시나아제(tyrosinase) 유전자 서열을 다른 6종의 티로시나아제(tyrosinase) 유전자와 비교 분석한 결과이다. 4 is a result of comparing and analyzing the tyrosinase gene sequence of the flounder (Paralichthys olivaceus ) used to make melanin deficient flounder with six other types of tyrosinase genes.

제브라피시(Danio rerio), 송사리(Oryzias latipes), 참개구리(Pelophylax nigromaculatus), 적색야계(Gallus gallus), 생쥐(Mus musculus) 및 사람(Homo sapiens)의 tyrosinase와 비교하여 잘 보존된 잔기들은 검은색으로, 부분적으로 보존된 잔기는 회색으로 나타났다. 티로시나아제(tyrosinase)의 기능성 도메인(functional domain)은 다음과 같이 표기하였다. 주황색 박스는 tyrosinase의 central domain, 파란색 화살표는 시그널 펩타이드(signal peptide), 빨간색 화살표는 두 개의 Cu 바인딩 도메인(Cu-binding domain), 초록색 화살표는 라미닌-타입-EGF -유사 도메인(laminin-type EGF-like domain)을 나타난다. Compared to the tyrosinase of zebrafish ( Danio rerio ), medaka ( Oryzias latipes ), true frog ( Pelophylax nigromaculatus ), red field ( Gallus gallus ), mouse ( Mus musculus ) and human ( Homo sapiens ), well-conserved residues are black. As a result, partially conserved residues appeared gray. The functional domain of tyrosinase is indicated as follows. The orange box indicates the central domain of the tyrosinase, the blue arrow indicates the signal peptide, the red arrow indicates the two Cu-binding domains, and the green arrow indicates the laminin-type-EGF-like domain. like domain).

3. 가이드 RNA의 제조 및 미세주입3. Preparation and microinjection of guide RNA

넙치의 티로시나아제 전사물(tyrosinase transcript)은 같은 ORF 서열을 포함하지만 서로 다른 길이의 UTR 영역을 가지는 3개의 변이형(variant)이 존재하였다(도 8 내지 10, 서열번호8 내지 10). 따라서 시작코돈(ATG) 뒤쪽으로 Cas9 뉴클레아제(nuclease)에 의해 인식되는 PAM 서열을 포함하도록 28번 아미노산을 타겟(target)으로 선정하였다.The tyrosinase transcript of flounder had the same ORF sequence, but there were three variants having different length UTR regions (FIGS. 8 to 10, SEQ ID NOs: 8 to 10). Therefore, amino acid 28 was selected as a target to include the PAM sequence recognized by the Cas9 nuclease behind the start codon (ATG).

Single guide RNA (sgRNA) 합성Single guide RNA (sgRNA) synthesis

구체적으로 zifit site (http://zifit.partners.org/ZiFiT/)를 이용하여 target 서열을 선정하였다. 티로시나아제 도메인(tyrosinase domain)의 앞쪽의 5’-ACTCAGAGGGACTACGGACC-3’(서열번호3, 20 bp)을 가이드 RNA(gRNA) 타겟으로 선정하였다(도 5).Specifically, the target sequence was selected using the zifit site (http://zifit.partners.org/ZiFiT/). 5'-ACTCAGAGGGACTACGGACC-3' (SEQ ID NO: 3, 20 bp) in front of the tyrosinase domain was selected as a guide RNA (gRNA) target (Fig. 5).

백본(Back bone)을 포함하는 gRNA의 전체 서열 합성하기 위해, 정방향 프라이머(sgRNA forward primer, 서열번호4)는 선정한 타겟 서열 앞쪽으로 T7 프로모터(promoter) 서열을 붙이고 뒤쪽으로 sgRNA 백본(back bone) 서열 일부를 붙여 총 57 mer의 올리고(oligo)를 디자인하였으며, 역방향 프라이머(sgRNA reverse primer, 서열번호5)의 경우 80 mer의 sgRNA backbone oligo를 주문하여 사용하였다. To synthesize the entire sequence of gRNA including the backbone, the forward primer (sgRNA forward primer, SEQ ID NO: 4) attaches the T7 promoter sequence to the front of the selected target sequence, and the sgRNA backbone sequence to the rear. A total of 57 mer oligos were designed by attaching some parts, and 80 mer sgRNA backbone oligos were ordered and used for the reverse primer (sgRNA reverse primer, SEQ ID NO: 5).

Figure 112020065665510-pat00001
Figure 112020065665510-pat00001

Gaurav et al.(Genome Res. 2015 Jul; 25(7): 1030-1042)에 의해 제시된 클로닝 프리(cloning free) 방법을 사용하여 gRNA를 합성 및 획득하였다. 정방항 프라이머(Forward primer, 100 pmol/㎕) 2 ㎕, 역방항 프라이머(reverse primer, 100 pmol/㎕) 2 ㎕, HS prime star(Takara, Japan) 0.5 ㎕, 5 × prime Star buffer 10 ㎕, dNTP 4 ㎕를 사용하여 95℃ 2분, 50℃ 10분, 72℃ 30분의 1 cycle PCR로 DNA template를 합성한 후, PCR purification kit(Bioneer, Korea)로 정제하였다. 3M 아세트산나트륨(sodium acetate)을 첨가하여 에탄올 침전(ethanol precipitation)을 수행하였다. 이후 뉴클레아제 프리 워터(nuclease free water)에 녹여 시험관내 전사(in vitro transcription)의 기질(template)로 사용하였다. 14 ㎕의 DNA template에 T7 RNA 중합효소(polymerase) 1 ㎕, 10 × T7 중합효소 버터 2 ㎕, RNase 저해제(inhibitor) 1 ㎕, sense NTP (10 pmol/㎕) 2 ㎕를 넣고 37℃에서 4시간 동안 반응하였다. The gRNA was synthesized and obtained using the cloning free method presented by Gaurav et al. ( Genome Res. 2015 Jul; 25(7): 1030-1042). Forward primer (100 pmol/µl) 2 µl, reverse primer (100 pmol/µl) 2 µl, HS prime star (Takara, Japan) 0.5 µl, 5 × prime star buffer 10 µl, dNTP DNA template was synthesized by 1 cycle PCR of 95°C for 2 minutes, 50°C for 10 minutes, and 72°C for 30 minutes using 4 μl, and then purified with a PCR purification kit (Bioneer, Korea). Ethanol precipitation was performed by adding 3M sodium acetate. Thereafter, it was dissolved in nuclease free water and used as a template for in vitro transcription. To 14 µl of DNA template, add 1 µl of T7 RNA polymerase, 2 µl of 10 × T7 polymerase butter, 1 µl of RNase inhibitor, and 2 µl of sense NTP (10 pmol/µl) at 37℃ for 4 hours Reacted during.

이 후 RNase free DNaseⅠ을 1㎕ 넣고 37℃에서 20분 반응하여 DNA template를 제거한 뒤 4M LiCl를 이용하여 에탄올 침전(ethanol precipitation)을 수행하였다. 합성한 gRNA는 정량 한 후 사용할 때까지 -80℃에 보관하였다.Thereafter, 1 µl of RNase free DNase I was added and reacted at 37° C. for 20 minutes to remove the DNA template, followed by ethanol precipitation using 4M LiCl. The synthesized gRNA was quantified and stored at -80°C until use.

유전자 교정용 조성물의 제조 및 주입방법Preparation and injection method of composition for gene editing

주입물질(Injection materials)은 상기에서 합성한 gRNA (50 ng/㎕)과 Cas9 단백질(100 ng/㎕), 0.5% 로다민 덱스트란(rhodamine dextran, 10,000 MW, neutral), 0.05% 페놀 레드(phenol red), 0.1M KCl을 혼합하여 제조하였다. Injection materials are the gRNA synthesized above (50 ng/µl) and Cas9 protein (100 ng/µl), 0.5% rhodamine dextran (10,000 MW, neutral), 0.05% phenol red (phenol). red), prepared by mixing 0.1M KCl.

넙치의 란(알)을 획득 및 수거한 넙치의 란을 멸균 해수로 옮긴 후, 죽었거나 수정되지 않은 난을 제외하기 위하여 해수의 표면으로 떠오르는 부상란(정상)을 일차로 선별하였다. 1세포기에 들어가면 현미경 관찰을 통해 미수정란과 수정란으로 정확하게 구분하고 선별된 난을 미세주입을 위해 1% 아가로즈 몰드에 배열하고 미세주입을 실시하였다. 따라서 미세주입 시 수정란의 단계는 2세포기이며 이후 8세포기까지 실험을 진행하였다.After obtaining and transferring the collected flounder eggs to sterile seawater, the flounder eggs (normal) floating on the surface of the seawater were first selected to exclude dead or unfertilized eggs. After entering the 1st cell phase, it was accurately classified into unfertilized eggs and fertilized eggs through microscopic observation, and the selected eggs were arranged in a 1% agarose mold for microinjection, and microinjection was performed. Therefore, the stage of the fertilized egg during microinjection was the 2-cell stage, and the experiment was carried out up to the 8-cell stage.

넙치 수정란을 1% 아가로스 몰드(agarose mold)에 배열시키고 주입조성물을 0.5 nl/embryo 농도로 미세주입 하였다. 그라인더(Grinder)를 이용하여 끝을 날카롭게 만든 미세주입 바늘(microinjection needle)을 이용하여 도 5B에서와 같이 정확한 위치에 물질을 미세주입 하였다.The halibut fertilized eggs were arranged in a 1% agarose mold, and the injection composition was microinjected at a concentration of 0.5 nl/embryo. The material was microinjected into the correct position as shown in FIG. 5B using a microinjection needle made with a sharp tip using a grinder.

유전자 교정(gene editing) 및 변이율 확인 방법Gene editing and mutation rate verification method

미세주입 한 배아에서 변이(mutation)가 일어났는지 확인하기 위해 수정 후 48시간이 되었을 때 배아에서 genomic DNA를 추출하여 PCR 반응과 T7 엔도뉴클레아제(endonuclease 1, T7E1) 어세이(assay)를 통하여 mutation 여부를 확인하였다. In order to check whether mutation occurred in the microinjected embryo, genomic DNA was extracted from the embryo at 48 hours after fertilization, and through PCR reaction and T7 endonuclease 1 (T7E1) assay. The mutation was confirmed.

Genomic DNA는 미세주입한 배아를 e-tube에 넣은 후 라이시스 버퍼(lysis buffer, 10 mM Tris-Cl, pH 8.0, 50 mM KCl, 0.3% tween 20, 0.3% triton X-100) 50 ㎕와 프로테이나제 K(proteinase K, 20 mg/㎖) 1 ㎕를 넣고 60℃에서1시간 인큐베이션(incubation)하여 추출하였다. 이 때 20분 간격으로 볼텍싱(vortexing) 하며 배아가 용해(lysis)되는 것을 확인하였으며, 이 후 95℃에서 10 분간 불활성화(inactivation)한 후 실험에 사용하였다.For genomic DNA, microinjected embryos were placed in an e-tube, followed by 50 µl of Lysis buffer (lysis buffer, 10 mM Tris-Cl, pH 8.0, 50 mM KCl, 0.3% tween 20, 0.3% triton X-100) and pro 1 µl of Teinase K (proteinase K, 20 mg/ml) was added and incubated at 60° C. for 1 hour, followed by extraction. At this time, it was confirmed that the embryo was lysed by vortexing every 20 minutes, and after that, inactivation was performed at 95°C for 10 minutes, and then used in the experiment.

타겟한 위치(Targeting site)를 사이에 두고 변이(mutation)를 확인하기 위한 T7E1 assay용 프라이머(서열번호6, 서열번호7)를 디자인하였다. Genomic DNA를 주형으로 PCR 반응을 수행하였으며, 95℃에서 30초, 60℃에서 30초, 72℃에서 30초를 1 cycle로 하여 35 cycle 반응을 하여 증폭시켰다.A primer for T7E1 assay (SEQ ID NO: 6, SEQ ID NO: 7) was designed to check mutations with a targeting site in between. PCR reaction was performed using genomic DNA as a template, and amplification was performed by 35 cycles of 1 cycle at 95°C for 30 seconds, 60°C for 30 seconds, and 72°C for 30 seconds.

PCR을 통하여 증폭시킨 DNA에 PCR 기계를 이용하여 헤테로 듀플렉스(hetero duplex) 반응을 수행하였다. PCR반응이 끝난 후 95℃에서 4분간 반응하여 변성(denaturation) 한 후 85℃까지는 1초당 1℃씩, 85℃부터 25℃까지는 1초당 0.1℃씩 온도가 내려가도록 설정하여 반응을 진행하였다. 이 후 T7 endonucleaseⅠ(New England BioLab, USA) enzyme과 buffer를 PCR product에 추가하여 37℃에서 2시간 반응시킨 후 2% 아가로스겔(agarose gel)에 전기영동 하여 확인하였다.A hetero duplex reaction was performed on the DNA amplified through PCR using a PCR machine. After the PCR reaction was completed, the reaction was carried out by reacting at 95°C for 4 minutes to lower the temperature by 1°C per second to 85°C and 0.1°C per second from 85°C to 25°C. After that, T7 endonuclease I (New England BioLab, USA) enzyme and buffer were added to the PCR product, reacted at 37°C for 2 hours, and then electrophoresed on a 2% agarose gel to confirm.

Figure 112020065665510-pat00002
Figure 112020065665510-pat00002

유전자 교정에 의한 넙치 돌연변이 확인Confirmation of halibut mutation by genetic modification

주입물질이 정확한 위치에 주입이 되었는지 확인하기 위하여 형광을 나타내는 0.5% 로다민 덱스트란(rhodamine dextran, 10,000 MW, neutral: Sigma)을 gRNA 및 Cas9 단백질과 함께 주입하였고, 수정 후 24 시간에 형광의 위치를 확인하였다. 미세주입 하지 않은 넙치 수정란과 비교하였을 때 형광의 위치는 노른자(yolk) 위쪽의 세포에서 발현하는 케이스1(case 1)과 세포 외부의 위란강(perivitelline space, 난막과 수정란의 사이 공간)에서 발현하는 케이스2(case 2)의 2 가지로 관찰되었다(도 6A). 0.5% rhodamine dextran (10,000 MW, neutral: Sigma), which shows fluorescence, was injected together with gRNA and Cas9 protein to confirm that the injection material was injected at the correct location, and the location of the fluorescence 24 hours after fertilization. Was confirmed. Compared to the non-microinjected flatfish fertilized egg, the location of fluorescence is expressed in case 1 (case 1) expressed in cells above the yolk and in the perivitelline space (space between the egg membrane and the fertilized egg) outside the cells. It was observed in two cases of case 2 (Fig. 6A).

각 그룹의 수정란을 채취하여 유전자 교정이 일어났는지 확인하기 위하여 T7 엔도뉴클레아제 1(endonuclease 1) 어세이(assay)를 수행하였다. T7 E1 assay는 선정한 target 부위를 PCR로 증폭시키고 반응산물을 변성(denaturation) 후 천천히 원형회복(renaturation) 시키는 과정에서 유전자 교정이 일어난 부위에 형성되는 헤테로 듀플렉스(hetero duplex)를 인식하고 절단해주는 T7 endonuclease 1을 이용하여 확인하는 방법이다. A T7 endonuclease 1 assay was performed in order to check whether gene correction occurred by collecting the fertilized eggs of each group. The T7 E1 assay is a T7 endonuclease that recognizes and cuts a hetero duplex formed at the site where gene correction has occurred in the process of amplifying the selected target site by PCR and slowly regenerating the reaction product after denaturation. This is how to check using 1.

분석결과 수정란에 주입된 경우(case 1)만, 유전자 교정이 일어남을 확인하였다(도 6B). 다음으로 Case 1에 해당하는 수정란에서 유전자 교정을 정확하게 확인하기 위하여 타겟(target) 부위를 PCR 로 증폭하여 염기 서열 분석을 실시하였다. 그 결과 도 6C와 같이 다양한 유전자 편집 패턴이 발생하였음을 확인하였다. As a result of the analysis, it was confirmed that only when injected into the fertilized egg (case 1), gene correction occurred (FIG. 6B). Next, in order to accurately confirm gene correction in the fertilized egg corresponding to Case 1, the target site was amplified by PCR and nucleotide sequence analysis was performed. As a result, it was confirmed that various gene editing patterns occurred as shown in FIG. 6C.

4. 유전자 교정에 의한 멜라닌 색소 변화4. Changes in melanin pigment by gene editing

티로시나아제(tyrosinase)의 유전자 교정에 의해 발생한 돌연변이가 멜라닌색소의 변화를 유도하는지 확인하기 위하여 수정 후 24시간에 수정란의 머리부위를 이미징하고(도 7A) 멜라닌 생산세포(melanophore) 수를 카운팅(counting) 하였다(도 7C). 그 결과 미세주입된 개체는 멜라닌 생산세포(melanophore) 수가 대조군 39.6개에서 미세주입에 의해 20.8개로 47.5% 감소하였음을 확인하였다. In order to confirm whether the mutation caused by gene correction of tyrosinase induces the change in melanin pigment, the head of the fertilized egg is imaged 24 hours after fertilization (Fig. 7A) and the number of melanophores is counted ( counting) (Fig. 7C). As a result, it was confirmed that the number of melanin-producing cells (melanophore) in microinjected individuals decreased by 47.5% from 39.6 in the control group to 20.8 in the control group.

F0 개체는 모자이크 무늬(mosaic pattern)로 유전자 교정이 발생하므로 이러한 결과가 관찰된다고 판단할 수 있다. 24시간이 더 지난 후(48 hpf) 바디 몸통(body trunk)에서 추가로 멜라닌 생산세포(melanophore)의 형성이 감소되었음을 확인하였고(도 7A) 이들 개체를 모두 샘플링하여 T7E1 assay에 의해 개체별 지노타이핑(genotyping)을 실시하였다. 그 결과 도 7B와 같이 미세주입(injection) 된 모든 개체는 100% 유전자 교정됨을 확인하였다. It can be judged that this result is observed because F0 individuals undergo gene correction in a mosaic pattern. After an additional 24 hours (48 hpf), it was confirmed that the formation of melanin-producing cells (melanophore) was further reduced in the body trunk (FIG. 7A), and all of these individuals were sampled and genotyping for each individual by T7E1 assay. (genotyping) was performed. As a result, it was confirmed that all the microinjected individuals were 100% genetically corrected as shown in FIG. 7B.

<110> Jeju National University Industry-Academic Cooperation Foundation <120> Guide RNA for editing tyrosinase gene and use thereof <130> DP20200119 <160> 10 <170> KoPatentIn 3.0 <210> 1 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> tyrosinase forward primer <400> 1 ccatgtcagg ccgtggtttc t 21 <210> 2 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> tyrosinase reverse primer <400> 2 gaaccctgca ggcaccagat 20 <210> 3 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> tyrosinase gRNA target sequence <400> 3 actcagaggg actacggacc 20 <210> 4 <211> 57 <212> DNA <213> Artificial Sequence <220> <223> sgRNA forward primer <400> 4 taatacgact cactataggt ccgtagtccc tctgagtgtt ttagagctag aaatagc 57 <210> 5 <211> 80 <212> DNA <213> Artificial Sequence <220> <223> sgRNA reverse primer <400> 5 aaaagcaccg actcggtgcc actttttcaa gttgataacg gactagcctt attttaactt 60 gctatttcta gctctaaaac 80 <210> 6 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> T7E1 Forward primer <400> 6 aggttggagt tgccctgatt 20 <210> 7 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> T7E1 reverse primer <400> 7 accccagtaa ccaaacctgc 20 <210> 8 <211> 3227 <212> DNA <213> Paralichthys olivaceus <400> 8 gtggaaggag aggaggtctt ggggagggtt agaggactga gtggaggggt aacaaaattg 60 taatcgatta tctttggaaa catttgtgta ctggtagaca gtgttgtctt tgataaaagt 120 aaaaaactaa aacaaattca gtgggatgtg aatcctgttg ttctctgctt gcagcctaaa 180 aatctctcca gctctgaatc tattcctctg tgctgtttca ggttcatttg cgtccatcct 240 ctcatcagga gcttactttc agactgtggt taaggttgga gttgccctga tttttcatca 300 tgaggactgt gtgtttatct gcactcctgc tgcagctcct cgggacgtct ttctgtcagt 360 tcccccgccc gtgtgccaac tcagagggac tacggaccaa agagtgctgc ccggtgtggg 420 acggtgacgg ctcagtctgc ggtgccatgt caggccgtgg tttctgctcc gaggtgttgg 480 tctcagatga gccccacggg ccccagtacc ctcaccgtgg gattgatgac agagagcgct 540 ggcctttagc cttctttaac cggacgtgtc gctgtgctgg aaactatgga ggctttaact 600 gtggagaatg caggtttggt tactggggtt cgaactgtgc agagtacagg gaatctgtgc 660 gcaggaacat catgaccatg tccactgctg agcagcagaa gtttgtctct tacctgaacc 720 tggctaaaaa caccatcagc caagactacg tcatatccac agcaacaaga gcagagatgg 780 gcgagaacgg tgagaacccc atgttctctg acatcaacac ctatgacctg tttgtgtgga 840 tgcactacta cgtgtcccgg gacgccttcc tggggggggc agggaacgta tggacagaca 900 tcgactttgc ccatgaatct gcggccttcc ttccgtggca ccgagtcttc ctgcttcact 960 gggagaatga gatcaggaag ctgacgggag attttaactt caccatcccg tactgggact 1020 ggagggacgc ccagtcctgt gaggtgtgca ccgatgctct gatgggtgga cgcagctccc 1080 gcaatcccaa cctcatcagc cccggctccg tcttctcctc atggaaggtg atctgcaccc 1140 agccagagga gtacaacagt cgagaagcat tgtgtaacgc caccggggag ggcccactgt 1200 tgcgtaaccc aggcaaccat gataggaacc gcgtgcctcg actccccaca agagctgacg 1260 ttgatttcac tgtgggcctt cctgagtacg agacggggcc catggaccga ttctccaact 1320 tgagctttag aaacgtcctg gagggctttg ccagtccagt gacaggcatg gcggtgccgg 1380 gccagagcac gatgcacaac tccctgcacg tcttcatgaa cggctccatg tcctcggtgc 1440 agggttcagc caacgacccc atattcttgc tgcaccacgc tttcattgac agtatctttg 1500 aacgctggct caggacccac atgcctctcc gggccaacta ccccctcgcc aatgccccca 1560 ttggccacaa tgatggctac tacatggtgc ccttcctgcc tctctttaga aacggagact 1620 acttcttgtc caacaaggct ctgggattcg agtacgccta tttgctggac cctggacaga 1680 ggttcgtgca ggagttcctg acgccatacc tcgaacaggc ccaacagatc tggcagtggc 1740 tcctgggggc cgggatcctc ggggctctca tcgcagcggt cctcgctgcg gtgattgttg 1800 ttgcgaggag gaagtggagg cgtaaccaga ggaggaagag ggtgtcaagc tacggagaga 1860 gacaaccact actgcagagc agctcagagg aaggctcggc ctcatatcag accactctgt 1920 aacacacaca ctgtacatac tgttacatga atgtgcaaac tattaaggac acatgattcc 1980 atgacacaaa tgaataagat gaatcttagt acaaggatac gtcttttttt tattcctgag 2040 aataaatcaa tttagatttt ttaataaagg tacagatgag ttagagaaga gcctttaaag 2100 tcagttcacc cgaaatctca aaaagtaaat atttctccct catagtatct ggcagaccgc 2160 tttgtgtgtg tgtgtgtgtg ttgttgagat acctgctaat atatctgctc atctgctttt 2220 gaacaatagg ggtgaagtga attttatttg tggtggtcat agcgctcatt aggaacacaa 2280 tttattttcc aaggttttct ttcaatttct ttgtgcaaaa aaagacagag gagaacagaa 2340 gagacggttt aagacatctc cacaaatgga ttgtttaaac gttgatgagg ggagatttgg 2400 gtgaaatgac cctttacaga ttgagacaag gagcaaagtc cttcagatgt gcctgatatt 2460 ttacacattc agtacatgtc atgtcagaaa tatctctgtg tgacacaaac gtacaacgtg 2520 acagactttc agagccatca agagatcttt atcacaaagc aacacctccc tgcagtttgc 2580 aggtcaaaca ccttgaggga tatttattgt ctatttacag aggccactct gcagccaatg 2640 acagcagctg tagttagata agatcattga cttgtgcaga gacacatttc atctaattta 2700 ttgtccactt gtatgttact ggaaatcatt gagattcagt aaatagtcac ttaaagccag 2760 gtcatgtctg ctgatctgtg gggacagctc gagttgttga aagcacttta tttgttgctt 2820 catacagata aagtcccggt cacacgtacc agagtgtgtc agcaatgaac cctgttcact 2880 tccaatcagc accagctagg gaggtgagga aaacatttgt tttatgtggc gaagcaaatg 2940 gcagagtgat ttcacgtaga gtttaacttt gttgaacttt gacccatgat attctcttta 3000 cattcatgta tctgtgaccg ggcctgaaat ctgagtccca aaaaacatac ttttaatcag 3060 tttatgtctt tcagtgcaaa attctgaaaa aactgaccaa accgacaaca cactctcgtg 3120 tgttagcact ggtgctaaag gagcgcagca tactcacaat atgtatcatg ataatgaaga 3180 tgaatcagga ttttgtaaat gctgcattaa aatcagactt gatccaa 3227 <210> 9 <211> 3064 <212> DNA <213> Paralichthys olivaceus <400> 9 gagagcgagg gtggaaggag aggaggtctt ggggagggtt agaggactga gtggaggggt 60 tcatttgcgt ccatcctctc atcaggagct tactttcaga ctgtggttaa ggttggagtt 120 gccctgattt ttcatcatga ggactgtgtg tttatctgca ctcctgctgc agctcctcgg 180 gacgtctttc tgtcagttcc cccgcccgtg tgccaactca gagggactac ggaccaaaga 240 gtgctgcccg gtgtgggacg gtgacggctc agtctgcggt gccatgtcag gccgtggttt 300 ctgctccgag gtgttggtct cagatgagcc ccacgggccc cagtaccctc accgtgggat 360 tgatgacaga gagcgctggc ctttagcctt ctttaaccgg acgtgtcgct gtgctggaaa 420 ctatggaggc tttaactgtg gagaatgcag gtttggttac tggggttcga actgtgcaga 480 gtacagggaa tctgtgcgca ggaacatcat gaccatgtcc actgctgagc agcagaagtt 540 tgtctcttac ctgaacctgg ctaaaaacac catcagccaa gactacgtca tatccacagc 600 aacaagagca gagatgggcg agaacggtga gaaccccatg ttctctgaca tcaacaccta 660 tgacctgttt gtgtggatgc actactacgt gtcccgggac gccttcctgg ggggggcagg 720 gaacgtatgg acagacatcg actttgccca tgaatctgcg gccttccttc cgtggcaccg 780 agtcttcctg cttcactggg agaatgagat caggaagctg acgggagatt ttaacttcac 840 catcccgtac tgggactgga gggacgccca gtcctgtgag gtgtgcaccg atgctctgat 900 gggtggacgc agctcccgca atcccaacct catcagcccc ggctccgtct tctcctcatg 960 gaaggtgatc tgcacccagc cagaggagta caacagtcga gaagcattgt gtaacgccac 1020 cggggagggc ccactgttgc gtaacccagg caaccatgat aggaaccgcg tgcctcgact 1080 ccccacaaga gctgacgttg atttcactgt gggccttcct gagtacgaga cggggcccat 1140 ggaccgattc tccaacttga gctttagaaa cgtcctggag ggctttgcca gtccagtgac 1200 aggcatggcg gtgccgggcc agagcacgat gcacaactcc ctgcacgtct tcatgaacgg 1260 ctccatgtcc tcggtgcagg gttcagccaa cgaccccata ttcttgctgc accacgcttt 1320 cattgacagt atctttgaac gctggctcag gacccacatg cctctccggg ccaactaccc 1380 cctcgccaat gcccccattg gccacaatga tggctactac atggtgccct tcctgcctct 1440 ctttagaaac ggagactact tcttgtccaa caaggctctg ggattcgagt acgcctattt 1500 gctggaccct ggacagaggt tcgtgcagga gttcctgacg ccatacctcg aacaggccca 1560 acagatctgg cagtggctcc tgggggccgg gatcctcggg gctctcatcg cagcggtcct 1620 cgctgcggtg attgttgttg cgaggaggaa gtggaggcgt aaccagagga ggaagagggt 1680 gtcaagctac ggagagagac aaccactact gcagagcagc tcagaggaag gctcggcctc 1740 atatcagacc actctgtaac acacacactg tacatactgt tacatgaatg tgcaaactat 1800 taaggacaca tgattccatg acacaaatga ataagatgaa tcttagtaca aggatacgtc 1860 ttttttttat tcctgagaat aaatcaattt agatttttta ataaaggtac agatgagtta 1920 gagaagagcc tttaaagtca gttcacccga aatctcaaaa agtaaatatt tctccctcat 1980 agtatctggc agaccgcttt gtgtgtgtgt gtgtgtgttg ttgagatacc tgctaatata 2040 tctgctcatc tgcttttgaa caataggggt gaagtgaatt ttatttgtgg tggtcatagc 2100 gctcattagg aacacaattt attttccaag gttttctttc aatttctttg tgcaaaaaaa 2160 gacagaggag aacagaagag acggtttaag acatctccac aaatggattg tttaaacgtt 2220 gatgagggga gatttgggtg aaatgaccct ttacagattg agacaaggag caaagtcctt 2280 cagatgtgcc tgatatttta cacattcagt acatgtcatg tcagaaatat ctctgtgtga 2340 cacaaacgta caacgtgaca gactttcaga gccatcaaga gatctttatc acaaagcaac 2400 acctccctgc agtttgcagg tcaaacacct tgagggatat ttattgtcta tttacagagg 2460 ccactctgca gccaatgaca gcagctgtag ttagataaga tcattgactt gtgcagagac 2520 acatttcatc taatttattg tccacttgta tgttactgga aatcattgag attcagtaaa 2580 tagtcactta aagccaggtc atgtctgctg atctgtgggg acagctcgag ttgttgaaag 2640 cactttattt gttgcttcat acagataaag tcccggtcac acgtaccaga gtgtgtcagc 2700 aatgaaccct gttcacttcc aatcagcacc agctagggag gtgaggaaaa catttgtttt 2760 atgtggcgaa gcaaatggca gagtgatttc acgtagagtt taactttgtt gaactttgac 2820 ccatgatatt ctctttacat tcatgtatct gtgaccgggc ctgaaatctg agtcccaaaa 2880 aacatacttt taatcagttt atgtctttca gtgcaaaatt ctgaaaaaac tgaccaaacc 2940 gacaacacac tctcgtgtgt tagcactggt gctaaaggag cgcagcatac tcacaatatg 3000 tatcatgata atgaagatga atcaggattt tgtaaatgct gcattaaaat cagacttgat 3060 ccaa 3064 <210> 10 <211> 3076 <212> DNA <213> Paralichthys olivaceus <400> 10 agagagcgag ggtggaagga gaggaggtct tggggagggt tagaggactg agtggagggg 60 taacaaaatt gttcatttgc gtccatcctc tcatcaggag cttactttca gactgtggtt 120 aaggttggag ttgccctgat ttttcatcat gaggactgtg tgtttatctg cactcctgct 180 gcagctcctc gggacgtctt tctgtcagtt cccccgcccg tgtgccaact cagagggact 240 acggaccaaa gagtgctgcc cggtgtggga cggtgacggc tcagtctgcg gtgccatgtc 300 aggccgtggt ttctgctccg aggtgttggt ctcagatgag ccccacgggc cccagtaccc 360 tcaccgtggg attgatgaca gagagcgctg gcctttagcc ttctttaacc ggacgtgtcg 420 ctgtgctgga aactatggag gctttaactg tggagaatgc aggtttggtt actggggttc 480 gaactgtgca gagtacaggg aatctgtgcg caggaacatc atgaccatgt ccactgctga 540 gcagcagaag tttgtctctt acctgaacct ggctaaaaac accatcagcc aagactacgt 600 catatccaca gcaacaagag cagagatggg cgagaacggt gagaacccca tgttctctga 660 catcaacacc tatgacctgt ttgtgtggat gcactactac gtgtcccggg acgccttcct 720 ggggggggca gggaacgtat ggacagacat cgactttgcc catgaatctg cggccttcct 780 tccgtggcac cgagtcttcc tgcttcactg ggagaatgag atcaggaagc tgacgggaga 840 ttttaacttc accatcccgt actgggactg gagggacgcc cagtcctgtg aggtgtgcac 900 cgatgctctg atgggtggac gcagctcccg caatcccaac ctcatcagcc ccggctccgt 960 cttctcctca tggaaggtga tctgcaccca gccagaggag tacaacagtc gagaagcatt 1020 gtgtaacgcc accggggagg gcccactgtt gcgtaaccca ggcaaccatg ataggaaccg 1080 cgtgcctcga ctccccacaa gagctgacgt tgatttcact gtgggccttc ctgagtacga 1140 gacggggccc atggaccgat tctccaactt gagctttaga aacgtcctgg agggctttgc 1200 cagtccagtg acaggcatgg cggtgccggg ccagagcacg atgcacaact ccctgcacgt 1260 cttcatgaac ggctccatgt cctcggtgca gggttcagcc aacgacccca tattcttgct 1320 gcaccacgct ttcattgaca gtatctttga acgctggctc aggacccaca tgcctctccg 1380 ggccaactac cccctcgcca atgcccccat tggccacaat gatggctact acatggtgcc 1440 cttcctgcct ctctttagaa acggagacta cttcttgtcc aacaaggctc tgggattcga 1500 gtacgcctat ttgctggacc ctggacagag gttcgtgcag gagttcctga cgccatacct 1560 cgaacaggcc caacagatct ggcagtggct cctgggggcc gggatcctcg gggctctcat 1620 cgcagcggtc ctcgctgcgg tgattgttgt tgcgaggagg aagtggaggc gtaaccagag 1680 gaggaagagg gtgtcaagct acggagagag acaaccacta ctgcagagca gctcagagga 1740 aggctcggcc tcatatcaga ccactctgta acacacacac tgtacatact gttacatgaa 1800 tgtgcaaact attaaggaca catgattcca tgacacaaat gaataagatg aatcttagta 1860 caaggatacg tctttttttt attcctgaga ataaatcaat ttagattttt taataaaggt 1920 acagatgagt tagagaagag cctttaaagt cagttcaccc gaaatctcaa aaagtaaata 1980 tttctccctc atagtatctg gcagaccgct ttgtgtgtgt gtgtgtgtgt tgttgagata 2040 cctgctaata tatctgctca tctgcttttg aacaataggg gtgaagtgaa ttttatttgt 2100 ggtggtcata gcgctcatta ggaacacaat ttattttcca aggttttctt tcaatttctt 2160 tgtgcaaaaa aagacagagg agaacagaag agacggttta agacatctcc acaaatggat 2220 tgtttaaacg ttgatgaggg gagatttggg tgaaatgacc ctttacagat tgagacaagg 2280 agcaaagtcc ttcagatgtg cctgatattt tacacattca gtacatgtca tgtcagaaat 2340 atctctgtgt gacacaaacg tacaacgtga cagactttca gagccatcaa gagatcttta 2400 tcacaaagca acacctccct gcagtttgca ggtcaaacac cttgagggat atttattgtc 2460 tatttacaga ggccactctg cagccaatga cagcagctgt agttagataa gatcattgac 2520 ttgtgcagag acacatttca tctaatttat tgtccacttg tatgttactg gaaatcattg 2580 agattcagta aatagtcact taaagccagg tcatgtctgc tgatctgtgg ggacagctcg 2640 agttgttgaa agcactttat ttgttgcttc atacagataa agtcccggtc acacgtacca 2700 gagtgtgtca gcaatgaacc ctgttcactt ccaatcagca ccagctaggg aggtgaggaa 2760 aacatttgtt ttatgtggcg aagcaaatgg cagagtgatt tcacgtagag tttaactttg 2820 ttgaactttg acccatgata ttctctttac attcatgtat ctgtgaccgg gcctgaaatc 2880 tgagtcccaa aaaacatact tttaatcagt ttatgtcttt cagtgcaaaa ttctgaaaaa 2940 actgaccaaa ccgacaacac actctcgtgt gttagcactg gtgctaaagg agcgcagcat 3000 actcacaata tgtatcatga taatgaagat gaatcaggat tttgtaaatg ctgcattaaa 3060 atcagacttg atccaa 3076 <110> Jeju National University Industry-Academic Cooperation Foundation <120> Guide RNA for editing tyrosinase gene and use thereof <130> DP20200119 <160> 10 <170> KoPatentIn 3.0 <210> 1 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> tyrosinase forward primer <400> 1 ccatgtcagg ccgtggtttc t 21 <210> 2 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> tyrosinase reverse primer <400> 2 gaaccctgca ggcaccagat 20 <210> 3 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> tyrosinase gRNA target sequence <400> 3 actcagaggg actacggacc 20 <210> 4 <211> 57 <212> DNA <213> Artificial Sequence <220> <223> sgRNA forward primer <400> 4 taatacgact cactataggt ccgtagtccc tctgagtgtt ttagagctag aaatagc 57 <210> 5 <211> 80 <212> DNA <213> Artificial Sequence <220> <223> sgRNA reverse primer <400> 5 aaaagcaccg actcggtgcc actttttcaa gttgataacg gactagcctt attttaactt 60 gctatttcta gctctaaaac 80 <210> 6 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> T7E1 Forward primer <400> 6 aggttggagt tgccctgatt 20 <210> 7 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> T7E1 reverse primer <400> 7 accccagtaa ccaaacctgc 20 <210> 8 <211> 3227 <212> DNA <213> Paralichthys olivaceus <400> 8 gtggaaggag aggaggtctt ggggagggtt agaggactga gtggaggggt aacaaaattg 60 taatcgatta tctttggaaa catttgtgta ctggtagaca gtgttgtctt tgataaaagt 120 aaaaaactaa aacaaattca gtgggatgtg aatcctgttg ttctctgctt gcagcctaaa 180 aatctctcca gctctgaatc tattcctctg tgctgtttca ggttcatttg cgtccatcct 240 ctcatcagga gcttactttc agactgtggt taaggttgga gttgccctga tttttcatca 300 tgaggactgt gtgtttatct gcactcctgc tgcagctcct cgggacgtct ttctgtcagt 360 tcccccgccc gtgtgccaac tcagagggac tacggaccaa agagtgctgc ccggtgtggg 420 acggtgacgg ctcagtctgc ggtgccatgt caggccgtgg tttctgctcc gaggtgttgg 480 tctcagatga gccccacggg ccccagtacc ctcaccgtgg gattgatgac agagagcgct 540 ggcctttagc cttctttaac cggacgtgtc gctgtgctgg aaactatgga ggctttaact 600 gtggagaatg caggtttggt tactggggtt cgaactgtgc agagtacagg gaatctgtgc 660 gcaggaacat catgaccatg tccactgctg agcagcagaa gtttgtctct tacctgaacc 720 tggctaaaaa caccatcagc caagactacg tcatatccac agcaacaaga gcagagatgg 780 gcgagaacgg tgagaacccc atgttctctg acatcaacac ctatgacctg tttgtgtgga 840 tgcactacta cgtgtcccgg gacgccttcc tggggggggc agggaacgta tggacagaca 900 tcgactttgc ccatgaatct gcggccttcc ttccgtggca ccgagtcttc ctgcttcact 960 gggagaatga gatcaggaag ctgacgggag attttaactt caccatcccg tactgggact 1020 ggagggacgc ccagtcctgt gaggtgtgca ccgatgctct gatgggtgga cgcagctccc 1080 gcaatcccaa cctcatcagc cccggctccg tcttctcctc atggaaggtg atctgcaccc 1140 agccagagga gtacaacagt cgagaagcat tgtgtaacgc caccggggag ggcccactgt 1200 tgcgtaaccc aggcaaccat gataggaacc gcgtgcctcg actccccaca agagctgacg 1260 ttgatttcac tgtgggcctt cctgagtacg agacggggcc catggaccga ttctccaact 1320 tgagctttag aaacgtcctg gagggctttg ccagtccagt gacaggcatg gcggtgccgg 1380 gccagagcac gatgcacaac tccctgcacg tcttcatgaa cggctccatg tcctcggtgc 1440 agggttcagc caacgacccc atattcttgc tgcaccacgc tttcattgac agtatctttg 1500 aacgctggct caggacccac atgcctctcc gggccaacta ccccctcgcc aatgccccca 1560 ttggccacaa tgatggctac tacatggtgc ccttcctgcc tctctttaga aacggagact 1620 acttcttgtc caacaaggct ctgggattcg agtacgccta tttgctggac cctggacaga 1680 ggttcgtgca ggagttcctg acgccatacc tcgaacaggc ccaacagatc tggcagtggc 1740 tcctgggggc cgggatcctc ggggctctca tcgcagcggt cctcgctgcg gtgattgttg 1800 ttgcgaggag gaagtggagg cgtaaccaga ggaggaagag ggtgtcaagc tacggagaga 1860 gacaaccact actgcagagc agctcagagg aaggctcggc ctcatatcag accactctgt 1920 aacacacaca ctgtacatac tgttacatga atgtgcaaac tattaaggac acatgattcc 1980 atgacacaaa tgaataagat gaatcttagt acaaggatac gtcttttttt tattcctgag 2040 aataaatcaa tttagatttt ttaataaagg tacagatgag ttagagaaga gcctttaaag 2100 tcagttcacc cgaaatctca aaaagtaaat atttctccct catagtatct ggcagaccgc 2160 tttgtgtgtg tgtgtgtgtg ttgttgagat acctgctaat atatctgctc atctgctttt 2220 gaacaatagg ggtgaagtga attttatttg tggtggtcat agcgctcatt aggaacacaa 2280 tttattttcc aaggttttct ttcaatttct ttgtgcaaaa aaagacagag gagaacagaa 2340 gagacggttt aagacatctc cacaaatgga ttgtttaaac gttgatgagg ggagatttgg 2400 gtgaaatgac cctttacaga ttgagacaag gagcaaagtc cttcagatgt gcctgatatt 2460 ttacacattc agtacatgtc atgtcagaaa tatctctgtg tgacacaaac gtacaacgtg 2520 acagactttc agagccatca agagatcttt atcacaaagc aacacctccc tgcagtttgc 2580 aggtcaaaca ccttgaggga tatttattgt ctatttacag aggccactct gcagccaatg 2640 acagcagctg tagttagata agatcattga cttgtgcaga gacacatttc atctaattta 2700 ttgtccactt gtatgttact ggaaatcatt gagattcagt aaatagtcac ttaaagccag 2760 gtcatgtctg ctgatctgtg gggacagctc gagttgttga aagcacttta tttgttgctt 2820 catacagata aagtcccggt cacacgtacc agagtgtgtc agcaatgaac cctgttcact 2880 tccaatcagc accagctagg gaggtgagga aaacatttgt tttatgtggc gaagcaaatg 2940 gcagagtgat ttcacgtaga gtttaacttt gttgaacttt gacccatgat attctcttta 3000 cattcatgta tctgtgaccg ggcctgaaat ctgagtccca aaaaacatac ttttaatcag 3060 tttatgtctt tcagtgcaaa attctgaaaa aactgaccaa accgacaaca cactctcgtg 3120 tgttagcact ggtgctaaag gagcgcagca tactcacaat atgtatcatg ataatgaaga 3180 tgaatcagga ttttgtaaat gctgcattaa aatcagactt gatccaa 3227 <210> 9 <211> 3064 <212> DNA <213> Paralichthys olivaceus <400> 9 gagagcgagg gtggaaggag aggaggtctt ggggagggtt agaggactga gtggaggggt 60 tcatttgcgt ccatcctctc atcaggagct tactttcaga ctgtggttaa ggttggagtt 120 gccctgattt ttcatcatga ggactgtgtg tttatctgca ctcctgctgc agctcctcgg 180 gacgtctttc tgtcagttcc cccgcccgtg tgccaactca gagggactac ggaccaaaga 240 gtgctgcccg gtgtgggacg gtgacggctc agtctgcggt gccatgtcag gccgtggttt 300 ctgctccgag gtgttggtct cagatgagcc ccacgggccc cagtaccctc accgtgggat 360 tgatgacaga gagcgctggc ctttagcctt ctttaaccgg acgtgtcgct gtgctggaaa 420 ctatggaggc tttaactgtg gagaatgcag gtttggttac tggggttcga actgtgcaga 480 gtacagggaa tctgtgcgca ggaacatcat gaccatgtcc actgctgagc agcagaagtt 540 tgtctcttac ctgaacctgg ctaaaaacac catcagccaa gactacgtca tatccacagc 600 aacaagagca gagatgggcg agaacggtga gaaccccatg ttctctgaca tcaacaccta 660 tgacctgttt gtgtggatgc actactacgt gtcccgggac gccttcctgg ggggggcagg 720 gaacgtatgg acagacatcg actttgccca tgaatctgcg gccttccttc cgtggcaccg 780 agtcttcctg cttcactggg agaatgagat caggaagctg acgggagatt ttaacttcac 840 catcccgtac tgggactgga gggacgccca gtcctgtgag gtgtgcaccg atgctctgat 900 gggtggacgc agctcccgca atcccaacct catcagcccc ggctccgtct tctcctcatg 960 gaaggtgatc tgcacccagc cagaggagta caacagtcga gaagcattgt gtaacgccac 1020 cggggagggc ccactgttgc gtaacccagg caaccatgat aggaaccgcg tgcctcgact 1080 ccccacaaga gctgacgttg atttcactgt gggccttcct gagtacgaga cggggcccat 1140 ggaccgattc tccaacttga gctttagaaa cgtcctggag ggctttgcca gtccagtgac 1200 aggcatggcg gtgccgggcc agagcacgat gcacaactcc ctgcacgtct tcatgaacgg 1260 ctccatgtcc tcggtgcagg gttcagccaa cgaccccata ttcttgctgc accacgcttt 1320 cattgacagt atctttgaac gctggctcag gacccacatg cctctccggg ccaactaccc 1380 cctcgccaat gcccccattg gccacaatga tggctactac atggtgccct tcctgcctct 1440 ctttagaaac ggagactact tcttgtccaa caaggctctg ggattcgagt acgcctattt 1500 gctggaccct ggacagaggt tcgtgcagga gttcctgacg ccatacctcg aacaggccca 1560 acagatctgg cagtggctcc tgggggccgg gatcctcggg gctctcatcg cagcggtcct 1620 cgctgcggtg attgttgttg cgaggaggaa gtggaggcgt aaccagagga ggaagagggt 1680 gtcaagctac ggagagagac aaccactact gcagagcagc tcagaggaag gctcggcctc 1740 atatcagacc actctgtaac acacacactg tacatactgt tacatgaatg tgcaaactat 1800 taaggacaca tgattccatg acacaaatga ataagatgaa tcttagtaca aggatacgtc 1860 ttttttttat tcctgagaat aaatcaattt agatttttta ataaaggtac agatgagtta 1920 gagaagagcc tttaaagtca gttcacccga aatctcaaaa agtaaatatt tctccctcat 1980 agtatctggc agaccgcttt gtgtgtgtgt gtgtgtgttg ttgagatacc tgctaatata 2040 tctgctcatc tgcttttgaa caataggggt gaagtgaatt ttatttgtgg tggtcatagc 2100 gctcattagg aacacaattt attttccaag gttttctttc aatttctttg tgcaaaaaaa 2160 gacagaggag aacagaagag acggtttaag acatctccac aaatggattg tttaaacgtt 2220 gatgagggga gatttgggtg aaatgaccct ttacagattg agacaaggag caaagtcctt 2280 cagatgtgcc tgatatttta cacattcagt acatgtcatg tcagaaatat ctctgtgtga 2340 cacaaacgta caacgtgaca gactttcaga gccatcaaga gatctttatc acaaagcaac 2400 acctccctgc agtttgcagg tcaaacacct tgagggatat ttattgtcta tttacagagg 2460 ccactctgca gccaatgaca gcagctgtag ttagataaga tcattgactt gtgcagagac 2520 acatttcatc taatttattg tccacttgta tgttactgga aatcattgag attcagtaaa 2580 tagtcactta aagccaggtc atgtctgctg atctgtgggg acagctcgag ttgttgaaag 2640 cactttattt gttgcttcat acagataaag tcccggtcac acgtaccaga gtgtgtcagc 2700 aatgaaccct gttcacttcc aatcagcacc agctagggag gtgaggaaaa catttgtttt 2760 atgtggcgaa gcaaatggca gagtgatttc acgtagagtt taactttgtt gaactttgac 2820 ccatgatatt ctctttacat tcatgtatct gtgaccgggc ctgaaatctg agtcccaaaa 2880 aacatacttt taatcagttt atgtctttca gtgcaaaatt ctgaaaaaac tgaccaaacc 2940 gacaacacac tctcgtgtgt tagcactggt gctaaaggag cgcagcatac tcacaatatg 3000 tatcatgata atgaagatga atcaggattt tgtaaatgct gcattaaaat cagacttgat 3060 ccaa 3064 <210> 10 <211> 3076 <212> DNA <213> Paralichthys olivaceus <400> 10 agagagcgag ggtggaagga gaggaggtct tggggagggt tagaggactg agtggagggg 60 taacaaaatt gttcatttgc gtccatcctc tcatcaggag cttactttca gactgtggtt 120 aaggttggag ttgccctgat ttttcatcat gaggactgtg tgtttatctg cactcctgct 180 gcagctcctc gggacgtctt tctgtcagtt cccccgcccg tgtgccaact cagagggact 240 acggaccaaa gagtgctgcc cggtgtggga cggtgacggc tcagtctgcg gtgccatgtc 300 aggccgtggt ttctgctccg aggtgttggt ctcagatgag ccccacgggc cccagtaccc 360 tcaccgtggg attgatgaca gagagcgctg gcctttagcc ttctttaacc ggacgtgtcg 420 ctgtgctgga aactatggag gctttaactg tggagaatgc aggtttggtt actggggttc 480 gaactgtgca gagtacaggg aatctgtgcg caggaacatc atgaccatgt ccactgctga 540 gcagcagaag tttgtctctt acctgaacct ggctaaaaac accatcagcc aagactacgt 600 catatccaca gcaacaagag cagagatggg cgagaacggt gagaacccca tgttctctga 660 catcaacacc tatgacctgt ttgtgtggat gcactactac gtgtcccggg acgccttcct 720 ggggggggca gggaacgtat ggacagacat cgactttgcc catgaatctg cggccttcct 780 tccgtggcac cgagtcttcc tgcttcactg ggagaatgag atcaggaagc tgacgggaga 840 ttttaacttc accatcccgt actgggactg gagggacgcc cagtcctgtg aggtgtgcac 900 cgatgctctg atgggtggac gcagctcccg caatcccaac ctcatcagcc ccggctccgt 960 cttctcctca tggaaggtga tctgcaccca gccagaggag tacaacagtc gagaagcatt 1020 gtgtaacgcc accggggagg gcccactgtt gcgtaaccca ggcaaccatg ataggaaccg 1080 cgtgcctcga ctccccacaa gagctgacgt tgatttcact gtgggccttc ctgagtacga 1140 gacggggccc atggaccgat tctccaactt gagctttaga aacgtcctgg agggctttgc 1200 cagtccagtg acaggcatgg cggtgccggg ccagagcacg atgcacaact ccctgcacgt 1260 cttcatgaac ggctccatgt cctcggtgca gggttcagcc aacgacccca tattcttgct 1320 gcaccacgct ttcattgaca gtatctttga acgctggctc aggacccaca tgcctctccg 1380 ggccaactac cccctcgcca atgcccccat tggccacaat gatggctact acatggtgcc 1440 cttcctgcct ctctttagaa acggagacta cttcttgtcc aacaaggctc tgggattcga 1500 gtacgcctat ttgctggacc ctggacagag gttcgtgcag gagttcctga cgccatacct 1560 cgaacaggcc caacagatct ggcagtggct cctgggggcc gggatcctcg gggctctcat 1620 cgcagcggtc ctcgctgcgg tgattgttgt tgcgaggagg aagtggaggc gtaaccagag 1680 gaggaagagg gtgtcaagct acggagagag acaaccacta ctgcagagca gctcagagga 1740 aggctcggcc tcatatcaga ccactctgta acacacacac tgtacatact gttacatgaa 1800 tgtgcaaact attaaggaca catgattcca tgacacaaat gaataagatg aatcttagta 1860 caaggatacg tctttttttt attcctgaga ataaatcaat ttagattttt taataaaggt 1920 acagatgagt tagagaagag cctttaaagt cagttcaccc gaaatctcaa aaagtaaata 1980 tttctccctc atagtatctg gcagaccgct ttgtgtgtgt gtgtgtgtgt tgttgagata 2040 cctgctaata tatctgctca tctgcttttg aacaataggg gtgaagtgaa ttttatttgt 2100 ggtggtcata gcgctcatta ggaacacaat ttattttcca aggttttctt tcaatttctt 2160 tgtgcaaaaa aagacagagg agaacagaag agacggttta agacatctcc acaaatggat 2220 tgtttaaacg ttgatgaggg gagatttggg tgaaatgacc ctttacagat tgagacaagg 2280 agcaaagtcc ttcagatgtg cctgatattt tacacattca gtacatgtca tgtcagaaat 2340 atctctgtgt gacacaaacg tacaacgtga cagactttca gagccatcaa gagatcttta 2400 tcacaaagca acacctccct gcagtttgca ggtcaaacac cttgagggat atttattgtc 2460 tatttacaga ggccactctg cagccaatga cagcagctgt agttagataa gatcattgac 2520 ttgtgcagag acacatttca tctaatttat tgtccacttg tatgttactg gaaatcattg 2580 agattcagta aatagtcact taaagccagg tcatgtctgc tgatctgtgg ggacagctcg 2640 agttgttgaa agcactttat ttgttgcttc atacagataa agtcccggtc acacgtacca 2700 gagtgtgtca gcaatgaacc ctgttcactt ccaatcagca ccagctaggg aggtgaggaa 2760 aacatttgtt ttatgtggcg aagcaaatgg cagagtgatt tcacgtagag tttaactttg 2820 ttgaactttg acccatgata ttctctttac attcatgtat ctgtgaccgg gcctgaaatc 2880 tgagtcccaa aaaacatact tttaatcagt ttatgtcttt cagtgcaaaa ttctgaaaaa 2940 actgaccaaa ccgacaacac actctcgtgt gttagcactg gtgctaaagg agcgcagcat 3000 actcacaata tgtatcatga taatgaagat gaatcaggat tttgtaaatg ctgcattaaa 3060 atcagacttg atccaa 3076

Claims (7)

서열번호3과 동일하거나 이와 상보적인 염기서열을 포함하는 넙치의 티로시나아제 유전자 교정용 가이드 RNA.Guide RNA for correction of tyrosinase gene of flounder comprising a nucleotide sequence identical to or complementary to SEQ ID NO: 3. 삭제delete 제 1항의 가이드 RNA를 포함하는 티로시나아제 유전자 교정용 재조합 벡터.Recombinant vector for tyrosinase gene editing comprising the guide RNA of claim 1. 제 1항의 가이드 RNA 또는 제 3항의 재조합 벡터를 포함하는 티로시나아제 유전자 교정용 조성물.A composition for correcting a tyrosinase gene comprising the guide RNA of claim 1 or the recombinant vector of claim 3. 제 4항에 있어서,
상기 조성물은 Cas9 단백질을 더 포함하는 것인 조성물.
The method of claim 4,
The composition is a composition that further comprises a Cas9 protein.
제 5항에 있어서,
상기 조성물은 염료를 더 포함하는 것인 조성물.
The method of claim 5,
The composition of the composition further comprises a dye.
넙치 수정란에 제 4항의 유전자 교정용 조성물을 주입하는 단계를 포함하는,
멜라닌 결핍 넙치의 제조방법.
Including the step of injecting the composition for editing the gene of claim 4 in the fertilized flounder egg,
Method for producing melanin deficient flounder.
KR1020200077857A 2020-06-25 2020-06-25 Guide RNA for editing tyrosinase gene and use thereof KR102253939B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020200077857A KR102253939B1 (en) 2020-06-25 2020-06-25 Guide RNA for editing tyrosinase gene and use thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020200077857A KR102253939B1 (en) 2020-06-25 2020-06-25 Guide RNA for editing tyrosinase gene and use thereof

Publications (1)

Publication Number Publication Date
KR102253939B1 true KR102253939B1 (en) 2021-05-20

Family

ID=76142648

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020200077857A KR102253939B1 (en) 2020-06-25 2020-06-25 Guide RNA for editing tyrosinase gene and use thereof

Country Status (1)

Country Link
KR (1) KR102253939B1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101961332B1 (en) 2016-07-28 2019-03-22 기초과학연구원 Pharmaceutical Composition for Treating or Preventing Eye Disease Comprising Cas9 Protein and Guide RNA

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101961332B1 (en) 2016-07-28 2019-03-22 기초과학연구원 Pharmaceutical Composition for Treating or Preventing Eye Disease Comprising Cas9 Protein and Guide RNA

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E.Science. 2012 Aug 17;337(6096):816-21.
GenBank accession no. XM_020095229.1 (2017.02.08.) 1부.* *
국립수산과학원 연구보고서 (2019.02.28.) 1부.* *
비특허문헌 3: CONGENITAL ANOMALIES 2014 *
비특허문헌 4: SCIENTIFIC REPORTS (2017) *

Similar Documents

Publication Publication Date Title
CN107858373B (en) Construction method of endothelial cell conditional knockout CCR5 gene mouse model
CN105647969B (en) Method for breeding zebra fish with stat1a gene deletion by gene knockout
US20200172935A1 (en) Modified cpf1 mrna, modified guide rna, and uses thereof
JP7078946B2 (en) Genome editing method
WO2016016358A1 (en) Targeting of non-viral integrative vectors in the nucleolar dna sequences of eukaryotes
WO2016040594A1 (en) Reconstruction of ancestral cells by enzymatic recording
CN109266680B (en) Method for preparing CKO/KI animal model by using Cas9 technology
CN106282231B (en) Construction method and application of mucopolysaccharide storage disease type II animal model
CN109679953A (en) Target sequence group, carrier and the method for point mutation animal model embryo are made using CRISPR-Cas9 system
CN113473845A (en) Gene silencing via genome editing
CN110300802A (en) Composition and base edit methods for animal embryo base editor
CN110643636A (en) Megalobrama amblycephala MSTNa &amp; b gene knockout method and application
CN110894510A (en) Method for breeding Lgr6 gene-deleted zebra fish through gene knockout
CN111154758A (en) Method for knocking out zebra fish slc26a4 gene
KR102253939B1 (en) Guide RNA for editing tyrosinase gene and use thereof
CN110894511A (en) Method for breeding ppm1g gene mutant zebra fish by gene editing
CN110066805A (en) The method of gene knockout breeding adgrf3b Gene Deletion zebra fish
JP4364474B2 (en) Functional transposons in mammals
CN107881200A (en) A kind of rapid screening method applied to model animal zebra fish transgenosis
CN110184267B (en) Chiretta retrotransposon sequence and identification method thereof
JPH11164691A (en) Blastocyst cdna
CN112646015B (en) Gene and method for changing flowering period of corn
JP7220604B2 (en) Promoter derived from yew and use thereof
JP7236718B2 (en) Genome editing technology
Inotsume et al. One‐step generation of mice with gene editing by Tol2 transposon‐dependent gRNA delivery

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant