KR102253706B1 - 회전형 벌크 플라즈마 발생장치 - Google Patents

회전형 벌크 플라즈마 발생장치 Download PDF

Info

Publication number
KR102253706B1
KR102253706B1 KR1020210018461A KR20210018461A KR102253706B1 KR 102253706 B1 KR102253706 B1 KR 102253706B1 KR 1020210018461 A KR1020210018461 A KR 1020210018461A KR 20210018461 A KR20210018461 A KR 20210018461A KR 102253706 B1 KR102253706 B1 KR 102253706B1
Authority
KR
South Korea
Prior art keywords
plasma
electrode
air
voltage electrode
rotating
Prior art date
Application number
KR1020210018461A
Other languages
English (en)
Inventor
김준일
김성영
Original Assignee
주식회사 코비플라텍
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 코비플라텍 filed Critical 주식회사 코비플라텍
Priority to KR1020210018461A priority Critical patent/KR102253706B1/ko
Application granted granted Critical
Publication of KR102253706B1 publication Critical patent/KR102253706B1/ko
Priority to PCT/KR2021/016566 priority patent/WO2022173094A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/26Plasma torches
    • H05H1/32Plasma torches using an arc
    • H05H1/34Details, e.g. electrodes, nozzles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L9/00Disinfection, sterilisation or deodorisation of air
    • A61L9/16Disinfection, sterilisation or deodorisation of air using physical phenomena
    • A61L9/22Ionisation
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/26Plasma torches
    • H05H1/32Plasma torches using an arc
    • H05H1/34Details, e.g. electrodes, nozzles
    • H05H1/3478Geometrical details
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/4697Generating plasma using glow discharges
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H2245/00Applications of plasma devices
    • H05H2245/30Medical applications
    • H05H2245/36Sterilisation of objects, liquids, volumes or surfaces
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Landscapes

  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Engineering & Computer Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Geometry (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Epidemiology (AREA)
  • Plasma Technology (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

대기압 회전 벌크 플라즈마 발생 장치로서 회전 플라즈마 발생부; 및 실내의 공기를 유입시키는 축류 팬(Axial Fan)이나 블로어 팬(Blower Fan), 상기 팬에 의해 유입되는 공기를 Swirl시켜 입사되도록 하는 Swirl 가이드 판, 상기 회전 플라즈마를 발생시키는 Conic Spiral Wire 구조를 갖는 전압전극과 전압전극을 고정하는 고정부, 상기 Conic Spiral Wire 전압전극에 대향하는 원통형 접지전극을 포함하며, 상기 Conic Spiral Wire 전원전극과 대향하는 원통형 접지전극간의 간격(d)이 3~10mm 이내가 되도록 설치되고, 전압전극인 Conic Spiral Wire 전극은 플라즈마가 토출되는 방향으로 지름이 점진적으로 감소되는 구조를 포함하는 것으로 되어 있다.

Description

회전형 벌크 플라즈마 발생장치 {Rotating type Bulk Plasma Generating Apparatus}
본 발명은 대기 중에 부유하고 있는 각종 냄새 원인균 및 조류독감 인플루엔자 같은 고병원성 바이러스를 살균 또는 제거하기 위한 회전형 벌크 플라즈마 발생장치에 관한 것으로, 더욱 상세하게는 대기압 하에서 전압전극과 접지 전극 사이의 공간에서 플라즈마를 발생시키고 발생된 플라즈마를 회전시키면서 플라즈마 생성 영역으로 살균 대상 공기의 대부분을 통과시킴으로써, 가정이나 사무실 및 다중 이용시설 등과 축산농가에서 발생하는 조류독감 인플루엔자 같은 부유성 또는 고착성의 고병원성 바이러스나 세균들을 제균 또는 살균하고, 생활 주변 환경이나 동물들에서 발생하는 암모니아와 같은 오염물질과 냄새를 제거하거나, 도심형 쓰레기 야적장에서 발생하는 각종 쓰레기 냄새와 이들 쓰레기에서 발생하는 각종 부유세균이나 고착세균들을 제균 또는 살균할 수 있는 대기압하의 회전형 벌크 플라즈마 발생장치에 관한 것이다. 또한 벌크형 플라즈마 발생 장치를 통해 플라즈마 발생 양을 극대화시키고, 동시에 다량의 반응 활성 물질(ROS: Reactive Oxygen Species, RNS: Reactive Nitrogen Species, RONS: Reactive Oxy-nitrogen Species)을 발생시켜 공기 청정의 질적인 효과도 높일 수 있는 장치에 관한 것이다.
소득 수준이 높아지면서 환경문제가 점차 심각해지는 현대사회에 들어와서 소비되는 닭과 오리 같은 축산 동물의 수요가 급격히 증가하고 있지만, 매년 겨울철에는 특히 조류독감 같은 고 병원성 조류 인플루엔자가 극성을 부리고 이에 따라 농가와 국가 경제에 심각한 피해를 주고 있음에도 불구하고 뚜렷한 해결책을 마련하지 못하고 있는 실정이며, 또한 도시생활이 복잡해지고 발생되는 쓰레기가 매년 수천 톤씩 증가하면서, 점차 쓰레기 처리의 한계에 직면하고, 생활의 편리성을 위해 도심 근처에 발생되는 쓰레기를 한곳에 모으는 쓰레기 야적장에서 발생하는 각종 냄새와 각종 바이러스나 세균 발생 문제가 심각해지는 실정임에도, 이에 대한 대책이 많이 미흡한 실정이다.
특히 최근에는 신종 코로나 바이러스의 대유행으로 인해 국민의 건강이 심각한 위협을 받으면서 국가 경제의 정상적인 유지가 어려울 정도의 위기 상황을 초래하고 있다.
이러한 경제 사회적으로 더욱 중요한 위치를 차지하게 된 국가 방역의 효과적 수행을 지원하는 동시에 국민들이 건강한 삶을 영위할 수 있도록 주택이나 사무실 축사 주변 등 생활환경 도처에 존재하는 각종 바이러스나 세균을 효과적으로 제균 또는 살균할 수 있는 공기 청정기 등에 대한 수요도 폭발적으로 증가하고 있는 추세이다.
일반적으로 살균이나 제균 작용(이하 '살균'이라함)을 통해 공기를 청정시키는 장치에서 플라즈마 발생장치가 많이 이용되고 있는데, 접지전극과 방전전극 사이에 일어나는 방전을 통해 발생하는 플라즈마 영역으로 청정 대상인 공기를 유입시켜 공기 내에 존재하는 고병원성 세균이나 바이러스, 악취 원인균들을 제거하는 장치이다. 이러한 플라즈마가 이용되는 공기 청정기의 효율을 결정짓는데 있어서 가장 중요한 요소는 여러 가지 제한된 조건(이를테면 정해진 전압, 전류, 제한된 설치 장소에 따른 청정기의 크기 제한 등)과 대기압 하에서 플라즈마를 어떤 방식으로 벌크(bulk)화 하여 유입 공기와의 접촉을 극대화 시킬 수 있는가 하는 것이다.
상기와 같은 과제에 대한 효율적인 해결 수단으로 회전 플라즈마 방식이 최근 대두되고 있는데, 지금까지 연구된 바에 의하면 전기 방전에 의해 회전 플라즈마를 발생시키는 방법은 크게 3가지 방법이 있는 것으로 알려져 있다.
첫째, 전기 방전이 발생하는 주변에 자기장을 인가하면, Faraday 법칙에 의해 전자나 이온들이 회전하면서 플라즈마를 발생시키는 방법으로 대표적으로는 2017년 H. Zhang, F. Zhu, X. Li와 C. Du가 발표한 ["Dynamic behavior of a rotating gliding arc plasma in nitrogen: effects of gas flow rate and operating current", Plasma Science and Technology, Vol.19, No.4 (2017).] 기술논문에 나타난 도 1과 같이 접지전극인 경통 주변에 자석이나 자석 코일을 두어 자기장을 인가하면, Faraday 법칙에 의해 전자과 이온들이 회전한다는 원리를 이용하여 Gliding Arc를 회전시키는 장치이다. 도 1에서 Top View를 보면 아크 방전이 시계방향으로 회전되고 있음을 알 수 있다.
둘째는 자기장을 이용하는 대신 유체역학적으로 회전시키는 방법으로 유입되는 가스의 운동을 Swirl(와류, 터뷸런스, 볼텍스, 나선형)시키는 방법이다. 즉, 유입가스를 플라즈마 발생장치의 경계면 주위로 유입 시키면 경계 면을 타고 흐르는 가스는 자연적으로 회전운동을 하게 되고, 뚫려져 있는 구멍이 있으면, 압력차에 의해 회전운동을 하면서 뚫려져 있는 구멍으로 배출되기 때문에 자연스럽게 Swirl운동을 하게 된다. 그러나 이와 같이 자연스러운 Swirl 운동이 가능하게 되려면, 가스의 흐름에 의한 힘만으로 플라즈마를 회전시켜야 하므로 플라즈마가 방전되는 영역의 볼륨이 매우 작아야 하는 대신, 유입되는 가스의 속도나 유량은 매우 커야 한다.
이러한 사실은 2016년 G. Trenchev, St. Kolev,A. Bogaerts가 발표한 ["3D model of a reverse vortex flow gliding arc reactor, Plasma sources science and technology / Institute of physics – ISSN 0963-0252-25(2016)"] 기술 논문에 자세하고 명확히 기술되어 있다. 도 2의 (1)은 상기에서 설명한 것과 같이 가스 유입 통로를 경통의 접선방향으로 1개 내지 4개를 설치하여 가스를 유입시키면, 유입가스는 Swirl 운동을 하게 되는데, 이때 Swirl 운동을 하는 유입가스의 위치별 속도를 시뮬레이션한 결과이고, 도 2의 (2)는 Swirl 운동을 하는 유입가스의 위치별 압력을 시뮬레이션 한 결과이며, 도 2의 (3)은 이 때 발생하는 플라즈마의 가스온도를 시뮬레이션한 결과로 최소 1000K – 4000K의 온도를 가지는 것으로 나타나 있는데, 특히 중앙부의 온도는 최대 4000K(3700℃)로 매우 높은 고온 플라즈마가 형성될 것이라는 사실을 시뮬레이션 결과를 통해 알게 되었다.다. 도 2의 (1), (2)에서 알 수 있듯이 유입되는 통로에서의 가스속도는 30-40 m/s이고 가스압력은 1.16x105Pa(1.13기압) 정도이므로 유입되는 가스는 매우 빠른 속도를 갖는다는 사실도 알 수 있다.
상기에 나타난 데이터로 알 수 있는 결과적 사실은 유입가스를 공급하여 Swirl 현상을 발생시키려면, 고압가스를 공급하거나, 컴프레서 같은 별도의 가압 장치가 반드시 필요하며, 유입 가스가 토출되는 부위는 매우 높은 온도를 가지기 때문에 별도의 냉각을 장치나 열을 흡수하는 장치가 요구된다는 것인데, 이런 이유로 인해 상기와 같은 방식을 대기압하에서 사용되어야 하는 실제 공기 청정장치에 적용하는 것에 어려움이 있는 것이다.또한, 상기 기술논문에 나타난 플라즈마는 고압, 고속 및 큰 유량의 가스를 공급하여 얻어지는 아크 플라즈마이며, 이로 인해 도 2의 (3)과 같은 온도가 매우 높은 고온의 플라즈마가 형성되므로, 실온이나 약 45℃정도로 낮은 온도를 갖는 플라즈마를 필요로 하는 곳에서는 전혀 사용할 수 없다는 단점도 갖고 있다.
한편, 2017년 R. Marleen, M. Jose, T. Georgi, G. Fausto 와 B. Annemie가 발표한 ["Revealing the arc dynamics in a gliding arc plasmatron: a better insight to improve CO2 conversion", Plasma sources science and technology / Institute of physics [London]-ISSN0963-0252-26:12(2017)] 기술논문에서도 아크 플라즈마가 회전된다는 사실이 발표되었는데(도 3 참조), 이에 따르면 회전 아크 플라즈마는 유입되는 가스의 속도와 유량이 일정 수준에 달하면 이에 의해 터뷸런스가 발생되고, 이러한 터뷸런스에 의해 볼텍스(Vortices)가 형성되며, 이 볼텍스에 따라 아크 모양과 길이가 달라지면서 회전한다고 설명되어 있다.
셋째, 2007년 D.H. Lee, K.-T. Kim, M.S. Cha와 Y.-H. Song이 발표한 ["Optimization scheme of a rotating gliding arc reactor for partial oxidation of methane", Proceeding of the Combustion Institute, Vol. 31, Issue 2, p. 3343-3351.] 기술논문에서는 도 4와 같은 전극구조에서 메탄가스와 질소 및 산소가스를 전극구조 하단에 존재하는 Swirl 발생부에 입력하게 되면, 유입된 가스가 Swirl 운동을 하게되고, 경통 접지전극과 중앙부의 원추형 전원전극사이에 직류 고전압이 인가되면, 이들 전극 사이에 전기 방전이 형성되면서, 유입된 Swirl 운동을 하는 가스에 의해 아크 플라즈마가 선행문헌 2의 도 2, 3과 마찬가지로 Swirl운동에 의해 회전 플라즈마가 발생한다는 사실이 발표되었다.
또 다른 일예로, 미국 특허 US5405514에는 Swirl되는 가스가 공급되면 3mm 이상의 간격으로 이격되어 있는 두개의 전극 사이에 대기압 플라즈마가 생성되는데, 가스를 Swirl시키기 위해 도 2와 도 3과 마찬가지로 경통의 접선방향으로 가스를 공급하는 공급 라인을 1개 내지 4개를 설치하여, 공급되는 가스의 압력에 의해 자동적으로 가스가 Swirl 되도록 하였으며, 중앙부의 끝이 둥근 원기둥 모양의 전원전극과 경통의 개구부에 설치된 접지 전극 사이에 고전압 직류전원을 인가하면, 두 전극 사이에 글로우 방전이 형성된다고 개시되어 있으나(도 5 참조) 회전을 일으킬 수 있는 작용원인에 대한 구체적인 근거를 제시하지는 않았다.
또한 미국 특허 US009834442를 보면, 전극구조나 플라즈마를 발생시키는 방법은 다르지만, 상기 미국 특허 US5405514와 같이 경통과 접선방향으로 반응 가스를 유입시키면, 유입된 반응 가스는 Swirl되도록 하였다고 되어 있다. 이때 가스유입 통로는 접선방향으로 1개~4개까지 설치 가능하다고 기재되어 있다.
또한, 국제공개특허공보인 WO2010/005201에서도 Swirl 구조를 갖도록 하는 공급 라인을 1개 내지 4개를 두고, 전원전극은 원추 모양을 갖게 하여 경통인 접지전극과 전원전극 사이에 아크 플라즈마를 발생시켜 처리물과의 접촉 효율을 증가시킴으로 스크러빙 효율을 증대시켰다고 기재되어 있다.
대한민국 특허 10-0522167 역시 Swirl 구조를 갖게 하여 이 구조에 반응 가스를 유입시켜 높은 전압 차를 이용하여 플라즈마 반응을 유도하면, Swirl 구조에 의해 반응 원료가 회전 유동하도록 함으로써 수초 내에 고온 상태의 반응을 개시 하였으며, 고온으로 유도된 반응기 내벽에 열 교환 수단 및 유체공급로를 단독 또는 병행으로 설치하여 액상 원료를 기상으로 변화시켜 반응 내로 유입되도록 함으로서 기상변화 장치 없이 열에너지의 공급 대비 사용효율 또한 증가시키는 플라즈마 반응 장치를 소개하였다. 이 특허에는 유입가스를 회전시키면, 생성된 플라즈마가 회전되는 메커니즘에 대한 명확한 설명이 없이, 단순히 회전 유동되어 수 초 내에 고온 상태의 반응을 개시하고 있다.
또한, 대한민국 특허 10-0822860은 상기 대한민국 특허 10-0522167과 유사한 전극구조를 가지지만, 접지전극인 반응기 내벽을 나선형 구조로 만들어 Swirl시키는 방법과 반응가스 공급관을 반응기 내부에 두어 공급하는 구조를 갖도록 한 플라즈마 반응기를 개시하고 있다. 즉, 반응기 내부를 나선형 구조를 갖게 함으로써 회전 유동 효과를 증가시켜 혼합가스가 플라즈마에 노출되는 시간을 증가시켜 난분해성 가스처리 효과를 극대화하는 방법을 소개하였다.
또한, 대한민국 공개특허 10-2015-0054281은 상기에서 소개한 대한민국 특허 10-0522167에 기재된 전극구조나 반응기 구조를 변경한 특허로 결국 개발 목적은 방전 기체를 회전 공급하는 플레넘 챔버 및 접지 원통 부의 내벽과의 사이에 방전 간극을 형성하여 인가된 전압에 의하여 회전하는 방전 기체로 회전 아크를 발생시키며, 상기 회전 아크에 연료를 공급하여 화염을 형성하는 전극 노즐을 갖는 플라즈마 버너를 소개하였다. 이 특허 역시 회전 아크가 발생되는 메커니즘에 대한 설명은 전혀 없이 방전 기체가 회전공급되면 회전 아크가 발생된다고 되어 있다.
이상의 소개된 특허인 대한민국 특허 10-0522167와 대한민국 등록특허 10-0822860에서도 상기 미국 특허 US5405514와 US009834442에서 기재한 것과 동일하게 접선방향으로 가스를 공급하여 공급된 가스를 Swirl시키는 구조를 갖고 있으며, 청구항에도 동일하게 기재되어 있다.
이와 같이 상기에서 언급한 특허들은 대부분 Swirl 구조를 갖는 가스공급부에 가스를 공급하면 가스는 Swirl 운동을 하며, 두 전극 사이에 고전압을 인가하면 방전에 의해 형성되는 플라즈마는 Swirl 운동에 의해 회전운동을 하여 처리하고자 하는 다른 가스나 유체와 플라즈마의 접촉 시간을 증대시켜 처리효율을 증대하고자 하는데 그 목적이 있었고, 이들이 발생시킨 회전 플라즈마는 모두 고온 플라즈마라는 것이다.
그러나 이들 기술논문이나 특허문헌에 나타난 장치들에서는 Swirl 운동을 일으키려면 상기에서 밝힌 바와 같이 유입시키는 가스의 속도나 유량이 매우 커야 하는데, 유입가스를 공급하여 Swirl 현상을 발생시키려면, 고압의 가스를 공급하거나, 컴프레서 같은 별도의 가압 장치가 반드시 필요하며, 이 때 형성되는 플라즈마는 온도가 매우 높은 고온 플라즈마이기 때문에 플라즈마 토출 부위 역시 매우 높은 온도를 가지며, 이러한 이유로 상기에서 언급한 종래기술들에 의한 플라즈마 발생장치들은 모두 대한민국 특허 10-0522167에 나타난 바와 같은 별도의 냉각 장치나 열을 흡수하는 장치가 요구된다는 문제점을 가지고 있다는 것이다.
또한 상기 언급한 종래 기술들에서 발생되는 플라즈마는 대부분 고속의 가스 공급에 의해 발생되는 아크 플라즈마이며, 이로 인해 플라즈마 온도가 매우 높은 고온 플라즈마가 형성되기 때문에(Plasma sources science and technology/Institute of physics - ISSN 0963-0252-25(2016), 도 2(3) 참조) 실온이나 약 45℃이하로 낮은 온도로 유지되는 플라즈마를 필요로 하는 곳에서는 별도의 냉각장치 없이는 전혀 사용할 수 없다는 문제가 있다. 또한 이들 특허는 모두 Swirl운동을 하도록 경통과 접선방향으로 유입가스를 입사시키지 않으면, 회전 플라즈마가 발생하지 않는다는 특징을 갖고 있는데, 유입가스를 층류 방향(경통과 평행한 방향)으로 입사하면 아크 플라즈마가 회전하지 않는다는 것이다.
그리고 상기 특허들에서는 순수하게 공기를 이용하여 Swirl 운동을 만들어내고 플라즈마를 통과한 공기 밖으로 배출하는 장치에 대해서는 개시되어 있지 않다. 종래기술들은 플라즈마를 손쉽게 발생시키는 Ar, He 같은 가스를 이용하여 아크 플라즈마를 만들고, 만들어진 고온 아크 플라즈마 내로 처리하고자 하는 별도의 유체나 가스를 Swirl 운동시켜 공급함으로써 별도 공급된 유체나 가스와의 접촉 효율을 증가시켜, 플라즈마의 처리 효율을 증대시키려는 목적으로 개발되었기 때문에 이들은 플라즈마 발생 가스로 공기를 사용할 수 없게 되어 있는 것이다. 만일, 이들이 공기를 플라즈마 가스로 이용할 경우, 플라즈마를 발생시키는 메커니즘이 전혀 다르게 된다. 일반적으로 공기는 단일 가스가 아니라 N2, O2, Ar, CO2, NO2, CHCOOH, CH4 등이 함께 섞여 있는 혼합가스로서 각각의 기체가 일으키는 방전 현상이 전혀 다르기 때문에 균일한 방전을 형성하기 매우 어렵다는 문제점을 가지고 있기 때문이다.
현재 시중에 판매되고 있는 공기살균 및 냄새제거를 위해 채택한 기술들은 크게 4가지로 알려져 있다. 첫째는 자외선(UV-C) 램프를 이용하는 방법이고, 둘째는 자외선(UV-C) 램프의 자외선을 이용한 광 촉매방법, 셋째는 저온 DBD(Dielectric Barrier Discharge) 플라즈마를 이용하는 방법, 넷째는 대기압 리얼 플라즈마를 이용하는 방법이 있는데 이들 방법들은 학교 교실, 도서관, 공항이나 철도 대합실, 대형 구내식당, 호텔 레스토랑 같은 큰 공간을 갖는 장소를 효과적으로 살균하기 위해서는 여러 대의 청정기를 필요한 장소마다 설치하여야 한다는 결정적인 단점을 갖고 있다
미국 특허 US5405514 미국 특허 US009834442 국제공개특허공보 WO2010/005201 대한민국 특허 10-0522167 대한민국 특허 10-0822860 대한민국 공개특허 10-2015-0054281
Plasma Science and Technology, Vol.19, No.4 (2017). Plasma sources science and technology/Institute of physics – ISSN 0963-0252-25(2016) Plasma sources science and technology/Institute of physics [London]-ISSN0963-0252-26:12(2017) Proceeding of the Combustion Institute, Vol. 31, Issue 2, p. 3343-3351.
본 발명은 상기와 같은 종래의 회전플라즈마 발생장치가 지닌 단점들을 보완하여, 살균 효율을 극대화하면서 가정이나 사무실과 같은 생활공간에 존재하는 오염물질이나 각종 세균이나 바이러스들을 살균 및 제거하거나, 축산농가에서 기르는 다양한 종류의 동물, 특히 닭이나 오리 같은 동물들을 양육할 때 배출하는 각종 냄새와 이들 몸에 감염되어 전파시키는 각종 균들, 또는 도심형 쓰레기 야적장에서 발생하는 각종 오물 냄새와 이들 야적장에서 발생하는 각종 균들을 제거할 수 있도록 하기 위해 공기를 흡입하여 흡입된 공기만으로 회전 플라즈마를 발생시키는 대기압 회전형 벌크 플라즈마 발생장치를 제공하는 것이다.
또한 본 발명은 오존 발생량이 0.00ppm(플라스틱 관을 이용하여 토출구로부터 200mm 이격된 지점에서 측정: 0.0002ppm, 미국 ECO SENSOR Inc. A-21ZX)에 근접하는 플라즈마 발생장치를 개발하여 인체에 무해하고, 공기 내에 존재하는 각종 고 병원성 바이러스나 세균들의 제균 또는 살균에 효과적이며, 오염 물질 제거와 냄새제거에 효과적인 대기압 회전 벌크 플라즈마 장치를 제공하는 것을 목적으로 한다.
또한 종래의 회전 벌크 플라즈마 장치에서는 플라즈마의 발생량 또는 밀도가 대형 공간에 사용할 수 있을 정도의 양을 발생시키기에는 부족하여 청정시스템의 대형화 내지는 구조화하기 어려운 문제점들을 개선함으로써 별도의 가압장치가 필요 없고 대기압 하에서 저온의 플라즈마를 발생시킬 수 있고, 단위 시간당 대량의 살균이 가능한 회전형 벌크 플라즈마 발생장치를 제공함을 목적으로 한다.
상술한 목적을 달성하기 위하여 본 발명의 일실시 예에 따른 대기압 회전 벌크 플라즈마 발생 장치는 회전 플라즈마 발생부; 및 실내의 공기를 유입시키는 축류 팬(Axial Fan)이나 블로어 팬(Blower Fan), 상기 팬에 의해 유입되는 공기를 Swirl(소용돌이)시켜 입사되도록 하는 Swirl 가이드 판, 상기 회전 플라즈마를 발생시키는 Conic Spiral Wire(원뿔 나선) 구조를 갖는 전압전극과 전압전극을 고정하는 고정부, 상기 Conic Spiral Wire 전압전극에 대향하는 원통형 접지전극을 포함하며, 상기 Conic Spiral Wire 전원전극과 대향하는 원통형 접지전극간의 간격(d)이 3~10mm 이내가 되도록 설치되고, 전압전극인 Conic Spiral Wire 전극은 플라즈마가 토출되는 방향으로 지름이 점진적으로 감소되는 구조를 포함하는 것으로 되어 있다.
이와 같이 Conic Spiral Wire 구조의 전압전극과 원통형 접지전극 사이에서 Conic Spiral Wire 구조에 의해 자연적으로 회전 플라즈마를 발생시킴으로써 플라즈마 부피를 현격히 증대시켰고, 또한 유입되는 공기를 상기 특허나 기술논문들과 다른 방법인 유입공기를 Swirl시키는 Swirl 가이드 판을 통해 공급함은 물론, 설령 Swirl 가이드 판을 통해 층류가 발생하더라도 전압전극자체가 Conic Spiral Wire 구조를 갖고 있기 때문에 자연스럽게 회전 플라즈마가 형성되고, 형성된 회전 플라즈마에 의해 유입되는 공기와 회전 플라즈마와의 접촉시간이 길어져 유입 공기 중에 존재하는 각종 고 병원성 바이러스나 세균들이 더 빠르고 효율적으로 제균 및 살균이 가능하며, 유입 공기 중에 존재하는 각종 냄새들이나 화학 성분들 역시 더 빠르게 효율적으로 제거가 가능하다는 장점이 있다. 본 발명에 의해 발생되는 대기압 회전 벌크 플라즈마는 상기 여러 미국 및 대한민국 특허들과는 달리 고온 플라즈마가 아닌 아크 전이 글로우 방전특성을 갖는 저온 글로우 플라즈마이기 때문에 별도의 열을 흡수하거나 냉각이 필요 없으며, 별도의 가압 장치에 의한 고압 고속의 유입 가스를 만들 필요 없이, 단순한 Swirl 가이드 판을 이용하여 공기 상태의 유입가스를 Swirl시키는 구조로 형성되어 있다.
본 발명에 의하면, 가정이나 사무실 내의 공기 중에 있는 오염물질이, 각종 세균이나 바이러스를 제거 또는 살균하거나, 축산농가에서 기르는 다양한 종류의 동물, 특히 닭이나 오리 같은 동물들을 양육할 때 배출하는 각종 냄새와 공기를 통해 이들 몸에 감염되어 전파시키는 각종 고 병원성 바이러스나 세균들, 또는 도심형 쓰레기 야적장에서 발생하는 각종 오물 냄새와 이들 야적장에서 역시 발생하는 고 병원성 바이러스나 각종 균들 및 공기에 포획된 냄새 및 화학 성분들을 제거함과 동시에 실내 공기 내에 잔류하는 각종 균들을 효율적으로 제거할 수 있다.
또, 본 발명에 의하면 유입공기를 Swirl시키는 Swirl 가이드 판과 Conic Spiral구조의 전압전극을 이용하여 전압전극과 원통형 접지 전극 사이에 발생하는 회전 방전은 대역폭이 넓은 글로우 방전으로 전이하여 발생되는 대기압 회전 벌크 플라즈마로부터 생성되는 반응 활성종(OH: Hydroxyl Radical, ROS: Reactive Oxygen Species, RNS: Reactive Nitrogen Species, RONS: Reactive Oxy-Nitrogen Species)들에 의한 고 병원성 바이러스 세포 내의 Hydrogen 변성, DNA 변성과 회전 플라즈마에 의해 발생되는 대전입자들에 의한 Electrical Stress, 전극 간에 인가된 높은 전기장에 의한 Electroporation(전기 천공), 회전 플라즈마에 의해 발생된 국부적인 열에너지에 의한 Thermoporation 등에 의해 살균하는 기능과, 역시 높은 에너지를 갖는 회전 플라즈마 영역을 통과하는 냄새, 화학 성분들을 직접적으로 분해(Dissociation, Cracking) 및 분해된 성분들의 화학반응 등에 의해 냄새가 없는 안전 물질로의 변환 반응 등을 통해 효율적으로 제거할 수 있다.
또한 본 발명의 회전 벌크 플라즈마 발생장치를 공기청정 장치에 적용하고 공기를 Swirl 시키는 가이드 판을 함께 마련하게 되면 두 장치의 시너지 효과로 인해 회전 플라즈마 발생 시에 회전 속대의 증대와 벌크화가 가능하게 되고, 이로 인해 유입 공기와 플라즈마의 접촉 부피가 증대됨에 따라 청정기에서의 단위 시간당 대량의 살균처리가 가능해짐으로써 제한된 용량의 청정기를 가지고도 살균 대상 영역의 획기적인 확대가 가능하여 공기청정 대상이 국부적이고 지엽적인 영역에 한정되지 않는 공기 청정 장치의 시스템화 내지는 대형화가 가능해지게 되는 것이다.
도 1은 [Plasma Science and Technology, Vol.19, No.4 (2017)]에 나타난 종래 기술에 따라 자기장을 이용하여 대기압 플라즈마를 회전 시키는 방법을 나타낸 개념도이다.
도 2는 [Plasma sources science and technology/Institute of physics - ISSN 0963-0252-25(2016)]에 나타난 종래 기술에 따라 유입 가스를 Swirl시키는 대표적인 개념도와 시뮬레이션 결과 데이터이다.
도 3은 [Plasma sources science and technology/Institute of physics [London]-ISSN0963-0252-26:12(2017)]에 나타난 종래 기술로서 Swirl 구조를 갖는 회전 플라즈마 반응기에서 발생된 플라즈마가 회전되는 것을 시간 별로 측정한 데이터이다.
도 4는 [Proceeding of the Combustion Institute, Vol. 31, Issue 2, p. 3343-3351]에 나타난 종래 기술로서 Swirl 운동하는 가스에 의해 아크 플라즈마가 회전하는 데이터이다.
도 5는 [미국 특허 US00540514]에 나타난 종래 기술로서 Swirl 운동에 의해 아크 플라즈마를 회전시키는 전극구조를 나타낸 사시도이다.
도 6은 본 발명에 따른 대기압 회전 플라즈마 발생장치의 3D 도면이다.
도 7은 본 발명에 따른 것으로 도 6의 단면도와 Swirl 가이드 판(3)을 나타낸 도면이다.
도 8은 본 발명에 따른 것으로 도 7의 Conic Spiral Wire 전압전극부의 형상을 나타낸 도면이다.
도 9는 본 발명에 따른 것으로 도 7의 전압전극(7)과 접지전극(6)사이에 형성된 대기압 플라즈마(30)가 회전되어 발생되는 것을 나타내는 개념도이다.
도 10은 본 발명에 따라 발생한 대기압 회전 벌크 플라즈마를 촬영한 사진으로 유입공기 풍속은 5.7m/s이고, 방전 전압은 15kVpp에서 발생한 플라즈마이다. [유입풍속은 풍속계(PROVA INSTRUMENTS Inc. AVM-07 Flow Anemometer)를 이용하여 측정한 것임]
도 11은 방전 전압 7.5kVpp일 때, 유입공기 풍속이 변화할 때 각각의 풍속에서의 회전 플라즈마를 촬영한 사진이다. [풍속: (1) 1.5m/s, (2) 2.7m/s, (3) 4.3m/s, (4) 5.7m/s]
도 12는 유입공기 풍속 2.7m/s일 때, 방전 전압이 변화할 때 각각의 방전전압에서의 회전 플라즈마를 촬영한 사진이다. [방전전압: (1) 1.3kVpp, (2) 3.41kVpp, (3) 4.74kVpp, (4) 15kVpp]
도 13은 유입공기 풍속 2.7m/s, 방전 전압 3.41kV일 때, 시간에 따라 플라즈마가 회전하는 것을 촬영한 사진이다. [(1) 0.00초, (2) 0.44초 (3) 0.100초, (4) 0.58초 (5) 1.98초, (6) 3.22초]
도 14는 유입공기 풍속 2.7m/s, 방전전압 3.41kV일 때, 형성된 회전 플라즈마의 궤적을 측정한 사진이다. [플라즈마 회전방향: 시계방향]
도 15는 본 발명에 의한 대기압 회전 벌크 플라즈마를 이용하여 실제 사무실 공간(33m3)에서 암모니아 저감 실험을 진행한 결과이다.
도 16은 본 발명에 의한 대기압 회전 벌크 플라즈마를 이용하여 실제 사무실 내에 존재하는 총 유기화합물(TVOC: Total Volatile Organic Compounds)과 포름알데히드(HCHO) 저감 실험을 진행한 결과이다.
이하 본 발명의 일부 실시 예를 예시적인 도면을 통해 상세하게 설명한다. 각 도면의 구성 요소들에 참조 부호를 부가함에 있어서 동일한 구성 요소들에 대해서는 비록 다른 도면 상에 표시되더라도 가능한 한 동일한 부호를 가지도록 하고 있음에 유의해야 한다. 또한 본 실시 예를 설명함에 있어서 관련된 공지 구성 또는 기능에 대한 구체적인 설명이 본 실시예의 요지를 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명을 생략한다.
본 발명에 나타난 동작 방법은 아래에서 설명하는 바와 같은 다양한 실시 예들을 가지고 있으며 기재의 본질적인 특성에서 벗어나지 않는 범위에서 변형된 형태로 구현될 수 있음을 이해할 수 있을 것이다. 그러므로 아래에 개시된 방법들은 한정적인 관점이 아닌 설명적 관점에서 고려되어야 한다. 본 발명의 범위는 발명의 상세한 설명이 아닌 특허 청구 범위에 나타나며, 그와 동등한 범위 내에 있는 모든 차이점은 본 발명의 범위에 포함되는 것으로 해석되어야 한다.
이하, 첨부된 도면을 참조하여 본 발명의 일실시 예에 따른 대기압 회전형 벌크 플라즈마 발생장치에 대하여 설명하기로 한다.
도 6, 도 7, 도 8과 도 9를 참조하면, 본 발명의 일실시 예에 따른 대기압 회전형 벌크 플라즈마 발생장치(100)는 크게 플라즈마 형성부(50), 25kHz의 주파수를 갖는 교류 고전압 전원(10), 상기 플라즈마 형성부(50)에 공기를 공급하는 송풍팬(1)과 유입된 공기를 Swirl 시키는 Swirl 가이드 판(3) 및 접지전극(6)을 포함하는 구성으로 되어 있다. 플라즈마를 발생시키는 전극부는 Conic Spiral Wire 구조의 전압전극(7)과 경통 형상으로 된 접지전극(6)으로 이루어져 있다. 공기를 유입시키는 송풍 팬(1)과 접지전극(6)은 서로 동일한 중심축선 상에 위치해 있고, 평행한 공기 유로를 가지며, 유입되는 공기를 Swirl시키는 Swirl 가이드 판(3)은 날개를 가진 판 형태로 외부하우징에 고정되어 팬에서 유입된 공기를 전압전극(7)과 같은 회전방향으로 회전시키는 기능을 하며 날개의 경사각은 전압전극(7)의 나선각 보다 작거나 같은 값을 가지게함으로써 발생되는 플라즈마의 회전각을 일정하게 유지할 수 있도록 해주는데, 실험을 통해서 대략 그 값은 15도 내지 20도 정도로 하는 것이 바람직한 것으로 되어 있다.
구체적으로, 본 발명의 일실시예에 따른 대기압 회전 벌크 플라즈마 발생장치는 교류 고전압 전원(10)에 연결된 전극 고정부(5)와 플라즈마 전압전극(7), 플라즈마 전압전극(7)에 대향하는 플라즈마 접지전극(6), 전극 고정부(5)와 접지전극(6) 사이에는 절연을 위한 절연체(8)가 구비된다. 즉, 본 발명의 일실시 예에 따른 발생장치는 경통형 구조의 플라즈마 접지전극(6) 내부에 Conic Spiral 구조를 갖는 전압전극(7)을 가지며 송풍팬(1)으로부터 유입되는 관통형 공기유로(流路)가 제공된다. 유입되는 공기를 Swirl시키는 Swirl 가이드 판(3, 날개 각도 θ=15~20도)이 송풍팬과 플라즈마 형성부(50)의 중간에 설치되어 있다. 이때, 경통으로 된 접지전극(6)은 공기 유입구(20)로부터 유입된 공기(15)가 공기유로를 통과하여 방출되는 방출구(40)를 갖는다.
또한, 본 발명의 일실시 예에 따른 발생장치는 유입구(20)에 인접하여 배치된 송풍 팬(1)[축류팬, 블로어팬], 유입구(20) 및 방출구(40)의 적어도 일단에 장착된 이물질 제거 필터를 더 포함할 수 있다.
대기압 상태에서, 교류 고전압 전원(10)이 전극 고정부(5)를 통해 Conic Spiral Wire 구조를 갖는 전압전극(7)에 전력이 인가되면, 전압전극(7)과 접지 전극(6) 사이의 공간인 플라즈마 형성부(50)에서 플라즈마 방전이 발생되는데, 발생된 방전은 유입된 공기에 의해 방출구(40) 방향으로 이동하는 변형된 Gliding Arc 방전이다. 이 때 형성된 플라즈마 방전은 접지전극의 형상에 의해 회전 플라즈마가 발생되며, 송풍팬(1)에 의하여 유입된 공기(15)가 입사각도(θ)가 15 내지 20도인 Swirl 가이드 판에 의해 Swirl되는 방향으로 유입되는 것에 의해서 회전이 강화된다.
상기의 설명과 같이 회전 벌크 플라즈마(30)가 생성되는 원리는 유입된 공기가 Swirl 가이드 판(3)에 의해 Swirl됨은 물론, 전압전극(7)이 Swirl 되어 유입되는 공기와 같은 방향으로 회전되는 Conic Spiral Wire 구조를 갖기 때문이다. 즉, 접지전극(6)과 전압전극(7)사이는 3 - 10mm정도의 간격(d)을 가지면서 시계 방향으로 회전하는 Conic Spiral Wire 구조를 가져 이들 전극 사이에 형성된 플라즈마 역시 시계 방향으로 회전하는 것이다. 이러한 원리는 도 8과 도 9에 자세히 나타나 있다. 도 8을 보면, 교류 고전압 전원(10)이 전극 고정부(5)와 연결되어 있고, 전압전극(7)은 시계방향으로 회전하는 Conic Spiral Wire 구조를 가짐을 알 수 있다. 또한, Conic Spiral Wire 구조를 갖는 전압전극(7)과 경통 접지전극(6) 사이 간격(d)는 접지전극 방출구(40)쪽으로 갈수록 점진적으로 간격(d)이 커지는 원추형의 Conic Spiral구조이다.
본 발명의 일실시 예에 따른 플라즈마 발생부(100)는, 도 9와 같이 Conic Spiral Wire 구조를 갖는 전압전극(7)과 경통 접지전극(6)사이에서 회전하는 방전 플라즈마에 의해 형성된 회전 플라즈마가(30)이 형성되기 때문에 송풍팬(1)에 의해 직접적으로 공급된 공기들 대부분이 형성된 회전 플라즈마(30)와 접촉될 확률이 높아져 상대적으로 부피가 큰 벌크 형태의 플라즈마가 발생되어 결국 대량의 공기를 통과시켜도 유입된 공기에 대한 플라즈마 처리가 가능하고 공기 중의 균에 대한 살균 효율(살균률)이 극대화되는 것이다.
Conic Spiral Wire 전압전극(7)에 인가되는 전력은 고주파, 고전압의 교류 전력인 것이 바람직하다. 이를 위하여 교류 전원(10)은 인버터를 포함할 수 있다. 다만, 본 발명의 실시 예가 이에 한정되는 것은 아니다.
도 7에 도시된 바와 같이, 화살표 방향을 따라 대기압 회전 벌크 플라즈마 장치에 유입된 공기(15)는, 송풍팬(1), 유입구(20) 및 입사각도(θ)가 15 내지 20도인 Swirl 가이드 판(3)을 통해 플라즈마 발생부(100) 내부로 흘러 들어간다. 유입된 공기는 공기 유로를 통해 Swirl되어 이동하며, 생성된 대기압 회전 벌크 플라즈마(30)에 의해 공기 내의 고병원성 바이러스나 세균들이 제균 또는 살균될 수 있고, 오염 물질 및 냄새를 제거할 수 있다.
상세하게는 상기에서 언급한 것처럼, 대기압 회전 벌크 플라즈마의 특성 중에서, 플라즈마가 가지는 강한 전기장이나 방전에 의한 Electroporation(전기천공), 플라즈마가 가지는 대전입자들에 의한 Electric Stress 및 플라즈마에 의해 형성된 UV Radiation 및 반응 활성종(OH, ROS, RNS, RONS) 등에 의한 Chemical Damage 및 국부적인 발생 열에 의한 Thermoporation(열 천공)에 의해 바이러스나 세균들의 세포 내의 DNA를 변성시켜 제균 또는 살균되는 것이다.
본 발명의 일실시 예에 따른 플라즈마 발생부(100)에서는 38도 내지 46도의 평균온도로 플라즈마(30)를 방출하며, 아르곤, 헬륨, 질소 등과 같은 반응 가스를 사용하는 코로나 방전(유전체 배리어 방전)과 달리 공기만을 이용하여 생성되는 아크 전이 글로우(Arc to Glow Transition) 방전을 생성한다.
또한, 밖으로 토출되는 글로우 플라즈마 양을 증대시키기 위해서는 도 7에 나타낸 것처럼 전압전극(7) 끝의 타단에는 리벳형 전극단(9)이 결합되어 있는데 상기 전극단의 끝부분과 접지전극(6)의 방출구 끝 사이의 길이(L)은 전압전극(7)에 인가된 교류 고전압 전원(6)의 전력과 유입되는 공기의 풍속(풍량) 및 전압전극(7)과 접지전극(6)사이의 간격에 따라 달라질 수 있으나 실험에 따르면 15 - 25mm정도가 가장 바람직한 것으로 알려져 있다.
그리고 도 8에 나타나 있는 것처럼 전압전극(7) 일단을 형성하는 리벳형 전극단(9)의 끝부분을 라운드지게 만드는 이유는 회전 아크 플라즈마가 풍속에 의해 전압전극(7)의 끝 부분에 도달하였을 때, 끝 부분이 "R(라운드)"처리되어 있지 않으면, 본 발명에서 원하는 "Arc to Glow Transition" 효과가 현격히 떨어져 Glow 방전으로의 전이가 현격히 저하되어 오존 발생이 심각해 질 수 있기 때문이다. 이때, 라운드 부분(9)의 곡률반경은 접지전극 방출구(40) 지름의 40 - 60%정도 크기를 가져야 아크방전이 최소화되고 글로우방전이 극대화되는 것으로 실험적으로 확인되었다.
도 10은 본 발명의 일실시 예에 따른 대기압 회전 벌크 플라즈마 발생부(100)에서 발생된 대기압 회전 벌크 플라즈마를 측면과 정면에서 촬영한 사진으로 방전전압은 15kVpp, 유입 풍속은 5.7m/s이다.
예를 들어, 도 10에 도시된 바와 같이, 본 발명의 일실시 예에 따른 대기압 회전 벌크 플라즈마(30)의 발생 정도는 인가되는 교류 고전압 전원(1)의 전력에 비례한다. 일반적으로 대기압 플라즈마의 발생되는 총 길이는 인가되는 교류고전압 전원(1)의 전류값에 비례한다. 또한 회전 벌크 플라즈마의 회전수를 정확히 측정할 수 없지만, 회전방향과 대략적인 회전궤적은 측정은 가능하다. 즉, 플라즈마의 회전 방향은 입사각도(θ)가 15도인 Swirl 가이드 판(3)과 가이드 판과 동일 방향으로 회전하도록 만든 Conic Spiral Wire 구조를 갖는 전압전극(7)의 Spiral Turn 방향과 일치한다. 즉, 일정한 길이를 갖는 경통구조의 접지전극(6)에서 전압전극(7)의 Spiral Turn수에 비례할 것으로 예상된다. 따라서 이론적으로 회전하는 플라즈마(30) 회전수는 인가된 교류 고전압 전원(10)의 전력과 유입되는 Swirl 공기의 회전수 및 전압전극(7)의 Spiral Turn수를 고려하여 설계되어야 한다.
도 11은 본 발명에 의한 대기압 회전 벌크 플라즈마가 방전전압이 7.5kppV일 때, 유입되는 송풍 팬의 풍속에 따라 플라즈마가 어떻게 변화되는지를 알아본 실험결과이다. 즉, 풍속이 (1) 1.5m/s에서 (4) 5.7m/s로 증가할수록, 도 11의 사진에서 알 수 있듯이 생성되는 플라즈마 발생량이 증가함을 알 수 있다.
또한 도 12는 본 발명에 의한 대기압 회전 벌크 플라즈마가 풍속이 2.7m/s일 때, 인가되는 방전전압에 따라 플라즈마가 어떻게 변화되는지를 알아본 실험결과이다. 즉 인가 전압이 (1) 1.37kVpp에서 (4) 7.5kVpp로 증가할수록, 실험결과 사진에서 알 수 있듯이 생성되는 플라즈마 발생량은 증가하였다.
또한 이들 도 11과 도 12의 결과에서 알 수 있듯이 발생되는 플라즈마의 회전수는 초기 방전위치만 다를 뿐 동일하며, 방전 궤적이 일정하게 보인다.
도 13은 본 발명에 의한 대기압 회전 벌크 플라즈마가 일정한 풍속 2.7m/s로 공기가 유입되고, 방전전압이 3.41kVpp일 때, 플라즈마가 어떤 방향으로 회전하는 지를 알아보기 위해 Slow Motion으로 연속 촬영한 것을 나타낸 결과이다. 도 13에서 알 수 있듯이 플라즈마는 시계방향으로 회전함을 알 수 있다.
도 14는 상기 도 13에 나타난 현상을 더욱 자세하게 나타나낸 것으로 생성된 대기압 회전 벌크 플라즈마의 회전 궤적을 분석한 실험결과이다. 도 14의 좌측 사진은 방전시작점과 플라즈마가 회전하면서 그리는 궤적을 나타낸 것이고, 우측 사진의 점선은 이들 점선을 모두 연결하였을 때 나타나는 궤적을 그린 것인데. 발생되는 플라즈마의 회전 방향은 Swirl 유입되는 공기의 회전방향과 전압전극(7)의 회전방향과 동일하게 시계방향으로 회전하고 있음을 명확히 나타내고 있다. 또한, 일반적으로 Swirl 입사되는 공기의 풍속이 빠르면, 회전궤적이 다를 것으로 예상할 수 있으나, 본 발명에서는 Conic Spiral Wire 전압전극(7)을 사용하였기 때문에, 회전궤적이 크게 달라지지 않음을 알 수 있었다.
본 발명에 의한 대기압 회전 벌크 플라즈마의 성능과 효능을 알아보기 위해 공기 중 부유하고 있는 고병원성 부유 인플루엔자와 코로나 바이러스 시험을 한국화학연구원(KRICT)에서 진행하였고, 그 결과는 표 1과 표 2에 나타나 있다.
표 1은 본 발명에 의한 대기압 회전 벌크 플라즈마를 이용하여 고병원성 인플루엔자 부유 바이러스를 살균 시험한 결과이다. 표 1에서 알 수 있듯이 습식 인플루엔자 바이러스는 15분 노출에서는 68.824%, 30분 노출에서는 99.999% 이상 살균, 건식 인플루엔자 바이러스는 15분 노출에서는 99.197%, 30분 노출에서는 99.999% 이상 살균됨을 알 수 있었다.
인플루엔자 바이러스(FluA, Human H3N2)
Sample Virus Virus Reduction (Log) Virus Reduction (%)
Name Switch Name Type 0 min 15 min 30 min 0 min 15 min 30 min
Atmospheric Bulk Plasma Device OFF FluA Liquid <0.00 <0.00 <0.00 0% 0% 0%
ON <0.00 0.51 >6.53 0% 68.824 99.999
Atmospheric Bulk Plasma Device OFF Dry <0.00 <0.00 <0.00 0% 0 0
ON <0.00 2.10 >6.08 0% 9.197 9.999
밀폐상자속에 액상 또는 건조형태의 바이러스가 담긴 48-W pltae를 넣고 벌크 플라즈마 발생장치를 가동시켰을 때, 밀페상자 밖에 두었던 대조군과 달리 15분 후 부터 바이러스 감소가 관찰되었고, 30분 후에는 액상과 건조 바이러스 모두 탐지되지 않을 정도로 감소됨이 관찰되었음 (로그값>6.0)
표 2는 본 발명에 의한 대기압 회전 벌크 플라즈마를 이용하여 고병원성 코로나 부유 바이러스를 살균 시험한 결과이다. 표 2에서 알 수 있듯이 습식 코로나 바이러스는 15분 노출에서는 88.496%, 30분 노출에서는 99.989% 이상 살균, 건식 코로나 바이러스는 15분 노출에서는 99.206%, 30분 노출에서는 99.986% 이상 살균됨을 알 수 있었다.
코로나 바이러스(Felin Coronvirus fCoV)
Sample Virus Virus Reduction (Log) Virus Reduction (%)
Name Switch Name Type 0 min 15 min 30 min 0 min 15 min 30 min
Atmospheric Bulk Plasma Device OFF
fCoV

Liquid
<0.00 <0.00 <0.00 0% 0% 0%
ON <0.00 0.94 >3.95 0% 88.496 >99.989
Atmospheric Bulk Plasma Device OFF
Dry
<0.00 <0.00 <0.00 0% 0 0
ON <0.00 2.10 >3.85 0% 99.206 >99.986
밀폐상자속에 액상 또는 건조형태의 바이러스가 담긴 48-W pltae를 넣고 벌크 플라즈마 발생장치를 가동시켰을 때, 밀페상자 밖에 두었던 대조군과 달리15분 후 부터 바이러스 감소가 관찰되었고, 30분 후에는 액상과 건조 바이러스 모두 탐지되지 않을 정도로 감소됨이 관찰되었음 (로그값>6.0)
또한 본 발명에 의한 대기압 회전 벌크 플라즈마의 성능과 효능을 알아보기 위해 실내에 고착하고 있는 고병원성 고착세균인 MRSA(수퍼박테리아), 폐렴균, 대장균 및 황색포도상구균의 살균 시험을 한국건설생활시험연구원(KCL)에서 진행하였고, 그 결과는 표 3(MRSA(수퍼박테리아)), 표 4(폐렴균), 표 5(대장균)와 표 6(황색포도상구균)에 나타내었다.
수퍼박테리아 (MRSA, Staphylococcus aureus Subsd, aureus)
시험항목 시험
방법
시험결과 시험환경
가동 전 농도(CFU/m3) 가동 후 농도(CFU/m3) 감소율 (%)
MRSA (ATCC 33591) 대기압 플라즈마 모듈 의뢰자 제시 2.1x104 <10 99.9 (23±0.2)℃
(100.1±2.0)%RH
챔버크기: 8m3,측정장비:MAS-100NT(MERCK), 측정시간: 3시간
폐렴균(FKlebsiella pneumoniae)
시험항목 시험
방법
시험결과 시험환경
가동 전 농도(CFU/m3) 가동 후 농도(CFU/m3) 감소율 (%)
폐렴균 (ATCC 4352) 대기압 플라즈마
모듈
의뢰자 제시 2.1x104 <10 99.9
(23±0.2)℃
(100.1±2.0)%RH
챔버크기: 8m3,측정장비:MAS-100NT(MERCK), 측정시간: 3시간
대장균(Escherichia coli)
시험항목 시험
방법
시험결과 시험환경
가동 전 농도(CFU/m3) 가동 후 농도(CFU/m3) 감소율 (%)
대장균 (ATCC 25922) 대기압
플라즈마
모듈
의뢰자 제시 2.1x104 <10 99.9 (23±0.2)℃
(100.1±2.0)%RH
챔버크기: 8m3,측정장비:MAS-100NT(MERCK), 측정시간: 3시간
황색포도상구균(Staphylococus aureus)
시험항목
시험
방법
시험결과 시험환경
가동 전 농도(CFU/m3) 가동 후 농도(CFU/m3) 감소율 (%)
황색
포도상구균
(ATCC 6538)
대기압 플라즈마
모듈
의뢰자 제시 2.1x104 <10 99.9 (23±0.2)℃
(100.1±2.0)%RH
챔버크기: 8m3,측정장비:MAS-100NT(MERCK), 측정시간: 3시간
또한, 본 발명에 의한 대기압 회전 벌크 플라즈마의 성능과 효능을 알아보기 위해 실내의 대기 중에 존재하는 암모니아 저감 성능을 실제 35m3(약 10평)의 공간을 갖는 사무실 내에서 직접 실험을 진행하였고, 그 결과를 도 15에 나타내었다. 도 13에 알 수 있는 성능은 초기 암모니아 농도를 26ppm 주입하였을 때, 대기압 플라즈마 장치를 가동하지 않은 상태에서는 3시간(180분)이 지나도 17.9ppm으로 자연감소되는 반면에, 대기압 플라즈마 장치를 가동한 상태에서는 1.5시간(90분)만에 0ppm으로 저감 됨을 확인할 수 있었다.
그리고, 본 발명에 의한 대기압 회전 벌크 플라즈마의 성능과 효능을 알아보기 위해 역시 실내의 대기 중에 존재하는 생활 5대 유해가스인 총 유기화합물(TVOC: Total Volatile Organic Compounds)와 포름알데히드(HCHO, Formaldehyde)의 저감성능을 역시 동일한 실제 35m3(약 10평)의 공간을 갖는 사무실 내에서 직접 실험을 진행하였고, 그 결과를 도 16에 나타내었다. 도 16[(1)의 상부]에 알 수 있는 성능은 대기압 회전 벌크 플라즈마를 가동하지 않은 상태에서 사무실 내의 초기 TVOC는 최대 3100ppm이고, 4시간이 지난 상태에서도 0ppm이 되지 않고, 170ppm이 잔류하는데 반해, 대기압 회전 벌크 플라즈마를 가동한 상태[(2)의 상부]에서는 2시간 20분만에 0ppm으로 저감 되었으며, 또한 포름알데히드는 대기압 회전 벌크 플라즈마를 가동하지 않았을 때[(1)의 하부], 역시 4시간이 지난 상태에서도 0ppm이 되지 않고, 23ppm이 잔류하는데 반해, 대기압 회전 벌크 플라즈마를 가동한 상태[(2)의 하부]에서는 3시간 20분만에 0ppm으로 저감된 결과가 얻어졌다.
이상의 본 발명에 의한 대기압 회전 벌크 플라즈마의 성능과 효능을 시험한 결과, 첫째 공기 중에 부유하는 고병원성 바이러스와 고착세균을 매우 효과적으로 제균 또는 살균한다는 사실이 입증되었으며, 생활유해가스인 암모니아, TVOC, HCHO 역시 매우 효과적으로 저감 시킨다는 사실이 입증되었음을 확인할 수 있었다.
이상, 본 발명의 특정 실시 예들을 첨부 도면을 참조로 설명하였으나, 이는 예시적인 것일 뿐 본 발명의 권리범위를 제한하지 않으며, 본 발명에 대해서는 당업자 수준에서 다양한 변경이 가능함은 물론이다.
본 발명의 각각의 구성 또는 부품의 형상, 크기, 위치, 개수 및 재질은 일례를 제시한 것이며 활용 분야에 맞추어 적절한 변경이 가능함을 유의해야 할 것이다.
본 발명의 권리 범위가 이하 기술하는 청구 범위와 동일 또는 유사한 영역에까지 미친다는 사실은 자명하다.
1: 송풍팬(축류팬)
3: Swirl 가이드판
5: 전극 고정부
6: 경통 접지전극
7: Conic Spiral Wire전압전극
8: 절연체
9: 리벳형 전극단
10: 교류 고전압 전원
15: 유입 공기
18. 플라즈마 토출부
20. 공기 유입구
30. 회전 벌크 플라즈마
40. 공기 방출구
50: 플라즈마 형성부
100. 대기압 플라즈마 발생장치
d: 전압전극과 접지전극의 간격
L: 리벳형 전극단과 방출구 끝단 사이의 간격

Claims (8)

  1. 플라즈마 형성부; 공기 유입구를 통해 상기 플라즈마 형성부로 공기를 유입시키는 송풍 팬; 상기 유입된 공기를 소용돌이(Swirl)시키는 판상형태의 소용돌이 가이드 판; 상기 플라즈마 형성부에 플라즈마를 발생시키기 위한 원뿔 나선(Conic Spiral Wire) 형상의 전압전극과 상기 전압전극에 대향하는 경통형 접지전극;을 포함하고, 상기 전압전극의 일단은 전극 고정부에 고정되어 있고 타단은 리벳형 전극단이 결합되어 있으며,
    상기 소용돌이 가이드 판에 형성된 날개의 경사각도(θ)는 상기 전압전극의 나선각보다 작거나 같으며, 상기 유입된 공기의 회전 방향은 상기 전압전극의 나선 방향과 동일한 방향으로 회전되는 것을 특징으로 하는 대기압 회전형 벌크 플라즈마 발생 장치.
  2. 삭제
  3. 제 1 항에 있어서,
    상기 리벳형 전극단 라운드 부분의 곡률반경은 상기 경통형 접지전극의 방출구 지름의 40 내지 60%의 값을 가지는 것을 특징으로 하는 대기압 회전형 벌크 플라즈마 발생 장치.
  4. 제 1 항에 있어서,
    상기 공기 유입구는 경통 접지전극의 접선방향이 아닌, 일자로 관통된 구조의 공기 유입경로를 갖는 것을 특징으로 하는 대기압 회전형 벌크 플라즈마 발생 장치.
  5. 제 1 항에 있어서,
    상기 리벳형 전극단의 끝부분과 접지전극인 경통의 방출구 끝단 사이의 간격은 15 내지 25mm 이내로 하여 아크 방전 발생을 억제하고 글로우 방전 정도를 증대시키는 것을 특징으로 하는 대기압 회전형 벌크 플라즈마 발생 장치.
  6. 제 1 항에 있어서,
    상기 전압전극과 경통형 접지전극사이의 간격(d)은 공기 방출구 쪽으로 갈수록 커지며, 상기 간격은 3 내지 10mm 사이의 값을 갖는 것을 특징으로 하는 대기압 회전형 벌크 플라즈마 발생 장치.
  7. 제 1 항, 제 3 항 내지 제 6 항 중 어느 한 항에 기재된 대기압 회전형 벌크 플라즈마 발생 장치를 포함하는 공기조화장치.
  8. 제 1 항, 제 3 항 내지 제 6 항 중 어느 한 항에 기재된 대기압 회전형 벌크 플라즈마 발생 장치를 포함하는 공기청정장치.
KR1020210018461A 2021-02-09 2021-02-09 회전형 벌크 플라즈마 발생장치 KR102253706B1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020210018461A KR102253706B1 (ko) 2021-02-09 2021-02-09 회전형 벌크 플라즈마 발생장치
PCT/KR2021/016566 WO2022173094A1 (ko) 2021-02-09 2021-11-12 회전형 벌크 플라즈마 발생장치

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020210018461A KR102253706B1 (ko) 2021-02-09 2021-02-09 회전형 벌크 플라즈마 발생장치

Publications (1)

Publication Number Publication Date
KR102253706B1 true KR102253706B1 (ko) 2021-05-18

Family

ID=76158564

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020210018461A KR102253706B1 (ko) 2021-02-09 2021-02-09 회전형 벌크 플라즈마 발생장치

Country Status (2)

Country Link
KR (1) KR102253706B1 (ko)
WO (1) WO2022173094A1 (ko)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022173094A1 (ko) * 2021-02-09 2022-08-18 주식회사 코비플라텍 회전형 벌크 플라즈마 발생장치
KR20220162901A (ko) * 2021-06-01 2022-12-09 오영래 대면적 공기살균이 가능한 알에프 플라즈마장치
WO2023148412A1 (es) * 2022-02-07 2023-08-10 Bioengineering For The World Corporation S.L. Generador de plasma atmosférico frío y equipo respiratorio para la estimulación de la regeneración celular para seres vivos
KR102679868B1 (ko) 2022-01-11 2024-07-01 주식회사 새솔코리아 반도체 클린룸용 공기살균정화장치

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5405514A (en) 1993-07-28 1995-04-11 Gas Research Institute Atmospheric pressure gas glow discharge
KR100522167B1 (ko) 2005-05-26 2005-10-18 한국기계연구원 플라즈마 반응장치
KR20060070519A (ko) * 2006-06-05 2006-06-23 비손푸른엔지니어링 주식회사 이온 발생 장치 및 이를 이용한 대기, 하수 및 폐수정화방법
KR100822860B1 (ko) 2007-08-24 2008-04-16 주식회사 다원시스 플라즈마 반응기
KR20080112655A (ko) * 2007-06-22 2008-12-26 홍용철 플라즈마 버너
WO2010005201A2 (ko) 2008-07-07 2010-01-14 Kim Ik Nyeon 폐가스 분해용 플라즈마 반응기와 이를 이용한 가스 스크러버
KR20150054281A (ko) 2013-11-11 2015-05-20 한국기계연구원 플라즈마 버너
KR20160139642A (ko) * 2015-05-28 2016-12-07 인투코어테크놀로지 주식회사 자속 감금부를 가지는 유도 결합 플라즈마 장치
US9834442B2 (en) 2010-03-25 2017-12-05 Drexel University Gliding arc plasmatron reactor with reverse vortex for the conversion of hydrocarbon fuel into synthesis gas

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5340848B2 (ja) * 2009-07-28 2013-11-13 オリンパス株式会社 プラズマ処理装置および光学素子成形型の製造方法
KR102253706B1 (ko) * 2021-02-09 2021-05-18 주식회사 코비플라텍 회전형 벌크 플라즈마 발생장치

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5405514A (en) 1993-07-28 1995-04-11 Gas Research Institute Atmospheric pressure gas glow discharge
KR100522167B1 (ko) 2005-05-26 2005-10-18 한국기계연구원 플라즈마 반응장치
KR20060070519A (ko) * 2006-06-05 2006-06-23 비손푸른엔지니어링 주식회사 이온 발생 장치 및 이를 이용한 대기, 하수 및 폐수정화방법
KR20080112655A (ko) * 2007-06-22 2008-12-26 홍용철 플라즈마 버너
KR100822860B1 (ko) 2007-08-24 2008-04-16 주식회사 다원시스 플라즈마 반응기
WO2010005201A2 (ko) 2008-07-07 2010-01-14 Kim Ik Nyeon 폐가스 분해용 플라즈마 반응기와 이를 이용한 가스 스크러버
US9834442B2 (en) 2010-03-25 2017-12-05 Drexel University Gliding arc plasmatron reactor with reverse vortex for the conversion of hydrocarbon fuel into synthesis gas
KR20150054281A (ko) 2013-11-11 2015-05-20 한국기계연구원 플라즈마 버너
KR20160139642A (ko) * 2015-05-28 2016-12-07 인투코어테크놀로지 주식회사 자속 감금부를 가지는 유도 결합 플라즈마 장치

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
Plasma Science and Technology, Vol.19, No.4 (2017).
Plasma sources science and technology/Institute of physics – ISSN 0963-0252-25(2016)
Plasma sources science and technology/Institute of physics [London]-ISSN0963-0252-26:12(2017)
Proceeding of the Combustion Institute, Vol. 31, Issue 2, p. 3343-3351.

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022173094A1 (ko) * 2021-02-09 2022-08-18 주식회사 코비플라텍 회전형 벌크 플라즈마 발생장치
KR20220162901A (ko) * 2021-06-01 2022-12-09 오영래 대면적 공기살균이 가능한 알에프 플라즈마장치
KR102630040B1 (ko) * 2021-06-01 2024-01-26 오영래 대면적 공기살균이 가능한 알에프 플라즈마장치
KR102679868B1 (ko) 2022-01-11 2024-07-01 주식회사 새솔코리아 반도체 클린룸용 공기살균정화장치
WO2023148412A1 (es) * 2022-02-07 2023-08-10 Bioengineering For The World Corporation S.L. Generador de plasma atmosférico frío y equipo respiratorio para la estimulación de la regeneración celular para seres vivos

Also Published As

Publication number Publication date
WO2022173094A1 (ko) 2022-08-18

Similar Documents

Publication Publication Date Title
KR102253706B1 (ko) 회전형 벌크 플라즈마 발생장치
US20170341088A1 (en) Low Temperature Plasma Air Purifier with High Speed Ion Wind Self-adsorption
CN101922766B (zh) 空气消毒净化中央空调机
Xia et al. Inactivation of airborne porcine reproductive and respiratory syndrome virus (PRRSv) by a packed bed dielectric barrier discharge non-thermal plasma
KR101408298B1 (ko) 악취 유발성 물질 및 바이오 에어로졸 제거장치
RU94669U1 (ru) Устройство для санитарно-гигиенической обработки воздуха
US20130330229A1 (en) Plasma system for air sterilization
KR20160129084A (ko) 공기 살균 및 오염 물질 제거 방법 및 장치
CN201724320U (zh) 空气消毒净化中央空调机
Sung et al. Ultrafine particle cleaning performance of an ion spray electrostatic air cleaner emitting zero ozone with diffusion charging by carbon fiber
Park et al. Susceptibility constants of airborne bacteria to dielectric barrier discharge for antibacterial performance evaluation
Zhang et al. In-duct grating-like dielectric barrier discharge system for air disinfection
Hartmann et al. The influence of air ions on the particle concentration in indoor environments–a systematic literature review
CA3220522A1 (en) Plasma source for hand disinfection
Hernández-Díaz et al. Indoor PM2. 5 removal efficiency of two different non-thermal plasma systems
Li et al. Plasma air filtration system for intercepting and inactivation of pathogenic microbial aerosols
CN219375583U (zh) 一种等离子体消杀装置
KR101545558B1 (ko) 산소클러스터 발생기능의 공기정화장치
KR20060071691A (ko) 플라즈마 공기정화 살균 탈취기
Park et al. Development of high durability plasma filter for air circulating disinfection system
Tang et al. Surface Virus Inactivation by Non-Thermal Plasma Flow Reactor
KR20220099224A (ko) 알에프 여기 단분자형 물방울 및 알에프 여기 플라즈마방전 라디칼과 이온을 이용한 기체처리장치
Laxmipriya et al. Reduction of air pollution using smog-free-tower a review paper
Mermigkas et al. Impulsive corona discharges for fine particles precipitation in a coaxial topology
Gutsol et al. Plasma for air and water sterilization

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant