KR102249729B1 - 전기차량 및 산업용 장비의 주행 중 무선충전 급전 및 집전 시스템 - Google Patents

전기차량 및 산업용 장비의 주행 중 무선충전 급전 및 집전 시스템 Download PDF

Info

Publication number
KR102249729B1
KR102249729B1 KR1020190149875A KR20190149875A KR102249729B1 KR 102249729 B1 KR102249729 B1 KR 102249729B1 KR 1020190149875 A KR1020190149875 A KR 1020190149875A KR 20190149875 A KR20190149875 A KR 20190149875A KR 102249729 B1 KR102249729 B1 KR 102249729B1
Authority
KR
South Korea
Prior art keywords
wireless charging
current
electric vehicle
feed
inverter
Prior art date
Application number
KR1020190149875A
Other languages
English (en)
Other versions
KR102249729B9 (ko
Inventor
조동호
송보윤
이교일
강성주
정예찬
서동관
Original Assignee
한국과학기술원
(주)와이파워원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국과학기술원, (주)와이파워원 filed Critical 한국과학기술원
Priority to KR1020190149875A priority Critical patent/KR102249729B1/ko
Priority to PCT/KR2020/001549 priority patent/WO2020159324A1/ko
Priority to EP20747648.2A priority patent/EP3919314A4/en
Application granted granted Critical
Publication of KR102249729B1 publication Critical patent/KR102249729B1/ko
Priority to US17/391,281 priority patent/US20220021245A1/en
Publication of KR102249729B9 publication Critical patent/KR102249729B9/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/12Inductive energy transfer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/14Conductive energy transfer
    • B60L53/18Cables specially adapted for charging electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/30Constructional details of charging stations
    • B60L53/35Means for automatic or assisted adjustment of the relative position of charging devices and vehicles
    • B60L53/36Means for automatic or assisted adjustment of the relative position of charging devices and vehicles by positioning the vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/30Constructional details of charging stations
    • B60L53/35Means for automatic or assisted adjustment of the relative position of charging devices and vehicles
    • B60L53/38Means for automatic or assisted adjustment of the relative position of charging devices and vehicles specially adapted for charging by inductive energy transfer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/02Disposition of insulation
    • H01B7/0208Cables with several layers of insulating material
    • H01B7/0216Two layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B9/00Power cables
    • H01B9/02Power cables with screens or conductive layers, e.g. for avoiding large potential gradients
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/42Circuits or arrangements for compensating for or adjusting power factor in converters or inverters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2200/00Type of vehicles
    • B60L2200/18Buses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2200/00Type of vehicles
    • B60L2200/22Microcars, e.g. golf cars
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2200/00Type of vehicles
    • B60L2200/26Rail vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/90Vehicles comprising electric prime movers
    • B60Y2200/91Electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

본 발명은 무선충전 급전 및 집전 시스템에 관한 것으로서, 더욱 상세하게는 전기 버스, 전기 승용차, 트램, 경전철, 지하철 등의 전기차량 및 RTGC(Rubber Tyred Gantry Crane)를 포함한 산업용 장비의 운행 중 무선충전 급전 및 집전 시스템에 관한 것이다.
본 발명에 의하면, 종래 급전선로 상의 내압 문제를 도로 밖에 존재하는 '함' 또는 '인버터'에 구비된 캐패시터와, 급전선로 설계 방안 및 공통선 배치 설계로 해결함으로써 주행중 무선 급전선로의 확장을 가능하게 하며, 이러한 확장성에 따라 무선 충전 시스템의 경제성 문제를 크게 개선한다. 이와 함께 종래 다수의 인버터를 사용하는 방식에 의해 주행중 차량에 설치된 다양한 무선 충전 집전 패드와 호환성을 유지시키는 방식과 대비하여, '함'과 '인버터'내에 존재하는 릴레이를 활용함으로써 더욱 저렴한 비용으로 그와 같은 호환성을 충분히 만족시키는 무선 충전 급전 시스템을 제공하며, 나아가, 공통선의 구조 및 차폐관을 이용하여 자기장 상쇄 효과를 극대화함으로써 급전선로의 EMI(ElectroMagnetic Interference)를 저감시킨다. 또한 본 발명은 급전선로 구간 길이의 제한, 주행 중 무선충전 시 사구간 문제 등을 개선하는 새로운 방법을 제공한다.

Description

전기차량 및 산업용 장비의 주행 중 무선충전 급전 및 집전 시스템{Wireless charging power supply system and pick-up system during running of electric vehicles and industrial equipment}
본 발명은 무선충전 급전 및 집전 시스템에 관한 것으로서, 더욱 상세하게는 전기 버스, 전기 승용차, 트램, 경전철, 지하철 등의 전기차량 및 RTGC(Rubber Tyred Gantry Crane)를 포함한 산업용 장비의 운행 중 무선충전 급전 및 집전 시스템에 관한 것이다.
지구 온난화로 인해 자동차, 철도 등의 교통수단에 대해, 석유 에너지를 대체하기 위해 에너지 공급원으로서 배터리를 이용한 전기력의 사용이 증가하고 있다. 그러나 현재는 배터리의 용량이 충분치 않아 주행거리가 짧고 잦은 충전이 요구될 뿐만 아니라, 충전소 등의 인프라 부족 또한 충전 시간 소요 등의 원인으로 인해 전기차가 더욱 일반적으로 보급되기에는 한계가 있어 왔으나, 주행 중에 도로 상에서 무선충전이 가능하도록 급전 시스템이 설치되고 있기도 하다.
도 1은 종래의 무선충전 전기차의 주행 중 무선충전 시스템(100)의 급전선로를 나타낸 도면으로서, 급전선로가 인버터(101)를 중심으로 좌우측에 놓이게 되고 단일 코일로 구성되어 있다.
인버터(110)에서 정현파 전류가 공통선 부분(130)과 급전 영역(140)으로 구성된 급전선로로 인가되고, 인가된 전류는 다시 그 인버터(110)로 회귀하는 구조로 되어 있다.
이러한 구성은 주로 주파수가 낮은 영역대(20~40kHz)에서는 큰 무리 없이 급전선로를 구성하여 전기차량 및 산업용 장비에 무선으로 충전이 가능하다. 그러나 차량에 장착되는 무선충전 패드의 무게와 크기 EMF 그리고 유선 충전 대비 상대적으로 비싼 무선 충전의 한계성으로 인하여 많은 연구 등으로 무선 충전의 주파수를 기존 20~40kHz에서 85kHz로 변경하고 있는 실정이다. 그러나 변경된 주파수에 따라 이점들도 확보할 수 있지만 주파수 상승에 대한 내압 문제가 상존하게 되는 단점을 지닌다
즉, 현 전기차량용 무선충전 추세에 따라 주파수가 20~40kHz에서 85kHz로 상향된다면, 동일한 급전선로에서 양단간의 내압은 약 4.25배 상승하게 되어 방전, 누설전류 등의 문제를 야기시킬 수 있다. 이를 억제하기 위해서는 급전선로의 이를 짧게 하거나 사용되는 전류를 줄이는 방안 등이 제안될 수 있으나, 길이를 짧게 할 경우 주행중 충전 전기차의 충전 시간이 짧아지게 되어 충전량이 현저히 떨어지는 문제가 발생한다. 전류를 줄이는 것도 하나의 방안이 될 수 있으나, 전류를 줄일 경우 배터리 전압보다 낮은 전압이 여기 기전력으로 형성됨으로 배터리 충전이 용이치 않게 되는 문제를 야기할 수 있는 문제점이 있다.
또한 주파수 문제와 더불어, 기존의 전기차 주행중 무선충전 급전 시스템(100)의 경우 단일 코일이 차량진행 방향으로 한 턴으로 감겨 있어, 다른 차량에 부착된 무선충전 패드와의 호환성이 결여될 수 있는 단점을 가진다.
US 9,533,590 B2
본 발명은 이와 같은 문제점을 해결하기 위해 창안된 것으로서, 급전선로의 내압을 더욱 효과적으로 저감하고, 비용을 더욱 저감시킨 방식으로 차량에 설치된 다양한 무선 충전 집전 패드와의 호환성을 향상시키며, 또한 급전선로의 EMI(ElectroMagnetic Interference)를 저감시키는 무선충전 급전 및 집전 시스템을 제공하는데 그 목적이 있다.
또한 본 발명은 급전선로 구간 길이의 제한, 주행 중 무선충전 시 사구간 문제 등을 개선하는 새로운 방법을 제공하는데 다른 목적이 있다.
이와 같은 목적을 달성하기 위하여 본 발명에 따른 집전장치가 장착된 전기차량 및 산업용 장비(이하 '전기차량'이라 통칭한다)의 주행 중 무선으로 충전 전력을 제어하는 시스템은, 교류 전류가 흐름으로써 무선 충전을 위한 전력을 발생시키는 급전케이블; 상기 급전케이블에서 발생한 전력을 효과적으로 집전 시스템으로 전달하기 위한 강자성체로 구성된 급전코어; 및, 하나 이상의 급전 세그먼트 각각의 급전케이블에 흐르는 교류 전류의 공급을 제어하는 인버터를 포함하고, 상기 인버터에 일단이 연결된 각 급전 세그먼트의 급전케이블의 타단은, 인버터로 회귀하도록 구성되며, 상기 무선충전 급전 시스템이 2개 이상의 인버터를 포함하는 경우, 연속하는 다수의 인버터는, 3상 AC 전원의 PFC(power factor correction)를 공유한다.
상기 급전케이블을 구성하는 코일은, 절연 특성이 강한 테프론을 도체 주변에 감싸고 그 외곽을 테플론보다 절연 내력특성이 낮은 절연체로 감싸는 구조일 수 있다.
각 급전 세그먼트 사이 구간은, 사구간 방지를 위해 급전케이블이 직각이 되도록 형성될 수 있다.
각 급전 세그먼트 사이 구간은, 사구간 방지를 위해 급전 세그먼트와 급전 세그먼트 사이에 강자성체인 급전코어가 추가 설치될 수 있다.
각 급전 세그먼트 사이 구간은, 사구간 방지를 위해 각 급전 세그먼트가 서로 붙게 배치되거나, 또는 각 급전 세그먼트 사이의 거리가 최대한 가깝게 설치될 수 있다.
상기 각 급전 세그먼트에는 릴레이가 더 구비되고, 상기 급전케이블이 n(n≥2)쌍의 코일로 구성될 경우, 각 코일은 상기 릴레이에 의해 각각 독립적으로 전류의 위상 조정이 가능하여, 상기 n쌍의 코일에 대하여 0도 또는 180도 위상의 모든 조합이 가능하고, 상기 전류 위상 조합의 제어에 의해 급전케이블을 통하여 공급되는 무선 전력을 제어할 수 있다.
상기 급전케이블을 구성하는 각 코일이 모아지는 구간(이하 '공통선'이라 한다)의 각 코일은, 기 설정된 기준 이상으로 자기장 상쇄가 되도록 전류 방향이 설정될 수 있다.
상기 급전케이블을 구성하는 각 코일이 모아지는 구간(이하 '공통선'이라 한다)에는, 자기장 차폐를 위해 전체 코일을 감싸는 차폐관을 더 구비할 수 있다.
상기 인버터는, 상기 전기차량이 급전 구간에 진입한 경우, 진입한 전기차량의 위치를 감지하고, 상기 전기차량에 장착된 집전장치 정보를 감지하여, 감지된 집전장치 정보에 따라 해당 전기차량이 위치한 지점의 전력을 제어하고, 해당 전기차량이 그 위치에서 나간 경우, 그 위치의 전력을 차단하도록 제어할 수 있다.
본 발명의 다른 측면에 따르면, 무선충전 급전 시스템이, 급전을 제어하는 방법은, (a) 인버터가, 상기 인버터가 제어하는 급전 구간에 집전장치를 장착한 전기차량이 진입한 경우, 해당 전기차량의 위치를 감지하는 단계; (b) 상기 인버터가, 상기 전기차량에 장착된 집전장치의 정보를 파악하는 단계; (c) 상기 인버터가, 파악된 집전장치 정보에 따라, 전기차량이 위치한 지점을 충전 모드로 전환하고, 그 위치에 급전할 전력을 제어하는 단계; 및, (d) 상기 인버터가, 상기 전기차량이 상기 위치를 빠져나간 경우, 해당 위치를 오프 모드로 전환하여, 해당 위치의 전력을 차단하는 단계를 포함한다.
급전케이블이 n(n≥2)쌍의 코일로 구성될 경우, 각 코일은 릴레이에 의해 각각 독립적으로 전류의 위상 조정이 가능하여, 상기 n쌍의 코일에 대하여 0도 또는 180도 위상의 모든 조합이 가능하고, 상기 인버터는 상기 전류 위상 조합의 제어에 의해 급전케이블을 통하여 공급되는 무선 전력을 제어할 수 있다.
본 발명의 또 다른 측면에 따르면, 전기차량 하부에 설치되고, 무선충전 급전 시스템으로부터 무선으로 전력을 집전하는 집전 시스템은, 무선충전 급전 시스템으로부터 발생한 전력으로부터 유도 전압을 발생시키는 집전케이블; 상기 집전케이블에서의 유도 전압을 효과적으로 발생시키기 위한 강자성체로 구성된 집전코어; 및 상기 집전케이블에 대한 내압 감소를 위한 내압 분기용 캐패시터를 포함하고, 상기 집전코어는, 자계 밀집도를 줄이고, 이로써 집전 시스템에서의 발열 가능성을 감소시키는 형상을 가진다.
상기 집전케이블은, 상기 내압 분기용 캐패시터에 여기되는 전류 방향에 따라, 인접하는 집전케이블의 전류 방향이 서로 반대가 되도록 배치되고, 각 캐패시터의 전류 방향은 들어오고 나가는 전류 방향이 짝을 이루도록 배치될 수 있다.
상기 다수의 내압 분기용 커패시터를 포함하는 커패시터 박스는, 유지보수가 용이하도록, 상기 집전코어 및 집전케이블과 분리되어 설치될 수 있다.
급전선로 및 집전 자계의 영향으로 인한 차량 철 프레임에서의 발열을 방지하기 위하여, 상기 집전코어 및 집전케이블 주위에 자기장 차폐판을 더 포함할 수 있다.
상기 집전코어 위에 상기 급전코어와 일정 간격을 두고 자기장 차폐판을 더 포함하고, 상기 자기장 차폐판 아랫면에는 상기 집전 시스템에서 발생하는 열을 감지하기 위한 센서가 구비되며, 상기 센서에는, 상기 센서에서 감지한 온도 신호를 제어부로 전달하기 위한 신호선이 연결될 수 있다.
본 발명에 의하면, 종래 급전선로 상의 내압 문제를 도로 밖에 존재하는 '함' 또는 '인버터'에 구비된 캐패시터와, 급전선로 설계 방안 및 공통선 배치 설계로 해결함으로써 주행중 무선 급전선로의 확장을 가능하게 하며, 이러한 확장성에 따라 무선 충전 시스템의 경제성 문제를 크게 개선하는 효과가 있다.
이와 함께 종래 다수의 인버터를 사용하는 방식에 의해 주행중 차량에 설치된 다양한 무선 충전 집전 패드와 호환성을 유지시키는 방식과 대비하여, '함'과 '인버터'내에 존재하는 릴레이를 활용함으로써 더욱 저렴한 비용으로 그와 같은 호환성을 충분히 만족시키는 무선 충전 급전 시스템을 제공하는 효과가 있다.
나아가, 공통선의 구조 및 차폐관을 이용하여 자기장 상쇄 효과를 극대화함으로써 급전선로의 EMI(ElectroMagnetic Interference)를 저감시키는 효과가 있다.
또한 본 발명은 급전선로 구간 길이의 제한, 주행 중 무선충전 시 사구간 문제 등을 개선하는 새로운 방법을 제공하는 효과가 있다.
도 1은 종래의 무선충전 급전 시스템의 급전 선로를 나타낸 도면.
도 2는 본 발명의 제1 실시예에 따른 도로상에 전기차량을 포함한 무선 충전 급전 시스템이 도시된 개략도.
도 3은 본 발명의 제1 실시예에 따른 무선 충전 급전 시스템의 급전선로의 코일 구조를 나타낸 도면.
도 4는 본 발명의 제1 실시예에 따른 무선 충전 급전 시스템의 급전코어를 형성하는 강자성체의 형상과 구조를 나타낸 도면.
도 5는 본 발명의 제1 실시예에 따른 무선 충전 급전 시스템의 설계 변수인 코일 간의 거리 및 코일과 급전코어인 강자성체 간의 거리를 도시한 도면.
도 6은 도 5에서 도시한 설계 변수에 따른 급전선로의 단위거리당 인덕턴스의 변화를 나타내는 그래프.
도 7은 본 발명의 제1 실시예에 따른 무선 충전 급전 시스템에서 공통선 부분의 처리 방법을 예시한 도면.
도 8은 본 발명의 제1 실시예에 따른 무선 충전 급전 시스템에서 급전 제어 방법을 나타내는 순서도.
도 9는 본 발명의 제2 실시예에 따른 도로상에 전기차량을 포함한 무선 충전 급전 시스템이 도시된 개략도.
도 10은 본 발명의 제2 실시예에 따른 도로상에 전기차량을 포함한 무선 충전 급전 시스템에서 급전선로 스위치 구성에 대한 개략도.
도 11은 본 발명의 제2 실시예에 따른 도로상에 전기차량을 포함한 무선 충전 급전 시스템의 급전선로에 사용되는 케이블 내압 특성을 개선하기 위한 케이블 구성을 나타내는 단면도.
도 12는 본 발명의 제2 실시예에 따른 도로상에 전기차량을 포함한 무선 충전 급전 시스템의 급전선로에서, 사구간 유형과 그러한 사구간에 대한 개선방안을 도시한 도면.
도 13은 본 발명의 제2 실시예에 따른 도로상에 전기차량을 포함한 무선 충전 급전 시스템에서 인버터로의 인입선 및 급전선로 공통선 부분에 대한 차폐처리를 도시한 도면.
도 14는 본 발명의 제2 실시예에 따른 도로상에 전기차량을 포함한 무선 충전 급전 시스템에서 급전코어 시공을 위한 지그의 일 실시예를 도시한 도면.
도 15는 본 발명의 무선 충전 집전 시스템에서의 케이블 구성의 일 실시예를 도시한 도면.
도 16은 본 발명의 무선 충전 집전 시스템에서의 케이블 구성의 다른 실시예를 도시한 도면.
도 17은 본 발명의 무선 충전 집전 시스템에서 내압 분기용 캐패시터의 배치를 나타내는 도면.
도 18은 본 발명의 무선 충전 집전 시스템에서 강자성체의 구조 및 그에 따른 자계 밀집 포화 분포를 도시한 도면.
도 19는 본 발명의 무선 충전 집전 시스템에서 캐패시터 박스의 설치 위치를 도시한 도면.
도 20은 본 발명의 무선 충전 집전 시스템에서 집전 시스템 주변의 유도 가열 예상에 대한 시뮬레이션 결과 및, 이를 방지하기 위한 자기장 차폐판 설치 상태를 도시한 도면.
도 21은 본 발명의 무선 충전 집전 시스템에서 강자성체 발열을 감지하는 센서의 설치 형태의 일 실시예를 도시한 도면.
이하 첨부된 도면을 참조로 본 발명의 바람직한 실시예를 상세히 설명하기로 한다. 이에 앞서, 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다. 따라서, 본 명세서에 기재된 실시예와 도면에 도시된 구성은 본 발명의 가장 바람직한 일 실시예에 불과할 뿐이고 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 있을 수 있음을 이해하여야 한다.
도 2는 본 발명의 제1 실시예에 따른 도로상에 전기차량을 포함한 무선 충전 급전 시스템이 도시된 개략도이다.
이하에서는 '급전케이블' 또는 '급전코일'을 동일한 의미로 혼용하여 사용하기로 한다.
본 발명의 제1 실시예에 따른 무선 충전 급전 시스템(200)은 전기차량(버스, 트램, 전철, 승용차 등)(10)의 무선전력전달에 있어서, 급전선로는 복수개의 급전패드로 구성된 급전부와, 급전부에 교류전력을 공급하는 인버터(210)와, 인버터(210)와 급전부를 연결하는 공통선(230)을 포함한다. 급전부는 강자성체로 구성되는 급전코어와 급전케이블(240)을 구비한다.
본 발명의 무선충전 급전 시스템(200)의 인버터(210) 또는 함(220)의 구성은, 인버터 또는 함으로 국한되지 않고 스위치 또는 다른 전력장치를 수반할 수 있는데, 이러한 장치들 역시 인버터 또는 함을 통하여 구현하는 것과 동일한 기능을 구현하는 장치이므로, 이하의 설명에서는 이들을 인버터(210) 및 그 외의 함(220)으로 통칭하여 부르기로 한다. 여기서 '함'이라함은 캐패시터(capacitor)와 릴레이(relay)를 포함하는 회로부가 포함된 함을 말하는 것으로서, 이하에서는 이를 인버터(210)와 구분하여 '캐패시터부(220)'라 칭하기로 한다. 이와 같은 릴레이는 인버터(210)에도 구비된다.
또한 본 발명에서는 급전부와 인버터를 연결하는 공통선이 회귀되지 않고, 도 2에 도시된 바와 같이 다음 인버터 또는 캐패시터부(220)로 확장 연결하는 구조를 가진다. 마찬가지로, 캐패시터부(220)가 2개 이상 구비(221,222...) 되는 경우에도, 도 2에 도시된 바와 같이 제 n번째 캐패시터부에 일단이 연결된 급전케이블의 타단은, 제 n번째 캐패시터부로 회귀하지 않고 제 n+1번째 캐패시터부로 연결된다.
도 2의 본 발명의 무선충전 급전 시스템(200)은, 다양한 종류의 차량에 다양한 종류의 무선충전 패드가 부착되더라도 충전이 가능하도록, 호환성을 구비한 급전 선로를 포함한다. 도 2와 같이 급전선로를 구성할 경우, 인버터(210) 내에 구비된 캐패시터, 또는 캐패시터부(220)에 구비된 캐패시터를 통해 급전선로의 내압을 보다 효과적으로 저감할 수 있다. 급전선로의 내압을 저감시킬 수 있는 이유는, 급전선로에서 발생하는 인덕턴스를, 캐패시터가 상쇄하게 되기 때문이다.
나아가, 본 발명의 장점은, 전술한 바와 같은 호환성을 구현하기 위해 복수개의 인버터를 이용하지 않는다는 점이다. 즉, 복수개의 인버터를 사용할 경우 그만큼 많은 설치 비용이 들어가게 되어 경제성을 저하시킨다. 본 발명은 하나의 인버터(210)와 함께, 그 인버터(210)와 도 2와 같이 연결된 하나 이상의 커패시터부(220)를 통하여 그와 같은 호환성을 충분히 확보하게 되는데, 즉, 인버터(210) 또는 캐패시터부(220)에 배치된 릴레이를 통해 전류 위상을 바꿈으로써 호환성을 확보할 수 있게 되는 것이다. 이와 같은 호환성의 구현 방법에 대하여는 도 3을 참조하여 상세히 후술하기로 한다.
또한 무선충전 급전 시스템(200)의 급전선로의 형상은 타원형 또는 원형 구조를 비롯하여 다양한 형상일 수 있으며, 급전코어로서 페라이트 코어와 같은 강자성체를 수반하거나, 또는 급전코어로서의 강자성체를 수반하지 않을 수도 있는데, 급전코어로서의 강자성체를 구비하는 경우 그러한 강자성체의 형상의 실시예에 대하여는 도 4를 참조하여 후술하기로 한다.
그리고 급전선로의 코일 구조는 하나의 코일이 한 쌍으로 구성되거나 2쌍 이상으로 구성될 수 있으며, 이에 대한 예시는 도 3에 도시되어 있다.
2쌍 이상의 코일로 구성된 급전선로의 경우, 급전선로의 각 코일의 전류 방향은, 코일에서 가능한 모든 조합으로 이루어질 수 있으며, 한 쌍의 코일 또는 2쌍 이상의 코일들의 간격은 등간격을 포함하여 다양한 간격을 포함할 수 있는데 이에 대하여는 도 3 및 도 5를 참조하여 후술하기로 한다.
도 3은 본 발명의 제1 실시예에 따른 무선 충전 급전 시스템(200)의 급전선로의 코일 구조를 나타낸 도면이며, 도 4는 본 발명의 제1 실시예에 따른 무선 충전 급전 시스템(200)의 급전코어를 형성하는 강자성체의 형상과 구조를 나타낸 도면으로 강자성체의 형상과 구조는 bar-타입과, L-타입, W-타입 등을 포함하여 이를 변형한 형상들을 모두 포함할 수 있다.
도 3에서 급전선로를 구성하는 급전케이블(240)의 단면, 즉, 급전케이블(240)에서 흐르는 전류 방향을 나타내는 단면의 실시예(300)가 도시되어 있다.
단면의 실시예(300)와 같이 급전선로는 단수개의 코일(301) 또는 복수개의 코일(302,303,304)로 구성될 수 있다. 본 도면에서는 전류가 나오는 방향을 '·', 전류가 들어가는 방향을 'X'로 표시하였다. 본 도면에서는 2개의 코일을 사용하는 경우에 대하여 301, 302, 303의 3가지 예에 대하여만 도시하였으나, '·'가 2개이고 'X'가 2개인 어떠한 조합도 가능함은 물론이다.
인버터(210)의 릴레이와 캐패시터부(220)의 릴레이의 제어에 따라 각 코일에서의 전류의 방향을 '·' 또는 'X'로 제어 가능하다. 즉, 인버터(210)의 릴레이와 캐패시터부(220)의 릴레이의 제어에 따라 각 코일에서의 전류의 위상을 0 또는 180도로 제어할 수 있는 것이다.
이와 같이 각 코일의 위상을 제어함에 의해 해당 급전선로 구간에서 상부로 전달되는 자속에 의한 무선 전력을 발생시켜 충전 모드로 하거나 또는 자속이 상쇄되어 집전측에 전력이 차단(오프 모드)될 수 있다. 예를 들어 도 3에서 302의 경우는 급전케이블(240)의 전류로부터 자속이 발생하여 집전 픽업이 충전모드가 된다. 그러나 303의 경우는 좌측의 코일 1쌍은 반대의 위상의 전류로서 서로 상쇄되어 충전을 위한 전력이 발생하지 않게 된다. 우측의 코일 1쌍도 마찬가지로 집전측에 전력이 발생하지 않는다.
이와 같이 전류의 위상 제어는, 충전 모드 또는 오프 모드로 전환시키는 것 이외에도 다양한 제어를 할 수 있다. 예를 들어, 도 3의 303 또는 304의 경우에, 좌측의 코일 1쌍이 전류의 위상이 서로 반대라도, 그 2개의 코일간의 거리(20)에 따라 급전 자속이 집전 전압을 형성할 수 있는 형상을 지니는 수신측에 전력이 어느 정도 발생할 수도 있다. 즉, 2개의 코일이 매우 가깝게 배치되어 있다면 수신측에 전력은 거의 발생하지 않을 것이지만, 그 2개의 코일의 거리가 떨어진 거리가 일정 간격 이상으로 멀수록 발생하는 수신측의 전력은 증가하게 된다. 이와 같이 코일 간의 거리(20), 또한 코일(240)과 하부의 급전코어(250)간의 거리(30, 도 5 참조)에 따라, 양측의 1쌍의 코일에 동일 위상의 전류가 흐를 경우의 발생 전력, 그리고 반대 위상의 전류가 흐를 경우의 발생 전력은 집전측의 픽업과 호환을 이루며 변화하게 된다. 결국 다양한 집전픽업의 형상에 따라 급전 전류를 제어함으로써 다양한 픽업에 전력을 공급할 수 있게 될 것이다.
발생 전류의 크기 및 위상을 제어하는 인버터(210)는, 급전선로 구간의 특정 세그먼트에 차량이 존재 또는 비존재의 경우에 따라 해당 구간의 무선 전력 발생을 온 또는 오프로 제어할 뿐 아니라, 해당 구간을 지나는 차량에 장착된 집전장치(pick-up device)의 종류 및, 대형차량 또는 승용차 등에 따라 차이가 나는 급전선로 지면으로부터의 집전장치의 높이 등을 감지하여 해당 집전장치에 적절한 무선 전력이 공급되도록 급전선로의 급전케이블(240), 즉, 도 3의 실시예(300)에 나타난 바와 같은 코일(240)에 흐르는 전류의 위상을 제어할 수 있는 것이다.
이와 같은 인버터(210)에 의한 전류의 위상의 제어는, 인버터(210)에 구비된 릴레이 및, 각 구간의 캐패시터부(220)에 구비된 릴레이를 제어함에 의해 수행된다.
즉, 급전케이블(240)이 n(n≥2)쌍의 코일로 구성될 경우, 각 코일은 인버터(210)의 제어에 따라 릴레이에 의해 각각 독립적으로 전류의 위상 조정이 가능하여, n쌍의 코일에 대하여 0도 또는 180도 위상의 모든 조합이 가능하고, 이와 같은 인버터(210)의 전류 위상 조합의 제어에 의해 급전케이블을 통하여 공급되는 무선 전력을 제어하는 것이다.
이와 같이 다양한 집전장치의 종류 및 다양한 집전장치의 설치 높이 등에 대하여도 전술한 바와 같이 충전을 위한 적절한 무선 전력량을 자동으로 제어하여 공급해주는 것이 전술한 바와 같은 '호환성'인 것이다.
또한 이러한 위상의 제어에 따라 급전선로의 인덕턴스를 저감시킬 수 있다.
도 5는 본 발명의 제1 실시예에 따른 무선 충전 급전 시스템(200)의 설계 변수인 코일(240) 간의 거리(20) 및 코일(240)과 급전코어인 강자성체(250) 간의 거리(30)를 도시한 도면이고, 도 6은 도 5에서 도시한 설계 변수에 따른 급전선로의 단위거리당 인덕턴스의 변화를 나타내는 그래프이다.
도 5는 급전선로를 구성하는 코일 사이 간격에 따른 호환성 확보 및 인덕턴스 저감으로 인한 구간 확장에 대한 방안을 나타낸다. 코일 사이 간격(20), 코일과 강자성체 사이 거리(30)의 변화에 따른 인덕턴스 값을 단위거리로 환산하여 유리한 조건을 판단할 수 있다. 즉, 각 코일은 이격 거리 없이 접촉되도록 배치되거나, 또는 일정 거리 이격되어 배치될 수 있고, 급전케이블을 구성하는 코일과 급전코어 역시, 이격 거리 없이 접촉되도록 배치되거나, 또는 일정 거리 이격되어 배치될 수 있다.
도 6에서 F15 그래프(61)는 강자성체와 코일의 이격 거리(30)가 15mm, F25는 강자성체와 코일의 이격 거리(30)가 25mm(62)을 의미한다. 또한 그래프의 x축(가로축)의 값은 코일 간의 거리(20)를 나타내며, y축(세로축)은 단위길이당 인덕턴스를 의미한다.
그래프에서 각 그래프에 찍힌 66개의 점들은, 그래프는 간격의 설계변수(20,30)에 대해서 총 66가지 설계의 예시를 나타낸 것으로서, 급전선로가 설치되는 환경 및 여러 조건에 따라 적절한 설계변수 값을 설정할 수 있다.
도 7은 본 발명의 제1 실시예에 따른 무선 충전 급전 시스템(200)에서 공통선(230) 부분의 처리 방법을 예시한 도면이다.
공통선이란, 급전케이블(240)이 모아지는 부분, 즉, 예를 들어 인버터(210) 또는 캐패시터부(220)에서 급전케이블이 모아져서 나오는 부분(230, 도 2 참조)을 말한다. 이러한 공통선(230)은 차폐관(260)에 의해 감싸져서 자기장 차폐가 될 뿐 아니라, 도 7(b)와 같이 전류의 방향 조절에 의해서도 자기장 상쇄 효과를 극대화하여 인덕턴스를 저감시킬 수 있다.
도 8은 본 발명의 제1 실시예에 따른 무선 충전 급전 시스템(200)에서 급전 제어 방법을 나타내는 순서도이다.
도 8의 제어는 인버터(210)에서 수행한다. 인버터(210)가 제어하는 급전 구간에 집전장치를 장착한 전기차량(10)이 진입한 경우, 해당 차량의 위치를 감지한다(S801). 인버터가 제어하는 급전 구간이라 함은 해당 인버터(210)와 연결되어 있는 모든 커패시터부(220) 및 그에 연결되어 있는 급전케이블 구간을 의미한다. 감지하는 해당 차량의 위치란, 해당 급전 구간 내에서 어느 급전 세그먼트에 있는지를 파악한다는 의미이다. 급전 세그먼트란, 인버터(210)와 다음 캐패시터부(221, 도 2참조) 사이의 급전선로, 다음 캐패시터부(221, 도 2참조)와 그 다음 캐패시터부(222, 도 2참조) 사이의 급전선로 등을 말한다. 도 2를 참조하면, 인버터(210)와 다음 캐패시터부(221, 도 2참조) 사이의 급전선로를 제1 급전 세그먼트라 하고, 다음 캐패시터부(221, 도 2참조)와 그 다음 캐패시터부(222, 도 2참조) 사이의 급전선로를 제2 급전 세그먼트라 할 경우, 현재 차량이 제2 급전 세그먼트에 진입한 상태이다.
그와 같은 위치 감지(S801)는 다양한 방법으로 이루어질 수 있으나, 일 실시예로서 해당 차량(10)의 GPS 정보를 수신하여 해당 차량 현재 인버터(210)의 급전 구간 내의 급전 세그먼트를 파악하는 방법으로 할 수 있다. 또는, 해당 차량(10)이 위치한 급전 세그먼트에 연결된 인버터(210)가 직접 차량 진입을 감지하거나, 또는 그 급전 세그먼트에 연결된 캐패시터부(221,222) 등이 차량 진입을 감지하여 인버터(210)로 신호를 보낼 수 있다.
이후, 해당 차량(10)이 위치한 급전 세그먼트에 연결된 인버터(210)가 직접 해당 차량(10)에 장착된 집전장치 정보를 감지하거나, 또는 그 급전 세그먼트에 연결된 캐패시터부(221,222) 등이 해당 차량(10)에 장착된 집전장치 정보를 감지하여 인버터(210)로 그 정보를 보내주어, 이로써 인버터(210)가 집전장치 정보를 파악할 수 있다(S802). 집전장치 정보란, 집전장치의 종류, 집전장치의 지면으로부터의 높이 등을 포함할 수 있다.
인버터(210)는, 이와 같이 파악된 집전장치 정보에 따라, 차량이 위치한 급전 세그먼트를 충전 모드로 전환하고 급전할 전력을 제어한다(S803). 이와 같은 전력의 제어는, 도 3을 참조하여 전술한 바와 같이 인버터(210)와 해당 급전 세그먼트의 캐패시터부(221 또는 222 등)의 릴레이를 제어하여 각 코일(240)의 전류의 위상을 제어하는 방식으로 할 수 있다.
이후 주행중인 해당 차량(10)이 그 급전 세그먼트를 빠져나간 경우에는, 인버터(210)는 해당 급전 세그먼트를 오프 모드로 전환하여, 해당 급전 세그먼트의 전력을 차단하게 된다(S804). 이와 같은 급전 세그먼트의 전력 차단 역시 해당 급전 세그먼트의 캐패시터부(221 또는 222 등)의 릴레이를 제어하여 각 코일(240)의 전류의 위상을 제어하는 방식으로 할 수 있다.
도 9는 본 발명의 제2 실시예에 따른 무선 충전 급전 시스템(300)이 도시된 개략도이고, 도 10은 본 발명의 제2 실시예에 따른 무선 충전 급전 시스템(300)에서 급전선로 스위치 구성에 대한 개략도이다.
이하에서도 '급전케이블' 또는 '급전코일'을 동일한 의미로 혼용하여 사용하기로 한다.
도 9의 제2 실시예로서의 급전 시스템은, 도 2의 제1 실시예의 급전 시스템과 달리, 급전코일 및 급전코어가 설치된 급전부와 인버터(341,342)를 연결하는 공통선이 인버터(341,342)로 회귀하는 구조로서, 3상 AC 전원(310)의 PFC(power factor correction)(320)를 공유하는 구조를 가진다. 즉, 추가 인버터(342)를 설치할 경우, 도 9에 도시된 바와 같이 PFC(320)를 공유하고 광케이블 통신으로 동기화를 함으로써 세그먼트 간의 사구간을 줄이는 효과를 기대할 수 있다.
인버터(341,342) 내부에는, 급전선로 세그먼트 조작을 위한 스위치 또는 릴레이와, 내압 감소를 위한 캐패시터를 포함할 수 있다. 캐패시터에 의한 내압 감소 효과는, 도 2의 제1 실시예로서의 급전 시스템(200)을 참조하여 설명한 바와 동일한 원리에 의하여 작동한다. 또한 인버터(341,342)의 릴레이 제어를 통하여 전류 위상을 조절하여 차량으로 공급되는 전력을 제어함으로써 다양한 차량 및, 다양한 집전 시스템에 대한 호환성을 확보하는데, 이 또한 도 2의 제1 실시예로서의 급전 시스템(200)을 참조하여 설명한 바와 동일한 원리에 의하여 구현된다.
또한 도 9에서 급전선로를 구성할 경우, 급전 구간을 연장하는 만큼 세그먼트를 추가하여 구현할 수 있다.
도 10은 도 9의 급전 시스템(300)의 각 급전 세그먼트(351,352,353)를 제어하는 구조의 2가지 실시예를 나타내는 회로도이다. 스위치 조작으로 각 세그먼트를 켜고 끌 수 있는 구조로서, 세그먼트 수와 스위치 구성은 제어 환경에 맞게 응용될 수 있다. 스위치 구성 방식에 따라 2가지 실시예인 (a),(b)가 도시되어 있다. 급전이 필요한 영역의 세그먼트만 선택적으로 작동시켜줌으로써 효율을 높이고 불필요한 자계 형성을 방지할 수 있다. 인버터 당 세그먼트 수는 환경에 따라서 변할 수 있으며 그에 따라 스위치 구성도 함께 응용되어 변경될 수 있다. 도 10에서 인덕터 부분은 도 9의 각 급전 세그먼트(351,352,353)의 급전코일에서 인덕턴스가 발생함을 나타내고, 전술한 바와 같이 각 캐패시터는 각 급전선로에서의 내압 감소 기능을 수행하게 된다.
도 11은 본 발명의 제2 실시예에 따른 무선 충전 급전 시스템(300)의 급전선로에 사용되는 케이블 내압 특성을 개선하기 위한 케이블 구성을 나타내는 단면도이다.
도 11에서 급전선로에 사용 되는 케이블의 기존 방식에서 도체(41) 외경에 테프론(teflon) 피복(42)을 추가한 새로운 급전선로 케이블의 구성도이다. 이로써 내압 특성이 개선되고 무선충전 급전 구간 길이 또한 증가하는 효과를 기대할 수 있다.
즉, 기존 구조(도 11(a))의 케이블 내부에서, 절연 특성이 강한 테프론(42)을 도체(41)에 주변에 감싸고, 그 외곽을 테플론보다 절연 내력특성이 낮은 절연체(43)로 감싸는 구조(도 11(b))이다. 이로써 기존 케이블 대비 내압 특성을 개선하여 급전구간의 길이를 연장하는 효과를 기대할 수 있다.
한편, 제2 실시예에 따른 무선 충전 급전 시스템(300)에서도 역시, 도 7과 같이 급전선로 공통선 부분의 정리 방식을 적용하여, 서로 반대 극성의 전류방향을 쌍으로 교차하게 함으로써 선로의 인덕턴스를 감소시켜 무선충전 급전 구간 길이가 증가하는 효과를 기대할 수 있다.
도 12는 본 발명의 제2 실시예에 따른 무선 충전 급전 시스템(300)의 급전선로에서, 사구간 유형과 그러한 사구간에 대한 개선방안을 도시한 도면이다.
도 12에서 급전선로에서 발생할 수 있는 사구간의 유형과 이를 개선하는 방안을 나타낸다. 각 세그먼트 사이에 강자성체를 추가함으로써 유도 전압 감소를 방지하고 무선충전 시 일정량의 출력을 유지하도록 한다. 여기서 '사구간'이란 차량의 집전 시스템으로 전달되는 유도 전압이 감소되어 제대로 충전 전력이 전달되지 못하는 구간을 의미한다.
도 12(a),(b1),(c1)에 표시한 각 점선 내부는 각 세그먼트 사이에서 발생할 수 있는 사구간의 예시이다.
도 12(a)의 경우는 이미 개선 방안이 적용된 경우로서, 급전선로 케이블을 최대한 직각이 되도록 정리해주어 유도 전압 감소 현상을 방지한 것이다.
도 12(b1)의 경우는 도 12(b2)와 같이 급전 세그먼트와 급전 세그먼트 사이에 급전코어, 즉, 강자성체(50)를 추가해줌으로써 개선할 수 있다. 또한 각 급전 세그먼트가 서로 붙게 배치되거나, 또는 각 세그먼트 사이의 거리를 최대한 가깝게 설치하는 것으로 사구간을 최소화 할 수 있다.
도 12(c1)의 경우 역시 도 12(c2)와 같이 급전 세그먼트와 급전 세그먼트 사이에 급전코어, 즉, 강자성체(50)를 추가해줌으로써 개선할 수 있다. 또한 각 세그먼트 사이의 거리를 최대한 가깝게 설치하는 것으로 사구간을 최소화 할 수 있다.
도 13은 본 발명의 제2 실시예에 따른 무선 충전 급전 시스템(300)에서 인버터로의 인입선(60) 및 급전선로 공통선(70) 부분에 대한 차폐처리를 도시한 도면이다.
인입선(60) 및 공통선(70) 부분을 각각 차폐관(61,71)으로 쉴드(shield) 처리(62,72)하고 차폐관(61,71)은 인버터 측에 연결시킨 후 접지(90)시킨다. 이는 불요전자계 억제를 위한 차폐관에 발생할 수 있는 기전력을 방지하기 위한 접지 방안이다. 인입선(60)은 차폐관(61)으로 차폐 처리(62)할 수도 있고, 피복재(61)로 차폐 처리(62)할 수도 있는데, 통칭하여 차폐관(61)으로 표시하기로 한다. 이와 같은 차폐관은 제1 실시예에 따른 무선 충전 급전 시스템(200)에도 적용될 수 있다.
도 14는 본 발명의 제2 실시예에 따른 무선 충전 급전 시스템(300)에서 급전코어 시공을 위한 지그(80)의 일 실시예를 도시한 도면이다.
조립식으로 이루어진 지그(80)에는 급전코어(370), 즉, 강자성체를 다수개 고정할 수 있는 고정틀 및 급전선로 케이블(급전코일, 360)을 거치하는 지지대가 구비되어 한번에 다수의 강자성체(370)를 설치할 수 있도록 하여, 급전선로 케이블(360)을 효과적으로 배치할 수 있게 한다. 이와 같은 지그(80)는 급전선로 형태에 따라서 다양한 형태를 가질 수 있다. 이와 같은 지그(80)는, 제1 실시예에 따른 무선 충전 급전 시스템(200)의 시공에도 적용될 수 있다.
한편, 도 8을 참조하여 설명한 제1 실시예에 따른 무선 충전 급전 시스템(200)에서 급전 제어 방법을 나타내는 순서도는, 제2 실시예에 따른 무선 충전 급전 시스템(300)에도 적용될 수 있다.
즉, 제2 실시예에 따른 무선 충전 급전 시스템(300)에서도 각 인버터(341,342)가 제어할 수 있는 릴레이를 구비하도록 하고, 단계(S803)의 급전 세그먼트 전력 제어시, 전술한 바와 같이 파악된 집전장치 정보에 따라(S802), 각 인버터(341,342)는 해당 급전 세그먼트의 릴레이를 제어하여 각 급전코일의 전류의 위상을 제어하는 방식에 의해 집전 시스템(400)으로 전달되는 전력을 제어할 수 있다. 마찬가지로 급전 세그먼트의 전력 차단 역시 해당 급전 세그먼트의 릴레이를 제어하여 각 급전코일의 전류의 위상을 제어하는 방식으로 할 수 있다.
또한 도시한 설계 변수에 따른 급전선로의 단위거리당 인덕턴스의 변화를 나타내는 도 6의 그래프는, 도 6을 참조한 설명과 같은 방식으로 제2 실시예에 따른 무선 충전 급전 시스템(200)의 설계 변수 값 설정에도 동일하게 사용될 수 있다.
도 15는 본 발명의 무선 충전 집전 시스템(400)에서의 케이블 구성의 일 실시예를 도시한 도면이다.
무선 충전 집전 시스템(400), 즉, 픽업(pick-up) 장치는 차량 하부에 설치되어, 주행중 본 발명의 무선 충전 급전 시스템(200,300)으로부터 무선 전력을 전달받아 집전을 수행하게 된다.
이하에서는 '집전케이블' 또는 '집전코일'을 동일한 의미로 혼용하여 사용하기로 한다.
도 15에서 상대적으로 낮은 인덕턴스로 구현하는 집전 시스템(400) 내의 병렬 코일 구조를 나타낸다. 즉, 물리적으로 3코일 2병렬 구조 또는 그 이상으로 병렬화시킨 다수의 코일(410)이 될 수 있다. 각각의 코일들을 전기적으로 직렬 체결하고 이를 물리적으로 병렬화 시킴으로써 낮은 인덕턴스 효과를 기대할 수 있다.
도 16은 본 발명의 무선 충전 집전 시스템(400)에서의 케이블 구성의 다른 실시예를 도시한 도면이고, 도 17은 본 발명의 무선 충전 집전 시스템(400)에서 내압 분기용 캐패시터의 배치를 나타내는 도면이다.
도 16에는, 직렬로 배치된 집전코일(420) 및, 이러한 집전코일(420)에 대한 내압 감소를 위한 내압 분기용 캐패시터(450)의 전체적 배치 구성이 도시되어 있고, 도 17에는 그러한 내압 분기용 캐패시터(450)에 대한 더욱 상세한 구성도가 도시되어 있다.
집전 시스템(400)의 설치 환경에 따라서 내압 분기의 위치는 상하 또는 좌우 대칭적일 수 있고 한쪽으로 편향될 수도 있는 등, 내압 분기용 캐패시터(450)의 설치 위치는 유동적으로 바뀔 수 있다.
도 17(a),(b)를 참조하면, 캐패시터(450)에 여기되는 전류 방향에 따라서 인접하는 집전 코일이 서로 반대되는 전류 방향이 되도록 배치함으로써 자계 상쇄가 되도록 하여 불요 자계를 줄이며, 이로써 캐패시터(450) 군 사이의 유도가열에 의한 온도 상승을 최소화하는 효과를 기대할 수 있다. 이와 더불어 층을 이루는 캐패시터 군 (캐패시터 박스(460), 도 19 참조)의 경우에는 도 17(c)와 같이 전류의 방향을 +,- 짝을 이루도록 배치하여(즉, 캐패시터에 흐르는 전류가 생성한 자기장이 서로 상쇄되는 구조 배치) 캐패시터 및 캐패시터 박스인 알루미늄/철제함 또는 차량에 유도 가열 온도 상승을 최소화 할 수 있다. 즉, 도 17(c)의 좌우 박스에 붉은색과 파란색이 교차되는 것으로 표시한 바와 같이, 각 캐패시터의 전류 방향은 들어오고 나가는 전류 방향이 짝을 이루도록 배치되게 할 수 있다.
도 18은 본 발명의 무선 충전 집전 시스템(400)에서 집전코어, 즉, 강자성체의 구조 및 그에 따른 자계 밀집 포화 분포를 도시한 도면이다.
도 18(a)는 도 18(b)의 종래 형상의 집전코어(430)를 적용했을 때 동일 방향 전류의 코일에서 상대적으로 자계가 밀집하여 코어의 포화현상이 발생하는 상태를 나타내는 자계 분포도이다.
본 발명의 무선 충전 집전 시스템(400)에는 도 18(d)에 나타난 형상의 집전코어(440)를 적용하여, 자기저항 성분을 줄임으로써 자계 밀집도를 줄이고, 이로써 집전 시스템(400)에서의 발열 가능성을 크게 감소시키며, 그 결과가 도 18(c)에 도시되어 있다.
도 19는 본 발명의 무선 충전 집전 시스템(400)에서 캐패시터 박스(460)의 설치 위치를 도시한 도면이다.
도 19(a)는 집전 시스템(400)을 측면에서 바라본 도면이고, 도 19(b)는, 차량 하부에서 집전 시스템(400)을 올려다 본 도면이다.
캐패시터 박스(460)에는, 도 16 및 도 17에 도시된 내압 분기용 캐패시터(450)가 포함되어 있다. 집전 시스템(400)과 내압 분기용 캐패시터 박스(460)를 분리해서 구성함으로써 유지보수에 유리함을 기대할 수 있다.
차량 하부에 설치하는 집전코일(420)의 위치 특성상 내압 분기를 위한 캐패시터가 집전 시스템(400)과 일체형으로 구성될 경우 유지보수 측면에서 어려움이 있다. 상대적으로 소손 가능성이 높은 캐패시터(450)의 유지보수를 유리하게 하기 위하여 캐패시터 박스(460)를 따로 분리하고 유지보수가 용이한 위치에 설치한다.
도 20은 본 발명의 무선 충전 집전 시스템(400)에서 집전 시스템(400) 주변의 유도 가열 예상에 대한 시뮬레이션 결과 및, 이를 방지하기 위한 자기장 차폐판 설치 상태를 도시한 도면이다.
도 20(a)에서 점선으로 표시한 부분이 자기장 영향으로 발열이 예상되는 부분이다. 즉, 도 20(a)는, 차량 하부에서 집전 시스템(400)을 올려다 본 상태에서 집전 시스템(400) 주변의, 급집전 자계의 영향으로 인한 유도 가열 상태에 대한 시뮬레이션 결과를 표시한 도면이고, 도 20(b)는 이러한 유도 가열을 방지하기 위한 자기장 차폐판(470)의 설치 상태를 나타낸다.
급집전의 영향으로 차량 철제 하부가 유도가열되는 경우, 상당한 양의 전력 손실이 야기되며 전체 집전 시스템(400)의 효율을 감소시키는 요인이 된다. 이를 방지하는 방안으로 도 20(b)와 같이 집전 시스템(400) 주변에 자기장 차폐판(470)을 설치한다. 자기장 차폐판(470)을 설치함으로써 차량 하부에 대한 급집전 자계의 영향을 감소시키고 유도가열을 방지하여 발열 소모를 줄여준다.
도 21은 본 발명의 무선 충전 집전 시스템(400)에서 강자성체(440)의 발열을 감지하는 OT 센서(480)의 설치 형태의 일 실시예를 도시한 도면이다.
도 21(a)에서, 집전코어, 즉 강자성체(440) 위에는 강자성체(440)와 일정 간격을 두고 자기장 차폐판(480)이 구비되며, 자기장 차폐판(480) 아랫면에는 집전 시스템(400)에서 발생하는 열을 감지하기 위한 센서, 즉, OT(over-temperature) 센서(491)가 설치된다.
자기장 차폐판(480)은, 일 실시예로서 알루미늄 플레이트일 수 있다. 이와 같은 OT 센서(491)에는, OT 센서(491)에서 감지한 온도 신호를 제어부로 전달하기 위한 신호선(492)이 연결되어 있다. OT 센서(491)는, 집전코일 구조에 따라 강자성체 포화 및 발열 가능성이 가장 높은 부분에 설치되도록 하며, 집전 시스템(400)의 온도 정보를 제어부로 제공한다.
도 21(b)는 OT 센서(491)와 신호선(492)을 확대한 도면이다.
이상과 같이, 본 발명은 비록 한정된 실시예와 도면에 의해 설명되었으나, 본 발명은 이것에 의해 한정되지 않으며 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 본 발명의 기술사상과 아래에 기재될 특허청구범위의 균등범위 내에서 다양한 수정 및 변형이 가능함은 물론이다.
10: 집전장치가 장착된 전기차량
20: 급전코일 간의 거리
30: 급전코일과 급전코어 간의 거리
41: 코일의 도체부
42: 테프론(teflon) 피복
43: 테프론(teflon)보다 피복 절연 내력이 낮은 피복
50: 급전코어(강자성체)
60: 인버터로의 인입선
61: 인입선 차폐관
70: 공통선
71: 공통선 차폐관
80: 급전코어 설치를 위한 지그(jig)
90: 인입선 차폐관 및 공통선 차폐관의 접지
100: 종래의 인버터
110: 종래의 급전선로
200: 본 발명의 제1 실시예로서의 무선 충전 급전 시스템
210: 인버터
220: 캐패시터부
221: 제1 캐패시터부
222: 제2 캐패시터부
230: 공통선
240: 급전케이블
250: 급전코어
260: 공통선 차폐관
300: 본 발명의 제2 실시예로서의 무선 충전 급전 시스템
310: 3상 AC 전원
320: PFC(power factor correction)
331,332: Buck
341,342: 인버터
351,352,353: 급전 세그먼트
360: 급전코일
370: 급전코어
400: 무선 충전 집전 시스템
410,420: 집전코일
430: 종래 집전코어(강자성체)
440: 본 발명의 집전코어(강자성체)
450: 내압 분기용 캐패시터
460: 내압 분기용 캐패시터 박스
470: 자기장 차폐판
480: 자기장 차폐판
491: OT(over-temperatur) 센서
492: OT 센서 신호선

Claims (16)

  1. 집전장치가 장착된 전기차량 및 산업용 장비(이하 '전기차량'이라 통칭한다)의 주행 중 무선으로 충전 전력을 제어하는 시스템으로서,
    교류 전류가 흐름으로써 무선 충전을 위한 전력을 발생시키는 급전케이블;
    상기 급전케이블에서 발생한 전력을 효과적으로 집전 시스템으로 전달하기 위한 강자성체로 구성된 급전코어; 및,
    하나 이상의 급전 세그먼트 각각의 급전케이블에 흐르는 교류 전류의 공급을 제어하는 인버터
    를 포함하고,
    상기 인버터에 일단이 연결된 각 급전 세그먼트의 급전케이블의 타단은, 인버터로 회귀하도록 구성되며,
    상기 무선충전 급전 시스템이 2개 이상의 인버터를 포함하는 경우,
    연속하는 다수의 인버터는, 3상 AC 전원의 PFC(power factor correction)를 공유하는,
    를 포함하는 전기차량에 대한 무선충전 급전 시스템.
  2. 청구항 1에 있어서,
    상기 급전케이블을 구성하는 코일은,
    절연 특성이 강한 테프론을 도체 주변에 감싸고 그 외곽을 테플론보다 절연 내력특성이 낮은 절연체로 감싸는 구조인 것
    을 특징으로 하는 전기차량에 대한 무선충전 급전 시스템.
  3. 청구항 1에 있어서,
    각 급전 세그먼트 사이 구간은,
    사구간 방지를 위해 급전케이블이 직각이 되도록 형성된 것
    을 특징으로 하는 전기차량에 대한 무선충전 급전 시스템.
  4. 청구항 1에 있어서,
    각 급전 세그먼트 사이 구간은,
    사구간 방지를 위해 급전 세그먼트와 급전 세그먼트 사이에 강자성체인 급전코어가 추가 설치된 것
    을 특징으로 하는 전기차량에 대한 무선충전 급전 시스템.
  5. 청구항 1에 있어서,
    각 급전 세그먼트 사이 구간은,
    사구간 방지를 위해 각 급전 세그먼트가 서로 붙게 배치되거나, 또는 각 급전 세그먼트 사이의 거리가 최대한 가깝게 설치된 것
    을 특징으로 하는 전기차량에 대한 무선충전 급전 시스템.
  6. 청구항 1에 있어서,
    상기 각 급전 세그먼트에는 릴레이가 더 구비되고,
    상기 급전케이블이 n(n≥2)쌍의 코일로 구성될 경우,
    각 코일은 상기 릴레이에 의해 각각 독립적으로 전류의 위상 조정이 가능하여,
    상기 n쌍의 코일에 대하여 0도 또는 180도 위상의 모든 조합이 가능하고,
    상기 전류 위상 조합의 제어에 의해 급전케이블을 통하여 공급되는 무선 전력을 제어하는 것
    을 특징으로 하는 전기차량에 대한 무선충전 급전 시스템.
  7. 청구항 1에 있어서,
    상기 급전케이블을 구성하는 각 코일이 모아지는 구간(이하 '공통선'이라 한다)의 각 코일은, 기 설정된 기준 이상으로 자기장 상쇄가 되도록 전류 방향이 설정되는 것
    을 특징으로 하는 전기차량에 대한 무선충전 급전 시스템.
  8. 청구항 1에 있어서,
    상기 급전케이블을 구성하는 각 코일이 모아지는 구간(이하 '공통선'이라 한다)에는, 자기장 차폐를 위해 전체 코일을 감싸는 차폐관
    을 더 구비하는 것을 특징으로 하는 전기차량에 대한 무선충전 급전 시스템.
  9. 청구항 6에 있어서,
    상기 인버터는,
    상기 전기차량이 급전 구간에 진입한 경우, 진입한 전기차량의 위치를 감지하고, 상기 전기차량에 장착된 집전장치 정보를 감지하여, 감지된 집전장치 정보에 따라 해당 전기차량이 위치한 지점의 전력을 제어하고, 해당 전기차량이 그 위치에서 나간 경우, 그 위치의 전력을 차단하도록 제어하는 것
    을 특징으로 하는 전기차량에 대한 무선충전 급전 시스템.
  10. 청구항 1의 무선충전 급전 시스템이, 급전을 제어하는 방법으로서,
    (a) 인버터가, 상기 인버터가 제어하는 급전 구간에 집전장치를 장착한 전기차량이 진입한 경우, 해당 전기차량의 위치를 감지하는 단계;
    (b) 상기 인버터가, 상기 전기차량에 장착된 집전장치의 정보를 파악하는 단계;
    (c) 상기 인버터가, 파악된 집전장치 정보에 따라, 전기차량이 위치한 지점을 충전 모드로 전환하고, 그 위치에 급전할 전력을 제어하는 단계; 및,
    (d) 상기 인버터가, 상기 전기차량이 상기 위치를 빠져나간 경우, 해당 위치를 오프 모드로 전환하여, 해당 위치의 전력을 차단하는 단계
    를 포함하는, 무선충전 급전 시스템의 급전 제어 방법.
  11. 청구항 10에 있어서,
    급전케이블이 n(n≥2)쌍의 코일로 구성될 경우,
    각 코일은 릴레이에 의해 각각 독립적으로 전류의 위상 조정이 가능하여,
    상기 n쌍의 코일에 대하여 0도 또는 180도 위상의 모든 조합이 가능하고,
    상기 인버터는 상기 전류 위상 조합의 제어에 의해 급전케이블을 통하여 공급되는 무선 전력을 제어하는 것
    을 특징으로 하는 무선충전 급전 시스템의 급전 제어 방법.
  12. 전기차량 하부에 설치되고, 청구항 1의 무선충전 급전 시스템으로부터 무선으로 전력을 집전하는 집전 시스템으로서,
    무선충전 급전 시스템으로부터 발생한 전력으로부터 유도 전압을 발생시키는 집전케이블;
    상기 집전케이블에서의 유도 전압을 효과적으로 발생시키기 위한 강자성체로 구성된 집전코어; 및
    상기 집전케이블에 대한 내압 감소를 위한 내압 분기용 캐패시터
    를 포함하고,
    상기 집전코어는,
    자계 밀집도를 줄이고, 이로써 집전 시스템에서의 발열 가능성을 감소시키는 형상을 가지는,
    전기차량의 무선충전 집전 시스템.
  13. 청구항 12에 있어서,
    상기 집전케이블은,
    상기 내압 분기용 캐패시터에 여기되는 전류 방향에 따라, 인접하는 집전케이블의 전류 방향이 서로 반대가 되도록 배치되고, 각 캐패시터의 전류 방향은 들어오고 나가는 전류 방향이 짝을 이루도록 배치되는 것
    을 특징으로 하는 전기차량의 무선충전 집전 시스템.
  14. 청구항 12에 있어서,
    상기 다수의 내압 분기용 커패시터를 포함하는 커패시터 박스는,
    유지보수가 용이하도록, 상기 집전코어 및 집전케이블과 분리되어 설치되는 것
    을 특징으로 하는 전기차량의 무선충전 집전 시스템.
  15. 청구항 12에 있어서,
    급전선로 및 집전 자계의 영향으로 인한 차량 철 프레임에서의 발열을 방지하기 위하여,
    상기 집전코어 및 집전케이블 주위에 자기장 차폐판
    을 더 포함하는 것을 특징으로 하는 전기차량의 무선충전 집전 시스템.
  16. 청구항 12에 있어서,
    상기 집전코어 위에 상기 급전코어와 일정 간격을 두고 자기장 차폐판
    을 더 포함하고,
    상기 자기장 차폐판 아랫면에는 상기 집전 시스템에서 발생하는 열을 감지하기 위한 센서가 구비되며,
    상기 센서에는, 상기 센서에서 감지한 온도 신호를 제어부로 전달하기 위한 신호선이 연결된 것
    을 특징으로 하는 전기차량의 무선충전 집전 시스템.
KR1020190149875A 2019-02-01 2019-11-20 전기차량 및 산업용 장비의 주행 중 무선충전 급전 및 집전 시스템 KR102249729B1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020190149875A KR102249729B1 (ko) 2019-11-20 2019-11-20 전기차량 및 산업용 장비의 주행 중 무선충전 급전 및 집전 시스템
PCT/KR2020/001549 WO2020159324A1 (ko) 2019-02-01 2020-01-31 전기차량 및 산업용 장비의 주행 중 무선충전 급전 및 집전 시스템
EP20747648.2A EP3919314A4 (en) 2019-02-01 2020-01-31 POWER SUPPLY AND CURRENT COLLECTION SYSTEM FOR ON-ROAD WIRELESS CHARGING OF AN ELECTRIC VEHICLE AND INDUSTRIAL MACHINE
US17/391,281 US20220021245A1 (en) 2019-02-01 2021-08-02 Wireless charging power supply system and pick-up system during running of electric vehicles and industrial equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020190149875A KR102249729B1 (ko) 2019-11-20 2019-11-20 전기차량 및 산업용 장비의 주행 중 무선충전 급전 및 집전 시스템

Publications (2)

Publication Number Publication Date
KR102249729B1 true KR102249729B1 (ko) 2021-05-12
KR102249729B9 KR102249729B9 (ko) 2022-09-30

Family

ID=75919048

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020190149875A KR102249729B1 (ko) 2019-02-01 2019-11-20 전기차량 및 산업용 장비의 주행 중 무선충전 급전 및 집전 시스템

Country Status (1)

Country Link
KR (1) KR102249729B1 (ko)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102475136B1 (ko) 2021-11-24 2022-12-07 주식회사 퍼스트씨앤디 비접촉 방식의 자동화 충전시스템
CN115610472A (zh) * 2022-11-10 2023-01-17 中车大连机车车辆有限公司 一种基于地面受电系统的电磁排障装置及混铁车
KR20230109588A (ko) 2022-01-13 2023-07-20 주식회사 와이파워원 전기 차량 및 산업용 장비의 무선충전을 위한 다중 급전코일 및 그 제어방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007050799A (ja) * 2005-08-19 2007-03-01 Daifuku Co Ltd 無接触給電設備
KR20120115501A (ko) * 2009-12-23 2012-10-18 봄바디어 트랜스포테이션 게엠베하 차량에 전기 에너지를 전달하는 시스템 및 방법
US20140320090A1 (en) * 2013-04-29 2014-10-30 Qualcomm Incorporated Induction power transfer system with coupling and reactance selection
US9533590B2 (en) 2014-04-18 2017-01-03 Qualcomm Incorporated Base array network design for multiple vehicle pads
KR20180105747A (ko) * 2009-08-07 2018-09-28 오클랜드 유니서비시즈 리미티드 도로에서 전력을 공급받는 전기 차량 시스템

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007050799A (ja) * 2005-08-19 2007-03-01 Daifuku Co Ltd 無接触給電設備
KR20180105747A (ko) * 2009-08-07 2018-09-28 오클랜드 유니서비시즈 리미티드 도로에서 전력을 공급받는 전기 차량 시스템
KR20120115501A (ko) * 2009-12-23 2012-10-18 봄바디어 트랜스포테이션 게엠베하 차량에 전기 에너지를 전달하는 시스템 및 방법
US20140320090A1 (en) * 2013-04-29 2014-10-30 Qualcomm Incorporated Induction power transfer system with coupling and reactance selection
US9533590B2 (en) 2014-04-18 2017-01-03 Qualcomm Incorporated Base array network design for multiple vehicle pads

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102475136B1 (ko) 2021-11-24 2022-12-07 주식회사 퍼스트씨앤디 비접촉 방식의 자동화 충전시스템
KR20230109588A (ko) 2022-01-13 2023-07-20 주식회사 와이파워원 전기 차량 및 산업용 장비의 무선충전을 위한 다중 급전코일 및 그 제어방법
CN115610472A (zh) * 2022-11-10 2023-01-17 中车大连机车车辆有限公司 一种基于地面受电系统的电磁排障装置及混铁车

Also Published As

Publication number Publication date
KR102249729B9 (ko) 2022-09-30

Similar Documents

Publication Publication Date Title
KR102249729B1 (ko) 전기차량 및 산업용 장비의 주행 중 무선충전 급전 및 집전 시스템
KR102249722B1 (ko) 전기차량 및 산업용 장비의 주행 중 무선충전 급전 시스템
JP6671287B2 (ja) 道路上の電気自動車に電力を供給するシステムおよび方法
EP2344357B1 (en) Inductively receiving electric energy for a vehicle
US8944226B2 (en) Transferring electric energy to a vehicle, using a system which comprises consecutive segments for energy transfer
US7511250B2 (en) Transport system
US9517697B2 (en) Providing a vehicle with electric energy using a receiving device adapted to receive an alternating electromagnetic field
CA2871169C (en) Arrangement and method for providing a vehicle with electric energy by magnetic induction
JP2017522229A (ja) 電気鉄道におけるケーブルによる給電システム
CN107710357B (zh) 绕组结构的初级侧和次级侧装置、用于感应电力传输的系统以及向车辆感应式地供电的方法
EP2735006B1 (en) Double conductor single phase inductive power transfer tracks
KR101606152B1 (ko) 무선충전 림 방식의 자기부상 하이브리드 차량에 전력 및 추진력을 제공하기 위한 장치 및 방법
CN102963262A (zh) 城市交通车辆供电系统
US20220021245A1 (en) Wireless charging power supply system and pick-up system during running of electric vehicles and industrial equipment
KR101369337B1 (ko) 사구간이 없는 교류철도시스템용 대용량 능동형 철도급전시스템 및 그 방법
EP3919314A1 (en) Power feeding and current collecting system for on-road wireless charging of electric vehicle and industrial machine
US20140292091A1 (en) Device for the inductive transmission of electrical energy
CN110154794B (zh) 一种移动式分段供电的感应电能传输系统
US20220024329A1 (en) Wireless charging power supply system during running of electric vehicles and industrial equipment
EP3785977A1 (en) Railway vehicle
KR20150084594A (ko) 급전 선로에 따른 급전 장치 및 그를 이용한 급집전 장치
KR20130085335A (ko) 분리배선을 위한 급전모듈

Legal Events

Date Code Title Description
GRNT Written decision to grant
G170 Re-publication after modification of scope of protection [patent]