KR102247321B1 - Method for controlling electromagnetic properties of metal coated carbon fiber - Google Patents

Method for controlling electromagnetic properties of metal coated carbon fiber Download PDF

Info

Publication number
KR102247321B1
KR102247321B1 KR1020190165197A KR20190165197A KR102247321B1 KR 102247321 B1 KR102247321 B1 KR 102247321B1 KR 1020190165197 A KR1020190165197 A KR 1020190165197A KR 20190165197 A KR20190165197 A KR 20190165197A KR 102247321 B1 KR102247321 B1 KR 102247321B1
Authority
KR
South Korea
Prior art keywords
carbon fiber
coated
metal
shape
nickel
Prior art date
Application number
KR1020190165197A
Other languages
Korean (ko)
Inventor
김원석
김지연
Original Assignee
재단법인 한국탄소산업진흥원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 재단법인 한국탄소산업진흥원 filed Critical 재단법인 한국탄소산업진흥원
Priority to KR1020190165197A priority Critical patent/KR102247321B1/en
Application granted granted Critical
Publication of KR102247321B1 publication Critical patent/KR102247321B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B19/00Apparatus or processes specially adapted for manufacturing insulators or insulating bodies
    • H01B19/04Treating the surfaces, e.g. applying coatings
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F11/00Chemical after-treatment of artificial filaments or the like during manufacture
    • D01F11/10Chemical after-treatment of artificial filaments or the like during manufacture of carbon
    • D01F11/12Chemical after-treatment of artificial filaments or the like during manufacture of carbon with inorganic substances ; Intercalation
    • D01F11/127Metals

Abstract

According to the present invention, provided is a method for controlling electromagnetic properties of a metal coated carbon fiber which comprises: a first step of selecting a type of metal to be coated on carbon fiber and a coating method in order to match complex dielectric constant and complex permeability of a metal coated carbon fiber to set values; and a second step of coating the metal on the carbon fiber in accordance with the selected type of metal and coating method while making a shape of the metal to be coated on the carbon fiber into a set shape, and matching the complex dielectric constant and the complex permeability of the metal coated carbon fiber to the set values.

Description

금속코팅 탄소섬유의 전자기적 물성 조절 방법{Method for controlling electromagnetic properties of metal coated carbon fiber}Method for controlling electromagnetic properties of metal coated carbon fiber

본 발명은 금속코팅 탄소섬유의 전자기적 물성 조절 방법에 관한 것이다.The present invention relates to a method for controlling electromagnetic properties of a metal coated carbon fiber.

금속코팅 탄소섬유는 탄소섬유에 구리, 은, 니켈, 코발트 등 금속이 코팅된 소재다.Metal-coated carbon fiber is a material coated with metals such as copper, silver, nickel, and cobalt on carbon fiber.

이러한 금속코팅 탄소섬유는, 열전도성 및 전기전도성이 높은 금속의 특성과 탄소섬유 고유의 강도 및 경량을 동시에 갖춰, 전자기파 차폐 기능 및 물리적 강도가 뛰어나다.The metal-coated carbon fiber has the properties of a metal having high thermal conductivity and electrical conductivity, and the strength and light weight inherent in carbon fiber at the same time, and has excellent electromagnetic wave shielding function and physical strength.

이로 인해, 금속코팅 탄소섬유는, 스마트폰, 모니터, TV 등 각종 제품의 전자기파 차폐재, 발열선, 센서 등 다양한 분야에서 사용될 수 있다.For this reason, the metal-coated carbon fiber can be used in various fields such as electromagnetic wave shielding materials, heating wires, and sensors of various products such as smartphones, monitors, and TVs.

그럼에도, 아직까지 탄소섬유에 코팅된 금속의 종류, 탄소섬유에 금속을 코팅하는 방법, 탄소섬유에 코팅된 금속의 형상에 따른 금속코팅 탄소섬유의 전자기적 물성 및 이러한 물성을 조절할 수 있는 방법에 대한 연구개발이 미흡한 실정이다.Nevertheless, we have yet to find out what kind of metal is coated on carbon fiber, how to coat metal on carbon fiber, electromagnetic properties of metal coated carbon fiber according to the shape of metal coated on carbon fiber, and how to control these properties. R&D is insufficient.

한국등록특허(10-2002012)Korean registered patent (10-2002012)

본 발명의 목적은 상술한 문제점을 해결할 수 있는, 금속코팅 탄소섬유의 전자기적 물성 조절 방법을 제공하는 데 있다.An object of the present invention is to provide a method for controlling electromagnetic properties of a metal-coated carbon fiber, which can solve the above-described problems.

상기 목적을 달성하기 위한 금속코팅 탄소섬유의 전자기적 물성 조절 방법은,A method for controlling electromagnetic properties of a metal-coated carbon fiber to achieve the above object,

금속코팅 탄소섬유의 복소유전율 및 복소투자율을 설정된 값에 맞추기 위한, 탄소섬유에 코팅할 금속의 종류 및 코팅 방법을 선정하는 제1단계; 및A first step of selecting a type of metal to be coated on the carbon fiber and a coating method for matching the complex dielectric constant and the complex permeability of the metal-coated carbon fiber to a set value; And

선정된 금속의 종류 및 코팅 방법에 따라 탄소섬유에 금속을 코팅하되, 탄소섬유에 코팅되는 금속의 형상을 설정된 형상으로 만들면서 코팅하여, 금속코팅 탄소섬유의 복소유전율 및 복소투자율을 상기 설정된 값에 맞추는 제2단계를 포함하는 것을 특징으로 한다.The metal is coated on the carbon fiber according to the selected metal type and coating method, but the complex dielectric constant and the complex permeability of the metal-coated carbon fiber are adjusted to the set value by coating while making the shape of the metal coated on the carbon fiber into a set shape. It characterized in that it comprises a second step of fitting.

본 발명은, 금속코팅 탄소섬유의 복소유전율과 복소투자율을 설정된 값으로 만들기 위해, 탄소섬유에 코팅할 금속의 종류 및 코팅 방법을 선정하고, 이에 따라, 탄소섬유에 금속을 코팅하되, 탄소섬유에 코팅되는 금속의 형상을 설정된 형상으로 만들면서 코팅하여, 금속코팅 탄소섬유의 복소유전율과 복소투자율을 최종적으로 설정된 값으로 맞춘다. 이렇게 맞춰진 금속코팅 탄소섬유의 복소유전율과 복소투자율에 의해, 금속코팅 탄소섬유의 전자기적 물성이 결정된다.In the present invention, in order to make the complex dielectric constant and complex permeability of the metal-coated carbon fiber to a set value, the type of metal to be coated on the carbon fiber and the coating method are selected, and accordingly, the metal is coated on the carbon fiber, The coated metal is coated while making the shape of the coated metal into a set shape, and the complex dielectric constant and complex permeability of the metal-coated carbon fiber are finally adjusted to the set value. The electromagnetic properties of the metal-coated carbon fiber are determined by the complex dielectric constant and the complex permeability of the metal-coated carbon fiber thus matched.

정리하면, 금속코팅 탄소섬유의 전자기적 물성을 전자기파 차폐재, 발열선, 센서 등 사용분야에 따라 미리 설정해 두고, 이에 따른 금속코팅 탄소섬유의 복소유전율 및 복소투자율을 결정한다. 이러한 금속코팅 탄소섬유의 복소유전율 및 복소투자율을 조절하기 위해, 본 발명을 사용하는 것이다.In summary, the electromagnetic properties of the metal-coated carbon fiber are set in advance according to the fields of use such as electromagnetic wave shielding material, heating wire, and sensor, and the complex dielectric constant and complex permeability of the metal-coated carbon fiber are determined accordingly. In order to control the complex dielectric constant and complex permeability of such a metal-coated carbon fiber, the present invention is used.

따라서, 본 발명을 사용하면, 금속코팅 탄소섬유의 전자기적 물성을, 전자기파 차폐재, 발열선, 센서 등 사용분야에 따라 정밀하게 조절할 수 있다.Therefore, using the present invention, it is possible to precisely adjust the electromagnetic properties of the metal-coated carbon fiber according to the field of use, such as electromagnetic wave shielding material, heating wire, and sensor.

도 1은 본 발명의 일 실시예에 따른 금속코팅 탄소섬유의 전자기적 물성 조절 방법을 나타낸 순서도이다.
도 2는 탄소섬유에 은이 코팅된 사진으로, 도 2(a)는 은이 5분 동안 탄소섬유에 스퍼터링(sputtering) 되어 코팅된 사진이고, 도 2(b)는 은이 10분 동안 탄소섬유에 스퍼터링 되어 코팅된 사진이다.
도 3은 탄소섬유에 니켈이 코팅된 사진으로, 도 3(a)는 니켈이 20초 동안 탄소섬유에 무전해 도금되어 코팅된 사진이고, 도 3(b)는 니켈이 30초 동안 탄소섬유에 무전해 도금되어 코팅된 사진이고, 도 3(c)는 니켈이 1분 동안 탄소섬유에 무전해 도금되어 코팅된 사진이고, 도 3(d)는 니켈이 2분 동안 탄소섬유에 무전해 도금되어 코팅된 사진이고, 도 3(e)는 니켈이 5분 동안 탄소섬유에 무전해 도금되어 코팅된 사진이다.
도 4는 전자기파의 주파수의 세기에 따라, PU(폴리우레탄), PS(폴리스티렌), MCF/PU tape, Cu/PS tape, CF/PU tape의 전자기파 차폐 성능을 비교한 그래프이다.
도 5는 차폐재의 전자기파 반사, 흡수, 투과 정도를 설명하기 위한 도면으로, 도 5(a)는 CF/PU tape, 도 5(b)는 MCF/PU tape, 도 5(c)는 Cu/PS tape의 전자기파의 반사, 흡수, 투과 정도를 나타낸 도면이다.
도 6 내지 도 8은 MCF/PU tape의 복소유전율을 설명하기 위한 그래프이다.
도 9 내지 도 11은 MCF/PU tape의 복소투자율을 설명하기 위한 그래프이다.
도 12는 전자기파의 주파수의 세기에 따른, MCF/PU tape, CF/PU tape, Cu/PS tape의 차폐 성능을 비교하여 정리한 표이다.
1 is a flow chart showing a method of controlling electromagnetic properties of a metal-coated carbon fiber according to an embodiment of the present invention.
FIG. 2 is a photo of carbon fiber coated with silver, FIG. 2(a) is a photo coated by sputtering on carbon fiber for 5 minutes, and FIG. 2(b) is a photo on which silver is sputtered on carbon fiber for 10 minutes. This is a coated photo.
FIG. 3 is a photo of nickel coated on carbon fiber, FIG. 3 (a) is a photo coated by electroless plating on carbon fiber for 20 seconds, and FIG. 3 (b) is a photo of nickel coated on carbon fiber for 30 seconds. Figure 3 (c) is a photo coated by electroless plating, and Figure 3 (c) is a photo coated by electroless plating on carbon fiber for 1 minute, and Figure 3 (d) is a photo on which nickel is electrolessly plated on carbon fiber for 2 minutes. It is a coated photo, and FIG. 3(e) is a photo coated by electroless plating on carbon fiber for 5 minutes with nickel.
4 is a graph comparing electromagnetic wave shielding performance of PU (polyurethane), PS (polystyrene), MCF/PU tape, Cu/PS tape, and CF/PU tape according to the intensity of the frequency of the electromagnetic wave.
5 is a view for explaining the degree of reflection, absorption, and transmission of electromagnetic waves of the shielding material, FIG. 5(a) is a CF/PU tape, FIG. 5(b) is an MCF/PU tape, and FIG. 5(c) is a Cu/PS It is a diagram showing the degree of reflection, absorption, and transmission of electromagnetic waves of a tape.
6 to 8 are graphs for explaining the complex dielectric constant of an MCF/PU tape.
9 to 11 are graphs for explaining the complex permeability of the MCF/PU tape.
12 is a table summarized by comparing the shielding performance of MCF/PU tape, CF/PU tape, and Cu/PS tape according to the intensity of the frequency of electromagnetic waves.

이하, 본 발명의 일 실시예에 따른 금속코팅 탄소섬유의 전자기적 물성 조절 방법을 상세히 설명한다.Hereinafter, a method of controlling electromagnetic properties of a metal-coated carbon fiber according to an embodiment of the present invention will be described in detail.

도 1에 도시된 바와 같이, 본 발명의 일 실시예에 따른 금속코팅 탄소섬유의 전자기적 물성 조절 방법은,As shown in Figure 1, the method of adjusting the electromagnetic properties of the metal-coated carbon fiber according to an embodiment of the present invention,

금속코팅 탄소섬유의 복소유전율 및 복소투자율을 설정된 값에 맞추기 위한, 탄소섬유에 코팅할 금속의 종류 및 코팅 방법을 선정하는 제1단계(S11);A first step (S11) of selecting the type of metal to be coated on the carbon fiber and a coating method in order to match the complex dielectric constant and the complex permeability of the metal-coated carbon fiber to a set value;

선정된 금속의 종류 및 코팅 방법에 따라 탄소섬유에 금속을 코팅하되, 탄소섬유에 코팅되는 금속의 형상을 설정된 형상으로 만들면서 코팅하여, 금속코팅 탄소섬유의 복소유전율 및 복소투자율을 상기 설정된 값에 맞추는 제2단계(S12)로 구성된다.The metal is coated on the carbon fiber according to the selected metal type and coating method, but the complex dielectric constant and the complex permeability of the metal-coated carbon fiber are adjusted to the set value by coating while making the shape of the metal coated on the carbon fiber into a set shape. It consists of a second step (S12) matching.

[제1실험예][Example 1]

제1단계(S11)를 설명한다.The first step S11 will be described.

탄소섬유에 코팅할 금속의 종류를 은으로 선정한다.Silver is selected as the type of metal to be coated on the carbon fiber.

탄소섬유에 코팅할 금속의 코팅 방법을 물리적 증착방법인 스퍼터링 (sputtering) 방식으로 선정한다.The coating method of the metal to be coated on the carbon fiber is selected by the sputtering method, which is a physical vapor deposition method.

제2단계(S12)를 설명한다.The second step (S12) will be described.

은을 5분 동안 탄소섬유에 스퍼터링 하여, 도 2(a)에 도시된 바와 같이, 설정된 형상인 1㎛ 내외 크기의 둥근 알갱이 형상으로 만들어, 탄소섬유에 코팅한다.Silver is sputtered on the carbon fiber for 5 minutes, and as shown in Fig. 2(a), it is made into round grains having a size of about 1 μm, which is a set shape, and coated on the carbon fiber.

은을 10분 동안 탄소섬유에 스퍼터링 하여, 도 2(b)에 도시된 바와 같이, 탄소섬유의 외주면을 감싸는 원통형 형상으로 만들어, 탄소섬유에 코팅한다.Silver is sputtered on the carbon fiber for 10 minutes to form a cylindrical shape surrounding the outer circumferential surface of the carbon fiber, as shown in FIG. 2(b), and coated on the carbon fiber.

제1단계(S11) 및 제2단계(S12)에서 선정된 은, 선정된 스퍼터링 방식, 선정된 은 및 스퍼터링 방식으로 탄소섬유에 은을 코팅하되, 스퍼터링 시간에 따른 은의 형상을 조절하면, 은 코팅 탄소섬유의 복소유전율과 복소투자율을 최종적으로 설정된 값으로 맞출 수 있다. 은 코팅 탄소섬유의 복소유전율 및 복소투자율이 결정되면, 은 코팅 탄소섬유의 전자기적 물성도 결정된다.Silver is coated on the carbon fiber by the silver selected in the first step (S11) and the second step (S12), the selected sputtering method, the selected silver, and the sputtering method, but if the shape of silver is adjusted according to the sputtering time, silver coating The complex dielectric constant and complex permeability of the carbon fiber can be finally adjusted to the set value. When the complex dielectric constant and complex permeability of the silver-coated carbon fiber are determined, the electromagnetic properties of the silver-coated carbon fiber are also determined.

본 발명에 대한 설명은, 제1실험예보다 다양한 실험 데이터를 뽑은 제2실험예에서 더 자세히 한다.The description of the present invention will be made in more detail in the second experimental example from which various experimental data were extracted than in the first experimental example.

[제2실험예][Example 2]

제1단계(S11)를 설명한다.The first step S11 will be described.

탄소섬유에 코팅할 금속의 종류를 니켈로 선정한다.The type of metal to be coated on the carbon fiber is selected with nickel.

탄소섬유에 코팅할 금속의 코팅 방법을 화학적 도금방식인 무전해 도금으로 선정한다. The coating method of the metal to be coated on the carbon fiber is selected by electroless plating, which is a chemical plating method.

제2단계(S12)를 설명한다.The second step (S12) will be described.

니켈을 20초 동안 탄소섬유에 무전해 도금하여, 도 3(a)에 도시된 바와 같이, 설정된 형상인 1㎛ 내외 크기의 둥근 알갱이 형상으로 만들어, 탄소섬유에 코팅한다.Nickel is electrolessly plated on the carbon fiber for 20 seconds, and as shown in Fig. 3(a), it is made into round grains having a size of about 1 μm, which is a set shape, and coated on the carbon fiber.

니켈을 30초 동안 탄소섬유에 무전해 도금하여, 도 3(b)에 도시된 바와 같이, 설정된 형상인 1.2㎛ 내외 크기의 둥근 알갱이 형상으로 만들어, 탄소섬유에 코팅한다.Nickel is electrolessly plated on the carbon fiber for 30 seconds, and as shown in FIG. 3(b), the carbon fiber is coated in the shape of round grains having a size of about 1.2 μm.

니켈을 1분 동안 탄소섬유에 무전해 도금하여, 도 3(c)에 도시된 바와 같이, 설정된 형상인 1.5㎛ 크기의 둥근 알갱이 형상으로 만들어, 탄소섬유에 코팅한다.Nickel is electrolessly plated on the carbon fiber for 1 minute, and as shown in FIG. 3(c), the carbon fiber is coated in the shape of round grains having a size of 1.5 μm.

니켈을 2분 동안 탄소섬유에 무전해 도금하여, 도 3(d)에 도시된 바와 같이, 설정된 형상인 2㎛ 크기의 다각형 형상으로 만들어, 탄소섬유에 코팅한다.Nickel is electrolessly plated on the carbon fiber for 2 minutes, and as shown in Fig. 3(d), it is made into a polygonal shape having a size of 2 μm, which is a set shape, and coated on the carbon fiber.

니켈을 5분 동안 탄소섬유에 무전해 도금하여, 도 3(e)에 도시된 바와 같이, 설정된 형상인 10㎛ 크기의 타원형 형상으로 만들어, 탄소섬유에 코팅한다.Nickel is electrolessly plated on the carbon fiber for 5 minutes to form an elliptical shape having a size of 10 μm, which is a set shape, as shown in FIG. 3(e), and coated on the carbon fiber.

제1단계(S11) 및 제2단계(S12)에서 선정된 니켈, 선정된 무전해 도금 방식, 선정된 니켈 및 무전해 도금 방식으로 탄소섬유에 니켈을 코팅하되, 무전해 도금시간에 따른 니켈의 형상을 조절하면, 니켈 코팅 탄소섬유의 복소유전율과 복소투자율을 최종적으로 설정된 값으로 맞출 수 있다. 니켈 코팅 탄소섬유의 복소유전율 및 복소투자율이 결정되면, 니켈 코팅 탄소섬유의 전자기적 물성도 결정된다.The nickel selected in the first step (S11) and the second step (S12), the selected electroless plating method, the selected nickel, and the carbon fiber are coated with nickel by the electroless plating method. By adjusting the shape, the complex dielectric constant and the complex permeability of the nickel-coated carbon fiber can be finally adjusted to the set values. When the complex dielectric constant and complex permeability of the nickel-coated carbon fiber are determined, the electromagnetic properties of the nickel-coated carbon fiber are also determined.

이하, 복소유전율과 복소투자율이 조절된 니켈 코팅 탄소섬유가 들어간 차폐재의 전자기파 차폐 성능을 설명한다.Hereinafter, the electromagnetic wave shielding performance of the shielding material containing the nickel-coated carbon fiber in which the complex dielectric constant and the complex permeability are adjusted will be described.

여기서, 니켈 코팅 탄소섬유의 복소유전율과 복소투자율은, 니켈을 5분 동안 탄소섬유에 무전해 도금하여, 도 3(e)에 도시된 바와 같이, 설정된 형상인 10㎛ 크기의 타원형 형상으로 만들어, 탄소섬유에 코팅함으로써 조절되었다. 물론, 복소유전율과 복소투자율은 니켈을 다른 형상으로 만들어 다양하게 조절될 수 있다.Here, the complex dielectric constant and complex permeability of the nickel-coated carbon fiber are made into an elliptical shape having a size of 10 μm, as shown in FIG. 3(e), by electroless plating nickel on the carbon fiber for 5 minutes, It was controlled by coating on carbon fiber. Of course, the complex dielectric constant and the complex permeability can be variously adjusted by making nickel into different shapes.

도 4에 도시된 바와 같이,As shown in Figure 4,

니켈 코팅 탄소섬유 차폐재는 니켈 코팅 탄소섬유가 폴리우레탄에 코팅되어 만들어진다. (이하, “MCF/PU tape” 라 칭함)Nickel-coated carbon fiber shielding material is made by coating a nickel-coated carbon fiber on polyurethane. (Hereinafter referred to as “MCF/PU tape”)

구리 차폐재는 구리가 폴리스티렌에 코팅되어 만들어진다. (이하, “Cu/PS tape” 라 칭함)Copper shielding is made by coating copper with polystyrene. (Hereinafter referred to as “Cu/PS tape”)

탄소섬유 차폐재는 탄소섬유가 폴리우레탄에 코팅되어 만들어진다. (이하, “CF/PU tape” 라 칭함)Carbon fiber shielding material is made by coating carbon fiber on polyurethane. (Hereinafter referred to as “CF/PU tape”)

도 4에 도시된 바와 같이, 베이스필름으로 사용된 PU(폴리우레탄), PS(폴리스티렌)는 전자기파 차폐 효과가 나타나지 않는다.As shown in FIG. 4, PU (polyurethane) and PS (polystyrene) used as the base film do not exhibit an electromagnetic wave shielding effect.

도 4에 도시된 바와 같이, CF/PU tape의 차폐 효율은 98.0945% (-17.2 dB)이다. 도 5(a)에 도시된 바와 같이, CF/PU tape는 인가된 전자기파(Incident EM Wave)를 반사하고 투과시킨다. 반사된 전자기파는 간섭으로 인해 외부 전자기기에 영향을 주고, 투과된 전자기파는 차폐재에 의해 감싸진 내부 전자기기에 영향을 주므로, CF/PU tape로 차폐재로 적절치 못하다.As shown in Figure 4, the shielding efficiency of the CF/PU tape is 98.0945% (-17.2 dB). As shown in Fig. 5(a), the CF/PU tape reflects and transmits the applied electromagnetic wave (Incident EM Wave). Reflected electromagnetic waves affect external electronic devices due to interference, and transmitted electromagnetic waves affect internal electronic devices wrapped by shielding materials, so it is not suitable as a shielding material with CF/PU tape.

도 4에 도시된 바와 같이, Cu/PS tape의 차폐 효율은 99.99997% (-65.4 dB)이다. 도 5(b)에 도시된 바와 같이, Cu/PS tape은 인가된 전자기파(Incident EM Wave)를 대부분 반사하고 극히 일부를 감쇄시켜 투과시킨다. Cu/PS tape는 내부 전자기기를 외부 전자기파로부터 보호하는 성능은 매우 우수하나, 반사된 전자기파로 인해 제2의 간섭현상으로 외부 전자기기에 영향을 줄 수 있어, 외부 전자기기가 많이 배치된 곳에서는 차폐재로 적절치 못하다.4, the shielding efficiency of the Cu/PS tape is 99.99997% (-65.4 dB). As shown in FIG. 5(b), the Cu/PS tape mostly reflects the applied electromagnetic wave (Incident EM Wave) and transmits it by attenuating a small part. Cu/PS tape is very good in protecting internal electronic devices from external electromagnetic waves, but it can affect external electronic devices as a second interference phenomenon due to the reflected electromagnetic waves. It is not suitable as a shielding material.

도 4에 도시된 바와 같이, MCF/PU tape의 차폐 효율은 99.9998% (-57.3 dB)이다. 도 5(c)에 도시된 바와 같이, MCF/PU tape는 인가된 전자기파(Incident EM Wave)를 일부 반사하고, 대부분 흡수하고, 일부를 감쇄시켜 투과시킨다. 이로 인해, MCF/PU tape는 내부 전자기기를 외부 전자기파로부터 보호하는 성능이 우수하고, 흡수성능이 우수하여 외부 전자기기에 영향을 최소화 할 수 있다. 이러한 MCF/PU tape는 전자기파 차폐 성능에서 Cu/PS tape와 0.00016% (-8.1dB)의 미세한 차이를 보이며, 차폐재로 사용하기 적절하다.4, the shielding efficiency of the MCF/PU tape is 99.9998% (-57.3 dB). As shown in Fig. 5(c), the MCF/PU tape partially reflects, mostly absorbs, and attenuates a part of the applied electromagnetic wave (Incident EM Wave). For this reason, MCF/PU tape is excellent in protecting internal electronic devices from external electromagnetic waves, and has excellent absorption performance, so that the influence of external electronic devices can be minimized. These MCF/PU tapes show a minute difference of 0.00016% (-8.1dB) from Cu/PS tapes in electromagnetic wave shielding performance, and are suitable for use as shielding materials.

그 이유를 MCF/PU tape의 복소유전율과 복소투자율로 설명할 수 있다.The reason can be explained by the complex dielectric constant and complex permeability of MCF/PU tape.

도 6 및 도 7을 참조하면, 복소유전율은 복소수로, 실수부인 ε′과 허수부인 ε″으로 표현된다.6 and 7, the complex dielectric constant is a complex number and is expressed by ε′ as a real part and ε″ as an imaginary part.

복소유전율은 외부 전기장에 반응하며, 전기장 반대방향으로 분자들이 유전 분극(+/-)을 이루어, 매질MCF, CF, Cu 등) 내부에 전기장이 형성되어, 외부 전기장의 세기를 감소시키는 정도를 나타낸다. The complex dielectric constant responds to an external electric field, and molecules form dielectric polarization (+/-) in the opposite direction of the electric field, and an electric field is formed inside the medium (MCF, CF, Cu, etc.), indicating the degree to which the intensity of the external electric field is reduced. .

복소유전율의 실수부는 외부 전기장이 매질 내에서 감소된 비율을 나타내며, 유전율이 높은 매질에서 외부 전기장의 세기가 줄어든다.The real part of the complex dielectric constant represents the rate at which the external electric field is reduced in the medium, and the intensity of the external electric field is reduced in the medium with a high dielectric constant.

한편, 주파수가 증가할수록 관성으로 인해 전파의 속도에 따라 외부 전기장 세기를 감소시킬 수 없으나, 이때, 복소유전율의 허수부에 의해서 외부 전기장 세기를 감소시킬 수 있다.Meanwhile, as the frequency increases, the external electric field strength cannot be reduced according to the speed of the propagation due to inertia, but at this time, the external electric field strength may be reduced by the imaginary part of the complex dielectric constant.

도 8에 도시된 복소유전율 손실은 (복소유전율 허수부(ε″)/복소유전율 실수부(ε′))로 계산된다. 복소유전율 손실이 커질수록, 외부 전기장의 세기를 감소시킬 수 있다. 도 8에 도시된 바와 같이, MCF/PU tape는 주파수가 커질수록 복소유전율 손실이 커져, 외부 전기장의 세기를 크게 감소시킬 수 있다.The loss of the complex dielectric constant shown in FIG. 8 is calculated as (the complex dielectric constant imaginary part (ε″)/the complex dielectric constant real part (ε')). As the loss of the complex dielectric constant increases, the intensity of the external electric field can be reduced. As shown in FIG. 8, the MCF/PU tape increases the complex dielectric constant loss as the frequency increases, and thus the strength of the external electric field can be greatly reduced.

도 9 및 도 10을 참조하면, 복소투자율은 복소수로, 실수부인 μ′과 허수부인 μ″으로 표현된다.9 and 10, the complex permeability is expressed as a complex number, which is a real part µ'and an imaginary part µ″.

복소투자율은 외부 자기장에 반응하여, 물질 내에서 자기 분극(N/S)이 일어나고, 이로 인해 자기장이 형성되어, 외부 자기장의 세기를 감소시키는 정도를 나타낸다. The complex permeability represents the degree to which magnetic polarization (N/S) occurs in a material in response to an external magnetic field, thereby forming a magnetic field, thereby reducing the intensity of the external magnetic field.

복소투자율 실수부는 외부 자기장의 매질 내에서 감소된 비율을 나타내며, 매질 내에서 생성된 자기장이 클수록 외부 자기장의 세기가 감소한다.The complex magnetic permeability real part represents a reduced ratio in the medium of the external magnetic field, and the strength of the external magnetic field decreases as the magnetic field generated in the medium increases.

복소투자율 허수부가 큰 소재를 사용하면, 저항 소자로 동작하여 불필요한 노이즈를 흡수한다.If a material with a large complex permeability imaginary part is used, it acts as a resistance element and absorbs unnecessary noise.

도 11에 도시된 복소투자율 손실은 (복소투자율 허수부(μ″)/복소투자율 실수부(μ′))로 계산된다. 복자투자율 손실이 1 이상이면 전자기파 흡수가 발생한다.The complex permeability loss shown in FIG. 11 is calculated as (complex permeability imaginary part (μ″)/complex permeability real part (μ′)). An electromagnetic wave absorption occurs when the double magnetic permeability loss is 1 or more.

도 11에 도시된 바와 같이, MCF/PU tape는 표면에 코팅된 자성인 Ni로 인해, 복소투자율 손실(10 이상)이 크다. 이로 인해, MCF/PU tape는 전자기파 중에서 자기장 세기를 크게 감소시킬 수 있다.As shown in FIG. 11, the MCF/PU tape has a large loss of complex permeability (10 or more) due to the magnetic Ni coated on the surface. For this reason, MCF/PU tape can greatly reduce the magnetic field strength among electromagnetic waves.

도 12에 도시된 바와 같이, 상술한 복소유전율과 복소투자율을 가진 MCF/PU tape의 차폐 성능을 CF/PU tape와 Cu/PS tape와 비교해서 표로 정리하였다.As shown in FIG. 12, the shielding performance of the MCF/PU tape having the complex dielectric constant and the complex permeability described above was compared with the CF/PU tape and the Cu/PS tape and summarized in a table.

도 12에 도시된 바와 같이, MCF/PU tape의 차폐 성능은, Cu/PS tape의 차폐 성능과 큰 차이가 없음을 알 수 있다.As shown in FIG. 12, it can be seen that the shielding performance of the MCF/PU tape is not significantly different from the shielding performance of the Cu/PS tape.

상술한 금속코팅 탄소섬유의 전자기적 물성 조절 방법을 사용하면, 전자기파 차폐재 외에도, 금속코팅 탄소섬유의 전자기적 물성을 발열선, 센서 등 사용분야에 따라 정밀하게 조절할 수 있다.When the above-described method of controlling the electromagnetic properties of the metal-coated carbon fiber is used, in addition to the electromagnetic wave shielding material, the electromagnetic properties of the metal-coated carbon fiber can be precisely controlled according to the fields of use, such as heating wires and sensors.

Claims (5)

삭제delete 삭제delete 탄소섬유에 코팅할 금속의 종류 및 코팅 방법을 선정하는 제1단계; 및
선정된 금속의 종류 및 코팅 방법에 따라 상기 탄소섬유에 금속을 코팅하되, 상기 탄소섬유에 코팅되는 금속의 형상을 설정된 형상으로 만들면서 코팅하는 제2단계를 포함하며,
상기 제1단계에서,
상기 탄소섬유에 코팅될 금속은 은이며, 상기 은은 상기 탄소섬유에 스퍼터링(sputtering) 방식으로 코팅되며,
상기 제2단계에서,
상기 탄소섬유에 상기 은의 스퍼터링 하는 시간을 조절하여, 상기 은을 상기 탄소섬유에 둥근 알갱이 형상으로 코팅하거나, 상기 탄소섬유의 외주면을 모두 감싸는 원통형 형상으로 코팅하는 것을 특징으로 하는 금속코팅 탄소섬유의 전자기적 물성 조절 방법.
A first step of selecting the type of metal to be coated on the carbon fiber and a coating method; And
A second step of coating a metal on the carbon fiber according to the selected metal type and coating method, but making the shape of the metal coated on the carbon fiber into a set shape, and coating it,
In the first step,
The metal to be coated on the carbon fiber is silver, and the silver is coated on the carbon fiber by a sputtering method,
In the second step,
The electron of the metal-coated carbon fiber, characterized in that by controlling the sputtering time of the silver on the carbon fiber, the silver is coated on the carbon fiber in a round grain shape, or in a cylindrical shape covering all the outer peripheral surfaces of the carbon fiber How to control miracle properties.
삭제delete 탄소섬유에 코팅할 금속의 종류 및 코팅 방법을 선정하는 제1단계; 및
선정된 금속의 종류 및 코팅 방법에 따라 상기 탄소섬유에 금속을 코팅하되, 상기 탄소섬유에 코팅되는 금속의 형상을 설정된 형상으로 만들면서 코팅하는 제2단계를 포함하며,
상기 제1단계에서,
상기 탄소섬유에 코팅될 금속은 니켈이며, 상기 니켈은 상기 탄소섬유에 스퍼터링 무전해 도금 방식으로 코팅되며,
상기 제2단계에서,
상기 탄소섬유에 상기 니켈의 무전해 도금하는 시간을 조절하여, 상기 니켈을 상기 탄소섬유에 둥근 알갱이 형상으로 코팅하거나, 다각형 형상으로 코팅하거나, 타원형 형상으로 코팅하는 것을 특징으로 하는 금속코팅 탄소섬유의 전자기적 물성 조절 방법.
A first step of selecting the type of metal to be coated on the carbon fiber and a coating method; And
A second step of coating a metal on the carbon fiber according to the selected metal type and coating method, but making the shape of the metal coated on the carbon fiber into a set shape, and coating it,
In the first step,
The metal to be coated on the carbon fiber is nickel, and the nickel is coated on the carbon fiber by sputtering electroless plating,
In the second step,
By controlling the electroless plating time of the nickel on the carbon fiber, the nickel is coated on the carbon fiber in a round grain shape, a polygonal shape, or an elliptical shape. How to control electromagnetic properties.
KR1020190165197A 2019-12-12 2019-12-12 Method for controlling electromagnetic properties of metal coated carbon fiber KR102247321B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020190165197A KR102247321B1 (en) 2019-12-12 2019-12-12 Method for controlling electromagnetic properties of metal coated carbon fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020190165197A KR102247321B1 (en) 2019-12-12 2019-12-12 Method for controlling electromagnetic properties of metal coated carbon fiber

Publications (1)

Publication Number Publication Date
KR102247321B1 true KR102247321B1 (en) 2021-05-03

Family

ID=75910566

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020190165197A KR102247321B1 (en) 2019-12-12 2019-12-12 Method for controlling electromagnetic properties of metal coated carbon fiber

Country Status (1)

Country Link
KR (1) KR102247321B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114195477A (en) * 2021-11-29 2022-03-18 辽宁科大中驰镁建材科技有限公司 Sulfur-oxygen-magnesium-based electromagnetic shielding material and preparation method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2879346B2 (en) * 1989-07-03 1999-04-05 東邦レーヨン株式会社 Superconducting fiber material
KR20030022234A (en) * 2003-02-18 2003-03-15 이만호 fiber with metallic layer and their manufacturing method
KR20180067098A (en) * 2016-12-12 2018-06-20 엘에스전선 주식회사 Shield cable using carbon fiber
KR20180137931A (en) * 2017-06-20 2018-12-28 주식회사 유라 Electric wave shielding cable for vehicle and fabrication method for the same
KR102002012B1 (en) 2018-01-17 2019-07-24 주식회사 에이치지솔루션 Carbon fiber bunble for shielding electromagnetic wave and method for manufacturing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2879346B2 (en) * 1989-07-03 1999-04-05 東邦レーヨン株式会社 Superconducting fiber material
KR20030022234A (en) * 2003-02-18 2003-03-15 이만호 fiber with metallic layer and their manufacturing method
KR20180067098A (en) * 2016-12-12 2018-06-20 엘에스전선 주식회사 Shield cable using carbon fiber
KR20180137931A (en) * 2017-06-20 2018-12-28 주식회사 유라 Electric wave shielding cable for vehicle and fabrication method for the same
KR102002012B1 (en) 2018-01-17 2019-07-24 주식회사 에이치지솔루션 Carbon fiber bunble for shielding electromagnetic wave and method for manufacturing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114195477A (en) * 2021-11-29 2022-03-18 辽宁科大中驰镁建材科技有限公司 Sulfur-oxygen-magnesium-based electromagnetic shielding material and preparation method thereof

Similar Documents

Publication Publication Date Title
KR101211842B1 (en) Decorative part
EP1675217B1 (en) Electromagnetic radiation absorber based on magnetic microwires
US5171937A (en) Metal-coated shielding materials and articles fabricated therefrom
US6534708B2 (en) Signal transmission cable with a noise absorbing high loss magnetic film formed on a sheath of the cable
KR102247321B1 (en) Method for controlling electromagnetic properties of metal coated carbon fiber
KR101941884B1 (en) Electromagnetic wave absorber
EA021289B1 (en) Electromagnetic-radiation attenuator
US9907218B2 (en) Near-field noise suppression film
WO2003081973A1 (en) Electromagnetic wave shielding sheet, electromagnetic wave shielding transmission cable and electromagnetic wave shielding lsi
Patel et al. Liquid metamaterial based radome design
CN102723540A (en) Dual passband frequency selective surface and dual passband radome prepared from same
JP5207899B2 (en) Electromagnetic wave transmissive decorative substrate and casing
JP2011029548A (en) Electromagnetic wave transmitting decorative component
JP2001156491A (en) Shielding member and portable wireless device using it, electronic equipment
KR20130014702A (en) Shield for electromagnetic wave and shielding method therefor in mobile station
JP2001345593A (en) Emi tape, emi block, emi electric wire, and emi case
JP2013118405A (en) Electromagnetic wave transmitting decorative component
WO2008156224A1 (en) Laminated structure having high resistance metal thin film of enhanced durability and reliability and forming method thereof
KR20200004258A (en) Electromagnetic-wave-absorbing composite sheet
KR102624045B1 (en) Flexible infrared selective emitter and manufacturing method thereof
US20090101494A1 (en) Method for Producing Internal Antenna with Anti-Electromagnetic Interference Property Through Vacuum Process
KR20170142556A (en) RF coaxial cable
JP2018088479A (en) Electromagnetic wave shield film
KR100517527B1 (en) Thin sheet for electro-magnetic compatibility and heat radiation
KR20080071354A (en) Electro-magnetic wave shielding film and method of fabricating the same

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant