KR102243405B1 - Additives for improving the ionic conductivity of lithium-ion battery electrodes - Google Patents

Additives for improving the ionic conductivity of lithium-ion battery electrodes Download PDF

Info

Publication number
KR102243405B1
KR102243405B1 KR1020167008742A KR20167008742A KR102243405B1 KR 102243405 B1 KR102243405 B1 KR 102243405B1 KR 1020167008742 A KR1020167008742 A KR 1020167008742A KR 20167008742 A KR20167008742 A KR 20167008742A KR 102243405 B1 KR102243405 B1 KR 102243405B1
Authority
KR
South Korea
Prior art keywords
lithium
composite material
weight
battery electrode
formula
Prior art date
Application number
KR1020167008742A
Other languages
Korean (ko)
Other versions
KR20160052658A (en
Inventor
그레고리 슈미트
Original Assignee
아르끄마 프랑스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 아르끄마 프랑스 filed Critical 아르끄마 프랑스
Publication of KR20160052658A publication Critical patent/KR20160052658A/en
Application granted granted Critical
Publication of KR102243405B1 publication Critical patent/KR102243405B1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • H01M4/623Binders being polymers fluorinated polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Secondary Cells (AREA)

Abstract

본 발명은 리튬 이온 배터리를 위한 전극 물질, 바람직하게는 양전극 물질, 상기의 제조 방법, 및 상기 전극 물질을 혼입시킨 리튬 이온 배터리에 관한 것이다. 상기 복합 전극 물질은 하기를 포함한다:
- 전기 전도성 첨가제, 예컨대 탄소;
- 리튬의 옥시드, 포스페이트, 플루오로포스페이트 또는 실리케이트인 활성 물질;
- 폴리머 결합제, 예컨대 PVDF; 및
- 명시된 화학 제형에 상응하는 유기 염, 예를 들어 LiPDI, LiTDI, LiPDCI, LiDCTA, LiFSI, LiTFSI (임의로는, 혼합물로서).
유기 염은 전극의 이온 전도성을 증가시키는 것을 가능하게 만든다.
The present invention relates to an electrode material for a lithium ion battery, preferably a positive electrode material, a method of manufacturing the above, and a lithium ion battery incorporating the electrode material. The composite electrode material includes:
-Electrically conductive additives such as carbon;
-Active substances which are oxides, phosphates, fluorophosphates or silicates of lithium;
-Polymeric binders such as PVDF; And
-Organic salts corresponding to the specified chemical formulation, for example LiPDI, LiTDI, LiPDCI, LiDCTA, LiFSI, LiTFSI (optionally as a mixture).
Organic salts make it possible to increase the ionic conductivity of the electrode.

Description

리튬-이온 배터리 전극의 이온 전도성 개선을 위한 첨가제 {ADDITIVES FOR IMPROVING THE IONIC CONDUCTIVITY OF LITHIUM-ION BATTERY ELECTRODES}Additives for improving the ion conductivity of lithium-ion battery electrodes {ADDITIVES FOR IMPROVING THE IONIC CONDUCTIVITY OF LITHIUM-ION BATTERY ELECTRODES}

본 발명은 일반적으로 Li-이온 유형의 리튬 저장 배터리의 전기 에너지 저장의 분야에 관한 것이다. 더 구체적으로는, 본 발명은 Li-이온 배터리 전극 물질, 그 제조 방법 및 Li-이온 배터리에서의 그 용도에 관한 것이다. 본 발명의 또다른 주제물은 상기 전극 물질을 혼입시킴으로써 제조되는 Li-이온 배터리이다.The present invention relates generally to the field of electrical energy storage of lithium storage batteries of the Li-ion type. More specifically, the present invention relates to a Li-ion battery electrode material, a method of making the same, and its use in Li-ion batteries. Another subject matter of the present invention is a Li-ion battery manufactured by incorporating the electrode material.

Li-이온 저장 배터리 또는 리튬 배터리의 기본 전지는 일반적으로 리튬 금속으로 만들어진 또는 탄소 기재의 애노드 (방전시) 및 일반적으로 금속 옥시드 유형의 리튬 삽입 화합물, 예컨대 LiMn2O4, LiCoO2 또는 LiNiO2 로 만들어진 캐쏘드 (마찬가지로, 방전시) 를 포함하는데, 그 사이에 리튬 이온을 전도시키는 전해질이 삽입된다.Li-ion storage batteries or basic cells of lithium batteries are generally made of lithium metal or carbon based anodes (when discharged) and lithium intercalating compounds of the generally metal oxide type, such as LiMn 2 O 4 , LiCoO 2 or LiNiO 2 It includes a cathode made of (likely, when discharging), between which an electrolyte that conducts lithium ions is inserted.

사용시에, 따라서 배터리의 방전 동안, 이온 형태 Li+ 로 애노드에 의한 (-) 극에서의 산화에 의해 방출된 리튬은 전도성 전해질을 통해 이동하고, 캐쏘드 (+) 극의 활성 물질의 결정 격자에서의 환원 반응에 의해 삽입될 것이다. 배터리의 내부 회로의 각 Li+ 이온의 통과는 외부 회로의 전자의 통과에 의해 정확히 보완되는데, 컴퓨터 또는 전화기와 같은 휴대용 전자제품 분야, 또는 전기 자동차와 같은 보다 큰 전력 및 에너지 밀도의 적용 분야의 각종 기기를 공급하는데 사용될 수 있는 전류를 발생시킨다.In use, therefore, during the discharge of the battery, the lithium released by oxidation at the negative pole by the anode in the ionic form Li + moves through the conductive electrolyte and in the crystal lattice of the active material of the cathode (+) pole. Will be inserted by the reduction reaction of. The passage of each Li + ion in the internal circuit of the battery is precisely compensated by the passage of electrons in the external circuit. It generates an electric current that can be used to supply the equipment.

충전시, 전기화학 반응은 뒤바뀌고, 리튬 이온은 (+) 극, "캐쏘드" (방전시의 캐쏘드는 재충전시의 애노드가 됨) 에서의 산화에 의해 방출되고, 이들은 전도성 전해질을 통해 그로부터의 역 방향으로 이동하며 (여기서, 이들은 방전 동안 순환됨), (-) 극, "애노드" (마찬가지로, 방전시의 애노드는 재충전시의 캐쏘드가 됨) 에서의 환원에 의해 침착 또는 삽입될 것이며, 이때 이들은 단락 회로의 가능한 원인인 리튬 금속의 댄드라이트(dendrite) 를 형성할 수 있다.Upon charging, the electrochemical reaction is reversed, and lithium ions are released by oxidation at the (+) pole, the “cathode” (the cathode at discharge becomes the anode upon recharging), and they are released from it via the conductive electrolyte. Moving in the reverse direction (where they circulate during discharging), negative poles, "anode" (likely, the anode at discharging becomes the cathode upon recharging) will be deposited or inserted by reduction at this time They can form dendrites of lithium metal, which are possible causes of short circuits.

캐쏘드 또는 애노드는 일반적으로 하기로 이루어진 복합 물질이 침착된 하나 이상의 집전 장치를 포함한다: 하나 이상의 "활성" 물질 (리튬에 대하여 전기화학 활성을 나타내기 때문에 활성임), 결합제로서 작용하고 일반적으로 폴리비닐리덴 플루오라이드와 같은 관능기화 또는 비관능기화 플루오로폴리머, 또는 카르복시메틸셀룰로오스 유형의 수성-기재 폴리머, 또는 스티렌/부타디엔 라텍스인 하나 이상의 폴리머, 더불어 하나 이상의 전자-전도성 첨가제 (일반적으로, 탄소의 동소체 형태임).The cathode or anode generally comprises one or more current collectors deposited with a composite material consisting of: one or more "active" substances (which are active because they exhibit electrochemical activity towards lithium), which act as a binder and generally Functionalized or non-functionalized fluoropolymers such as polyvinylidene fluoride, or aqueous-based polymers of the carboxymethylcellulose type, or at least one polymer which is a styrene/butadiene latex, plus at least one electron-conducting additive (typically Is an allotropic form of).

음전극에서의 종래의 활성 물질은 일반적으로 리튬 금속, 그래파이트, 규소/탄소 복합물, 규소, CFx 유형의 플루오로그래파이트 (x 는 0 내지 1 임) 및 LiTi5O12 유형의 티타네이트이다.Conventional active materials in the negative electrode are generally lithium metal, graphite, silicon/carbon composites, silicon, fluorographite of type CF x (x is 0 to 1) and titanate of type LiTi 5 O 12.

양전극에서의 종래의 활성 물질은 일반적으로 LiMO2 유형, LiMPO4 유형, Li2MPO3F 유형, Li2MSiO4 유형 (이때, M 은 Co, Ni, Mn, Fe 또는 이들의 조합임), LiMn2O4 유형 또는 S8 유형이다.Conventional active materials in the positive electrode are generally LiMO 2 type, LiMPO 4 type, Li 2 MPO 3 F type, Li 2 MSiO 4 type (where M is Co, Ni, Mn, Fe or a combination thereof), LiMn 2 O 4 type or S 8 type.

최근에, 전해질의 전극의 코어로의 투과성의 개선을 가능하게 만드는 첨가제를 사용해 왔다. 고에너지 배터리, 다시 말해 보다 높은 전기 저장 용량을 갖는 배터리에 관한 수요 성장의 결과로서, 전극의 두께가 증가하고 있고 따라서 전해질의 투과성이 배터리의 전체 저항성에 있어서 중요해지고 있다. 상기 투과성의 개선 목적으로, 특허 WO2005/011044 는 Al2O3 및 SiO2 와 같은 금속 옥시드의 "무기" 충전제의 첨가를 기재한다.Recently, additives have been used that make it possible to improve the permeability of the electrolyte to the core of the electrode. As a result of the growing demand for high energy batteries, ie batteries with higher electrical storage capacity, the thickness of the electrode is increasing and thus the permeability of the electrolyte is becoming important for the overall resistivity of the battery. For the purpose of improving the permeability, patent WO2005/011044 describes the addition of "inorganic" fillers of metal oxides such as Al 2 O 3 and SiO 2.

이들 무기 충전제는 전극의 종래의 제조 방법 동안에 첨가된다. 상기 종래의 방법은, 예를 들어 N-메틸피롤리돈, 아세톤, 물 또는 에틸렌 카르보네이트와 같은 용매 또는 용매들의 혼합물 중에 상이한 성분들을 혼합하는 것으로 이루어진다.These inorganic fillers are added during conventional manufacturing methods of electrodes. The conventional method consists of mixing different components in a solvent or mixture of solvents such as, for example, N-methylpyrrolidone, acetone, water or ethylene carbonate.

a) 복합 물질의 총 중량에 대해 1 내지 5 중량%, 바람직하게는 1.5 내지 4 중량% 또는 1 내지 2.5 중량%, 바람직하게는 1.5 내지 2.2 중량% 의 함량 범위의, 하나 이상의 전도성 첨가제;a) at least one conductive additive in a content range of 1 to 5% by weight, preferably 1.5 to 4% by weight or 1 to 2.5% by weight, preferably 1.5 to 2.2% by weight, relative to the total weight of the composite material;

b) Li/Li+ 쌍에 대해 2V 보다 큰 전기화학 전위를 갖는, 리튬을 갖는 삽입 화합물을 가역적 형성할 수 있는 전극 활성 물질로서의 리튬 옥시드, 포스페이트, 플루오로포스페이트 또는 실리케이트;b) lithium oxide, phosphate, fluorophosphate or silicate as an electrode active material capable of reversibly forming an intercalating compound with lithium, having an electrochemical potential greater than 2V for the Li/Li + pair;

c) 폴리머 결합제.c) polymeric binder.

이어서, 수득한 잉크가 집전 장치 상에 코팅되고, 용매 또는 용매들은 30 내지 200℃ 범위의 가열에 의해 증발된다.Then, the obtained ink is coated on the current collector, and the solvent or solvents are evaporated by heating in the range of 30 to 200°C.

이들 무기 충전제의 결함은 전극의 활성 물질의 양을 감소시킴으로써 배터리의 용량을 감소시킨다는 점이지만, 또한 이들 충전제만이 전해질의 거시적 확산의 개선을 가능하게 만든다.The drawback of these inorganic fillers is that they reduce the capacity of the battery by reducing the amount of active material in the electrode, but also only these fillers make it possible to improve the macroscopic diffusion of the electrolyte.

사실상, 전극에서, 배터리의 성능에 대해 제한하는 활성 물질/전해질 계면의 전하 저항성인 것이다. 상기 저항성은 거시적 무기 충전제의 첨가에 의해 개선될 수 없는 미시적 효과이다.In fact, in the electrode, it is the charge resistance of the active material/electrolyte interface that limits the performance of the battery. The resistance is a microscopic effect that cannot be improved by the addition of macroscopic inorganic fillers.

출원인은, 활성 물질의 표면에서 바람직한 상호작용을 갖도록 선택된 유기 음이온으로 이루어진 염의 첨가가 전극의 이온 전도성의 증가를 가능하게 만든다는 점을 발견하였다.Applicants have found that the addition of salts consisting of organic anions selected to have desirable interactions on the surface of the active material makes it possible to increase the ionic conductivity of the electrode.

본 발명은 우선 Li-이온 저장 배터리의 전극의 제형, 바람직하게는 캐쏘드 제형의 이온 전도성 첨가제로서의 유기 염의 용도에 관한 것이다. 이들 염은 또한 Na-이온 배터리의 전극의 제형으로 사용될 수 있다.The present invention relates firstly to the use of organic salts as ion conductive additives in the formulation of electrodes of Li-ion storage batteries, preferably in cathode formulations. These salts can also be used in the formulation of electrodes of Na-ion batteries.

본 발명의 또다른 주제물은 배터리 전극으로서의 상기 제형의 용도이다.Another subject matter of the present invention is the use of the formulation as a battery electrode.

이온-전도성 첨가제는 상기 기재된 전극의 제조 방법의 조건을 견딜 수 있어야 한다. 예를 들어, 친핵성 용매에 대한 불안정성 및 온도 불안정성으로 인해 LiPF6, 대부분의 전해질에서 현재 사용되는 리튬 염은 이온 전도성 첨가제로서 사용될 수 없다.The ion-conducting additive must be able to withstand the conditions of the method for manufacturing the electrode described above. For example, LiPF 6 , a lithium salt currently used in most electrolytes, cannot be used as an ion conductive additive due to instability to nucleophilic solvents and temperature instability.

본 발명은 또한 하기를 포함하는, Li-이온 배터리 전극 복합 물질, 바람직하게는 양전극 물질에 관한 것이다:The invention also relates to a Li-ion battery electrode composite material, preferably a positive electrode material, comprising:

a) 복합 물질의 총 중량에 대해 1 내지 5 중량%, 바람직하게는 1.5 내지 4 중량% 또는 1 내지 2.5 중량%, 바람직하게는 1.5 내지 2.2 중량% 의 함량 범위의, 하나 이상의 전자-전도성 첨가제;a) at least one electron-conducting additive in a content range of 1 to 5% by weight, preferably 1.5 to 4% by weight or 1 to 2.5% by weight, preferably 1.5 to 2.2% by weight, relative to the total weight of the composite material;

b) Li/Li+ 쌍에 대해 2V 보다 큰 전기화학 전위를 갖는, 리튬을 갖는 삽입 화합물을 가역적 형성할 수 있는 전극 활성 물질로서의 리튬 옥시드, 포스페이트, 플루오로포스페이트 또는 실리케이트;b) lithium oxide, phosphate, fluorophosphate or silicate as an electrode active material capable of reversibly forming an intercalating compound with lithium, having an electrochemical potential greater than 2V for the Li/Li + pair;

c) 폴리머 결합제;c) polymeric binders;

d) 하나 이상의 식 A 및/또는 B 의 유기 염:d) at least one organic salt of formula A and/or B:

Figure 112016031783834-pct00001
Figure 112016031783834-pct00001

식 (A) 에서, -Xi- 는 독립적으로 하기 기 또는 원자를 나타내고: -N=, -N--, -C(R)=, -C-(R)-, -O-, -S(=O)(R)= 또는 -S(R)=, R 은 F, CN, NO2, S-CN, N=C=S, -OCnHmFp, -CnHmFp (n, m 및 p 는 정수임) 로부터 선택되는 기를 나타낸다. 특히 바람직한 식 (A) 의 화합물은 하기 나타낸 이미다졸레이트, 유리하게는 리튬 이미다졸레이트이다:In formula (A), -X i - to the group independently represents an atom or: -N =, -N - -, -C (R) =, -C - (R) -, -O-, -S (=O)(R)= or -S(R)=, R is F, CN, NO 2 , S-CN, N=C=S, -OC n H m F p , -C n H m F p (n, m and p are integers) represents a group selected from. Particularly preferred compounds of formula (A) are imidazolates shown below, advantageously lithium imidazolates:

Figure 112016031783834-pct00002
Figure 112016031783834-pct00002

[식 중, R 은 F 또는 -CnHmFp 를 나타냄]. 이들 리튬 염은 물에 대한 그 불감응성으로 인해 특히 유리한데, 이는 전극의 제조 방법에서의 가능한 단순 사용을 만든다.[In the formula, R represents F or -C n H m F p ]. These lithium salts are particularly advantageous because of their insensitivity to water, which makes possible simple use in the manufacturing method of the electrode.

식 (B) 에서, Rf 는 F, CF3, CHF2, CH2F, C2HF4, C2H2F4, C2H3F2, C2F5, C3F6, C3H2F5, C3H4F3, C4F9, C4H2F7, C4H4F5, C5F11, C3F5OCF3, C2F4OCF3, C2H2F2OCF3 또는 CF2OCF3 을 나타내고, Z 는 F, CN, SO2Rf, CO2Rf 또는 CORf 로부터 선택되는 전자 끄는 기를 나타낸다.In formula (B), R f is F, CF 3 , CHF 2 , CH 2 F, C 2 HF 4 , C 2 H 2 F 4 , C 2 H 3 F 2 , C 2 F 5 , C 3 F 6 , C 3 H 2 F 5 , C 3 H 4 F 3 , C 4 F 9 , C 4 H 2 F 7 , C 4 H 4 F 5 , C 5 F 11 , C 3 F 5 OCF 3 , C 2 F 4 OCF 3 , C 2 H 2 F 2 OCF 3 or CF 2 OCF 3 , Z represents an electron withdrawing group selected from F, CN, SO 2 R f , CO 2 R f or COR f.

상기 일반식에서, M+ 은 리튬 양이온, 나트륨 양이온, 4 차 암모늄 또는 이미다졸륨을 나타낸다.In the above general formula, M + represents a lithium cation, sodium cation, quaternary ammonium or imidazolium.

바람직하게는, 성분 (d) 는 물질의 총 중량에 대해 0.01 내지 10 중량%, 유리하게는 0.05 내지 5 중량% 로 가변적일 수 있다.Preferably, component (d) can vary from 0.01 to 10% by weight, advantageously from 0.05 to 5% by weight, relative to the total weight of the material.

폴리머 결합제는 유리하게는 폴리비닐리덴 플루오라이드 (PVDF) 와 같은 관능기화 또는 비관능기화 플루오로폴리머, 또는 카르복시메틸셀룰로오스 유형의 수성-기재 폴리머 또는 스티렌-부타디엔 라텍스로부터 선택된다.The polymeric binder is advantageously selected from functionalized or non-functionalized fluoropolymers such as polyvinylidene fluoride (PVDF), or aqueous-based polymers of the carboxymethylcellulose type or styrene-butadiene latex.

전자-전도성 첨가제는 바람직하게는 탄소의 상이한 동소체 형태 또는 전도성 유기 폴리머로부터 선택된다.The electron-conducting additive is preferably selected from conductive organic polymers or different allotropic forms of carbon.

전극의 제조Manufacture of electrodes

본 발명의 또다른 주제물은 하기를 포함하는, 상기 기재된 전극 복합 물질의 제조 방법이다:Another subject matter of the present invention is a method for preparing the electrode composite material described above, comprising:

i) 적어도, 하기를 포함하는 현탁물의 제조 단계:i) a step for preparing a suspension comprising at least:

- 하나 이상의 식 A 및/또는 B 의 유기 염;-One or more organic salts of formulas A and/or B;

- 전자-전도성 첨가제;-Electron-conducting additives;

- 폴리머 결합제;-Polymer binders;

- 하나 이상의 휘발성 용매;-One or more volatile solvents;

- 리튬 옥시드, 포스페이트, 플루오로포스페이트 또는 실리케이트로부터 선택되는 전극 활성 물질, 및-An electrode active material selected from lithium oxide, phosphate, fluorophosphate or silicate, and

ii) (i) 에서 제조한 현탁물로부터 개시한, 필름의 제조 단계.ii) The step of producing a film, starting from the suspension prepared in (i).

현탁물을 임의의 기계적 방식으로, 예를 들어 로터-스테이터(rotor-stator) 또는 앵커 교반기를 사용해, 또는 초음파에 의해서 분산 및 균질화에 의해 수득할 수 있다.The suspension can be obtained in any mechanical manner, for example by means of a rotor-stator or anchor stirrer, or by dispersion and homogenization by means of ultrasonic waves.

현탁물을 순수 상태 또는 하나 이상의 휘발성 용매(들) 중의 용액의 형태의 폴리머, 순수 상태 또는 하나 이상의 휘발성 용매(들) 중의 현탁물의 형태의 유기 염, 전자-전도성 첨가제 및 순수 상태의 활성 물질로부터 임의로는 50 내지 150℃ 의 온도에서의 건조 단계 후에 제조할 수 있다.The suspension is optionally from polymers in the pure state or in the form of solutions in one or more volatile solvent(s), organic salts in the pure state or in the form of suspensions in one or more volatile solvent(s), electron-conducting additives and active substances in the pure state. Can be prepared after the drying step at a temperature of 50 to 150 ℃.

바람직하게는, 휘발성 용매(들) 는 유기 용매 또는 물로부터 선택된다. 특히, 유기 용매로서 유기 용매 N-메틸피롤리돈 (NMP) 또는 디메틸 술폭시드 (DMSO) 를 언급할 수 있다.Preferably, the volatile solvent(s) is selected from organic solvents or water. In particular, organic solvents N-methylpyrrolidone (NMP) or dimethyl sulfoxide (DMSO) may be mentioned as the organic solvent.

현탁물을 단일 단계, 또는 2 또는 3 개의 연이은 단계로 제조할 수 있다. 현탁물을 2 개의 연이은 단계로 제조하는 경우, 하나의 구현예는 제 1 단계에서 용매, 유기 염(들) 및 임의로는 폴리머 결합제 모두 또는 일부를 함유하는 분산물을 기계적 방식을 사용해 제조한 후, 제 2 단계에서 복합 물질의 기타 성분을 상기 제 1 분산물에 첨가하는 것으로 이루어진다. 이어서, 필름을 제 2 단계의 종료시에 현탁물로부터 수득한다.Suspensions can be prepared in a single step, or in two or three successive steps. When the suspension is prepared in two successive steps, one embodiment is to prepare a dispersion containing all or part of a solvent, organic salt(s) and optionally a polymeric binder in the first step using a mechanical method, and then It consists in adding other components of the composite material to the first dispersion in a second step. The film is then obtained from the suspension at the end of the second step.

현탁물을 3 개의 연이은 단계로 제조하는 경우, 하나의 구현예는 제 1 단계에서 용매 중의 유기 염(들) 및 임의로는 폴리머 결합제 모두 또는 일부를 함유하는 분산물을 제조한 후, 제 2 단계에서 활성 물질을 첨가하고 용매를 제거하여 분말을 수득한 다음, 용매 및 복합 물질의 성분의 나머지를 첨가해 현탁물을 수득하는 것으로 이루어진다. 이어서, 필름을 제 3 단계의 종료시에 현탁물로부터 수득한다.When the suspension is prepared in three successive steps, one embodiment is to prepare a dispersion containing all or part of an organic salt(s) in a solvent and optionally a polymeric binder in the first step, followed by the second step. It consists in adding the active substance and removing the solvent to obtain a powder, and then adding the solvent and the remainder of the components of the composite substance to obtain a suspension. The film is then obtained from the suspension at the end of the third step.

식 A 및/또는 B 의 유기 염의 용해를 0 내지 150℃, 바람직하게는 10 내지 100℃ 범위의 온도에서 수행할 수 있다.Dissolution of the organic salts of formulas A and/or B can be carried out at a temperature in the range of 0 to 150°C, preferably 10 to 100°C.

본 발명의 또다른 주제물은 전극 복합 물질의 제조에서의, 이온 전도성 첨가제로서의 하나 이상의 식 A 및/또는 B 의 유기 염의 용도이다.Another subject matter of the present invention is the use of one or more organic salts of formulas A and/or B as ion conductive additives in the manufacture of electrode composite materials.

추가로, 본 발명의 주제물은 상기 물질을 혼입시킨 Li-이온 배터리이다.Additionally, the subject matter of the present invention is a Li-ion battery incorporating the above material.

실시예 1:Example 1:

Figure 112016031783834-pct00003
Figure 112016031783834-pct00003

교반을 로터-스테이터를 사용해 수행한다. 0.0197 g 의 LiTDI (상기 식) 를 플라스크에 둔다. 용해를 7.08 g 의 NMP 로 수행하고, 용액을 25℃ 에서 10 분 동안 교반시켜 둔다. 0.1974 g 의 PVDF (Kynar®) 를 첨가하고, 혼합물을 50℃ 에서 30 분 동안 교반시켜 둔다. 이어서, 0.1982 g 의 Super P 탄소 (Timcal®) 를 첨가하고, 혼합물을 2 시간 동안 교반시켜 둔다. 마지막으로, 4.5567 g 의 LiMn2O4 및 2.52 g 의 NMP 를 첨가하고, 혼합물을 3 시간 동안 교반시켜 둔다. 이어서, 현탁물을 알루미늄 시이트 위에 100 μm 두께의 필름 형태로 확산시킨다. 필름을 130℃ 에서 5 시간 동안 건조시킨다.Stirring is carried out using a rotor-stator. 0.0197 g of LiTDI (formula above) is placed in the flask. Dissolution is carried out with 7.08 g of NMP, and the solution is left to stir at 25° C. for 10 minutes. Adding a PVDF (Kynar ®) of 0.1974 g and was placed and the mixture was stirred at 50 ℃ for 30 minutes. Then 0.1982 g of Super P carbon (Timcal®) are added and the mixture is left to stir for 2 hours. Finally, 4.5567 g of LiMn 2 O 4 and 2.52 g of NMP are added, and the mixture is left to stir for 3 hours. Subsequently, the suspension is diffused on an aluminum sheet in the form of a film having a thickness of 100 μm. The film is dried at 130° C. for 5 hours.

실시예 2:Example 2:

Figure 112016031783834-pct00004
Figure 112016031783834-pct00004

교반을 로터-스테이터를 사용해 수행한다. 0.0212 g 의 LiTDI 를 플라스크에 둔다. 용해를 2.84 g 의 NMP 로 수행하고, 용액을 25℃ 에서 10 분 동안 교반시켜 둔다. 0.1063 g 의 PVDF (Kynar®) 를 첨가하고, 혼합물을 50℃ 에서 30 분 동안 교반시켜 둔다. 이어서, 0.1059 g 의 Super P 탄소 (Timcal®) 를 첨가하고, 혼합물을 2 시간 동안 교반시켜 둔다. 마지막으로, 4.5580 g 의 LiNi1/3Mn1/3Co1/3O2 및 4.52 g 의 NMP 를 첨가하고, 혼합물을 3 시간 동안 교반시켜 둔다. 현탁물을 알루미늄 시이트 위에 250 μm 두께의 필름 형태로 확산시킨다. 필름을 130℃ 에서 8 시간 동안 건조시켜 둔다.Stirring is carried out using a rotor-stator. 0.0212 g of LiTDI is placed in the flask. Dissolution is carried out with 2.84 g of NMP, and the solution is left to stir at 25° C. for 10 minutes. Adding a PVDF (Kynar ®) of 0.1063 g and was placed and the mixture was stirred at 50 ℃ for 30 minutes. Then, after addition of 0.1059 g Super P carbon (Timcal ®), and puts the mixture was stirred for 2 hours. Finally, 4.5580 g of LiNi 1/3 Mn 1/3 Co 1/3 O 2 and 4.52 g of NMP are added, and the mixture is allowed to stir for 3 hours. The suspension is spread on an aluminum sheet in the form of a 250 μm thick film. The film is left to dry at 130° C. for 8 hours.

Claims (10)

하기를 포함하는, 배터리 전극 복합 물질:
a) 복합 물질의 총 중량에 대해 1 내지 5 중량%, 또는 1.5 내지 4 중량% 또는 1 내지 2.5 중량%, 또는 1.5 내지 2.2 중량% 의 함량 범위의, 하나 이상의 전자-전도성 첨가제;
b) Li/Li+ 쌍에 대해 2V 보다 큰 전기화학 전위를 갖는, 리튬을 갖는 삽입 화합물을 가역적 형성할 수 있는 전극 활성 물질로서의 리튬 옥시드, 포스페이트, 플루오로포스페이트 또는 실리케이트;
c) 폴리머 결합제;
d) 하나 이상의 식 A 의 유기 염:
Figure 112020095677011-pct00006

[식 A 에서 -Xi- 는 독립적으로 하기 기 또는 원자를 나타내고: -N=, -N--, -C(R)=, -C-(R)-, -O-, -S(=O)(R)= 또는 -S(R)=, R 은 F, CN, NO2, S-CN, N=C=S, -OCnHmFp 및 -CnHmFp (n, m 및 p 는 정수임) 로 이루어지는 군으로부터의 기를 나타내고; 그리고 M+ 는 리튬, 나트륨, 4 차 또는 이미다졸륨 양이온을 나타내고, 식 A 의 화합물이 이미다졸레이트임].
Battery electrode composite material, comprising:
a) at least one electron-conducting additive in a content range of 1 to 5% by weight, or 1.5 to 4% by weight or 1 to 2.5% by weight, or 1.5 to 2.2% by weight, relative to the total weight of the composite material;
b) lithium oxide, phosphate, fluorophosphate or silicate as an electrode active material capable of reversibly forming an intercalating compound with lithium, having an electrochemical potential greater than 2V for the Li/Li + pair;
c) polymeric binders;
d) at least one organic salt of formula A:
Figure 112020095677011-pct00006

[I -X in formula A - is independently a group or atom represents: -N =, -N - -, -C (R) =, -C - (R) -, -O-, -S (= O)(R)= or -S(R)=, R is F, CN, NO 2 , S-CN, N=C=S, -OC n H m F p and -C n H m F p (n , m and p are integers); And M + represents lithium, sodium, quaternary or imidazolium cation, and the compound of formula A is imidazolate].
제 1 항에 있어서, 식 A 의 화합물이 리튬 이미다졸레이트인 것을 특징으로 하는 배터리 전극 복합 물질.The battery electrode composite material according to claim 1, wherein the compound of formula A is lithium imidazolate. 제 1 항에 있어서, 유기 염(들) 이 물질의 총 중량에 대해 0.01 내지 10 중량%, 또는 0.05 내지 5 중량% 를 나타내는 것을 특징으로 하는 배터리 전극 복합 물질.The battery electrode composite material according to claim 1, wherein the organic salt(s) represents 0.01 to 10% by weight, or 0.05 to 5% by weight, based on the total weight of the material. 제 1 항에 있어서, 폴리머 결합제가 플루오로폴리머, 수성-기재 폴리머 또는 스티렌/부타디엔 라텍스로부터 선택되는 것을 특징으로 하는 배터리 전극 복합 물질.The battery electrode composite material of claim 1, wherein the polymeric binder is selected from fluoropolymers, water-based polymers or styrene/butadiene latexes. 제 1 항에 있어서, 전자-전도성 첨가제가 탄소의 상이한 동소체 형태 또는 전도성 유기 폴리머로부터 선택되는 것을 특징으로 하는 배터리 전극 복합 물질.The battery electrode composite material of claim 1, wherein the electron-conducting additive is selected from conductive organic polymers or different allotropic forms of carbon. 하기를 포함하는 것을 특징으로 하는, 제 1 항 내지 제 5 항 중 어느 한 항에 따른 배터리 전극 복합 물질의 제조 방법:
i) 적어도, 하기를 포함하는 현탁물의 제조 단계:
- 하나 이상의 식 A 의 유기 염;
- 전자-전도성 첨가제;
- 폴리머 결합제;
- 하나 이상의 휘발성 용매;
- 리튬 옥시드, 포스페이트, 플루오로포스페이트 또는 실리케이트로부터 선택되는 전극 활성 물질, 및
ii) (i) 에서 제조한 현탁물로부터 개시한, 필름의 제조 단계.
A method of manufacturing a battery electrode composite material according to any one of claims 1 to 5, characterized in that it comprises:
i) a step for preparing a suspension comprising at least:
-At least one organic salt of formula A;
-Electron-conducting additives;
-Polymer binders;
-One or more volatile solvents;
-An electrode active material selected from lithium oxide, phosphate, fluorophosphate or silicate, and
ii) The step of producing a film, starting from the suspension prepared in (i).
제 6 항에 있어서, 휘발성 용매(들) 가 유기 용매 및 물로부터 선택되는 것을 특징으로 하는 제조 방법.7. The process according to claim 6, characterized in that the volatile solvent(s) is selected from organic solvents and water. 제 7 항에 있어서, 유기 용매가 N-메틸피롤리돈 또는 디메틸 술폭시드로부터 선택되는 것을 특징으로 하는 제조 방법.8. The method of claim 7, wherein the organic solvent is selected from N-methylpyrrolidone or dimethyl sulfoxide. 제 1 항 내지 제 5 항 중 어느 한 항에 따른 배터리 전극 복합 물질을 포함하는 Li-이온 배터리.Li-ion battery comprising the battery electrode composite material according to any one of claims 1 to 5. 삭제delete
KR1020167008742A 2013-09-05 2014-07-17 Additives for improving the ionic conductivity of lithium-ion battery electrodes KR102243405B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR13.58485 2013-09-05
FR1358485A FR3010236B1 (en) 2013-09-05 2013-09-05 ADDITIVES FOR IMPROVING THE IONIC CONDUCTIVITY OF LI-ION BATTERY ELECTRODES
PCT/FR2014/051833 WO2015033038A1 (en) 2013-09-05 2014-07-17 Additives for improving the ionic conductivity of lithium-ion battery electrodes

Publications (2)

Publication Number Publication Date
KR20160052658A KR20160052658A (en) 2016-05-12
KR102243405B1 true KR102243405B1 (en) 2021-04-21

Family

ID=50023652

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020167008742A KR102243405B1 (en) 2013-09-05 2014-07-17 Additives for improving the ionic conductivity of lithium-ion battery electrodes

Country Status (8)

Country Link
US (1) US20160197349A1 (en)
EP (1) EP3042410B1 (en)
JP (1) JP6475244B2 (en)
KR (1) KR102243405B1 (en)
CN (1) CN105518916B (en)
CA (1) CA2922757C (en)
FR (1) FR3010236B1 (en)
WO (1) WO2015033038A1 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9855286B2 (en) 2012-05-18 2018-01-02 Gruenenthal Gmbh Pharmaceutical composition comprising (1r,4r)-6′-fluoro-N,N-di methyl-4-phenyl-4′,9′-dihydro-3′H-spiro[cyclohexane-1,1′-pyrano-[3,4,b]indol]-4-amine and a salicylic acid component
FR3033448B1 (en) * 2015-03-03 2021-09-10 Arkema France IMPROVED CONDUCTIVITY LI-ION BATTERY ELECTRODES
CN106008262B (en) * 2016-06-13 2018-05-08 武汉海斯普林科技发展有限公司 4,5- dicyano -2- trifluoromethyl imidazoles, its prepare the preparation method of intermediate and its salt
KR20240005976A (en) * 2017-03-27 2024-01-12 하이드로-퀘벡 Salts for use in electrolyte compositions or as electrode additives
FR3081727B1 (en) * 2018-06-01 2022-04-15 Arkema France METHOD FOR PREPARING A BIS(FLUOROSULFONYL)IMIDE LITHIUM SALT
KR20210049114A (en) * 2018-08-08 2021-05-04 브라이트볼트, 인크. Solid polymer matrix electrolyte (PME) for rechargeable lithium batteries, and batteries made using the same
KR102447200B1 (en) * 2019-02-28 2022-09-26 주식회사 엘지에너지솔루션 Electrolyte for lithium secondary battery and lithium secondary battery comprising the same
US11705554B2 (en) 2020-10-09 2023-07-18 Sion Power Corporation Electrochemical cells and/or components thereof comprising nitrogen-containing species, and methods of forming them
CN112271335A (en) * 2020-11-13 2021-01-26 广州天赐高新材料股份有限公司 Electrolyte of lithium ion battery suitable for high-nickel cathode material and lithium ion battery
KR20220136119A (en) 2021-03-31 2022-10-07 주식회사 엘지에너지솔루션 Electrolyte additives for secondary battery, non-aqueous electrolyte for secondary battery comprising same and secondary battery

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011071100A (en) * 2009-08-31 2011-04-07 Sanyo Electric Co Ltd Positive electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery using the same
JP2012500833A (en) * 2008-08-29 2012-01-12 サントル ナスィオナル ド ラ ルシェルシュ スィアンティフィク Five-membered cyclic anion salts and their use in electrolytes
WO2013083894A1 (en) 2011-12-06 2013-06-13 Arkema France Use of lithium salt mixtures as li-ion battery electrolytes

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002050345A (en) * 2000-08-07 2002-02-15 Mitsubishi Chemicals Corp Positive electrode material for lithium secondary cell, positive electrode for lithium secondary cell and lithium secondary cell
JP2002050359A (en) * 2000-08-07 2002-02-15 Mitsubishi Chemicals Corp Manufacturing method of lithium secondary battery positive electrode material and lithium secondary battery positive electrode material
US6673273B2 (en) * 2001-10-24 2004-01-06 3M Innovative Properties Company Crosslinked polymer electrolyte compositions
US20040121234A1 (en) 2002-12-23 2004-06-24 3M Innovative Properties Company Cathode composition for rechargeable lithium battery
WO2006059794A2 (en) * 2004-12-02 2006-06-08 Kabushiki Kaisha Ohara All solid lithium ion secondary battery and a solid electrolyte therefor
JP5224675B2 (en) * 2005-11-28 2013-07-03 株式会社日本触媒 Lithium dicyanotriazolate
CA2534243A1 (en) * 2006-01-25 2007-07-25 Hydro Quebec Coated metal oxide particles with low dissolution rate, methods for their preparation and use in electrochemical systems
JP5826448B2 (en) * 2007-02-21 2015-12-02 株式会社日本触媒 Polymer composition containing ethylene oxide copolymer and lithium secondary battery
WO2008102699A1 (en) * 2007-02-21 2008-08-28 Nippon Shokubai Co., Ltd. Ethylene oxide copolymer, polymer composition and lithium secondary battery
US20090286163A1 (en) * 2008-02-29 2009-11-19 The Regents Of The University Of California Electrolyte mixtures useful for li-ion batteries
JP2011198508A (en) * 2010-03-17 2011-10-06 Sony Corp Lithium secondary battery, electrolyte for lithium secondary battery, power tool, electric vehicle, and power storage system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012500833A (en) * 2008-08-29 2012-01-12 サントル ナスィオナル ド ラ ルシェルシュ スィアンティフィク Five-membered cyclic anion salts and their use in electrolytes
JP2011071100A (en) * 2009-08-31 2011-04-07 Sanyo Electric Co Ltd Positive electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery using the same
WO2013083894A1 (en) 2011-12-06 2013-06-13 Arkema France Use of lithium salt mixtures as li-ion battery electrolytes

Also Published As

Publication number Publication date
WO2015033038A1 (en) 2015-03-12
EP3042410A1 (en) 2016-07-13
JP2016532275A (en) 2016-10-13
FR3010236B1 (en) 2017-01-13
KR20160052658A (en) 2016-05-12
FR3010236A1 (en) 2015-03-06
US20160197349A1 (en) 2016-07-07
CA2922757C (en) 2021-06-01
EP3042410B1 (en) 2018-01-03
JP6475244B2 (en) 2019-02-27
CN105518916A (en) 2016-04-20
CA2922757A1 (en) 2015-03-12
CN105518916B (en) 2019-06-04

Similar Documents

Publication Publication Date Title
KR102243405B1 (en) Additives for improving the ionic conductivity of lithium-ion battery electrodes
CN109286020B (en) Negative pole piece and secondary battery
JP2020064866A (en) Aqueous slurry for battery electrode
KR101946644B1 (en) Electric storage device
TWI552416B (en) Lithium secondary battery
CN108539122A (en) A kind of positive plate and the lithium rechargeable battery comprising the positive plate
JP2018534727A (en) Production method and utilization of carbon-selenium composite material
KR102084245B1 (en) Method for forming a cell of a lithium-ion battery provided with a positive electrode comprising a sacrificial salt
KR20150021033A (en) Lithium-ion secondary battery and method of producing same
KR102601603B1 (en) Lithium metal battery
WO2013185629A1 (en) High energy density charge and discharge lithium battery
US20180316044A1 (en) Method for producing a sodium-ion battery
CN110707287A (en) Metallic lithium cathode, preparation method thereof and lithium battery
JP7396270B2 (en) Lithium ion secondary battery
JP5151329B2 (en) Positive electrode body and lithium secondary battery using the same
CN106104875B (en) Binder composition for secondary battery electrode, slurry for secondary battery electrode composition, electrode for secondary battery and secondary cell
JP7373733B2 (en) Negative electrode for non-aqueous electrolyte secondary batteries
CN110176626B (en) Ionic-electronic co-conductive material and preparation method and application thereof
JP6578496B2 (en) Method for producing sulfur positive electrode
JP2014013702A (en) Electrode for electricity storage device, electricity storage device including the same, and method for manufacturing the electrode
JP2017152139A (en) Lithium ion secondary battery
JP7396271B2 (en) Lithium ion secondary battery
JP2019145375A (en) Sulfur cathode and lithium-sulfur solid battery
CN114583172B (en) Artificial SEI material, SEI film, preparation thereof and application thereof in metal lithium battery
JP7121738B2 (en) Electrode materials, electrodes and solid-state batteries containing composite oxides having an olivine structure

Legal Events

Date Code Title Description
A201 Request for examination
AMND Amendment
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
X091 Application refused [patent]
AMND Amendment
X701 Decision to grant (after re-examination)
GRNT Written decision to grant