KR102241399B1 - 증상의 질병 특이도 측정 시스템 - Google Patents
증상의 질병 특이도 측정 시스템 Download PDFInfo
- Publication number
- KR102241399B1 KR102241399B1 KR1020200107249A KR20200107249A KR102241399B1 KR 102241399 B1 KR102241399 B1 KR 102241399B1 KR 1020200107249 A KR1020200107249 A KR 1020200107249A KR 20200107249 A KR20200107249 A KR 20200107249A KR 102241399 B1 KR102241399 B1 KR 102241399B1
- Authority
- KR
- South Korea
- Prior art keywords
- disease
- symptom
- symptoms
- patient
- specificity
- Prior art date
Links
- 201000010099 disease Diseases 0.000 title claims abstract description 163
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 title claims abstract description 163
- 208000024891 symptom Diseases 0.000 title claims abstract description 163
- 230000014509 gene expression Effects 0.000 claims abstract description 13
- 238000005259 measurement Methods 0.000 claims description 9
- 238000000034 method Methods 0.000 claims description 5
- 238000003745 diagnosis Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 230000002596 correlated effect Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 208000027898 Parkinson disease 7 Diseases 0.000 description 1
- 241000097929 Porphyria Species 0.000 description 1
- 208000010642 Porphyrias Diseases 0.000 description 1
- 208000028017 Psychotic disease Diseases 0.000 description 1
- 230000000875 corresponding effect Effects 0.000 description 1
- 201000004151 lysinuric protein intolerance Diseases 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H50/00—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
- G16H50/30—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for calculating health indices; for individual health risk assessment
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H10/00—ICT specially adapted for the handling or processing of patient-related medical or healthcare data
- G16H10/60—ICT specially adapted for the handling or processing of patient-related medical or healthcare data for patient-specific data, e.g. for electronic patient records
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H50/00—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
- G16H50/50—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for simulation or modelling of medical disorders
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H50/00—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
- G16H50/70—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for mining of medical data, e.g. analysing previous cases of other patients
Landscapes
- Engineering & Computer Science (AREA)
- Medical Informatics (AREA)
- Public Health (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Primary Health Care (AREA)
- Epidemiology (AREA)
- Data Mining & Analysis (AREA)
- Biomedical Technology (AREA)
- Databases & Information Systems (AREA)
- Pathology (AREA)
- Measuring And Recording Apparatus For Diagnosis (AREA)
- Medical Treatment And Welfare Office Work (AREA)
Abstract
Description
도 2는 본 발명에 따른 질병 상관도 산출부가 환자의 전체 증상들에 대해서 특정 질병에 대한 환자 증상 상관도(K)를 산출하는 것을 설명하기 위한 예시도이다.
질병 | 질병 별 증상 발현빈도 | A | B |
Porphyrias | 100% | 7.354 | 7.354 |
Lysinuric protein intolerance | 29% | 7.354 | 2.133 |
Parkinson disease 7 | 4% | 7.354 | 0.294 |
100: 정보 엔트로피 생성부
300: 증상 발현빈도 정보 생성부
500: 증상 특이도 산출부
700: 질병 상관도 산출부
1000: 증상의 질병 특이도 측정 시스템
Claims (4)
- 증상들로 정의된 질병에 대해서, 데이터베이스에 저장된 전체 질병들을 대상으로 환자의 증상이 포함된 질병들에 대한 정보 엔트로피를 산출하는 정보 엔트로피 생성부;
환자의 증상이 포함된 각각의 질병에 대해서 환자의 증상이 발현된 빈도를 나타내는 질병 별 증상 발현빈도 정보를 산출하는 증상 발현빈도 정보 생성부; 및
상기 정보 엔트로피와 상기 질병 별 증상 발현빈도 정보를 이용하여 특정 증상의 질병 별 특이도를 산출하는 증상 특이도 산출부를 포함하고,
상기 정보 엔트로피 생성부는 하기 수학식1에 의해 상기 정보 엔트로피(n)를 산출하고, 상기 증상 발현빈도 정보 생성부는 상기 질병 별 증상 발현빈도 정보(m)를 수학식 2에 의해 산출하는 것을 특징으로 하는 증상의 질병 특이도 측정 시스템.
수학식 1
n = -log(p(Si))
(p(Si) = k/N, 여기서 k = 증상 Si 를 가진 질병 개수, N = 모든 질병 개수)
수학식 2
m = P(Si|Dj)
(Si = 증상이고, Dj = 질병이며, P(Si|Dj)는 특정 질병 Dj에서 특정 증상 Si가 발현되는 빈도이다.) - 삭제
- 제1항에 있어서,
상기 증상 특이도 산출부는 상기 특정 증상의 질병 별 특이도(S)를 수학식 3에 의해 산출하는 것을 특징으로 하는 증상의 질병 특이도 측정 시스템.
수학식 3
S = -log(p(Si))*P(Si|Dj)
(p(Si) = k/N, 여기서 k = 증상 Si 를 가진 질병 개수, N = 모든 질병 개수이고, P(Si|Dj)는 특정 질병 Dj에서 특정 증상 Si가 발현되는 빈도이다.)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020200107249A KR102241399B1 (ko) | 2020-08-25 | 2020-08-25 | 증상의 질병 특이도 측정 시스템 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020200107249A KR102241399B1 (ko) | 2020-08-25 | 2020-08-25 | 증상의 질병 특이도 측정 시스템 |
Publications (1)
Publication Number | Publication Date |
---|---|
KR102241399B1 true KR102241399B1 (ko) | 2021-04-16 |
Family
ID=75743639
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020200107249A KR102241399B1 (ko) | 2020-08-25 | 2020-08-25 | 증상의 질병 특이도 측정 시스템 |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR102241399B1 (ko) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014225176A (ja) * | 2013-05-17 | 2014-12-04 | 株式会社日立製作所 | 分析システム及び保健事業支援方法 |
US20150073306A1 (en) * | 2012-03-29 | 2015-03-12 | The University Of Queensland | Method and apparatus for processing patient sounds |
JP2018120430A (ja) * | 2017-01-25 | 2018-08-02 | 株式会社メドレー | 医療情報提供方法、医療情報提供装置、及びプログラム |
US20200051692A1 (en) * | 2018-08-07 | 2020-02-13 | International Business Machines Corporation | Providing medical treatment using optimized symptom-centric decision trees based on disease-centric knowledge graphs |
EP3623970A1 (en) * | 2017-05-12 | 2020-03-18 | Boe Technology Group Co. Ltd. | Medical intelligent triage method and device |
KR20200057411A (ko) | 2018-11-16 | 2020-05-26 | 이재용 | 인공지능으로 질병을 진단하고 질병정보와 진료기관 정보를 제공하는 의료 정보 제공 장치 및 방법 |
-
2020
- 2020-08-25 KR KR1020200107249A patent/KR102241399B1/ko active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20150073306A1 (en) * | 2012-03-29 | 2015-03-12 | The University Of Queensland | Method and apparatus for processing patient sounds |
JP2014225176A (ja) * | 2013-05-17 | 2014-12-04 | 株式会社日立製作所 | 分析システム及び保健事業支援方法 |
JP2018120430A (ja) * | 2017-01-25 | 2018-08-02 | 株式会社メドレー | 医療情報提供方法、医療情報提供装置、及びプログラム |
EP3623970A1 (en) * | 2017-05-12 | 2020-03-18 | Boe Technology Group Co. Ltd. | Medical intelligent triage method and device |
US20200051692A1 (en) * | 2018-08-07 | 2020-02-13 | International Business Machines Corporation | Providing medical treatment using optimized symptom-centric decision trees based on disease-centric knowledge graphs |
KR20200057411A (ko) | 2018-11-16 | 2020-05-26 | 이재용 | 인공지능으로 질병을 진단하고 질병정보와 진료기관 정보를 제공하는 의료 정보 제공 장치 및 방법 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN112906782A (zh) | 基于dtw与最小二乘估计的轨道静态检查历史数据匹配方法 | |
CN109884679B (zh) | 一种单模gnss系统跨频点混合双差rtk解算方法 | |
CN111623703A (zh) | 一种基于新型卡尔曼滤波的北斗变形监测实时处理方法 | |
CN107831516B (zh) | 融合gnss和地面监测网获取大坝实时高精度位移的方法 | |
JP5849520B2 (ja) | 特性関数によって表現された環境データの注釈付け | |
KR102241399B1 (ko) | 증상의 질병 특이도 측정 시스템 | |
CN110378542A (zh) | 选配过程中零部件测量数据统计特性分析方法 | |
CN107122333A (zh) | 一种降低测量数据不确定度的数据处理方法 | |
Hong et al. | The serial interval of COVID-19 in Korea: 1,567 pairs of symptomatic cases from contact tracing | |
CN112949696A (zh) | 基于dtw与稳健估计的轨道静态检查历史数据匹配方法 | |
CN118210793A (zh) | 一种基于数据指标要求的数据源分析方法 | |
Roshdy et al. | High‐risk inferior myocardial infarction: Can speckle tracking predict proximal right coronary lesions? | |
MX2011005854A (es) | Metodo para derivar valores de presion aortica sistolica central y metodo para analizar un conjunto de datos arteriales para derivar los mismos. | |
Teo et al. | Regional ejection fraction and regional area strain for left ventricular function assessment in male patients after first-time myocardial infarction | |
Kilpattu Ramaniharan et al. | Loss of hippocampal dentation in hippocampal sclerosis and its relationship to memory dysfunction | |
CN105571558B (zh) | 一种压气机叶片展向波纹度的定量检测方法 | |
CN102288937B (zh) | 一种基于测距的定位修正方法 | |
CN111724386B (zh) | 多频成像的数据前处理方法及系统、多频成像系统 | |
CN114297782A (zh) | 载荷谱处理方法、装置、设备及存储介质 | |
CN101373130A (zh) | 空间测量定位系统的相关时间提取及特征时间计算方法 | |
Kumar et al. | Assessment of left ventricular systolic function by velocity vector imaging | |
CN112948974B (zh) | 一种基于证据理论的飞行器性能评估方法和系统 | |
CN113822354B (zh) | 基于贝叶斯反演算建模的微纳米探头动态特性补偿方法 | |
CN114386237B (zh) | 一种电力系统杠杆坏数据的处理方法、装置及存储介质 | |
CN111308432B (zh) | 一种利用测速数据评估航天器测距数据精度的方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PA0109 | Patent application |
Patent event code: PA01091R01D Comment text: Patent Application Patent event date: 20200825 |
|
PA0201 | Request for examination | ||
PA0302 | Request for accelerated examination |
Patent event date: 20200826 Patent event code: PA03022R01D Comment text: Request for Accelerated Examination Patent event date: 20200825 Patent event code: PA03021R01I Comment text: Patent Application |
|
PE0902 | Notice of grounds for rejection |
Comment text: Notification of reason for refusal Patent event date: 20201109 Patent event code: PE09021S01D |
|
PE0902 | Notice of grounds for rejection |
Comment text: Final Notice of Reason for Refusal Patent event date: 20210205 Patent event code: PE09021S02D |
|
PE0701 | Decision of registration |
Patent event code: PE07011S01D Comment text: Decision to Grant Registration Patent event date: 20210402 |
|
PR0701 | Registration of establishment |
Comment text: Registration of Establishment Patent event date: 20210412 Patent event code: PR07011E01D |
|
PR1002 | Payment of registration fee |
Payment date: 20210412 End annual number: 3 Start annual number: 1 |
|
PG1601 | Publication of registration | ||
PR1001 | Payment of annual fee |
Payment date: 20240131 Start annual number: 4 End annual number: 4 |