KR102238709B1 - 무선 주파수 처리 장치 및 방법 - Google Patents

무선 주파수 처리 장치 및 방법 Download PDF

Info

Publication number
KR102238709B1
KR102238709B1 KR1020140120994A KR20140120994A KR102238709B1 KR 102238709 B1 KR102238709 B1 KR 102238709B1 KR 1020140120994 A KR1020140120994 A KR 1020140120994A KR 20140120994 A KR20140120994 A KR 20140120994A KR 102238709 B1 KR102238709 B1 KR 102238709B1
Authority
KR
South Korea
Prior art keywords
signal
processing device
control signal
unit
line coding
Prior art date
Application number
KR1020140120994A
Other languages
English (en)
Other versions
KR20160031234A (ko
Inventor
박준영
손주호
이대영
이정호
Original Assignee
삼성전자주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성전자주식회사 filed Critical 삼성전자주식회사
Priority to KR1020140120994A priority Critical patent/KR102238709B1/ko
Priority to US15/510,647 priority patent/US10284364B2/en
Priority to CN201580061451.9A priority patent/CN107113158B/zh
Priority to EP15840772.6A priority patent/EP3193474B1/en
Priority to PCT/KR2015/009603 priority patent/WO2016039592A1/ko
Publication of KR20160031234A publication Critical patent/KR20160031234A/ko
Application granted granted Critical
Publication of KR102238709B1 publication Critical patent/KR102238709B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L7/00Arrangements for synchronising receiver with transmitter
    • H04L7/02Speed or phase control by the received code signals, the signals containing no special synchronisation information
    • H04L7/027Speed or phase control by the received code signals, the signals containing no special synchronisation information extracting the synchronising or clock signal from the received signal spectrum, e.g. by using a resonant or bandpass circuit
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L7/00Arrangements for synchronising receiver with transmitter
    • H04L7/04Speed or phase control by synchronisation signals
    • H04L7/041Speed or phase control by synchronisation signals using special codes as synchronising signal
    • H04L7/042Detectors therefor, e.g. correlators, state machines
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/3827Portable transceivers
    • H04B1/3888Arrangements for carrying or protecting transceivers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits
    • H04B1/50Circuits using different frequencies for the two directions of communication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/026Arrangements for coupling transmitters, receivers or transceivers to transmission lines; Line drivers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L7/00Arrangements for synchronising receiver with transmitter
    • H04L7/02Speed or phase control by the received code signals, the signals containing no special synchronisation information
    • H04L7/033Speed or phase control by the received code signals, the signals containing no special synchronisation information using the transitions of the received signal to control the phase of the synchronising-signal-generating means, e.g. using a phase-locked loop
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L7/00Arrangements for synchronising receiver with transmitter
    • H04L7/04Speed or phase control by synchronisation signals
    • H04L7/06Speed or phase control by synchronisation signals the synchronisation signals differing from the information signals in amplitude, polarity or frequency or length
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • H04W56/0015Synchronization between nodes one node acting as a reference for the others
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/004Synchronisation arrangements compensating for timing error of reception due to propagation delay
    • H04W56/005Synchronisation arrangements compensating for timing error of reception due to propagation delay compensating for timing error by adjustment in the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/02Details
    • H04J3/06Synchronising arrangements
    • H04J3/0635Clock or time synchronisation in a network
    • H04J3/0685Clock or time synchronisation in a node; Intranode synchronisation

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Power Engineering (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

본 개시의 일 실시 예에 따른 무선 주파수(radio frequency: RF) 처리 장치는 적어도 하나의 안테나와, 상기 적어도 하나의 안테나를 사용하여 기지국과의 통신을 수행하는 RF부와, 중간 주파수(intermediate frequency: IF) 처리 장치로부터 신호를 수신하고, 상기 수신된 신호로부터 상기 기지국과의 통신을 위한 신호 및 제어 신호를 구분하여 출력하는 신호 필터부와, 미리 결정된 코드를 사용하여 상기 제어 신호를 전압 변화 패턴을 갖는 신호로 변환하고, 미리 설정된 방식을 기반으로 상기 전압 변화 패턴을 변경하여 상기 변환된 신호로부터 클럭(clock) 신호를 검출하는 클럭 신호 검출부와, 상기 클럭 신호를 기반으로 하는 타이밍에 상기 제어 신호를 기반으로 하는 동작을 수행하는 제어부를 포함한다.

Description

무선 주파수 처리 장치 및 방법{RADIO FREQUENCY PROCESSING APPARATUS AND METHOD}
본 발명은 무선 주파수 처리 장치 및 방법에 관한 것이다.
무선 통신이 가능한 단말기는 다수개의 부품들로 구성되어 있으며 상기 단말기의 기능은 다양하게 세분화될 수 있다. 영상 및 음성 신호는 에어(air) 매질을 통해 상기 단말기에서 기지국(base station)으로 송신되거나 상기 기지국에서 상기 단말기로 송신될 수 있다. 이에 따라 신호를 상기 단말기(혹은 상기 기지국)가 사용할 수 있는 주파수 대역으로 변환(modulation)하여 에어 매질을 통해 송신하는 과정과 상기 단말기(혹은 상기 기지국)에서 상기 변환된 신호가 수신된 후에는 원래 신호가 가지고 있던 주파수 대역으로 복원(demodulation)하는 과정이 필요하다.
한편 하나의 셀 내에서는 하나의 기지국이 다수개의 단말기들과 동시에 통신을 수행할 수 있다. 이를 위해서는 통신에 참여하는 모든 단말기들과 해당 기지국이 정밀하게 동기화(synchronization) 되어야 한다. 그리고 각 단말기는 주어진 채널 환경에서 작은 전력(power)으로 신호 경로(signal path) 상에 있는 구성 요소들의 동작 조건 및 파라미터(parameter)등을 지속적으로 제어함으로써 신호 대 잡음비(signal to noise radio: SNR)을 최대 값으로 유지해야 한다.
한편 하나의 단말기에 포함된 무선 통신을 수행하기 위한 구성부는 안테나와 연결되어 고주파수(high frequency) 신호를 처리하는 구성부(이하 ‘RFA’라 칭함)와 고주파수 신호를 저주파수(low frequency) 신호로 변환하고, 상기 저주파수 신호를 미리 설정되어 있는 복조 방식에 상응하게 복조하여 획득되는 중간 주파수(intermediate frequency) 신호를 처리하는 구성부(이하 ‘RFB’라 칭함)를 포함할 수 있다.
상기 RFA와 RFB 간에는 다양한 신호들이 송수신될 수 있는데, 해당 신호들이 송신되는 경로(채널)은 신호 타입(type)에 따라 서로 다르다. 예를 들어, 업링크(uplink: UL) 신호/다운링크(downlink: DL) 신호, 제어 신호 및 클럭(clock) 신호는 서로 다른 경로를 통해 송수신될 수 있다. 따라서 상기 RFA와 RFB 간의 연결을 위한 케이블 수는 송수신되는 신호 타입의 수에 따라 다수개가 될 수 있다.
한편, 단말기에는 다중 입력 다중 출력(multi-input multi-output: MIMO) 기술을 사용하기 위해 다수개의 RFA가 포함될 수 있다. 상기 단말기에 포함되는 RFA의 수가 증가되면 RFB와 연결되는 케이블 수 역시 증가되며, 그에 따라 상기 단말기의 내부 부품 구성 및 배치에 제한이 발생할 수 있다.
본 발명의 일 실시 예는 무선 주파수 처리 장치 및 방법을 제안한다.
본 발명의 일 실시 예는 RFA와 RFB가 하나의 케이블로 연결될 수 있도록 하는 장치 및 방법을 제안한다.
본 발명의 일 실시 예는 UL/DL 신호와 제어 신호가 하나의 케이블을 통해 동시에 송신되더라도 UL/DL 신호와 제어 신호를 간단한 방법으로 구분할 수 있도록 하는 장치 및 방법을 제안한다.
본 발명의 일 실시 예는 제어 신호를 라인 코딩 방법을 통해 송신함으로써 별도의 클럭 신호를 송신하지 않더라도 RFA에서 제어 신호로부터 클럭 신호를 검출할 수 있도록 하는 장치 및 방법을 제안한다.
본 발명의 일 실시 예는 RFA와 RFB가 하나의 케이블로 연결된 구성을 가질 경우 전력 소모를 감소시킬 수 있도록 하는 장치 및 방법을 제안한다.
일 실시 예에 따른 장치는; 무선 주파수(radio frequency: RF) 처리 장치에 있어서, 적어도 하나의 안테나와, 상기 적어도 하나의 안테나를 사용하여 기지국과의 통신을 수행하는 RF부와, 중간 주파수(intermediate frequency: IF) 처리 장치로부터 신호를 수신하고, 상기 수신된 신호로부터 상기 기지국과의 통신을 위한 신호 및 제어 신호를 구분하여 출력하는 신호 필터부와, 미리 결정된 코드를 사용하여 상기 제어 신호를 전압 변화 패턴을 갖는 신호로 변환하고, 미리 설정된 방식을 기반으로 상기 전압 변화 패턴을 변경하여 상기 변환된 신호로부터 클럭(clock) 신호를 검출하는 클럭 신호 검출부와, 상기 클럭 신호를 기반으로 하는 타이밍에 상기 제어 신호를 기반으로 하는 동작을 수행하는 제어부를 포함한다.
일 실시 예에 따른 다른 장치는; 중간 주파수(intermediate frequency: IF) 처리 장치에 있어서, 무선 주파수 (radio frequency: RF) 처리 장치와 동기를 획득하기 위한 클럭(clock) 신호를 생성하는 클럭 신호 생성부와, 제어 신호 및 기지국과의 통신을 위한 신호를 생성하며 상기 클럭 신호를 상기 제어 신호에 포함시키는 베이스밴드부와, 상기 클럭 신호가 포함된 제어 신호와 상기 기지국과의 통신을 위한 신호를 상기 RF 무선 처리 장치로 송신하는 신호 필터부를 포함한다.
일 실시 예에 따른 방법은; 무선 주파수(radio frequency: RF) 처리 장치의 동작 방법에 있어서, 중간 주파수(intermediate frequency: IF) 처리 장치로부터 신호를 수신하는 과정과, 상기 수신된 신호로부터 상기 기지국과의 통신을 위한 신호 및 제어 신호를 구분하는 과정과, 미리 결정된 코드를 사용하여 상기 제어 신호를 전압 변화 패턴을 갖는 신호로 변환하고, 미리 설정된 방식을 기반으로 상기 전압 변화 패턴을 변경하여 상기 변환된 신호로부터 클럭(clock) 신호를 검출하 과정과, 상기 클럭 신호를 기반으로 하는 타이밍에 상기 제어 신호를 기반으로 하는 동작을 수행하는 과정을 포함한다.
일 실시 예에 따른 다른 방법은; 중간 주파수(intermediate frequency: IF) 처리 장치의 동작 방법에 있어서, 무선 주파수 (radio frequency: RF) 처리 장치와 동기를 획득하기 위한 클럭(clock) 신호를 생성하는 과정과, 제어 신호 및 기지국과의 통신을 위한 신호를 생성하고, 상기 클럭 신호를 상기 제어 신호에 포함시키는 과정과, 상기 클럭 신호가 포함된 제어 신호와 상기 기지국과의 통신을 위한 신호를 상기 RF 무선 처리 장치로 송신하는 과정을 포함한다.
본 발명의 일 실시 예에서는 RFA와 RFB가 하나의 케이블로 연결되어 UL/DL 신호와 제어 신호를 동시에 송신하는 것이 가능하다. 또한 본 발명의 일 실시 예에서는 RFB에서 상기 제어 신호를 변조하는 대신 라인 코딩 방법을 통해 송신함으로써 RFA에서 상기 제어 신호로부터 클럭 신호를 검출할 수 있도록 한다. 또한 본 발명의 일 실시 예에서는 상기 UL/DL 신호와 상기 제어 신호가 동시에 송신되더라도 간단하게 구현된 필터를 사용하여 상기 UL/DL 신호와 상기 제어 신호를 효과적으로 구분할 수 있다.
본 발명의 특정한 바람직한 실시 예들의 상기에서 설명한 바와 같은 또한 다른 측면들과, 특징들 및 이득들은 첨부 도면들과 함께 처리되는 하기의 설명으로부터 보다 명백하게 될 것이다:
도 1은 일반적인 단말기의 무선 통신부의 내부 구조를 개략적으로 나타낸 도면,
도 2는 일반적인 RFA와 RFB 간에 송수신되는 신호들을 나타낸 도면,
도 3은 일반적인 RFA와 RFB 간의 연결 구조를 나타낸 도면,
도 4는 RFA와 RFB가 하나의 케이블로 연결된 구조를 나타낸 도면,
도 5는 본 발명의 일 실시 예에 따른 RFA 및 RFB의 연결 구조를 나타낸 도면,
도 6은 본 발명의 일 실시 예에 따른 제어 신호와 UL/DL 신호가 송신되는 주파수 대역을 나타낸 그래프,
도 7은 본 발명의 일 실시 예에 따른 제어 신호로부터 클럭 신호를 검출하는 과정을 나타낸 도면,
도 8은 본 발명의 일 실시 예에 따른 UL/DL 프레임 구조를 나타낸 도면,
도 9는 본 발명의 일 실시 예에 따른 서브프레임의 구성을 보인 도면,
도 10은 본 발명의 일 실시 예에 따른 제어 정보 신호의 전송 구간의 일 예를 나타낸 도면,
도 11은 본 발명의 일 실시 예에 따른 RFA의 동작을 나타낸 순서도,
도 12는 본 발명의 일 실시 예에 따른 RFB의 동작을 나타낸 순서도,
도 13은 본 발명의 일 실시 예에 따른 RFA의 전력을 제어하는 전력 제어 장치를 도시한 도면,도 14는 본 발명의 일 실시 예에 따른 RFA의 전력 제어를 위해 사용되는 VDD 값을 나타낸 그래프,
도 15는 본 발명의 일 실시 예에 따른 RFA의 전력을 제어하는 과정을 나타낸 신호 흐름도.
상기 도면들을 통해, 유사 참조 번호들은 동일한 혹은 유사한 엘리먼트들과, 특징들 및 구조들을 도시하기 위해 사용된다는 것에 유의해야만 한다.
이하 본 발명의 실시 예들을 첨부한 도면들을 참조하여 상세히 설명한다. 그리고 하기에서는 본 발명의 실시 예들에 따른 동작을 이해하는데 필요한 부분만이 설명되며, 그 이외의 부분의 설명은 본 발명의 요지를 흩트리지 않도록 생략될 것이라는 것을 유의하여야 한다. 그리고 후술되는 용어들은 본 발명의 실시 예들에서의 기능을 고려하여 정의된 용어들로서 이는 사용자, 운용자의 의도 또는 관례 등에 따라 달라질 수 있다. 그러므로 그 정의는 본 명세서 전반에 걸친 내용을 토대로 내려져야 할 것이다.
본 발명은 다양한 변경을 가할 수 있고 여러 가지 실시 예들을 가질 수 있는 바, 특정 실시 예들을 도면들에 예시하여 상세하게 설명한다. 그러나, 이는 본 발명을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.
또한, 본 명세서에서 명백하게 다른 내용을 지시하지 않는 “한”과, “상기”와 같은 단수 표현들은 복수 표현들을 포함한다는 것이 이해될 수 있을 것이다. 따라서, 일 예로, “컴포넌트 표면(component surface)”은 하나 혹은 그 이상의 컴포넌트 표현들을 포함한다.
또한, 제1, 제2 등과 같이 서수를 포함하는 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 상기 구성요소들은 상기 용어들에 의해 한정되지는 않는다. 상기 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다. 예를 들어, 본 발명의 권리 범위를 벗어나지 않으면서 제1 구성요소는 제2 구성요소로 명명될 수 있고, 유사하게 제2 구성요소도 제1 구성요소로 명명될 수 있다. 및/또는 이라는 용어는 복수의 관련된 기재된 항목들의 조합 또는 복수의 관련된 기재된 항목들 중의 어느 항목을 포함한다.
또한, 본 명세서에서 사용한 용어는 단지 특정한 실시 예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 명세서에서, "포함하다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
또한, 본 발명의 실시 예들에서, 별도로 다르게 정의되지 않는 한, 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 모든 용어들은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가지고 있다. 일반적으로 사용되는 사전에 정의되어 있는 것과 같은 용어들은 관련 기술의 문맥 상 가지는 의미와 일치하는 의미를 가지는 것으로 해석되어야 하며, 본 발명의 실시 예에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다.
본 발명의 다양한 실시 예들에 따르면, 전자 디바이스는 통신 기능을 포함할 수 있다. 일 예로, 전자 디바이스는 스마트 폰(smart phone)과, 태블릿(tablet) 개인용 컴퓨터(personal computer: PC)와, 이동 전화기와, 화상 전화기와, 전자책 리더(e-book reader)와, 데스크 탑(desktop) PC와, 랩탑(laptop) PC와, 넷북(netbook) PC와, 개인용 복합 단말기(personal digital assistant: PDA)와, 휴대용 멀티미디어 플레이어(portable multimedia player: PMP)와, 엠피3 플레이어(mp3 player)와, 이동 의료 디바이스와, 카메라와, 웨어러블 디바이스(wearable device)(일 예로, 헤드-마운티드 디바이스(head-mounted device: HMD)와, 전자 의류와, 전자 팔찌와, 전자 목걸이와, 전자 앱세서리(appcessory)와, 전자 문신, 혹은 스마트 워치(smart watch) 등이 될 수 있다.
본 발명의 다양한 실시 예들에 따르면, 전자 디바이스는 통신 기능을 가지는 스마트 가정용 기기(smart home appliance)가 될 수 있다. 일 예로, 상기 스마트 가정용 기기는 텔레비젼과, 디지털 비디오 디스크(digital video disk: DVD, 이하 ‘DVD’라 칭하기로 한다) 플레이어와, 오디오와, 냉장고와, 에어 컨디셔너와, 진공 청소기와, 오븐과, 마이크로웨이브 오븐과, 워셔와, 드라이어와, 공기 청정기와, 셋-탑 박스(set-top box)와, TV 박스 (일 예로, Samsung HomeSyncTM, Apple TVTM, 혹은 Google TVTM)와, 게임 콘솔(gaming console)과, 전자 사전과, 캠코더와, 전자 사진 프레임 등이 될 수 있다.
본 발명의 다양한 실시예들에 따르면, 전자 디바이스는 의료 기기(일 예로, 자기 공명 혈관 조영술(magnetic resonance angiography: MRA) 디바이스와, 자기 공명 화상법(magnetic resonance imaging: MRI)과, 컴퓨터 단층 촬영(computed tomography: CT) 디바이스와, 촬상 디바이스, 혹은 초음파 디바이스)와, 네비게이션(navigation) 디바이스와, 전세계 위치 시스템(global positioning system: GPS) 수신기와, 사고 기록 장치(event data recorder: EDR)와, 비행 기록 장치(flight data recorder: FDR)와, 자동차 인포테인먼트 디바이스(automotive infotainment device)와, 항해 전자 디바이스(일 예로, 항해 네비게이션 디바이스, 자이로스코프(gyroscope), 혹은 나침반)와, 항공 전자 디바이스와, 보안 디바이스와, 산업용 혹은 소비자용 로봇(robot) 등이 될 수 있다.
본 발명의 다양한 실시 예들에 따르면, 전자 디바이스는 통신 기능을 포함하는, 가구와, 빌딩/구조의 일부와, 전자 보드와, 전자 서명 수신 디바이스와, 프로젝터와, 다양한 측정 디바이스들(일 예로, 물과, 전기와, 가스 혹은 전자기 파 측정 디바이스들) 등이 될 수 있다.
본 발명의 다양한 실시 예들에 따르면, 전자 디바이스는 상기에서 설명한 바와 같은 디바이스들의 조합이 될 수 있다. 또한, 본 발명의 바람직한 실시 예들에 따른 전자 디바이스는 상기에서 설명한 바와 같은 디바이스에 한정되는 것이 아니라는 것은 당업자에게 자명할 것이다.
본 발명의 다양한 실시 예들에 따르면, 단말기는 일 예로 전자 디바이스가 될 수 있다.
본 발명의 일 실시 예의 설명에 앞서 일반적인 단말기의 무선 통신부의 내부 구조에 대해 살펴보기로 한다.
도 1은 일반적인 단말기의 무선 통신부의 내부 구조를 개략적으로 나타낸 도면이다.
도 1을 참조하면, 상기 단말기의 무선 통신부는 안테나를 통한 신호 송수신을 수행하며 고주파수(high frequency) 신호를 처리하는 구성부(이하 ‘RFA’라 칭함)와 고주파수 신호를 저주파수(low frequency) 신호로 변환하고, 상기 저주파수 신호를 미리 설정되어 있는 복조 방식에 상응하게 복조하여 획득되는 중간 주파수(intermediate frequency) 신호를 처리하는 구성부(이하 ‘RFB’라 칭함)를 포함한다.
상기 단말기는 다중 입력 다중 출력(multi-input multi-output: MIMO) 기술을 사용하기 위해 다수개의 RFA들을 포함할 수 있다. 도 1에서는 일 예로 상기 단말기가 두 개의 RFA(즉, 제1 RFA(110) 및 제2 RFA(120))들을 포함한다. 상기 제1 RFA(110) 및 제2 RFA(120)는 상기 단말기 내에서 일정 간격 이상으로 떨어져 위치되어야 한다. 따라서 도 1에 나타난 바와 같이 상기 제1 RFA(110) 및 제2 RFA(120)는 상기 단말기의 왼쪽 상단 모서리(corner) 및 오른쪽 하단 모서리 부분에 위치하여, 결론적으로 상기 제1 RFA(110) 및 제2 RFA(120)는 상기 단말기의 대각선 상에 위치할 수 있다.
상기 제1 RFA(110) 및 제2 RFA(120)는 고주파수 통신을 위한 구성부로서 안테나를 통한 신호 송수신을 가능하게 한다. 상기 제1 RFA(110)는 에어(air) 매질과의 인터페이스 역할을 하는 제1 안테나(antenna)(112), 상기 제1 안테나(112)로부터 신호를 수신하거나 상기 제1 안테나(112)로 신호를 전달하는 제1 프론트 엔트 모듈(front end module: FEM)(114) 및 RFB(130)와의 인터페이스를 위한 제1 무선 주파수(radio frequency: RF)부(116)를 포함한다.
그리고 제2 RFA(120)는 에어 매질과의 인터페이스 역할을 하는 제2 안테나(122), 상기 제2 안테나(122)로부터 신호를 수신하거나 상기 제2 안테나(122)로 신호를 전달하는 제2 FEM(124) 및 상기 RFB(130)와의 인터페이스를 위한 제2 RF부(126)를 포함한다.
상기 제1안테나(112) 및 제2안테나(122)는 각각 어레이(arrary) 형태로 구성될 수 있으며, 이 경우 상기 제1 FEM(114) 및 제2 FEM(124) 역시 각 안테나에 일대일 대응되는 어레이 형태로 구성될 수 있다.
상기 제1 및 제2 FEM(114)(124)과 상기 제1 및 제2 RF부(116)(126)는 동일한 공정을 사용할 경우 하나의 부품으로 만들어 질 수 있다. 그러나 큰 전력(power)의 신호를 처리하는 상기 제1 및 제2 FEM(114)(124)는 일반적으로 갈륨비소(GaAs)와 같은 화합물 공정을 사용하여 만들어지며 비교적 작은 전력의 신호를 처리하는 상기 제1 및 제2 RF부(116)(126)는 상보형 금속 산화막 반도체(complementary metal-oxide semiconductor: CMOS) 공정으로 만들어질 수 있다.
상기 RFB(130)는 베이스밴드(baseband: BB)부(132)와 상기 제1 RFA(110) 및 제2 RFA(120)와 연결된 제1 중간 주파수(intermediate frequency: IF)부(134) 및 제2 IF부(136)를 포함한다. 상기 BB부(132)는 디지털(digital) 신호를 생성하고 생성된 디지털 신호를 상기 제1 IF부(134) 및 제2 IF부(136)로 전달한다. 상기 제1 IF부(134) 및 제2 IF부(136)는 각각 수신된 디지털 신호를 아날로그(analog) 신호로 변환하고 에어 매질을 통한 전파(propagation)가 용이하도록 상기 아날로그 신호를 변조(modulation)한다. 그리고 상기 제1 IF부(134) 및 제2 IF부(136)는 상기 변조된 신호를 각각 상기 제1 RFA(110) 및 제2 RFA(120)로 전달한다.
한편, 상기 단말기에 포함되는 RFA의 개수가 증가하더라도 상기 RFB(130)는 하나만 사용하여야 상기 제1 RFA(110), 제2 RFA(120) 및 RFB(130) 간 시간적 동기를 유지할 수 있다. 이상적인 상기 RFB(130)의 위치는 상기 제1 RFA(110) 및 제2 RFA(120) 사이의 중간 위치이며 이 경우 케이블(cable)에서 발생하는 신호의 지연(delay) 고려시 상기 RFB(130)에서 생성(launch)되는 데이터들이 상기 제1 RFA(110) 및 제2 RFA(120)에 동시에 도달할 것으로 예상할 수 있다.
최근에 개발되고 있는 무선 통신 시스템에서는 일반적으로 5 GHz 미만의 낮은 주파수 대역을 사용하고 있는 현재의 무선 통신 시스템에서보다 훨씬 높은 28 GHz이상 대역에서 1 Gbps 이상의 데이터율(data rate)을 구현하는 것을 목표로 하고 있다. 예를 들어, mmWave 라고 불리는 28 GHz에서는 에어 매질에서 발생하는 신호의 손실(loss)이 훨씬 커지므로 이러한 손실을 보상하여야만 원할한 통신 환경이 구축될 수 있다.
안테나를 어레이 형태로 사용하게 되면 하나의 안테나를 사용하는 경우에 비해 더 많은 이득(gain)을 얻을 수 있다. 하지만 안테나의 개수가 많아지면 안테나를 통해 방사되는 신호가 일부 방향으로만 집중되는 현상이 발생할 수 있다. 빔포밍(beamforming) 기술은 안테나로부터 방사되는 신호가 원하는 방향으로 집중될 수 있도록 하는 기술을 나타낸다. 상기 빔포밍 기술을 사용하기 위해 각 안테나로 전달되는 신호들의 위상(phase)이 조절되게 되는데, 이와 같은 위상 조절 기능을 수행하는 구성부는 위상 쉬프터(phase shifter)라 칭해질 수 있다.
도 2는 일반적인 RFA와 RFB 간에 송수신되는 신호들을 나타낸 도면이다.
도 2에서 RFA(210)는 도 1의 상기 제1 RFA(110) 및 제2 RFA(120) 중 하나에 대응될 수 있으며, RFB(220)는 도 1의 상기 RFB(130)에 대응될 수 있다. 도 2를 참조하면, 상기 RFA(210)와 RFB(220) 간의 신호들은 일반적으로 신호 타입(type)에 따라 구분될 수 있으며 데이터 양에 따라 다수개의 채널들이 사용될 수도 있다.
상기 RFA(210)와 RFB(220) 간에 전달되는 신호들은 기지국과의 통신을 위한 무선 신호 즉, 상기 단말기에서 상기 기지국으로 송신되거나 상기 기지국에서 상기 단말기로 송신되는 업링크/다운링크(uplink/downlink: UL/DL) 신호(200)(일 예로, 음성 신호나 영상 신호 등과 같은 데이터 신호), 상기 RFA(210)의 RF부에서 위상 쉬프터를 사용한 빔포밍 조절을 위한 신호 및 단말기의 송수신 전력을 제어하기 위한 회로(일 예로, 자동 이득 제어(automatic gain control: AGC) 회로)를 조절하기 위한 신호 등을 포함하는 제어 신호(202) 및 상기 RFA(210)와 RFB(220)가 동기화 될 수 있도록 하는 클럭(clock) 신호(204) 등이 포함될 수 있다.
상기 UL/DL 신호(200)는 상기 RFA(210)의 RF부(212)와 상기 RFB(220)의 IF부(222) 간에 송수신되며, 상기 제어 신호(202)는 상기 BB부(224)에서 상기 제어부(214)로 전달되며, 상기 클럭 신호(204)는 위상 동기 루프(phase locked loop: PLL)부(226)에서 PLL부(216)로 전달된다. 도 2에 도시된 상기 RFA(210)와 RFB(220) 간의 연결 구조를 좀 더 구체적으로 살펴보면 도 3에 나타난 바와 같다.
도 3은 일반적인 RFA와 RFB 간의 연결 구조를 나타낸 도면이다.
도 3을 참조하면, 앞서 설명한 바와 같이 상기 RFA(210)와 RFB(220) 간의 신호들은 사용 목적과 용도에 따라 크게 UL/DL 신호(200), 제어 신호(202) 및 클럭 신호(204)의 세 가지로 구분될 수 있다. 여기서 상기 클럭 신호(204)는 153.8MHz 주파수를 가지는 주기적인 신호가 될 수 있으며, 상기 제어 신호(202)는 153.8MHz 클럭에 동기화되어 있는 20 비트(bit)의 신호가 될 수 있으며, 상기 UL/DL 신호(200)는 27.925GHz를 중심으로 800MHz의 대역폭(bandwidth)을 갖도록 변조되어 있는 신호가 될 수 있다.
상기 클럭 신호(204)는 상기 RFA(210) 및 RFB(220) 뿐만 아니라 개별 내부 기능 블록(functional block)들 간의 동기화를 위해 사용될 수 있다. 그리고 상기 제어 신호(202)는 상기 RFA(210)와 RFB(220)의 내부 블록들의 파라미터 값을 설정(setting)하기 위해 사용된다. 상기 단말기와 기지국 간의 거리 및 위치에 따라 파라미터 값들이 계속 변경되어야 하는 내부 블록들로는 위상 쉬프터 및 가변 이득 증폭기(variable gain amplifier: VGA) 등이 있다. 상기 제어 신호(202)는 다수개가 될 수 있으며, 상기 다수개의 제어 신호들은 상기 클럭 신호(204)의 상승(rising) 혹은 하강 에지(falling edge) 패턴을 기반으로 동기화 되어 상기 RFA(210) 및 RFB(220)의 해당 내부 블록들로 송신될 수 있다.
상기 UL/DL 신호(200)는 단말기 사용자를 위한 영상 및 음성 신호뿐만 아니라 상기 단말기와 기지국 간의 동기화를 위한 제어 정보 신호를 포함할 수 있다. 여기서 상기 단말기로부터 상기 기지국으로 송신되는 신호는 UL 신호라고 하며, 상기 기지국으로부터 상기 단말기로 송신되는 신호는 DL 신호라고 한다. 상기 UL 및 DL 신호의 송신 방식도 여러 가지가 있는데 상기 UL 신호와 DL 신호를 서로 다른 주파수 대역에 할당한 다음 동시간에 상기 UL 신호와 DL 신호를 송신할 수 있도록 하는 방식을 주파수 분할 듀플렉싱(frequency-division duplexing: FDD) 방식이라고 하며, 상기 UL 신호와 DL 신호가 동일한 주파수 대역에 할당되어 동시에 송신되는 것은 불가능하나 상기 UL 신호와 DL 신호의 송신을 시간적으로 구분하여 송신하는 방식을 시간 분할 듀플렉싱(time-division duplexing: TDD) 방식이라고 한다.
음성 및 영상 신호와 함께 상기 단말기와 기지국 간 통신을 유지하게 하는 각종 제어 정보 신호들은 미리 설정된 프레임 구조에 따라 시간 축 상에 할당되어 송수신될 수 있다.
도 1에 나타난 바와 같은 상기 RFA(110)(120) 및 RFB(130)의 배치에 도 2 및 도 3에 나타난 바와 같은 신호들이 전달되는 구성을 가질 경우, 단말기 내부에서 사용되어야 하는 케이블의 개수는 MIMO를 위해 사용되는 RFA의 개수에 비례하여 기하급수적으로 늘어날 수 있다. 또한 케이블의 개수가 증가할 경우 케이블 실장에 따른 면적이 증가되어야 하므로 단말기 내부 구성 및 배치에 큰 제한이 발생할 수 있다. 게다가 신호의 타입 별로 별도의 채널을 이용하는 일반적인 RFA 및 RFB 연결 방식에서 주파수가 높은 신호를 위한 채널은 고가의 케이블이 사용되기도 하므로, 케이블 개수의 증가는 비용 면에서도 부담이 될 수 있다.
따라서 RFA 및 RFB를 도 4에 나타난 바와 같이 하나의 케이블로 연결하여 사용하는 방법이 고려될 수 있다.
도 4는 RFA와 RFB가 하나의 케이블로 연결된 구조를 나타낸 도면이다.
도 4를 참조하면, 제1 RFA(410)에 포함되는 제1 안테나 어레이(412), 제1 FEM 어레이(414) 및 제1 RF부(416)는 상기 도 1의 제1 RFA(110)에 포함되는 제1 안테나 어레이(112), 제1 FEM 어레이(114) 및 제1 RF부(116)에 대응되며, 제2 RFA(420)에 포함되는 제2 안테나 어레이(422), 제2 FEM 어레이(424) 및 제2 RF부(426)는 상기 도 1의 제2 RFA(120)에 포함되는 제2 안테나 어레이(122), 제2 FEM 어레이(124) 및 제2 RF부(126)에 대응된다. 그리고 RFB(430)에 포함되는 BB부(432), 제1 IF부(434) 및 제2 IF부(436)는 상기 도 1의 RFB(130)에 포함되는 BB부(132), 제1 IF부(134) 및 제2 IF부(136)에 대응된다.
다만, 도 1에서와는 달리 도 4에서는 상기 제1 RFA(410)(혹은 상기 제2 RFA(420))와 상기 RFB(430) 간의 연결이 다수개의 케이블이 아닌 하나의 케이블로 이루어지게 된다. 이에 따라, 도 4에서는 하나의 케이블을 통해 UL/DL 신호, 제어 신호 및 클럭 신호를 수신하여 주파수 영역에서 상기 UL/DL 신호, 제어 신호 및 클럭 신호를 분리하여 사용할 수 있도록 하는 구성이 추가될 수 있다. 하지만 상기 UL/DL 신호, 제어 신호 및 클럭 신호를 주파수 영역에서 분리하여 사용하기 위해서는 복잡도가 높은 구성부가 설계되어 RFA 및 RFB에 포함되어야 할 수 있다.
따라서 본 발명의 일 실시 예에서는 클럭 신호를 제어 신호에 임베딩(embedding)하여 송신하는 방법 및 장치를 제시한다. 이하 도 5를 참조하여 본 발명의 일 실시 예에 따른 RFA 및 RFB의 구조를 설명하기로 한다.
도 5는 본 발명의 일 실시 예에 따른 RFA 및 RFB의 연결 구조를 개략적으로 나타낸 도면이다.
도 5를 참조하면, RFA(510)는 RF부(512), 제어부(514), 클럭 신호 검출부(516) 및 주파수 선택부(518)를 포함한다. 상기 RF부(512)는 에어 매질과의 인터페이스 역할을 하는 적어도 하나의 안테나를 통해 송수신되는 신호를 처리한다. 구체적으로, 상기 RF부(512)는 상기 적어도 하나의 안테나로부터 수신되는 신호(일 예로, DL 신호)를 상기 주파수 선택부(518)로 전달하거나, 상기 주파수 선택부(518)로부터 출력되는 신호(일 예로, UL 신호)를 상기 적어도 하나의 안테나를 통해 송신한다.
상기 주파수 선택부(518)는 상기 RFB(520)로부터 UL/DL 신호 및 제어 신호를 수신하거나 상기 RFB(520)로 상기 UL/DL 신호 및 제어 신호를 전달한다. 상기 RFA(510)와 RFB(520)는 하나의 케이블(530)로 연결되어 있으며, 따라서 상기 RFA(510) 및 RFB(520) 간의 UL/DL 신호 및 제어 신호는 모두 상기 하나의 케이블(530)을 통해 송수신된다.
상기 주파수 선택부(518)는 상기 RFB(520)로부터 신호가 수신되면, 수신된 신호로부터 UL/DL 신호 및 제어 신호를 구분한다. 상기 UL/DL 신호와 제어 신호는 하나의 케이블을 통해 수신되지만, 도 6에 나타난 바와 같이 상기 UL/DL 신호와 제어 신호의 주파수 성분이 큰 차이를 가질 경우 상기 UL/DL 신호 및 제어 신호를 구분하는 것은 어렵지 않다.
예를 들어, 도 6에 나타난 바와 같이 상기 UL/DL 신호가 27.925 GHz(600)이고 상기 제어 신호가 153.6 MHz(610)의 주파수 대역의 신호인 경우, 상기 UL/DL 신호 및 상기 제어 신호의 주파수 대역의 차이가 대략 20배 정도가 되므로 간단한 필터(filter)의 사용으로 상기 UL/DL 신호 및 제어 신호를 구분할 수 있다. 여기서 상기 필터는 수신된 신호로부터 제1 주파수 범위(상기 UL/DL 신호의 주파수 대역이 포함되는 주파수 범위) 내에 있는 UL/DL 신호를 검출하는 필터 혹은 상기 수신된 신호로부터 제2 주파수 범위(상기 제어 신호의 주파수 대역이 포함되는 주파수 범위) 내에 있는 제어 신호를 검출하는 필터 등이 될 수 있다. 상기 주파수 선택부(518)는 상기 UL/DL 신호 및 제어 신호가 구분되면, 상기 UL/DL 신호는 상기 RF부(512)로 전달하고 상기 제어 신호는 상기 클럭 신호 검출부(516)로 전달한다.
상기 클럭 신호 검출부(516)는 상기 제어 신호로부터 클럭 신호를 검출한다. 여기서 상기 제어 신호는 상기 RFA(510)에 포함된 내부 구성부들의 파라미터 값들을 포함하는 신호가 될 수 있다. 상기 클럭 신호 검출부(516)는 클럭 데이터 복구부(clock data recovery: CDR)와 전압 제어 발진부(voltage controlled oscillator: VCO)를 포함할 수 있다. 상기 CDR은 제어 신호로부터 클럭 신호를 검출하며, 상기 VCO에 의해 조정된 전압에 따라 클럭 신호를 복구하는 동작을 수행한다. 상기 제어 신호로부터 클럭 신호를 검출하는 동작은 추후 상세히 설명하기로 한다.
상기 제어부(514)는 제어 레지스터(control register)의 형태로 구성될 수 있으며, 상기 클럭 신호 검출부(516)로부터 출력된 제어 신호를 기반으로 상기 RFA(510) 내부 구성부들의 파라미터 값들을 설정하는 등의 동작을 수행한다.
상기 RFB(520)는 IF부(522), BB부(524), PLL부(526) 및 주파수 선택부(528)를 포함한다. 상기 IF부(522)는 주파수 선택부(528)로부터 출력되는 신호(일 예로, DL 신호)를 상기 BB부(524)로 전달하거나, 상기 BB부(524)로부터 출력되는 신호(일 예로, UL)를 상기 주파수 선택부(528)로 출력한다. 상기 IF부(522)는 상기 주파수 선택부(528)로부터 출력되는 아날로그 신호를 디지털 신호로 변환한 후 복조하는 동작 및 상기 BB부(524)로부터 출력되는 디지털 신호를 아날로그 신호로 변환한 후 변조하는 동작 등을 수행할 수 있다.
상기 BB부(524)는 디지털 로직(digital logic)으로 구성되어 있으며, 제어 신호 및 UL 신호 등을 생성하고 수신된 신호를 처리하는 동작을 수행한다. 특히, 상기 BB부(524)는 상기 PLL부(526)에서 생성된 클럭 신호를 라인 코딩(line coding) 방식을 사용하여 제어 신호에 포함(embedding)시킬 수 있다. 여기서 상기 라인 코딩 방식으로서 맨체스터(manchester) 라인 코딩 방식, 8b10b 라인 코딩 방식, NRZ(non-return to zero) 라인 코딩 방식 및 RZ(return to zero) 라인 코딩 방식 중 적어도 하나가 사용될 수 있다. 상기 클럭 신호가 포함된 제어 신호는 상기 주파수 선택부(528)로 출력된다.
상기 PLL부(526)는 상기 클럭 신호를 생성하여 상기 BB부(524)로 출력한다. 그리고 상기 주파수 선택부(528)는 상기 IF부(522)로부터 출력된 신호(일 예로 UL 신호)를 상기 RFA(510)로 전달하거나 상기 RFA(510)로부터 입력되는 신호(일 예로 DL 신호)를 상기 IF부(522)로 출력한다. 그리고 상기 주파수 선택부(528)는 상기 BB부(524)로부터 출력되는 제어 신호를 상기 RFA(510)로 전달한다. 여기서 상기 주파수 선택부(528)로부터 출력되는 제어 신호 및 UL 신호는 하나의 케이블(530)을 통해 상기 RFA(510)로 전달될 수 있다.
한편, 상기 주파수 선택부(528)는 상기 주파수 선택부(518)와 유사하게, 상기 RFA(510)로부터 신호가 수신되면, 상기 수신된 신호로부터 상기 UL/DL 신호 및 제어 신호를 구분하는 동작 등을 수행할 수 있다. 여기서 상기 주파수 선택부(528)는 주파수 대역을 기반으로 하는 필터 등을 사용하여 상기와 같은 신호 구분 동작을 수행할 수 있다.
도 7은 본 발명의 일 실시 예에 따른 제어 신호로부터 클럭 신호를 검출하는 과정을 나타낸 도면이다.
도 7에서는 상기 RFA(510)의 클럭 신호 검출부(516)가“1001110000”의 제어 신호를 수신한 것을 일 예로 보이고 있다(700). 만약 클럭 신호가 맨체스터 라인 코딩 방식을 기반으로 제어 신호에 포함된 경우, 상기 클럭 신호 검출부(516)는 상기 맨체스터 코드를 사용하여 상기 제어 신호를 변환한다(720). 상기 맨체스터 코드는 DC가 밸런스(balance)되어 있으며, 상기 맨체스터 코드를 제어 신호에 적용할 경우“1”에 해당하는 데이터는 “1→0”으로 전압 변화가 발생하는 데이터로 변환되고“0”에 해당하는 데이터는 “0→1”로 전압 변화가 발생하는 데이터로 변환된다.
상기 클럭 신호 검출부(516)는 상기와 같이 변환된 데이터의 상승 혹은 하강 에지 패턴을 기반으로 상기 클럭 신호를 검출한다(730). 예를 들어, 상기 클럭 신호 검출부(516)는 상기 변환된 데이터의 상승 에지가 상기 클럭 신호의 상승 에지와 동일하다는 것을 고려하여 상기 클럭 신호를 검출할 수 있다. 추가적으로, 상기 클럭 신호 검출부(516)는 상기 클럭 신호의 패턴이 상기 변환된 데이터의 패턴에 비해 N(N≥2)배 빠른 패턴을 갖는다는 것을 고려하여 상기 클럭 신호를 검출할 수 있다.
전술한 바와 같이 본 발명의 일 실시 예에서는 상기 RFA(510)와 RFB(520)가 하나의 케이블(530)로 연결되어 있으며, 상기 하나의 케이블(530)을 통해 상기 UL/DL 신호와 제어 신호를 동시에 송신하는 것이 가능하다. 또한 본 발명의 일 실시 예에서는 상기 RFB(520)에서 제어 신호를 변조하는 대신 라인 코딩하여 송신함으로써 상기 RFA(510)에서 상기 제어 신호로부터 상기 클럭 신호를 검출할 수 있도록 한다. 또한 본 발명의 일 실시 예에서는 상기 UL/DL 신호와 제어 신호가 동시에 송신되더라도 간단한 필터를 사용하여 상기 UL/DL 신호와 제어 신호를 효과적으로 구분할 수 있다.
도 8은 본 발명의 일 실시 예에 따른 UL/DL 프레임 구조를 나타낸 도면이다.
본 발명의 일 실시 예에서 기지국과 단말기 간에 송수신되는 무선 신호들은 도 8에 도시된 바와 같은 UL/DL 프레임 구조를 기반으로 송수신될 수 있다. 도 8을 참조하면, 하나의 프레임은 5ms의 크기를 가지며 다수개의 서브프레임들을 포함할 수 있다.
상기 기지국과 단말기 간의 통신을 유지할 수 있도록 하는 제어 정보 신호들은 기지국과 단말기 간 제어 신호, 상기 기지국과 단말기 간 동기 신호 및 방송 채널(broadcast channel: BCH) 신호, 랜덤 액세스 채널(random access channel: RACH) 신호 및 무선 파라미터 설정(일 예로, 빔 측정을 위한 신호, DL 및 UL 변환을 위한 신호, 자동 이득 제어(automatic gain control: AGC)를 위한 신호)를 위한 신호 등이 포함될 수 있다. 해당 신호들은 도 8에 나타난 바와 같은 프레임 구조에 따라 시간 축 상에 할당되어 송수신될 수 있다. 이에 대해서는 도 8에 도시된 프레임에 포함된 서브프레임들을 구체적으로 도시한 도 9를 참조하여 설명하기로 한다.
도 9는 본 발명의 일 실시 예에 따른 서브프레임의 구성을 보인 도면이다.
도 8에 일 예로서 도시된 첫 번째 서브프레임인 서브프레임 0과 나머지 서브프레임들인 서브프레임 1-4를 구체적으로 살펴보면 도 9에 나타난 바와 같다. 도 9를 참조하면, 서브프레임 0-4 각각은 모두 동일한 개수의 심볼들(예를 들어, 40개의 심볼들)을 포함하고 있으며, 하나의 서브프레임은 DL 구간과 UL 구간을 포함한다.
상기 서브프레임 0의 DL 구간(900)을 살펴보면, 0번째 및 1번째 심볼에서는 상기 기지국과 단말기 간 통신을 위한 제어 신호가 단말기로 송신되며, 2번째 및 3번째 심볼에서는 상기 기지국과 단말기 간 동기화를 위한 동기 신호 및 BCH 신호가 단말기로 송신되며, 4번째 내지 33번째 심볼에서는 DL 데이터가 상기 단말기로 송신된다.
34번째 심볼의 텀(term)을 가진 후 시작되는 상기 서브프레임 0의 UL 구간(910)을 살펴보면, 35번째 심볼에서는 상기 기지국과의 통신을 위한 제어 신호가 상기 기지국으로 송신되며, 36번째 내지 38번째 심볼에서는 랜덤 액세스를 위한 RACH 신호가 상기 기지국으로 송신된다.
상기 서브프레임 0에서는 상기 기지국과 단말기 간의 통신이 개시될 수 있도록 하는 제어 정보 신호들이 송수신될 수 있으며, 나머지 서브프레임들에서는 상기 기지국과 단말기 간의 통신을 유지할 수 있도록 하는 제어 정보 신호들이 송수신될 수 있다.
상기 서브프레임 1-4의 DL 구간(920)을 살펴보면, 0번째 및 1번째 심볼에서는 상기 기지국과 단말기 간 통신을 유지하기 위한 제어 신호가 상기 단말기로 송신되며, 2번째 및 3번째 심볼에서는 빔포밍을 위한 빔 측정을 위한 신호가 상기 단말기로 송신되며, 4번째 내지 33번째 심볼에서는 DL 데이터가 상기 단말기로 송신된다.
34번째 심볼의 텀을 가진 후 시작되는 서브프레임 1-4의 UL 구간(930)을 살펴보면, 35번째 및 36번째 심볼에서는 상기 기지국과의 통신을 유지하기 위한 제어 신호가 상기 기지국으로 송신되며, 37번째 심볼에서는 UL 데이터가 상기 기지국으로 송신되며, 38번째 심볼에서는 빔포밍을 위한 빔 측정을 위한 신호가 상기 기지국으로 송신된다.
한편 제어 정보 신호의 전송 구간은 다양한 형태로 사용될 수 있다. 이를 도 10을 참조하여 설명하면 다음과 같다.
도 10은 본 발명의 일 실시 예에 따른 제어 정보 신호의 전송 구간의 일 예를 나타낸 도면이다.
도 10을 참조하면, option 1에 나타난 바와 같이 제어 정보 신호의 전송 구간은 다양한 제어 정보 신호들이 일괄적으로 송신되도록 설정될 수 있다. 예를 들어, 이러한 설정에 따를 경우 DL 구간에서 송신되어야 할 제어 정보 신호들이 모두 송신된 후 DL 데이터가 송신될 수 있다. 또한 UL 구간에서 송신되어야 할 제어 정보 신호들이 모두 송신된 후 UL 데이터가 송신될 수 있다. 도 10에서 제어 정보 신호들은 음영으로 표시되었으며 DL 또는 UL 데이터는 투명한 형태로 표시되었다.
한편, 상기 제어 정보 신호의 전송 구간은 option 2에 나타난 바와 같이 다양한 제어 정보 신호들이 각각 개별적으로 송신되도록 설정될 수 있다. 예를 들어, 이러한 설정에 따를 경우 각 제어 정보 신호가 송신되는 전송 구간은 모두 상이할 수 있다. 상기 제어 정보 신호의 전송 구간은 도 10에는 도시된 형태에만 한정되지 않고 다양한 형태로 구현되는 것이 가능하다.
다음으로 본 발명의 일 실시 예에 따른 RFA와 RFB의 동작에 대해 설명하기로 한다.
도 11은 본 발명의 일 실시 예에 따른 RFA의 동작을 나타낸 순서도이다.
도 11을 참조하면, 상기 RFA는 1100 단계에서 RFB로부터 하나의 케이블을 통해 신호가 수신되는지 판단한다. 상기 RFA는 상기 RFB로부터 신호가 수신되면, 1102 단계에서 상기 수신된 신호로부터 제어 신호와 UL/DL 신호를 구분한다. 상기 제어 신호와 UL/DL 신호는 주파수 성분이 큰 차이를 가지므로, 상기 RFA는 필터 등을 사용하여 상기 제어 신호와 UL/DL 신호를 구분할 수 있다.
그리고 상기 RFA는 상기 제어 신호의 경우 1104 단계에서 상기 제어 신호로부터 클럭 신호를 검출한다. 상기 클럭 신호는 도 7에 도시된 방법을 기반으로 검출될 수 있다. 그러면 상기 RFA는 1106 단계에서 상기 검출된 클럭 신호를 기반으로 하는 타이밍에 따라 동작을 수행하고 상기 제어 신호에 따라 RFA 내부 구성부들의 파라미터 값들을 설정한다.
한편 상기 RFA는 상기 UL/DL 신호의 경우에는 1108 단계에서 상기 UL/DL 신호를 처리한다. 예를 들어, 상기 RFA는 UL 신호가 수신된 경우 상기 수신된 UL 신호를 안테나를 통해 기지국으로 송신할 수 있다.
도 12는 본 발명의 일 실시 예에 따른 RFB의 동작을 나타낸 순서도이다.
도 12를 참조하면, 상기 RFB는 1200 단계에서 클럭 신호를 생성하고 1202 단계에서 상기 생성된 클럭 신호를 제어 신호에 포함시킨다. 예를 들어, 상기 RFB는 맨체스터 라인 코딩 방식 등과 같은 라인 코딩 방식을 기반으로 상기 클럭 신호가 상기 제어 신호에 임베디드되도록 할 수 있다.
상기 RFB는 1204 단계에서 송신할 UL/DL 신호가 존재하는지 판단한다. 상기 RFB는 상기 송신할 UL/DL 신호가 존재하는 경우 1206 단계에서 상기 제어 신호와 함께 UL/DL 신호를 상기 RFA로 송신한다. 그리고 상기 RFB는 상기 송신할 UL/DL 신호가 존재하지 않은 경우에는 1208 단계에서 상기 제어 신호를 상기 RFA로 송신한다.
한편, 도 11 및 도 12에서 설명된 과정들은 일 예일 뿐이며, 다양한 변형들이 도 11 및 도 12에 대해 이루어질 수 있음은 물론이다. 일 예로, 도 11 및 도 12에는 연속적인 단계들이 도시되어 있지만, 도 11 및 도 12에서 설명한 단계들은 오버랩될 수 있고, 병렬로 발생할 수 있고, 다른 순서로 발생할 수 있거나, 혹은 다수 번 발생할 수 있음은 물론이다.
도 2 및 도 3에 나타난 바와 같은 일반적인 단말기에서는 RFB에 의해 RFA의 전력이 제어된다. 예를 들어, RFA는 전력 절약 모드(power save mode)에서 RFB의 BB부에서 생성된 전력 제어 신호가 수신되면 전력 인가(power up) 동작을 수행하여 활성화 모드(active mode)로 천이한다. 이와 같은 전력 제어 동작은 상기 전력 제어 신호가 수백 MHz 미만의 낮은 주파수의 신호일 때, RFA와 RFB가 일정 거리 이하로 근접하게 위치할 때, SoC(system on chip) 형태로 RFA와 RFB가 구성된 경우에 수행될 수 있다.
한편, 본 발명의 일 실시 예에 따라 RFA와 RFB가 하나의 케이블로 연결되는 경우, RFB에서는 BB부에 의해 직접 전력 제어 동작이 수행될 수 있기 때문에 전력 절약 동작이 손쉽게 수행될 수 있다. 하지만 RFA에서는 지속적으로 전력 제어 신호가 수신되는지 확인해야 하므로 전력 절약 동작을 수행하는 것이 어렵다. 구체적으로, RFA에서는 전력 제어 신호가 RFB로부터 수신되는지 검출하기 위해 RFB로부터 수신되는 신호를 복조하기 위한 변복조부(MOD/DeMOD)가 항상 전력 온(power on) 상태가 되어야 한다. 이 경우 RFA에서 소모되는 전력량은 슬립 모드(sleep mode)에서 소모되는 전력량보다 수십 mA 이상 커지게 된다. 또한 연결해야 할 케이블의 손실(loss)값 및 인쇄 회로 기판(printed circuit board: PCB) 손실값 등은 주파수가 높아질 때 급격히 증가하므로, MIMO 및 mmWave 기술 등을 고려할 경우 해당 손실값을 줄이기 위해서는 많은 비용이 필요하게 된다. 따라서 상기와 같은 사항을 고려하여 RFA의 전력 소모를 감소시키기 위한 다음과 같은 방법이 사용될 수 있다.
도 13은 본 발명의 일 실시 예에 따른 RFA의 전력을 제어하는 전력 제어 장치를 도시한 도면이다.
도 13을 참조하면, 상기 전력 제어 장치는 RFA(1310)의 전력을 제어하는 동작을 수행하며 하나의 케이블(1300)로 연결된 RFA(1310) 및 RFB(1320)에 포함되는 다수개의 구성부들을 포함할 수 있다.
먼저, 상기 RFB(1320)에 포함된 구성부들을 살펴보면 다음과 같다. 상기 RFB(1320)는 BB부(1322), 직렬 주변 장치 인터페이스(serial peripheral interface: SPI)(1324), 변복조부(1326) 및 주파수 선택부(1328)를 포함한다.
상기 BB부(1322)는 도 5의 BB부(524)에 대응되는 동작을 수행하며 제어 신호 및 기지국과 통신을 위한 신호 등을 생성하여 출력한다. 특히 상기 BB부(1322)는 널(null) 신호 생성부(1330)를 포함하는데, 상기 널 신호 생성부(1330)는 상기 RFA(1310)의 전력을 오프시키기 위한 널 신호를 생성한다.
상기 널 신호 생성부(1330)는 상기 BB부(1322)의 제어에 따라 상기 널 신호를 생성한다. 상기 BB부(1322)는 상기 RFA(1310)의 동작이 수행될 필요가 없다고 판단된 경우 상기 널 신호를 생성할 수 있도록 상기 널 신호 생성부(1330)를 제어한다. 예를 들어, 단말기 사용자에 의해 안테나를 통한 신호 송수신을 수행하지 않도록 하는 메뉴가 선택된 경우 또는 상기 BB부(1322)의 상기 BB부(1322)가 UL 신호 등을 생성하거나 수신된 신호를 처리함에 따라 상기 RFA(1310)의 동작이 수행될 필요가 없다고 판단된 경우, 상기 BB부(1322)는 상기 널 신호를 생성하도록 상기 널 신호 생성부(1330)를 제어할 수 있다.
상기 BB부(1322)는 상기 생성된 널 신호를 출력한다. 그리고 상기 BB부(1322)는 상기 널 신호가 생성되지 않은 경우에는 클럭 신호가 포함된 제어 신호를 출력한다.
상기 SPI(1324)는 상기 BB부(1322)와 변복조부(1326), 또는 상기 BB부(1322)와 IF부 간에 직렬 통신으로 데이터 및 신호 등을 교환할 수 있도록 하는 인터페이스 역할을 한다. 예를 들어, 상기 SPI(1324)는 상기 BB부(1322)에서 상기 널 신호 또는 상기 클럭 신호가 포함된 제어 신호가 출력되면 해당 신호를 상기 변복조부(1326)로 출력한다.
상기 변복조부(1326)는 상기 SPI(1324)에서 출력되는 신호를 변조하거나 상기 주파수 선택부(1328)로부터 출력되는 신호를 복조한다. 상기 변복조부(1326)에서 변조된 신호는 상기 주파수 선택부(1328)를 거쳐 상기 케이블(1300)을 통해 상기 RFA(1310)로 송신된다. 상기 주파수 선택부(1328)는 송신할 신호 또는 수신된 신호를 구분하는 동작을 수행한다.
상기 RFA(1310)는 주파수 선택부(1312), 변복조부(1314) 및 전력 검출부(1316)를 포함한다.
상기 주파수 선택부(1312)는 송신할 신호 또는 수신된 신호를 구분하는 동작을 수행한다. 예를 들어, 상기 주파수 선택부(1312)는 상기 RFB(520)로부터 신호가 수신되면, 수신된 신호로부터 UL/DL 신호 및 제어 신호를 구분하여 상기 변복조부(1314)로 출력한다.
상기 변복조부(1314)는 상기 주파수 선택부(1312)로부터 출력된 신호를 복조하거나 상기 주파수 선택부(1312)로 출력될 신호를 변조하는 동작을 수행한다.
상기 전력 검출부(1316)는 상기 케이블(1300)의 바로 뒷 단에 위치하여 상기 케이블(1300)을 통해 제어 신호가 수신되었는지 널 신호가 수신되었는지를 판단한다. 상기 제어 신호는 항상 클럭 신호를 포함하며, 상기 널 신호는 클럭 신호 및 제어 신호를 포함하지 않고 VDD 값만을 갖는다. 따라서 이를 기반으로 상기 전력 검출부(1316)는 상기 제어 신호가 수신되었는지 또는 상기 널 신호가 수신되었는지 여부를 판단할 수 있다. 한편, 상기 클럭 신호는 도 7에 나타난 바와 같은 맨체스터 코드를 기반으로 클럭 신호를 검출하는 방법 등을 사용하여 상기 제어 신호로부터 검출될 수 있다.
상기 전력 검출부(1316)는 상기 제어 신호가 수신된 경우 상기 RFA(1310)에 대한 활성화 동작이 수행되어야 함을 인지하여, 상기 RFA(1310)에 전력이 계속 인가될 수 있도록 전력 온(power on) 동작을 수행하도록 지시하는 신호를 출력한다. 그리고 상기 전력 검출부(1316)는 상기 널 신호가 수신된 경우 상기 RFA(1310)에 대한 아이들(idle) 동작이 수행되어야 함을 인지하여, 전력 오프(power off) 동작을 수행하도록 지시하는 신호를 출력한다.
상기 전력 검출부(1316)에서 출력된 신호는 상기 RFA(1310) 내부 구성부들의 파라미터 값들을 설정하는 등의 동작을 수행하며 제어 레지스터(control register)의 형태로 구성되어 상기 내부 구성부들을 제어하는 제어부에 출력되어 상기 RFA(1310)에 대한 전력 제어 동작이 수행될 수 있도록 한다.
예를 들어, 상기 제어부는 상기 전력 검출부(1316)에서 상기 전력 온 동작을 수행하도록 지시하는 신호가 출력된 경우, 상기 주파수 선택부(1312) 및 변복조부(1314) 등에 전력을 인가할 수 있으며, 상기 전력 검출부(1316)에서 상기 전력 오프 동작을 수행하도록 지시하는 신호가 출력된 경우, 상기 주파수 선택부(1312) 및 변복조부(1314) 등으로의 전력 인가 동작을 중지할 수 있다.
상기 전력 오프 동작을 수행하도록 지시하는 신호가 출력되더라도 상기 전력 검출부(1316)는 계속 전력 온 상태가 될 수 있다. 상기 전력 검출부(1316)는 저전력으로 동작되므로 상기 전력 검출부(1316)가 항상 전력 온 상태에 있더라도 상기 RFA(1310)의 전력 소모는 크게 발생하지 않는다.
도 14는 본 발명의 일 실시 예에 따른 RFA의 전력 제어를 위해 사용되는 VDD 값을 나타낸 그래프이다.
도 14의 (a)를 참조하면, 상기 전력 검출부(1316)는 상기 제어 신호가 검출되면 미리 설정된 시구간 동안 수신되는 제어 신호의 평균값 즉, 평균 전압값을 계산한다. 그리고 상기 전력 검출부(1316)는 현재 설정된 전압값이 상기 평균 전압값보다 작은 경우 전력 온 동작을 수행하고, 그렇지 않은 경우 전력 오프 동작을 수행하도록 하는 신호를 출력한다. 상기 제어 신호는 활성화 상태에서 항상 클럭 신호를 포함하므로 특정 VDD 값을 가지게 되며, 따라서 상기와 같은 전력 제어 동작의 근거로 사용될 수 있다.
한편, 상기 널 신호는 상기 RFA(1310)의 아이들 상태를 위해 사용되는 것으로서 제어 신호 및 클럭 신호를 포함하지 않아 도 14의 (b)에 나타난 바와 같이 단지 VDD 값만을 가질 수 있다. 따라서 상기 전력 검출부(1316)는 VDD 값만이 검출되는 경우 전력 오프 동작을 수행하도록 하는 신호를 출력할 수 있다.
도 15는 본 발명의 일 실시 예에 따른 RFA의 전력을 제어하는 과정을 나타낸 신호 흐름도이다.
도 15를 참조하면, RFB(1320)는 1500 단계에서 상기 RFA(1310)의 전력을 오프 시키기 위한 널 신호 또는 상기 RFA(1310)의 전력을 온 시키기 위한 제어 신호를 생성한다. 그리고 상기 RFB(1320)는 1502 단계에서 상기 생성된 신호를 변조하여 하나의 케이블을 통해 상기 RFA(1310)로 송신한다.
상기 RFA(1310)는 전력 검출부(1316)를 통해 1504 단계에서, 수신된 신호로부터 상기 널 신호 또는 상기 제어 신호를 검출한다. 상기 RFA(1310)는 상기 널 신호가 검출된 경우 1512 단계로 진행하여 전력 오프 동작을 수행한다.
그리고 상기 RFA(1310)는 상기 제어 신호가 검출된 경우 1506 단계에서 미리 설정된 시간 동안의 전압값을 기반으로 평균 전압값을 계산한다. 이어 상기 RFA(1310)는 1508 단계에서 설정된 전압값이 상기 평균 전압값보다 작은지 판단하고, 상기 설정된 전압값이 상기 평균 전압값보다 작은 경우 1510 단계에서 전력 온 동작을 수행하고, 그렇지 않은 경우 1512 단계로 진행하여 전력 오프 동작을 수행한다.
본 발명의 특정 측면들은 또한 컴퓨터 리드 가능 기록 매체(computer readable recording medium)에서 컴퓨터 리드 가능 코드(computer readable code)로서 구현될 수 있다. 컴퓨터 리드 가능 기록 매체는 컴퓨터 시스템에 의해 리드될 수 있는 데이터를 저장할 수 있는 임의의 데이터 저장 디바이스이다. 상기 컴퓨터 리드 가능 기록 매체의 예들은 리드 온니 메모리(read only memory: ROM, 이하 ‘ROM’이라 칭하기로 한다)와, 랜덤-접속 메모리(random access memory: RAM, 이하 ‘RAM’라 칭하기로 한다)와, 컴팩트 디스크- 리드 온니 메모리(compact disk-read only memory: CD-ROM)들과, 마그네틱 테이프(magnetic tape)들과, 플로피 디스크(floppy disk)들과, 광 데이터 저장 디바이스들, 및 캐리어 웨이브(carrier wave)들(상기 인터넷을 통한 데이터 송신과 같은)을 포함할 수 있다. 상기 컴퓨터 리드 가능 기록 매체는 또한 네트워크 연결된 컴퓨터 시스템들을 통해 분산될 수 있고, 따라서 상기 컴퓨터 리드 가능 코드는 분산 방식으로 저장 및 실행된다. 또한, 본 발명을 성취하기 위한 기능적 프로그램들, 코드, 및 코드 세그먼트(segment)들은 본 발명이 적용되는 분야에서 숙련된 프로그래머들에 의해 쉽게 해석될 수 있다.
또한 본 발명의 일 실시예에 따른 장치 및 방법은 하드웨어, 소프트웨어 또는 하드웨어 및 소프트웨어의 조합의 형태로 실현 가능하다는 것을 알 수 있을 것이다. 이러한 임의의 소프트웨어는 예를 들어, 삭제 가능 또는 재기록 가능 여부와 상관없이, ROM 등의 저장 장치와 같은 휘발성 또는 비휘발성 저장 장치, 또는 예를 들어, RAM, 메모리 칩, 장치 또는 집적 회로와 같은 메모리, 또는 예를 들어 콤팩트 디스크(compact disk: CD), DVD, 자기 디스크 또는 자기 테이프 등과 같은 광학 또는 자기적으로 기록 가능함과 동시에 기계(예를 들어, 컴퓨터)로 읽을 수 있는 저장 매체에 저장될 수 있다. 본 발명의 일 실시예에 따른 방법은 제어부 및 메모리를 포함하는 컴퓨터 또는 휴대 단말에 의해 구현될 수 있고, 상기 메모리는 본 발명의 실시 예들을 구현하는 지시들을 포함하는 프로그램 또는 프로그램들을 저장하기에 적합한 기계로 읽을 수 있는 저장 매체의 한 예임을 알 수 있을 것이다.
따라서, 본 발명은 본 명세서의 임의의 청구항에 기재된 장치 또는 방법을 구현하기 위한 코드를 포함하는 프로그램 및 이러한 프로그램을 저장하는 기계(컴퓨터 등)로 읽을 수 있는 저장 매체를 포함한다. 또한, 이러한 프로그램은 유선 또는 무선 연결을 통해 전달되는 통신 신호와 같은 임의의 매체를 통해 전자적으로 이송될 수 있고, 본 발명은 이와 균등한 것을 적절하게 포함한다
또한 본 발명의 일 실시예에 따른 장치는 유선 또는 무선으로 연결되는 프로그램 제공 장치로부터 상기 프로그램을 수신하여 저장할 수 있다. 상기 프로그램 제공 장치는 상기 프로그램 처리 장치가 기 설정된 컨텐츠 보호 방법을 수행하도록 하는 지시들을 포함하는 프로그램, 컨텐츠 보호 방법에 필요한 정보 등을 저장하기 위한 메모리와, 상기 그래픽 처리 장치와의 유선 또는 무선 통신을 수행하기 위한 통신부와, 상기 그래픽 처리 장치의 요청 또는 자동으로 해당 프로그램을 상기 송수신 장치로 전송하는 제어부를 포함할 수 있다.
한편 본 발명의 상세한 설명에서는 구체적인 실시 예에 관해 설명하였으나, 본 발명의 범위에서 벗어나지 않는 한도 내에서 여러 가지 변형이 가능함은 물론이다. 그러므로 본 발명의 범위는 설명된 실시 예에 국한되어 정해져서는 안되며 후술하는 특허청구의 범위뿐만 아니라 이 특허청구의 범위와 균등한 것들에 의해 정해져야 한다.

Claims (24)

  1. 무선 주파수(radio frequency: RF) 처리 장치에 있어서,
    적어도 하나의 안테나와,
    상기 적어도 하나의 안테나를 사용하여 기지국과의 통신을 수행하는 RF부와,
    중간 주파수(intermediate frequency: IF) 처리 장치로부터 신호를 수신하고, 상기 수신된 신호로부터 상기 기지국과의 통신을 위한 신호 및 제어 신호를 구분하여 출력하는 신호 필터부와,
    미리 결정된 코드를 사용하여 상기 제어 신호를 전압 변화 패턴을 갖는 신호로 변환하고, 미리 설정된 방식을 기반으로 상기 전압 변화 패턴을 변경하여 상기 변환된 신호로부터 클럭(clock) 신호를 검출하는 클럭 신호 검출부와,
    상기 클럭 신호를 기반으로 하는 타이밍에 상기 제어 신호를 기반으로 하는 동작을 수행하는 제어부를 포함하는 RF 처리 장치.
  2. 제1항에 있어서,
    상기 기지국과의 통신을 위한 신호가 송신되는 주파수 대역과 상기 제어 신호가 송신되는 주파수 대역은 상이함을 특징으로 하는 RF 처리 장치.
  3. 제1항에 있어서,
    상기 미리 설정된 방식은 라인 코딩(line coding) 방식을 포함하며,
    상기 라인 코딩 방식은 맨체스터(manchester) 라인 코딩 방식, 8b10b 라인 코딩 방식, NRZ(non-return to zero) 라인 코딩 방식 및 RZ(return to zero) 라인 코딩 방식 중 하나를 포함함을 특징으로 하는 RF 처리 장치.
  4. 제1항에 있어서,
    상기 RF 처리 장치와 상기 IF 처리 장치는 하나의 케이블을 통해 연결됨을 특징으로 하는 RF 처리 장치.
  5. 제1항에 있어서,
    상기 제어 신호는 상기 RF 처리 장치에 포함된 구성부들의 파라미터 값들을 변경하기 위한 정보를 포함함을 특징으로 하는 RF 처리 장치.
  6. 제1항에 있어서,
    전력 검출부를 더 포함하며,
    상기 전력 검출부는;
    상기 수신된 신호로부터 상기 제어 신호 및 널(null) 신호 중 하나를 검출하고,
    상기 제어 신호가 검출되면 미리 설정된 시간 동안 상기 제어 신호의 전압값을 측정하여 평균 전압값을 계산하고,
    상기 RF 처리 장치에 입력되는 전압값이 상기 평균 전압값보다 작은지 여부를 기반으로 상기 RF 처리 장치에 대한 전력 입력 동작을 수행하도록 하는 신호를 상기 제어부로 출력하고,
    상기 널 신호가 검출되면 상기 전력 입력 동작을 중지하도록 하는 신호를 상기 제어부로 출력함을 특징으로 하는 RF 처리 장치.
  7. 중간 주파수(intermediate frequency: IF) 처리 장치에 있어서,
    무선 주파수 (radio frequency: RF) 처리 장치와 동기를 획득하기 위한 클럭(clock) 신호를 생성하는 클럭 신호 생성부와,
    제어 신호 및 기지국과의 통신을 위한 신호를 생성하며 상기 클럭 신호를 상기 제어 신호에 포함시키는 베이스밴드부와,
    상기 클럭 신호가 포함된 제어 신호와 상기 기지국과의 통신을 위한 신호를 상기 RF 처리 장치로 송신하는 신호 필터부를 포함하는 IF 처리 장치.
  8. 제7항에 있어서,
    상기 기지국과의 통신을 위한 신호를 처리하기 위한 IF부를 더 포함하며,
    상기 신호 필터부는 상기 RF 처리 장치로부터 신호가 수신되면, 상기 수신된 신호로부터 상기 기지국으로부터 수신된 다운링크(downlink) 신호를 검출하여 상기 IF부로 출력함을 특징으로 하는 IF 처리 장치.
  9. 제7항에 있어서,
    상기 베이스밴드부는 미리 설정된 방식을 기반으로 상기 제어 신호에 상기 클럭 신호를 포함시키며,
    상기 미리 설정된 방식은 라인 코딩(line coding) 방식을 포함하고, 상기 라인 코딩 방식은 맨체스터(manchester) 라인 코딩 방식, 8b10b 라인 코딩 방식, NRZ(non-return to zero) 라인 코딩 방식 및 RZ(return to zero) 라인 코딩 방식 중 하나를 포함함을 특징으로 하는 IF 처리 장치.
  10. 제7항에 있어서,
    상기 RF 처리 장치와 상기 IF 처리 장치는 하나의 케이블을 통해 연결됨을 특징으로 하는 IF 처리 장치.
  11. 제7항에 있어서,
    상기 제어 신호는 상기 RF 처리 장치에 포함된 구성부들의 파라미터 값들을 변경하기 위한 정보를 포함함을 특징으로 하는 IF 처리 장치.
  12. 제7항에 있어서,
    상기 베이스 밴드부는 상기 RF 처리 장치에 대한 전력 입력 동작을 중지시키기 위한 널 신호(null) 및 상기 RF 처리 장치에 대한 전력 입력 동작을 수행시키기 위한 상기 제어 신호 중 하나를 상기 신호 필터부로 출력함을 특징으로 하는 IF 처리 장치.
  13. 무선 주파수(radio frequency: RF) 처리 장치의 동작 방법에 있어서,
    중간 주파수(intermediate frequency: IF) 처리 장치로부터 신호를 수신하는 과정과,
    상기 수신된 신호로부터 기지국과의 통신을 위한 신호 및 제어 신호를 구분하는 과정과,
    미리 결정된 코드를 사용하여 상기 제어 신호를 전압 변화 패턴을 갖는 신호로 변환하고, 미리 설정된 방식을 기반으로 상기 전압 변화 패턴을 변경하여 상기 변환된 신호로부터 클럭(clock) 신호를 검출하는 과정과,
    상기 클럭 신호를 기반으로 하는 타이밍에 상기 제어 신호를 기반으로 하는 동작을 수행하는 과정을 포함하는 RF 처리 장치의 동작 방법.
  14. 제13항에 있어서,
    상기 기지국과의 통신을 위한 신호가 송신되는 주파수 대역과 상기 제어 신호가 송신되는 주파수 대역은 상이함을 특징으로 하는 RF 처리 장치의 동작 방법.
  15. 제13항에 있어서,
    상기 미리 설정된 방식은 라인 코딩(line coding) 방식을 포함하며,
    상기 라인 코딩 방식은 맨체스터(manchester) 라인 코딩 방식, 8b10b 라인 코딩 방식, NRZ(non-return to zero) 라인 코딩 방식 및 RZ(return to zero) 라인 코딩 방식 중 하나를 포함함을 특징으로 하는 RF 처리 장치의 동작 방법.
  16. 제13항에 있어서,
    상기 RF 처리 장치와 상기 IF 처리 장치는 하나의 케이블을 통해 연결됨을 특징으로 하는 RF 처리 장치의 동작 방법.
  17. 제13항에 있어서,
    상기 제어 신호는 상기 RF 처리 장치에 포함된 구성부들의 파라미터 값들을 변경하기 위한 정보를 포함함을 특징으로 하는 RF 처리 장치의 동작 방법.
  18. 제13항에 있어서,
    상기 수신된 신호로부터 상기 제어 신호 및 널(null) 신호 중 하나를 검출하는 과정과,
    상기 제어 신호가 검출되면, 미리 설정된 시간 동안 상기 제어 신호의 전압값을 측정하여 평균 전압값을 계산하고, 상기 RF 처리 장치에 입력되는 전압값이 상기 평균 전압값보다 작은지 여부를 기반으로 상기 RF 처리 장치에 대한 전력 입력 동작을 수행하는 과정과,
    상기 널 신호가 검출되면 상기 전력 입력 동작을 중지하는 과정을 더 포함하는 RF 처리 장치의 동작 방법.
  19. 중간 주파수(intermediate frequency: IF) 처리 장치의 동작 방법에 있어서,
    무선 주파수 (radio frequency: RF) 처리 장치와 동기를 획득하기 위한 클럭(clock) 신호를 생성하는 과정과,
    제어 신호 및 기지국과의 통신을 위한 신호를 생성하고, 상기 클럭 신호를 상기 제어 신호에 포함시키는 과정과,
    상기 클럭 신호가 포함된 제어 신호와 상기 기지국과의 통신을 위한 신호를 상기 RF 처리 장치로 송신하는 과정을 포함하는 IF 처리 장치의 동작 방법.
  20. 제19항에 있어서,
    상기 RF 처리 장치로부터 신호가 수신되면, 상기 수신된 신호로부터 상기 기지국으로부터 수신된 다운링크(downlink) 신호를 검출하여 상기 검출된 다운링크 신호를 처리하는 과정을 더 포함하는 IF 처리 장치의 동작 방법.
  21. 제19항에 있어서,
    상기 클럭 신호를 상기 제어 신호에 포함시키는 과정은 미리 설정된 방식을 기반으로 상기 제어 신호에 상기 클럭 신호를 포함시키는 과정을 포함하며,
    상기 미리 설정된 방식은 라인 코딩(line coding) 방식을 포함하며, 상기 라인 코딩 방식은 맨체스터(manchester) 라인 코딩 방식, 8b10b 라인 코딩 방식, NRZ(non-return to zero) 라인 코딩 방식 및 RZ(return to zero) 라인 코딩 방식 중 하나를 포함함을 특징으로 하는 IF 처리 장치의 동작 방법.
  22. 제19항에 있어서,
    상기 RF 처리 장치와 상기 IF 처리 장치는 하나의 케이블을 통해 연결됨을 특징으로 IF 처리 장치의 동작 방법.
  23. 제19항에 있어서,
    상기 제어 신호는 상기 RF 처리 장치에 포함된 구성부들의 파라미터 값들을 변경하기 위한 정보를 포함함을 특징으로 하는 IF 처리 장치의 동작 방법.
  24. 제19항에 있어서,
    상기 RF 처리 장치에 대한 전력 입력 동작을 중지시키기 위한 널 신호(null) 및 상기 RF 처리 장치에 대한 전력 입력 동작을 수행시키기 위한 상기 제어 신호 중 하나를 상기 RF 처리 장치로 송신하는 과정을 더 포함하는 IF 처리 장치의 동작 방법.

KR1020140120994A 2014-09-12 2014-09-12 무선 주파수 처리 장치 및 방법 KR102238709B1 (ko)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020140120994A KR102238709B1 (ko) 2014-09-12 2014-09-12 무선 주파수 처리 장치 및 방법
US15/510,647 US10284364B2 (en) 2014-09-12 2015-09-14 Radio frequency processing device and method
CN201580061451.9A CN107113158B (zh) 2014-09-12 2015-09-14 射频处理设备和方法
EP15840772.6A EP3193474B1 (en) 2014-09-12 2015-09-14 Radio frequency processing device and method
PCT/KR2015/009603 WO2016039592A1 (ko) 2014-09-12 2015-09-14 무선 주파수 처리 장치 및 방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020140120994A KR102238709B1 (ko) 2014-09-12 2014-09-12 무선 주파수 처리 장치 및 방법

Publications (2)

Publication Number Publication Date
KR20160031234A KR20160031234A (ko) 2016-03-22
KR102238709B1 true KR102238709B1 (ko) 2021-04-12

Family

ID=55459288

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020140120994A KR102238709B1 (ko) 2014-09-12 2014-09-12 무선 주파수 처리 장치 및 방법

Country Status (5)

Country Link
US (1) US10284364B2 (ko)
EP (1) EP3193474B1 (ko)
KR (1) KR102238709B1 (ko)
CN (1) CN107113158B (ko)
WO (1) WO2016039592A1 (ko)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102342740B1 (ko) * 2014-09-15 2021-12-23 삼성전자주식회사 신호 송수신 방법 및 장치
US10637445B2 (en) * 2017-10-18 2020-04-28 Phazr, Inc. Signaling methods for communication systems with widely spaced downlink and uplink frequency channels
KR102370926B1 (ko) 2017-11-02 2022-03-08 삼성전자주식회사 안테나를 포함하는 전자 장치
US10791474B2 (en) 2018-09-07 2020-09-29 Apple Inc. Licensed assisted access signal detection for reducing power use
JP2020065246A (ja) * 2018-10-16 2020-04-23 株式会社村田製作所 通信装置
KR102568765B1 (ko) * 2018-11-19 2023-08-22 삼성전자주식회사 안테나 모듈을 포함하는 전자 장치
US11217899B2 (en) 2019-08-05 2022-01-04 Samsung Electronics Co., Ltd Antenna module and electronic device for using the antenna module
CN112291016B (zh) * 2020-10-30 2021-09-17 台州科技职业学院 非正交调制下的伪正交线路编码实现标签信号调制方法
KR102554868B1 (ko) * 2021-04-09 2023-07-12 주식회사 포인투테크놀로지 광대역 rf 통신을 구현하기 위한 시스템 및 방법
WO2023048612A1 (en) * 2021-09-24 2023-03-30 Beammwave Ab An electronic device and a baseband processor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5724166A (en) 1994-05-13 1998-03-03 Canon Kabushiki Kaisha Information sharing method for a plurality of nodes in communication system and communication system
US6032057A (en) 1995-01-26 2000-02-29 Nokia Telecommunications Oy Cellular radio system repeater and base station
US20120106674A1 (en) 2010-11-02 2012-05-03 Electronics And Telecommunications Research Institute Reception apparatus and transmission apparatus for supporting scalable bandwidth in carrier aggregation environment
US20120309325A1 (en) 2010-12-08 2012-12-06 Broadcom Corporation Rf module control interface

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100294642B1 (ko) 1998-06-10 2001-07-12 박종섭 맨체스터 코딩 기법을 이용한 양방향 동기 통신 송수신 장치
EP1528738B1 (en) 2003-10-30 2010-07-28 Panasonic Corporation ASK demodulation device and wireless device using the same
CN101247162B (zh) * 2007-02-13 2012-04-25 杰脉通信技术(上海)有限公司 一种模拟中频的td-scdma室内分布系统
JP5018726B2 (ja) * 2008-10-07 2012-09-05 ソニー株式会社 情報処理装置、及び信号伝送方法
US8090327B2 (en) * 2008-12-02 2012-01-03 Broadcom Corporation Configurable baseband processing for receiver and transmitter and methods for use therewith
CN101841935B (zh) * 2010-05-12 2013-05-22 新邮通信设备有限公司 一种单天线射频拉远单元
JP5375738B2 (ja) 2010-05-18 2013-12-25 ソニー株式会社 信号伝送システム
US8681890B2 (en) 2010-06-07 2014-03-25 Entropic Communications, Inc. Method and apparatus for real time multiplexing with receiver and antenna array elements
KR101785031B1 (ko) 2011-01-03 2017-10-13 삼성디스플레이 주식회사 타이밍 컨트롤러, 이를 포함하는 표시장치 및 이의 구동방법
US8670322B2 (en) 2011-06-06 2014-03-11 Wilocity, Ltd. Single transmission line for connecting radio frequency modules in an electronic device
KR20130034723A (ko) 2011-09-29 2013-04-08 포항공과대학교 산학협력단 인지라디오 시스템 및 인지라디오 시스템의 데이터 전송방법

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5724166A (en) 1994-05-13 1998-03-03 Canon Kabushiki Kaisha Information sharing method for a plurality of nodes in communication system and communication system
US6032057A (en) 1995-01-26 2000-02-29 Nokia Telecommunications Oy Cellular radio system repeater and base station
US20120106674A1 (en) 2010-11-02 2012-05-03 Electronics And Telecommunications Research Institute Reception apparatus and transmission apparatus for supporting scalable bandwidth in carrier aggregation environment
US20120309325A1 (en) 2010-12-08 2012-12-06 Broadcom Corporation Rf module control interface

Also Published As

Publication number Publication date
US20170214519A1 (en) 2017-07-27
EP3193474A1 (en) 2017-07-19
CN107113158B (zh) 2020-06-16
KR20160031234A (ko) 2016-03-22
EP3193474A4 (en) 2017-09-27
WO2016039592A1 (ko) 2016-03-17
CN107113158A (zh) 2017-08-29
EP3193474B1 (en) 2018-06-13
US10284364B2 (en) 2019-05-07

Similar Documents

Publication Publication Date Title
KR102238709B1 (ko) 무선 주파수 처리 장치 및 방법
US20120309325A1 (en) Rf module control interface
US10516448B2 (en) Beam operation device and method in communication system supporting hybrid multiple-input multiple-output mode
US20190123787A1 (en) Apparatus having multiple rf chains coupled to multiple antennas and operating method thereof in wireless communication system
US10305551B2 (en) Apparatus and method for transmitting and receiving transmission beam information and channel quality information in communication system supporting multi-user multi-input multi-output scheme
US10624025B2 (en) Method and apparatus for controlling scan period in wireless communication system
US9825755B2 (en) Configurable clock tree
US8594256B2 (en) Low power, multi-chip diversity architecture
CN107809263B (zh) 近场通信装置
US9847870B2 (en) Semiconductor device and communication system including the same
KR102342740B1 (ko) 신호 송수신 방법 및 장치
US10056928B2 (en) Method and apparatus for controlling interference in mobile communication system
CN101778444B (zh) 无线网络中传输路径选择装置与方法
JP5850025B2 (ja) 無線通信システム、無線機、アンテナ側装置
EP4211817A1 (en) Monitoring periodic reference signals
CN115734348A (zh) 传输方式确定方法、终端、网络侧设备和存储介质
US10177796B2 (en) Receiver and radio communication device
JP6334494B2 (ja) 無線通信装置および無線通信方法
TW202310651A (zh) 用以提高無線網路訊號品質的顯示通訊介面驅動強度的執行時調節和順序校準
US9900854B2 (en) Signal processing device and signal processing method
CN105490693A (zh) 发射耦接装置、信号控制方法和电子设备

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant