KR102237181B1 - coating method of tube for aluminum heat exchanger - Google Patents

coating method of tube for aluminum heat exchanger Download PDF

Info

Publication number
KR102237181B1
KR102237181B1 KR1020200056745A KR20200056745A KR102237181B1 KR 102237181 B1 KR102237181 B1 KR 102237181B1 KR 1020200056745 A KR1020200056745 A KR 1020200056745A KR 20200056745 A KR20200056745 A KR 20200056745A KR 102237181 B1 KR102237181 B1 KR 102237181B1
Authority
KR
South Korea
Prior art keywords
tube
weight
composition
coating
powder
Prior art date
Application number
KR1020200056745A
Other languages
Korean (ko)
Inventor
장영호
Original Assignee
장영호
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 장영호 filed Critical 장영호
Priority to KR1020200056745A priority Critical patent/KR102237181B1/en
Application granted granted Critical
Publication of KR102237181B1 publication Critical patent/KR102237181B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/36Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest
    • B23K35/3612Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest with organic compounds as principal constituents
    • B23K35/3613Polymers, e.g. resins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/28Processes for applying liquids or other fluent materials performed by transfer from the surfaces of elements carrying the liquid or other fluent material, e.g. brushes, pads, rollers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/14Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials to metal, e.g. car bodies
    • B05D7/146Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials to metal, e.g. car bodies to metallic pipes or tubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • B23K1/0008Soldering, e.g. brazing, or unsoldering specially adapted for particular articles or work
    • B23K1/0012Brazing heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F19/00Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers
    • F28F19/02Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers by using coatings, e.g. vitreous or enamel coatings
    • F28F19/04Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers by using coatings, e.g. vitreous or enamel coatings of rubber; of plastics material; of varnish
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/10Greenhouse gas [GHG] capture, material saving, heat recovery or other energy efficient measures, e.g. motor control, characterised by manufacturing processes, e.g. for rolling metal or metal working

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Paints Or Removers (AREA)

Abstract

The present invention relates to a method for coating a tube for an aluminum heat exchanger, and to a method for coating a tube for an aluminum heat exchanger capable of increasing durability of a heat exchanger by uniformly applying a brazing composition capable of improving corrosion resistance to a tube. The coating method of the tube for an aluminum heat exchanger of the present invention includes a composition step of mixing 20 to 50% by weight of a flux powder, 40 to 70% by weight of a binder, 5 to 30% by weight of zinc powder, and 1 to 20% by weight of lithium powder to obtain a composition for brazing in the form of a paste; and a coating step of applying the brazing composition to the tube.

Description

알루미늄 열교환기용 튜브의 코팅방법{coating method of tube for aluminum heat exchanger}Coating method of tube for aluminum heat exchanger

본 발명은 알루미늄 열교환기용 튜브의 코팅방법에 관한 것으로서, 내식성을 향상시킬 수 있는 브레이징용 조성물을 튜브에 균일하게 도포하여 열교환기의 내구성을 높일 수 있는 알루미늄 열교환기용 튜브의 코팅방법에 관한 것이다. The present invention relates to a coating method for an aluminum heat exchanger tube, and relates to a coating method for an aluminum heat exchanger tube capable of increasing durability of a heat exchanger by uniformly applying a brazing composition capable of improving corrosion resistance to the tube.

일반적으로 열교환기(Heat exchanger)는 고체벽으로 분리된 두 유체 사이에 열교환을 수행하는 장치를 말하는 것으로, 좁은 의미의 열교환기는 통상적으로 상변화가 없는 두 공정 흐름 사이에 열을 교환하는 장치를 말하고, 넓은 의미로는 냉각기, 응축기 등을 포함한다.In general, a heat exchanger refers to a device that performs heat exchange between two fluids separated by a solid wall, and a heat exchanger in a narrow sense refers to a device that exchanges heat between two process streams without a phase change. , In a broad sense, it includes a cooler, a condenser, and the like.

이러한 열교환기는 난방, 공기조화, 동력발생, 냉각 및 폐열회수 등에 널리 이용되고 있다. 통상 공기조화기나 차량의 냉각계통 등에 사용되는 열교환기는 헤더와 탱크로 이루어지며 상하 또는 좌우 양측으로 대향 설치되어 냉매의 출입을 안내하는 헤더탱크, 양 헤더탱크 사이에 일정간격으로 배열 설치되어 냉매의 방열이 이루어지는 튜브 및 튜브 각각의 사이에 배열되어 튜브로부터 전달된 열을 대기중으로 방열시키는 방열핀의 구성되며, 헤더탱크에는 열교환매체의 유입과 유출이 될 수 있도록 파이프들이 더 결합될 수 있다. Such heat exchangers are widely used for heating, air conditioning, power generation, cooling, and waste heat recovery. Heat exchangers commonly used in air conditioners or vehicle cooling systems consist of a header and a tank, and are installed opposite to each other up and down or left and right to guide the entry and exit of the refrigerant, and are arranged at regular intervals between both header tanks to heat the refrigerant The tube and the heat dissipation fin are arranged between each of the tubes to dissipate heat transferred from the tube into the atmosphere, and the pipes may be further coupled to the header tank so that the heat exchange medium can flow in and out.

이와 같이 구성된 종래의 열교환기는 상호 평행하게 설치되는 헤더탱크의 튜브삽입공에 튜브들의 양단부가 삽입되고, 튜브들의 사이에 방열핀이 배치된 상태로 고정지그에 의해 지지되어 브레이징 로(furnace)에 투입된다. In the conventional heat exchanger configured as described above, both ends of the tubes are inserted into the tube insertion holes of the header tank installed in parallel with each other, and the radiating fins are arranged between the tubes, supported by a fixing jig, and put into the brazing furnace. .

이와 같이 고정지그에 지지되어 브레이징 로에 투입된 열교환기는 튜브에 도포된 플럭스가 녹아서 튜브와 헤더탱크가 접합되고, 튜브와 방열핀이 접합된다.In the heat exchanger supported by the fixing jig and put into the brazing furnace, the flux applied to the tube is melted so that the tube and the header tank are joined, and the tube and the radiating fin are joined.

종래에는 튜브에 플럭스를 분무하는 방식으로 코팅을 하였으나 이 경우 플럭스의 사용량이 많아질 뿐 아니라 코팅막의 두께 조절이 힘들다는 문제점이 있다. Conventionally, the coating is performed by spraying the flux on the tube, but in this case, there is a problem that the amount of flux is increased and it is difficult to control the thickness of the coating film.

대한민국 공개특허 제10-2009-0133005호에는 열교환기용 튜브의 플럭스 코팅방법 및 장치와 코팅 조성물이 개시되어 있다.Korean Patent Application Publication No. 10-2009-0133005 discloses a flux coating method and apparatus for a heat exchanger tube, and a coating composition.

상기 코팅방법은 롤러를 이용한 롤코팅 방식으로 튜브에 플럭스를 도포하므로 분무에 의한 방식의 문제점을 해결할 수 있는 장점을 갖는다. 하지만, 이러한 롤코팅방식은 튜브의 일면만 도포가 가능하다는 문제점을 갖는다. The coating method has an advantage of solving the problem of the spraying method since the flux is applied to the tube by a roll coating method using a roller. However, this roll coating method has a problem that only one surface of the tube can be applied.

또한, 상기 코팅방법에 사용된 플럭스는 아연계나 실리콘계 금속이 포함된 합금의 플럭스 분말을 사용하고 있으나, 이러한 플럭스 분말은 내식성이 낮으며, 특히 수분에 노출되는 경우 부식이 빠르게 진행되는 문제점이 있다. In addition, the flux used in the coating method uses a flux powder of an alloy containing a zinc-based or silicon-based metal, but such a flux powder has low corrosion resistance, and particularly, when exposed to moisture, there is a problem that corrosion proceeds rapidly. .

대한민국 공개특허 제10-2009-0133005호: 열교환기용 튜브의 플럭스 코팅방법 및 장치와 코팅 조성물Republic of Korea Patent Laid-Open Patent No. 10-2009-0133005: Flux coating method and apparatus for heat exchanger tubes, and coating composition

본 발명은 상기의 문제점을 개선하고자 창출된 것으로서, 내식성을 향상시킬 수 있는 브레이징용 조성물을 튜브에 균일하게 도포하여 열교환기의 내구성을 높일 수 있는 알루미늄 열교환기용 튜브의 코팅방법을 제공하는데 그 목적이 있다. The present invention was created to improve the above problems, and provides a coating method for an aluminum heat exchanger tube that can increase the durability of the heat exchanger by uniformly applying a brazing composition that can improve corrosion resistance to the tube. have.

상기의 목적을 달성하기 위한 본 발명의 알루미늄 열교환기용 튜브의 코팅방법은 플럭스 분말 20 내지 50중량%와, 바인더 40 내지 70중량%와, 아연 분말 5 내지 30중량%와, 리튬 분말 1 내지 20중량%를 혼합하여 페이스트 형태의 브레이징용 조성물을 수득하는 조성단계와; 상기 브레이징용 조성물을 튜브에 도포하는 코팅단계;를 포함한다.The coating method of the tube for an aluminum heat exchanger of the present invention for achieving the above object includes 20 to 50% by weight of flux powder, 40 to 70% by weight of a binder, 5 to 30% by weight of zinc powder, and 1 to 20% by weight of lithium powder. A composition step of mixing% to obtain a composition for brazing in a paste form; It includes; a coating step of applying the brazing composition to the tube.

상기 코팅단계는 상부코팅롤러 및 하부코팅롤러 사이로 상기 튜브를 통과시키면서 코팅하며, 상기 상부코팅롤러는 한쌍의 상부공급롤러들과 접촉되어 회전하면서 상기 상부공급롤러들을 통해 상기 브레이징용 조성물을 전달받고, 상기 하부코팅롤러는 한쌍의 하부공급롤러들과 접촉되어 회전하면서 상기 하부공급롤러들을 통해 상기 브레이징용 조성물을 전달받으며, 상기 브레이징용 조성물을 상기 상부공급롤러들 사이 및 상기 하부공급롤러들 사이로 주입한다.The coating step is coated while passing the tube between the upper coating roller and the lower coating roller, and the upper coating roller is in contact with a pair of upper supply rollers and rotates while receiving the brazing composition through the upper supply rollers, The lower coating roller is in contact with a pair of lower supply rollers and rotates to receive the brazing composition through the lower supply rollers, and the brazing composition is injected between the upper supply rollers and the lower supply rollers. .

상기 바인더는 아크릴 수지에 솔벤트 또는 3-메톡시-3-메틸-1-부탄올(3-methoxy-3-methyl-1-butanol)을 혼합한다. As the binder, a solvent or 3-methoxy-3-methyl-1-butanol is mixed with an acrylic resin.

상술한 바와 같이 본 발명은 아연과 리튬 금속을 첨가한 브레이징 조성물을 이용함으로써 종래의 플럭스와 비해 부식을 감소시킴으로써 내식성을 향상시킬 수 있다. 또한, 내식성을 향상시킴과 동시에 백청발생을 억제하여 접합부위에 백분이 발생하는 것을 감소시킬 수 있다. As described above, the present invention can improve corrosion resistance by reducing corrosion compared to a conventional flux by using a brazing composition in which zinc and lithium metal are added. In addition, it is possible to reduce the occurrence of white powder at the junction by improving the corrosion resistance and suppressing the occurrence of white rust.

또한, 본 발명은 튜브의 양면에 동시에 롤 코팅이 가능하므로 코팅이 빠르고 간단하여 열교환기의 제조시간을 단축시킬 수 있으며 균일한 도포가 가능하다. In addition, in the present invention, since roll coating is possible on both sides of the tube at the same time, coating is quick and simple, so that the manufacturing time of the heat exchanger can be shortened and uniform coating is possible.

도 1은 본 발명의 일 예에 따라 튜브에 브레이징용 조성물을 도포하는 모습을 나타낸 구성도이고,
도 2는 브레이징용 조성물이 도포된 튜브를 이용하여 조립되는 알루미늄 열교환기 조립체를 나타낸 분리사시도이다.
1 is a configuration diagram showing a state in which a composition for brazing is applied to a tube according to an example of the present invention,
2 is an exploded perspective view showing an aluminum heat exchanger assembly assembled using a tube to which a brazing composition is applied.

이하, 본 발명의 바람직한 실시 예에 따른 알루미늄 열교환기용 튜브의 코팅방법에 대하여 구체적으로 설명한다. Hereinafter, a method of coating an aluminum heat exchanger tube according to a preferred embodiment of the present invention will be described in detail.

본 발명의 일 예에 따른 알루미늄 열교환기용 튜브의 코팅방법은 페이스트 형태의 브레이징용 조성물을 수득하는 조성단계와, 브레이징용 조성물을 튜브에 도포하는 코팅단계를 포함한다. 각 단계별로 상세히 살펴본다. A method of coating a tube for an aluminum heat exchanger according to an embodiment of the present invention includes a composition step of obtaining a composition for brazing in the form of a paste, and a coating step of applying the composition for brazing to the tube. We look at each step in detail.

1. 조성단계1. Creation stage

먼저, 플럭스 분말, 바인더, 아연 분말, 리튬 분말을 혼합하여 브레이징용 조성물을 준비한다. 브레이징용 조성물은 점착성을 갖는 페이스트(paste) 형태로 이루어진다. First, a composition for brazing is prepared by mixing a flux powder, a binder, a zinc powder, and a lithium powder. The brazing composition is made in the form of a sticky paste.

본 발명에 적용된 브레이징용 조성물은 아연과 리튬 금속이 첨가되어 내식성을 향상시킨다. 또한, 내식성을 향상시킴과 동시에 백청발생을 크게 억제하여 접합부위에 백분이 발생하는 것을 효과적으로 감소시킬 수 있다. The brazing composition applied to the present invention is added with zinc and lithium metal to improve corrosion resistance. In addition, it is possible to effectively reduce the occurrence of white powder at the junction by greatly suppressing the occurrence of white rust while improving the corrosion resistance.

본 발명에 적용된 브레이징용 조성물은 일 예로 플럭스 분말 20 내지 50중량%와, 바인더 40 내지 70중량%와, 아연 분말 5 내지 30중량%와, 리튬 분말 1 내지 20중량%를 혼합하여 조성할 수 있다. The composition for brazing applied to the present invention may be formulated by mixing 20 to 50% by weight of flux powder, 40 to 70% by weight of a binder, 5 to 30% by weight of zinc powder, and 1 to 20% by weight of lithium powder. .

플럭스 분말은 브레이징시 용융되어 알루미늄 모재를 접합시킴과 동시에 알루미늄 모재의 표면에 산화 알루미늄(Al2O3) 피막이 형성되는 것을 방지하는 역할을 한다. 플럭스 분말로 불화 알루미늄을 사용할 수 있다. 바람직하게 불화 알루미늄으로 알루미늄 칼륨 플루오라이드(aluminum potassium fluoride)를 사용할 수 있다. 알루미늄 칼륨 플루오라이드로서 KAlF, KAlF4, K3AlF6 중에서 선택된 어느 하나 또는 2이상을 혼합하여 사용할 수 있다. 이러한 플럭스 분말로 상업화된 제품인 노콜록(NOCOLOK) 플럭스를 이용할 수 있다. The flux powder is melted during brazing to bond the aluminum base material and at the same time prevent the formation of an aluminum oxide (Al 2 O 3) film on the surface of the aluminum base material. Aluminum fluoride can be used as the flux powder. Preferably, aluminum potassium fluoride may be used as aluminum fluoride. As aluminum potassium fluoride, any one or two or more selected from KAlF, KAlF 4 and K 3 AlF 6 may be used in combination. A commercial product, NOCOLOK flux, can be used as such a flux powder.

플럭스 분말은 조성물 전체에서 20 내지 50중량%의 비율로 함유되는 것이 적절하다. 플럭스 분말의 함량이 20중량% 미만이면 브레이징 성능이 낮아지고, 50중량%를 초과하면 잔사가 과다하게 생성된다.It is appropriate that the flux powder is contained in a proportion of 20 to 50% by weight in the total composition. When the content of the flux powder is less than 20% by weight, brazing performance is lowered, and when it exceeds 50% by weight, excessive residue is generated.

바인더는 플럭스 분말, 아연 분말, 리튬 분말의 혼합시 점착성을 갖게 하여모재의 표면에 도포를 용이하게 한다. When the flux powder, zinc powder, and lithium powder are mixed, the binder provides adhesion and facilitates application to the surface of the base material.

바인더는 아크릴 수지에 솔벤트 또는 3-메톡시-3-메틸-1-부탄올(3-methoxy-3-methyl-1-butanol)을 혼합하여 얻을 수 있다. 가령, 바인더로 아크릴 수지와 솔벤트를 1:5~30의 중량비로 혼합하여 조성할 수 있다. 또한, 바인더로 아크릴 수지와 3-메톡시-3-메틸-1-부탄올을 1:5~30의 중량비로 혼합하여 조성할 수 있다. 그리고 필요에 따라 바인더에는 물이 더 첨가될 수 있다. The binder can be obtained by mixing a solvent or 3-methoxy-3-methyl-1-butanol with an acrylic resin. For example, it can be prepared by mixing an acrylic resin and a solvent as a binder in a weight ratio of 1:5 to 30. In addition, as a binder, acrylic resin and 3-methoxy-3-methyl-1-butanol may be mixed in a weight ratio of 1:5 to 30 to form a composition. And, if necessary, water may be further added to the binder.

아크릴 수지는 금속 재료의 확산을 도우며, 브레이징시 증발되어 없어져 모재의 접합면에 아무런 악영향을 끼치지 않는다. 본 발명에서 사용 가능한 아크릴 수지의 종류는 크게 제한되지 않는다. 예를 들어 아크릴산, 메타크릴산, 아크릴산의 에스테르, 메타크릴산의 에스테르, 아크릴로니트릴, 메타크릴로니트릴, 아크릴아미드 및 메타크릴아미드로 이루어진 군에서 선택된 1종 이상의 모노머를 중합하여 형성시킨 것일 수 있다. 가령, 아크릴 수지로 폴리아크릴레이트 또는 폴리메틸메타아크릴레이트 등을 이용할 수 있다. Acrylic resin helps the diffusion of metal materials and does not have any adverse effect on the bonding surface of the base material as it evaporates and disappears during brazing. The kind of acrylic resin that can be used in the present invention is not greatly limited. For example, it may be formed by polymerizing at least one monomer selected from the group consisting of acrylic acid, methacrylic acid, ester of acrylic acid, ester of methacrylic acid, acrylonitrile, methacrylonitrile, acrylamide and methacrylamide. have. For example, polyacrylate or polymethyl methacrylate may be used as the acrylic resin.

솔벤트 또는 3-메톡시-3-메틸-1-부탄올은 용제로서 첨가된다. 솔벤트로 아미노에틸에탄올아민, 트리에탄올아민, 톨루엔, 메탄올 중에서 선택된 어느 하나를 이용할 수 있다. Solvent or 3-methoxy-3-methyl-1-butanol is added as a solvent. As the solvent, any one selected from aminoethylethanolamine, triethanolamine, toluene, and methanol may be used.

바인더는 조성물 전체에서 40 내지 70중량%의 비율로 함유되는 것이 적절하다. 바인더의 함량이 40중량% 미만이면 점착력이 낮아지고, 70중량%를 초과하면 유동성이 저하된다. It is appropriate that the binder is contained in a proportion of 40 to 70% by weight in the whole composition. When the content of the binder is less than 40% by weight, the adhesive strength is lowered, and when it exceeds 70% by weight, the fluidity is lowered.

아연(Zn) 분말은 희생 양극 효과에 의해 알루미늄 보다 먼저 부식됨으로써 열교환기 튜브의 부식을 방지한다. 본 발명에서 아연 분말은 200 내지 400메쉬 입도 크기의 미세한 분말 형태로 사용된다. 이와 같이 아연이 분말 형태로 사용되므로 플럭스 조성물을 모재에 도포시 균일한 분산이 가능하다. Zinc (Zn) powder is corroded before aluminum by the sacrificial anode effect, thereby preventing corrosion of the heat exchanger tube. In the present invention, the zinc powder is used in the form of a fine powder having a particle size of 200 to 400 mesh. Since zinc is used in powder form as described above, uniform dispersion is possible when the flux composition is applied to the base material.

아연 분말은 조성물 전체에서 5 내지 30중량%의 비율로 함유되는 것이 적절하다. 아연 분말의 함량이 5중량% 미만이면 내식성이 저하되고, 30중량%를 초과하면 과도한 부식이 발생할 수 있다. It is appropriate that the zinc powder is contained in an amount of 5 to 30% by weight in the whole composition. When the content of zinc powder is less than 5% by weight, corrosion resistance is deteriorated, and when it exceeds 30% by weight, excessive corrosion may occur.

리튬(Li) 분말은 브레이징 후 접합 부위에서 발생되는 백청현상을 차단하여 부식을 방지하고 접합부위에서의 균열을 막는 역할을 한다. Lithium (Li) powder prevents corrosion by blocking the white rust phenomenon occurring at the bonding site after brazing and prevents cracking at the bonding site.

통상적인 플럭스로 브레이징을 한 후 수분에 노출되는 경우 접합 부위의 표면에 흰색의 물질(백분)이 형성된다. 이 흰색의 물질은 플럭스에 함유된 아연 등과 같은 일부의 물질이 수분과 접촉에 의해 발생되는 수산화물이다. 아연의 경우 수산화아연을 생성한다. 백청현상으로 발생되는 백분은 공기 중에서 비산되어 주위의 환경을 오염시키는 문제점이 발생된다. When exposed to moisture after brazing with a conventional flux, a white substance (percent) is formed on the surface of the joint. This white substance is a hydroxide produced by contact with moisture by some substances such as zinc contained in the flux. Zinc produces zinc hydroxide. The white powder generated by the white rust phenomenon is scattered in the air, causing a problem of polluting the surrounding environment.

본 발명에 적용된 브레이징용 조성물은 리튬 분말이 첨가되어 수분에 의한 백청현상을 억제시켜 내식성을 향상시킨다. 리튬 분말은 200 내지 400메쉬 입도 크기의 미세한 분말 형태로 사용된다. 리튬을 분말 형태로 사용되므로 플럭스 조성물을 모재에 도포시 균일한 분산이 가능하다. The brazing composition applied to the present invention is added with lithium powder to suppress white rust caused by moisture to improve corrosion resistance. Lithium powder is used in the form of a fine powder having a particle size of 200 to 400 mesh. Since lithium is used in powder form, uniform dispersion is possible when the flux composition is applied to the base material.

리튬 분말은 조성물 전체에서 1 내지 20중량%의 비율로 함유되는 것이 적절하다. 리튬 분말의 함량이 1중량% 미만이면 방청 억제효과가 저하되고, 20중량%를 초과하면 접합성이 저하될 수 있다. It is appropriate that the lithium powder is contained in an amount of 1 to 20% by weight in the total composition. If the content of the lithium powder is less than 1% by weight, the rust inhibiting effect may decrease, and if it exceeds 20% by weight, the bonding property may decrease.

브레이징용 조성물에 첨가되는 아연과 리튬은 다른 원소와 결합된 화합물 또는 합금의 형태가 아닌 단일의 원소로 이루어진 금속으로 이용한다. 본 발명에 적용되는 아연과 리튬은 순도 99.99% 이상일 수 있다. 본 발명은 아연과 리튬을 분말 형태로 이용하므로 분산성 및 균일성을 높일 수 있다. Zinc and lithium added to the brazing composition are used as metals composed of a single element, not in the form of compounds or alloys combined with other elements. Zinc and lithium applied to the present invention may have a purity of 99.99% or more. In the present invention, since zinc and lithium are used in powder form, dispersibility and uniformity can be improved.

2. 코팅단계2. Coating step

다음으로, 브레이징용 조성물을 튜브에 도포한다. Next, the brazing composition is applied to the tube.

통상적으로 열교환기용 튜브는 알루미늄 와이어를 속이 빈 튜브 형상으로 압출하여 제조된다. Typically, a tube for a heat exchanger is manufactured by extruding an aluminum wire into a hollow tube shape.

본 발명은 롤 코팅방식을 이용하여 브레이징용 조성물을 튜브에 도포한다. 롤 코팅 방식으로 튜브에 브레이징용 조성물을 도포하는 모습을 도 1에 도시하고 있다. In the present invention, a composition for brazing is applied to a tube using a roll coating method. Fig. 1 shows a state in which the composition for brazing is applied to a tube by a roll coating method.

도 1을 참조하면, 상하로 이격되어 상부코팅롤러(21)와 하부코팅롤러(31)가 배치된다. 상부코팅롤러(21)와 하부코팅롤러(31) 사이로 튜브(10)가 통과한다. 상부코팅롤러(21)의 외주면은 튜브(10)의 상면에 접촉되고, 하부코팅롤러(31)의 외주면은 튜브(10)의 하면에 접촉된다. Referring to FIG. 1, the upper coating roller 21 and the lower coating roller 31 are arranged vertically spaced apart. The tube 10 passes between the upper coating roller 21 and the lower coating roller 31. The outer circumferential surface of the upper coating roller 21 is in contact with the upper surface of the tube 10, and the outer circumferential surface of the lower coating roller 31 is in contact with the lower surface of the tube 10.

상부코팅롤러(21)에 브레이징용 조성물을 전달하기 위해 한쌍의 상부공급롤러들(22)이 설치된다. 상부공급롤러(22)는 상부코팅롤러(21)와 접촉하여 회전하는 상부메인롤러(23)와, 상부메인롤러(23)와 접촉하여 회전하는 상부서브롤러(25)로 구분할 수 있다. A pair of upper supply rollers 22 are installed to deliver the brazing composition to the upper coating roller 21. The upper supply roller 22 can be divided into an upper main roller 23 rotating in contact with the upper coating roller 21 and an upper sub-roller 25 rotating in contact with the upper main roller 23.

브레이징용 조성물(1)은 상부메인롤러(23)와 상부서브롤러(25) 사이로 공급된다. 상부서브롤러(25)와 상부메인롤러(23) 사이로 일정량이 연속적으로 공급되면 상부메인롤러(23)의 외주면에 브레이징용 조성물이 부착된다. 따라서 상부메인롤러(23)와 접촉하여 회전하는 상부코팅롤러(21)의 외주면에 브레이징용 조성물이 부착되면서 상부메인롤러(21)와 접촉하는 튜브(10)의 상면에 브레이징용 조성물이 일정한 두께로 도포된다. The brazing composition (1) is supplied between the upper main roller 23 and the upper sub-roller 25. When a certain amount is continuously supplied between the upper sub-roller 25 and the upper main roller 23, the brazing composition is adhered to the outer circumferential surface of the upper main roller 23. Therefore, while the brazing composition is attached to the outer circumferential surface of the upper coating roller 21 that rotates in contact with the upper main roller 23, the brazing composition has a constant thickness on the upper surface of the tube 10 in contact with the upper main roller 21. Is applied.

하부코팅롤러(31)에 브레이징용 조성물을 전달하기 위해 한쌍의 하부공급롤러들(32)이 설치된다. 하부공급롤러(32)는 하부코팅롤러(31)와 접촉하여 회전하는 하부메인롤러(33)와, 하부메인롤러(33)와 접촉하여 회전하는 하부서브롤러(35)로 구분할 수 있다. A pair of lower supply rollers 32 are installed to deliver the brazing composition to the lower coating roller 31. The lower supply roller 32 may be divided into a lower main roller 33 that rotates in contact with the lower coating roller 31 and a lower sub-roller 35 that rotates in contact with the lower main roller 33.

브레이징용 조성물(1)은 하부서브롤러(35)와 하부메인롤러(33) 사이로 공급된다. 하부서브롤러(35)와 하부메인롤러(33) 사이로 일정량이 연속적으로 공급되면 하부메인롤러(33)의 외주면에 브레이징용 조성물이 부착된다. 따라서 하부메인롤러(33)와 접촉하여 회전하는 하부코팅롤러(31)의 외주면에 브레이징용 조성물이 부착되면서 하부메인롤러(31)와 접촉하는 튜브(10)의 하면에 브레이징용 조성물이 일정한 두께로 도포된다. The brazing composition (1) is supplied between the lower sub-roller 35 and the lower main roller (33). When a certain amount is continuously supplied between the lower sub-roller 35 and the lower main roller 33, the brazing composition is adhered to the outer circumferential surface of the lower main roller 33. Therefore, while the brazing composition is attached to the outer circumferential surface of the lower coating roller 31 that rotates in contact with the lower main roller 33, the brazing composition has a constant thickness on the lower surface of the tube 10 in contact with the lower main roller 31. Is applied.

이와 같이 본 발명은 튜브(10)의 상부와 하부에 상부코팅롤러(21)와 하부코팅롤러(31)를 배치하여 튜브의 상하 양면을 동시에 균일한 두께로 코팅할 수 있다.또한, 본 발명은 튜브의 양면에 동시에 롤 코팅이 가능하므로 코팅이 빠르고 간단하여 열교환기의 제조시간을 단축시킬 수 있다. As described above, according to the present invention, an upper coating roller 21 and a lower coating roller 31 are disposed on the upper and lower portions of the tube 10 so that the upper and lower surfaces of the tube can be simultaneously coated with a uniform thickness. Since roll coating is possible on both sides of the tube at the same time, the coating is quick and simple, and the manufacturing time of the heat exchanger can be shortened.

코팅 후 튜브를 적절한 온도(100~300℃)에서 건조시킨다. 건조과정을 통해 바인더 중의 아크릴 수지는 경화되고 용제는 증발하여 제거된다. After coating, the tube is dried at an appropriate temperature (100~300℃). Through the drying process, the acrylic resin in the binder is cured and the solvent is removed by evaporation.

코팅이 완료된 튜브(10)는 도 2에 도시된 바와 같이 헤더탱크(5) 및 핀(7)과 조립하여 조립체를 만든다. 튜브 외에도 필요할 경우 헤더탱크(5)와 핀(7)에도 플럭스 조성물을 도포할 수 있음은 물론이다. The coated tube 10 is assembled with the header tank 5 and the pin 7 as shown in FIG. 2 to make an assembly. In addition to the tube, it is of course possible to apply the flux composition to the header tank 5 and the fin 7 if necessary.

헤더탱크(5)는 속이 빈 통 구조로 이루어지며, 튜브(10)가 삽입되는 삽입공(6)이 일정 간격으로 다수가 형성되어 있다. 튜브(10)의 양단을 좌우 양측의 헤더탱크(5)의 삽입공(6)에 삽입시킨다. 핀(7)은 알루미늄 시트를 이용하여 주름을 지게 만든 것으로서, 튜브와 튜브 사이에 삽입된다. The header tank 5 has a hollow tubular structure, and a plurality of insertion holes 6 into which the tube 10 is inserted are formed at regular intervals. Both ends of the tube 10 are inserted into the insertion holes 6 of the header tank 5 on the left and right sides. The pin 7 is made to be corrugated using an aluminum sheet, and is inserted between the tube and the tube.

조립체가 준비되면, 조립체를 지그에 장착한 후 브레이징 로(brazing furnace)에 투입하여 가열하면 튜브가 도포된 플럭스가 용융되면서 튜브와 헤더, 튜브와 핀을 접합시킨다. When the assembly is ready, the assembly is mounted on a jig and then put into a brazing furnace and heated. As the flux coated with the tube is melted, the tube and the header, the tube and the fin are joined.

브레이징로에서 가열시 불활성 분위기, 가령 질소 분위기 조건으로 하여 300℃로부터 구간별로 온도를 상승시켜 600℃ 이하의 온도 범위에서 가열하여 브레이징을 수행할 수 있다. When heating in a brazing furnace, brazing can be performed by increasing the temperature for each section from 300°C under an inert atmosphere, for example, a nitrogen atmosphere, and heating in a temperature range of 600°C or less.

이와 같이 제조된 알루미늄 열교환기는 접합부위의 내식성을 향상시킬 수 있으며, 백청발생을 억제하여 백분 발생을 줄일 수 있다. The aluminum heat exchanger manufactured in this way can improve the corrosion resistance of the joint, and can reduce the occurrence of white powder by suppressing the occurrence of white rust.

이하, 본 발명에 적용된 브레이징용 조성물의 내식성 효과를 확인하기 위해 아래와 같이 실험하였다. Hereinafter, in order to check the corrosion resistance effect of the brazing composition applied to the present invention, an experiment was conducted as follows.

(실시예)(Example)

알루미늄 칼륨 플루오라이드 플럭스 분말(NOCOLOK사, CAS No. 60304-36-1) 30중량%와, 바인더 50중량%와, 아연 분말 15중량%와, 리튬 분말 5중량%를 혼합하여 페이스트 형태의 브레이징용 조성물을 제조하였다. 바인더로 아크릴 수지와 3-메톡시-3-메틸-1-부탄올을 1:10의 중량비로 혼합한 것을 이용하였다. For brazing in paste form by mixing 30% by weight of aluminum potassium fluoride flux powder (NOCOLOK, CAS No. 60304-36-1), 50% by weight of binder, 15% by weight of zinc powder, and 5% by weight of lithium powder The composition was prepared. As a binder, a mixture of acrylic resin and 3-methoxy-3-methyl-1-butanol in a weight ratio of 1:10 was used.

(비교예1)(Comparative Example 1)

알루미늄 칼륨 플루오라이드 플럭스 분말(NOCOLOK사, CAS No. 60304-36-1) 35중량%와, 바인더 50중량%와, 아연 분말 15중량%를 혼합하여 페이스트 형태의 브레이징용 조성물을 제조하였다. 바인더로 아크릴 수지와 3-메톡시-3-메틸-1-부탄올을 1:10의 중량비로 혼합한 것을 이용하였다. A composition for brazing in the form of a paste was prepared by mixing 35% by weight of aluminum potassium fluoride flux powder (NOCOLOK, CAS No. 60304-36-1), 50% by weight of a binder, and 15% by weight of zinc powder. As a binder, a mixture of acrylic resin and 3-methoxy-3-methyl-1-butanol in a weight ratio of 1:10 was used.

(비교예2)(Comparative Example 2)

알루미늄 칼륨 플루오라이드 플럭스 분말(NOCOLOK사, CAS No. 60304-36-1) 40중량%와, 바인더 60중량%를 혼합하여 페이스트 형태의 브레이징용 조성물을 제조하였다. 바인더로 아크릴 수지와 3-메톡시-3-메틸-1-부탄올을 1:10의 중량비로 혼합한 것을 이용하였다. A composition for brazing in the form of a paste was prepared by mixing 40% by weight of aluminum potassium fluoride flux powder (NOCOLOK, CAS No. 60304-36-1) and 60% by weight of a binder. As a binder, a mixture of acrylic resin and 3-methoxy-3-methyl-1-butanol in a weight ratio of 1:10 was used.

<부식실험><corrosion experiment>

두께 2mm의 판상의 알루미늄 모재를 준비한 후 모재의 표면에 실시예와 비교예 1 및 2의 브레이징용 조성물을 각각 도포한 다음 브레이징한 후 염수분무테스트를 통해 부식실험을 수행하였다. After preparing a plate-shaped aluminum base material having a thickness of 2 mm, the brazing compositions of Examples and Comparative Examples 1 and 2 were applied to the surface of the base material, respectively, and then brazed, followed by a corrosion test through a salt spray test.

브레이징된 알루미늄 모재를 47℃로 유지되는 챔버에 투입한 후 농도 5wt%의 염화나트륨 수용액을 168시간 동안 분무한 후 흐르는 물에 1분간 수세한 다음 건조시켰다. 실시예의 브레이징용 조성물로 브레이징한 알루미늄 모재를 시험시편으로 하고, 비교예 1의 브레이징용 조성물로 브레이징한 알루미늄 모재를 비교시편 1로 하고, 비교예 2의 브레이징용 조성물로 브레이징한 알루미늄 모재를 비교시편 2로 구분하였다. After the brazed aluminum base material was put into a chamber maintained at 47° C., an aqueous sodium chloride solution having a concentration of 5 wt% was sprayed for 168 hours, washed with flowing water for 1 minute, and then dried. The aluminum base material brazed with the brazing composition of Example was used as a test specimen, the aluminum base material brazed with the brazing composition of Comparative Example 1 was used as Comparative Sample 1, and the aluminum base material brazed with the brazing composition of Comparative Example 2 was used as a comparative sample. It was divided into 2.

부식정도는 하기의 계산식과 같이 시편의 시험 전후의 단위면적당 무게감소량(mg/cm2)으로 측정하여 그 결과를 하기 표 1에 나타내었다. 시험시편과 비교시편1 및 2는 각각 5개씩 준비하여 시험하였고, 단위면적당 무게감소량은 평균값으로 나타내었다. The degree of corrosion was measured as the weight reduction per unit area (mg/cm 2 ) before and after the test of the specimen as shown in the following calculation formula, and the results are shown in Table 1 below. Five test specimens and comparative specimens 1 and 2 were each prepared and tested, and the weight loss per unit area was expressed as an average value.

그리고 시험시편과 비교시편 1의 부식억제율은 비교시편 2의 무게감소량을 기준으로 계산하였다. 즉 시험시편의 부식억제율(%)은 {(비교시편2의 단위면적당 무게감소량-시험시편의 단위면적당 무게감소량)/비교시편2의 단위면적당 무게감소량}×100으로 계산하였고, 비교시편 1의 부식억제율(%)은 {(비교시편2의 단위면적당 무게감소량-비교시편 1의 단위면적당 무게감소량)/비교시편2의 단위면적당 무게감소량}×100으로 계산하였다. And the corrosion inhibition rate of the test specimen and the comparative specimen 1 was calculated based on the weight loss of the comparative specimen 2. That is, the corrosion inhibition rate (%) of the test specimen was calculated as {(weight loss per unit area of comparative specimen 2-weight reduction per unit area of test specimen)/weight reduction per unit area of comparative specimen 2} × 100, and corrosion of comparative specimen 1 The inhibition rate (%) was calculated as {(weight loss per unit area of comparative specimen 2-weight loss per unit area of comparative specimen 1)/weight loss per unit area of comparative specimen 2}×100.

구분division 단위면적당 무게감소량(mg/cm2)Weight reduction per unit area (mg/cm 2 ) 부식억제율(%) Corrosion inhibition rate (%) 시험시편Test specimen 1.271.27 48.8%48.8% 비교시편1Comparative Psalm 1 1.651.65 33.5%33.5% 비교시편2Comparative Psalm 2 2.482.48 --

상기 표 1의 결과를 참조하면, 시험시편의 무게감소량은 1.27mg/cm2으로서 비교시편1 및 비교시편 2에 비해 내식성이 더 우수한 것으로 나타났다. 특히, 아연분말과 리튬분말이 첨가되지 않은 비교시편 2와 비교시 부식에 의한 무게감소가 크게 줄었다. 비교시편 2를 기준으로 비교한 부식억제율은 비교시편 1의 경우 33.5%였고, 시험시편의 경우 48.8%로 나타났다. 이를 통해 아연 분말과 리튬분말의 첨가를 통해 내식성을 크게 향상시킬 수 있음을 알 수 있다. Referring to the results of Table 1, the weight loss of the test specimen was 1.27 mg/cm 2, which was found to be superior to the comparative specimen 1 and the comparative specimen 2 in corrosion resistance. In particular, the weight reduction due to corrosion was greatly reduced when compared to Comparative Sample 2 in which zinc powder and lithium powder were not added. The corrosion inhibition rate compared with the comparative specimen 2 was 33.5% for the comparative specimen 1 and 48.8% for the test specimen. Through this, it can be seen that the corrosion resistance can be greatly improved through the addition of zinc powder and lithium powder.

그리고 시험시편과 비교시편 1을 비교시 리튬분말을 더 첨가함으로써 부식억제율을 약 15% 이상 향상시킬 수 있는 것으로 나타났다. 따라서 아연분말만을 첨가하더라도 내식성 향상의 효과는 있으나 리튬분말을 함께 첨가하는 것이 내식성을 더욱 향상시킬 수 있는 것으로 확인되었다. In addition, when comparing the test specimen and the comparative specimen 1, it was found that the corrosion inhibition rate could be improved by about 15% or more by adding lithium powder. Therefore, even if only zinc powder is added, it has the effect of improving the corrosion resistance, but it was confirmed that the addition of lithium powder can further improve the corrosion resistance.

<백분량측정실험><Percentage measurement experiment>

상기의 부식실험에서 염수분무를 통해 부식시켜 얻은 시험시편과 비교시편 1에 형성되어 있는 백분의 양을 측정하였다. In the above corrosion test, the amount of percent formed in the test specimen obtained by corrosion through salt spray and the comparative specimen 1 was measured.

각 시편을 1m 높이에서 3회 자유낙하시킨 후 시편에서 분리된 백분의 무게를 측정하여 그 평균값을 하기 표 2에 나타내었다. Each specimen was freely dropped from a height of 1 m three times, and then the weight of the percentage separated from the specimen was measured, and the average value is shown in Table 2 below.

구분division 백분량(mg)Percentage (mg) 시험시편Test specimen 1,9551,955 비교시편1Comparative Psalm 1 8,0378,037

상기 표 2의 결과를 참조하면, 비교시편 1의 경우 백분의 발생량이 8,037mg인 반면에 시험시편의 경우 1,955mg으로 나타났다. 시험시편의 백분 발생량은 비교시편 1과 비교하여 약 76% 정도 감소시키는 것으로 확인되었다. 따라서 본 발명은 리튬 분말의 첨가로 인해 내식성을 향상시킴과 동시에 백청발생을 크게 억제하여 접합부위에 백분이 발생하는 것을 효과적으로 감소시킬 수 있을 것으로 기대된다. Referring to the results of Table 2, in the case of comparative specimen 1, the amount of generation of hundred minutes was 8,037 mg, whereas in the case of the test specimen, it was found to be 1,955 mg. It was confirmed that the amount of percent produced in the test specimen was reduced by about 76% compared to the comparative specimen 1. Therefore, the present invention is expected to be able to effectively reduce the occurrence of white powder at the joint site by significantly suppressing the occurrence of white rust while improving corrosion resistance due to the addition of lithium powder.

이상, 본 발명은 일 실시 예를 참고로 설명되었으나 이는 예시적인 것에 불과하며, 당해 기술분야에서 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 실시 예가 가능하다는 점을 이해할 것이다. 따라서 본 발명의 진정한 보호 범위는 첨부된 청구범위에 의해서만 정해져야 할 것이다.In the above, the present invention has been described with reference to an embodiment, but this is only exemplary, and those of ordinary skill in the art will understand that various modifications and equivalent embodiments are possible therefrom. Therefore, the true scope of protection of the present invention should be determined only by the appended claims.

5: 헤더탱크 7: 핀
10: 튜브 21: 상부코팅롤러
31: 하부코팅롤러
5: header tank 7: pin
10: tube 21: upper coating roller
31: lower coating roller

Claims (3)

플럭스 분말 20 내지 50중량%와, 바인더 40 내지 70중량%와, 아연 분말 5 내지 30중량%와, 접합부위의 표면에 흰색의 수산화물인 백분이 발생되는 것을 억제하기 위한 리튬 분말 1 내지 20중량%를 혼합하여 페이스트 형태의 브레이징용 조성물을 수득하는 조성단계와;
상기 브레이징용 조성물을 튜브에 도포하는 코팅단계;를 포함하고,
상기 아연 분말과 상기 리튬 분말은 다른 원소와 결합된 화합물이 아닌 단일의 원소로 각각 이루어지는 것을 특징으로 하는 알루미늄 열교환기용 튜브의 코팅방법.
20 to 50% by weight of flux powder, 40 to 70% by weight of binder, 5 to 30% by weight of zinc powder, and 1 to 20% by weight of lithium powder for suppressing the generation of white powder, which is a white hydroxide, on the surface of the bonding site A composition step of mixing the mixture to obtain a composition for brazing in the form of a paste;
Including; a coating step of applying the brazing composition to the tube,
The method of coating an aluminum heat exchanger tube, wherein the zinc powder and the lithium powder are each composed of a single element rather than a compound combined with other elements.
제 1항에 있어서, 상기 코팅단계는 상부코팅롤러 및 하부코팅롤러 사이로 상기 튜브를 통과시키면서 코팅하며,
상기 상부코팅롤러는 한쌍의 상부공급롤러들과 접촉되어 회전하면서 상기 상부공급롤러들을 통해 상기 브레이징용 조성물을 전달받고, 상기 하부코팅롤러는 한쌍의 하부공급롤러들과 접촉되어 회전하면서 상기 하부공급롤러들을 통해 상기 브레이징용 조성물을 전달받으며,
상기 브레이징용 조성물을 상기 상부공급롤러들 사이 및 상기 하부공급롤러들 사이로 주입하는 것을 특징으로 하는 알루미늄 열교환기용 튜브의 코팅방법.
The method of claim 1, wherein the coating step is coated while passing the tube through an upper coating roller and a lower coating roller,
The upper coating roller is in contact with a pair of upper supply rollers and rotates while receiving the brazing composition through the upper supply rollers, and the lower coating roller is rotated while being in contact with a pair of lower supply rollers. Through the brazing composition is delivered,
Coating method for an aluminum heat exchanger tube, characterized in that the brazing composition is injected between the upper supply rollers and the lower supply rollers.
제 1항에 있어서, 상기 바인더는 아크릴 수지에 솔벤트 또는 3-메톡시-3-메틸-1-부탄올(3-methoxy-3-methyl-1-butanol)을 혼합한 것을 특징으로 하는 알루미늄 열교환기용 튜브의 코팅방법. The aluminum heat exchanger tube according to claim 1, wherein the binder is an acrylic resin mixed with solvent or 3-methoxy-3-methyl-1-butanol. Coating method.
KR1020200056745A 2020-05-12 2020-05-12 coating method of tube for aluminum heat exchanger KR102237181B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020200056745A KR102237181B1 (en) 2020-05-12 2020-05-12 coating method of tube for aluminum heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020200056745A KR102237181B1 (en) 2020-05-12 2020-05-12 coating method of tube for aluminum heat exchanger

Publications (1)

Publication Number Publication Date
KR102237181B1 true KR102237181B1 (en) 2021-04-06

Family

ID=75472710

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020200056745A KR102237181B1 (en) 2020-05-12 2020-05-12 coating method of tube for aluminum heat exchanger

Country Status (1)

Country Link
KR (1) KR102237181B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210138432A (en) * 2020-05-12 2021-11-19 장영호 manufacturing method of aluminum heat exchanger

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6013779B2 (en) * 1977-02-16 1985-04-09 豊田工機株式会社 tool changer
KR20000012020A (en) * 1998-07-29 2000-02-25 오오 노 하루 오 Method and apparatus for applying flux for use in brazing aluminum material and method for manufacturing a heat exchanger
KR20010001755A (en) * 1999-06-08 2001-01-05 한운택 Brazing Flux Of Non-Clad Agent Aluminum Member And Process For Preparing Thereof
KR20090133005A (en) 2008-06-23 2009-12-31 주식회사 렉스 Apparatus and composite for flux coating of the heat exchanger tube

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6013779B2 (en) * 1977-02-16 1985-04-09 豊田工機株式会社 tool changer
KR20000012020A (en) * 1998-07-29 2000-02-25 오오 노 하루 오 Method and apparatus for applying flux for use in brazing aluminum material and method for manufacturing a heat exchanger
KR20010001755A (en) * 1999-06-08 2001-01-05 한운택 Brazing Flux Of Non-Clad Agent Aluminum Member And Process For Preparing Thereof
KR20090133005A (en) 2008-06-23 2009-12-31 주식회사 렉스 Apparatus and composite for flux coating of the heat exchanger tube

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210138432A (en) * 2020-05-12 2021-11-19 장영호 manufacturing method of aluminum heat exchanger
KR102424230B1 (en) * 2020-05-12 2022-07-21 장영호 manufacturing method of aluminum heat exchanger

Similar Documents

Publication Publication Date Title
EP1475598A2 (en) Heat exchange tube
US7534309B2 (en) Aqueous aluminum brazing composition, aluminum material coated with the brazing composition, brazing method using the aluminum material, and automotive heat exchanger manufactured by using the brazing method
JP5115963B2 (en) Aluminum heat exchanger member with excellent corrosion resistance and method for producing aluminum heat exchanger with excellent corrosion resistance
JP4980390B2 (en) Tube for heat exchanger
JP4577634B2 (en) Aluminum alloy extruded tube with brazing filler metal for heat exchanger
JP6468620B2 (en) Mixed composition paint for brazing
JP2009106947A (en) Aluminum alloy tube
JP2009058139A (en) Member for aluminum-made heat exchanger having superior corrosion resistance
JP2016099101A (en) Heat exchanger, and method of manufacturing the same
KR102237181B1 (en) coating method of tube for aluminum heat exchanger
US6153021A (en) Method of brazing aluminum
JP2016099100A (en) Heat exchanger, and method of manufacturing the same
KR102424230B1 (en) manufacturing method of aluminum heat exchanger
WO2014065356A1 (en) Flux composition
JP6770983B2 (en) Flux composition for brazing, powder brazing composition, aluminum alloy member and heat exchanger
CA2184431A1 (en) Method of brazing aluminum and aluminum brazing material
KR102237180B1 (en) composition for brazing of aluminum heat exchanger
JP4411803B2 (en) Brazing method for aluminum heat exchanger and aluminum member brazing solution
JP6983699B2 (en) Brazing mixed composition paint
JP7209487B2 (en) ALUMINUM FIN AND HEAT EXCHANGER EXCELLENT IN HYDROPHILIC AFTER BRAZING PROCESS AND METHOD FOR MANUFACTURING THE SAME
JP6446087B2 (en) Flux composition
JP2019190725A (en) Precoated fin material for brazed heat exchanger, and heat exchanger
JP7417683B1 (en) Aluminum plate and heat exchanger with hydrophilic coating
JP7344103B2 (en) Hydrophilic coating and pre-coated fins
WO2021014607A1 (en) Brazing-use flux composition and powder brazing composition, aluminum alloy member and heat exchanger, and aluminum alloy member production method and heat exchanger production method

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant