KR102236212B1 - A double layer composite membrane for photothermal therapy of bone tissue and method for preparing the same - Google Patents

A double layer composite membrane for photothermal therapy of bone tissue and method for preparing the same Download PDF

Info

Publication number
KR102236212B1
KR102236212B1 KR1020190145324A KR20190145324A KR102236212B1 KR 102236212 B1 KR102236212 B1 KR 102236212B1 KR 1020190145324 A KR1020190145324 A KR 1020190145324A KR 20190145324 A KR20190145324 A KR 20190145324A KR 102236212 B1 KR102236212 B1 KR 102236212B1
Authority
KR
South Korea
Prior art keywords
magnesium
composite membrane
solution
photothermal
photothermal treatment
Prior art date
Application number
KR1020190145324A
Other languages
Korean (ko)
Inventor
박광범
안현욱
박근오
여신일
임재승
김영진
김재우
Original Assignee
주식회사 메가젠임플란트
대구가톨릭대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 메가젠임플란트, 대구가톨릭대학교산학협력단 filed Critical 주식회사 메가젠임플란트
Priority to KR1020190145324A priority Critical patent/KR102236212B1/en
Application granted granted Critical
Publication of KR102236212B1 publication Critical patent/KR102236212B1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/40Composite materials, i.e. containing one material dispersed in a matrix of the same or different material
    • A61L27/44Composite materials, i.e. containing one material dispersed in a matrix of the same or different material having a macromolecular matrix
    • A61L27/46Composite materials, i.e. containing one material dispersed in a matrix of the same or different material having a macromolecular matrix with phosphorus-containing inorganic fillers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/18Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
    • A61B18/20Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser
    • A61B18/22Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser the beam being directed along or through a flexible conduit, e.g. an optical fibre; Couplings or hand-pieces therefor
    • A61B18/28Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser the beam being directed along or through a flexible conduit, e.g. an optical fibre; Couplings or hand-pieces therefor for heating a thermal probe or absorber
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/28Bones
    • A61F2/2846Support means for bone substitute or for bone graft implants, e.g. membranes or plates for covering bone defects
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K41/00Medicinal preparations obtained by treating materials with wave energy or particle radiation ; Therapies using these preparations
    • A61K41/0052Thermotherapy; Hyperthermia; Magnetic induction; Induction heating therapy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/40Composite materials, i.e. containing one material dispersed in a matrix of the same or different material
    • A61L27/44Composite materials, i.e. containing one material dispersed in a matrix of the same or different material having a macromolecular matrix
    • A61L27/446Composite materials, i.e. containing one material dispersed in a matrix of the same or different material having a macromolecular matrix with other specific inorganic fillers other than those covered by A61L27/443 or A61L27/46
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/54Biologically active materials, e.g. therapeutic substances
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/06Radiation therapy using light
    • A61N5/0613Apparatus adapted for a specific treatment
    • A61N5/0625Warming the body, e.g. hyperthermia treatment
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/28Bones
    • A61F2002/2835Bone graft implants for filling a bony defect or an endoprosthesis cavity, e.g. by synthetic material or biological material
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30003Material related properties of the prosthesis or of a coating on the prosthesis
    • A61F2002/3006Properties of materials and coating materials
    • A61F2002/30092Properties of materials and coating materials using shape memory or superelastic materials, e.g. nitinol
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2430/00Materials or treatment for tissue regeneration
    • A61L2430/02Materials or treatment for tissue regeneration for reconstruction of bones; weight-bearing implants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/06Radiation therapy using light
    • A61N2005/0658Radiation therapy using light characterised by the wavelength of light used
    • A61N2005/0659Radiation therapy using light characterised by the wavelength of light used infrared

Abstract

The present invention relates to: a method for synthesizing hydroxyapatite in which a part of a magnesium (Mg) element is substituted and which contains a photothermal agent with a photothermal effect, for preparing a double-layered organic-inorganic composite membrane for photothermal treatment of osteosarcoma; a method for manufacturing a porous monolith support for a lower layer; a method for manufacturing a hydrogel layer using a 3D printing technique of gelatin/hyaluronic acid/hydroxyapatite of an upper layer; and the composite membrane. The present invention has excellent effects in preventing recurrence of osteosarcoma caused by bone tumor tissue that may remain after surgical removal of osteosarcoma, and inducing regeneration of normal bone tissue.

Description

골조직 광열치료용 이중층 구조의 복합 멤브레인 및 그 제조방법{A double layer composite membrane for photothermal therapy of bone tissue and method for preparing the same}A double layer composite membrane for photothermal therapy of bone tissue and method for preparing the same}

본 발명은 골조직 광열치료용 이중층 구조의 복합 멤브레인 및 그 제조방법에 관한 것으로, 보다 상세하게는, 생분해성 고분자를 열유도상분리법으로 다공성의 모노리스 지지체를 만들고 상기 지지체에 젤라틴/히아루론산/수산화아파타이트를 3차원 프린팅 기법으로 수화젤 층을 만든 후, 광열효과가 있는 광열치료제를 함유하는 마그네슘(Mg) 원소가 일부 치환된 수산화아파타이트를 표면 코팅하여 골육종의 외과적 제거 수술 후에 잔존할 수 있는 골종양 조직에 의한 골육종의 재발을 방지하고 정상 골조직의 재생을 유도하기 위해 사용될 수 있는, 골조직 광열치료용 이중층 구조의 복합 멤브레인 및 그 제조방법에 관한 것이다.The present invention relates to a dual-layered composite membrane for bone tissue photothermal treatment and a method for manufacturing the same, and more particularly, a biodegradable polymer is formed into a porous monolith support by heat-induced phase separation, and gelatin/hyaluronic acid/hydroxyapatite is added to the support. After making a layer of hydration gel by 3D printing, the surface is coated with hydroxyapatite in which magnesium (Mg) element is partially substituted, which contains a photothermal treatment agent with photothermal effect. It can be used to prevent the recurrence of osteosarcoma caused by and induce the regeneration of normal bone tissue, to a composite membrane of a bilayer structure for photothermal treatment of bone tissue, and a method of manufacturing the same.

골육종은 뼈에 생기는 원발성 악성 종양 중 대표적인 질환이며, 종양세포에 의해 정상 뼈조직이 파괴되고 종괴를 형성하며 주위조직(근육, 신경, 혈관, 인접 뼈)으로 퍼지는 것으로서, 모든 뼈에 발생이 가능하나 주로 무릎 관절 주위와 어깨 부위 상완골의 윗부분과 같이 긴 뼈의 끝부분에 잘 생긴다. 골육종은 조기 진단이 어렵고 전이가 있는 경우는 약 20~30%로 매우 낮은 5년 생존율을 보이며, 현재 널리 사용되는 종양의 치료 방법으로는 수술, 항암 화학요법, 방사선 치료 등이 있다. Osteosarcoma is a representative disease among primary malignant tumors that occur in bones. Normal bone tissue is destroyed by tumor cells, forms masses, and spreads to surrounding tissues (muscles, nerves, blood vessels, adjacent bones), and can occur in all bones. It usually occurs at the ends of long bones, such as around the knee joint and the upper part of the humerus in the shoulder area. Osteosarcoma is difficult to diagnose early and has a very low 5-year survival rate of about 20-30% of cases with metastases, and currently widely used tumor treatment methods include surgery, chemotherapy, and radiation therapy.

골육종은 대부분 외과적 수술로 제거해 왔지만 종양의 경계가 모호하기 때문에 종양 제거 시 실제 종양조직 이외에 정상조직까지 제거하게 되어 골의 손실이 크고, 수술 시 미처 제거되지 못한 종양 세포에 의해 재발 될 수 있다는 부작용이 있다. 따라서 기존의 대표적인 골육종 골율종 치료법인 외과적 수술과 항암 약물치료가 가지는 문제점을 최소화하며, 골 결손 부위의 재생을 촉진시키고 잔류 종양 세포를 선택적으로 치료하여 재발없이 완전한 골육종 치료가 가능하도록 하는 치료법의 개발이 필요하다.Osteosarcoma has been mostly removed by surgical operation, but since the boundary of the tumor is ambiguous, when the tumor is removed, normal tissue in addition to the actual tumor tissue is removed, resulting in large bone loss and a side effect of recurrence due to tumor cells that were not removed during surgery There is this. Therefore, it minimizes the problems of surgical surgery and anticancer drug treatment, which are representative osteosarcoma osteomatosis treatments, and promotes regeneration of bone defects and selectively treats residual tumor cells to enable complete osteosarcoma treatment without recurrence. Development is needed.

최근 많은 관심을 받고 있는 암치료법 중 하나인 광열치료(Photothermal therapy, PTT)는 비교적 시술이 용이하고, 국소 암 치료에 매우 효과적이어서 기존의 암치료법에 비해 치료 후 환자의 삶의 질을 향상시킬 수 있다는 이점이 있다. 체내 온도가 올라가면 정상조직의 세포는 혈관이 확장되며 열을 배출할 수 있지만, 종양조직의 신생혈관은 혈관이 확장되지 않아 열을 배출하지 못하기 때문에 국소적으로 온도가 상승하게 된다. 이때 발생한 열에 의해서 혈전이 생성되어 혈류량이 감소하게 되고, 이로 인해 영양 공급이 차단되어 암세포가 괴사하게 되는 원리이다. 따라서 광열치료법은 근적외선 에너지를 광열치료제에 조사하여 열로 변환시키고 42~50℃의 상승된 온도는 암세포를 빠르게 사멸시킬 수 있다. Photothermal therapy (PTT), one of the cancer treatment methods that has been receiving much attention in recent years, is relatively easy to perform and is very effective in local cancer treatment, so it can improve the quality of life of patients after treatment compared to conventional cancer treatment methods. There is an advantage that there is. When the body temperature rises, the cells of the normal tissue expand the blood vessels and can discharge heat, but the new blood vessels of the tumor tissue locally increase the temperature because the blood vessels do not expand and thus cannot discharge heat. This is the principle that blood clots are generated by the heat generated at this time, reducing blood flow, and thus the supply of nutrients is blocked, resulting in necrosis of cancer cells. Therefore, the photothermal treatment method converts near-infrared energy into heat by irradiating it with a photothermal treatment agent, and an elevated temperature of 42-50°C can rapidly kill cancer cells.

골육종의 광열치료를 위해서 사용되고 있는 광열치료제의 대부분은 열안정성이 낮고 반감기가 짧은 헵타메틴계 및 시아닌계 염료와 체내 잔류 가능성이 높은 금속 나노입자를 주로 이용하고 있고, 이러한 광열치료제는 골육종 수술로 인한 골 결손을 치료할 능력이 없다. 따라서 골육종 제거 수술 후에 잔존할 수 있는 골종양 세포를 사멸시킴과 동시에 수술로 인한 골 결손 부위를 재생시킬 수 있는 광열치료제가 도입된 복합 멤브레인의 개발이 필요하다.Most of the photothermal treatments used for photothermal treatment of osteosarcoma mainly use heptametin-based and cyanine-based dyes with low thermal stability and short half-life, and metal nanoparticles with a high possibility of remaining in the body.These photothermal treatments are caused by osteosarcoma surgery. Inability to treat bone defects. Therefore, it is necessary to develop a composite membrane in which a photothermal treatment agent capable of regenerating bone defects caused by surgery while simultaneously killing bone tumor cells that may remain after osteosarcoma removal surgery is introduced.

현재 골조직 재생을 위해서 사용되고 있는 골유도재생술용 멤브레인은 연조직 성분인 미분화된 섬유아세포가 신생골이 재생되는 공간으로 침입하는 것을 차단하면서 동시에 골조직의 성장을 유도하는 방법이다. 이를 위해서 다양한 형태의 다중층 구조의 흡수성 멤브레인이 사용되고 있으며, 이러한 다층 구조의 골조직 재생용 흡수성 멤브레인이 특허로 공지되어 있다(특허문헌 1-3 참조). 하지만 공지된 다층 구조의 골조직 재생용 흡수성 멤브레인의 경우 가교도가 다른 콜라겐을 다층 구조 제조하거나, 콜라겐과 수화젤을 이용한 다층 구조를 제조한 것으로서 멤브레인 안쪽 공간으로 연조직이 침투하는 것은 효과적으로 방지할 수 있지만, 골조직의 재생을 효과적으로 촉진시키기에는 어려움이 있다.The membrane for bone-guided regeneration currently used for bone tissue regeneration is a method of inducing the growth of bone tissue while blocking the invasion of undifferentiated fibroblasts, which are soft tissue components, into the space where new bone is regenerated. To this end, various types of absorbent membranes having a multilayer structure have been used, and such a multilayered absorbent membrane for bone tissue regeneration is known as a patent (see Patent Document 1-3). However, in the case of a known multilayered absorbent membrane for bone tissue regeneration, a multilayered structure of collagen having a different degree of crosslinking or a multilayered structure using collagen and hydration gel can be effectively prevented from penetrating the soft tissue into the space inside the membrane. It is difficult to effectively promote the regeneration of bone tissue.

따라서 특허문헌 어디에도 골육종 제거 수술 후에 잔존할 수 있는 종양세포를 치료함과 동시에 정상 골조직의 재생을 유도하기 위해 사용될 수 있는 이중층 구조의 복합 멤브레인의 제조에 관해서는 공지된 바가 없다.Therefore, nowhere in the patent literature is known about the manufacture of a double-layered composite membrane that can be used to induce regeneration of normal bone tissue while at the same time treating tumor cells that may remain after osteosarcoma removal surgery.

대한민국 등록특허공보 제10-1684790호 (2016년 12월 02일)Republic of Korea Patent Publication No. 10-1684790 (December 02, 2016) 대한민국 등록특허공보 제10-1260757호 (2013년 04월 29일)Republic of Korea Patent Publication No. 10-1260757 (April 29, 2013) 대한민국 등록특허공보 제10-1964907호 (2019년 03월 27일)Republic of Korea Patent Publication No. 10-1964907 (March 27, 2019)

따라서 본 발명의 해결하고자 하는 과제는, 생분해성 고분자를 열유도상분리법으로 다공성의 모노리스 지지체를 만들고 상기 지지체에 젤라틴/히아루론산/수산화아파타이트를 3차원 프린팅 기법으로 수화젤 층을 만든 후, 광열효과가 있는 광열치료제를 함유하는 마그네슘(Mg) 원소가 일부 치환된 수산화아파타이트를 표면 코팅하여 골육종의 외과적 제거 수술 후에 잔존할 수 있는 골종양 조직에 의한 골육종의 재발을 방지하고, 연조직의 침투를 효과적으로 차단하여 정상 골조직의 재생을 효과적으로 유도하기 위해 사용될 수 있는 골조직 광열치료용 이중층 구조의 복합 멤브레인 및 그 제조방법을 제공하는 것이다.Therefore, the problem to be solved of the present invention is to create a porous monolith support by thermal-induced phase separation of a biodegradable polymer, and after making a hydration gel layer by a three-dimensional printing technique of gelatin/hyaluronic acid/hydroxyapatite on the support, the photothermal effect is achieved. By coating the surface of hydroxyapatite, which is partially substituted with magnesium (Mg), which contains photothermal therapeutic agents, it prevents recurrence of osteosarcoma due to bone tumor tissue that may remain after surgical removal of osteosarcoma, and effectively blocks penetration of soft tissues. It is to provide a composite membrane of a double-layer structure for photothermal treatment of bone tissue that can be used to effectively induce the regeneration of normal bone tissue and a method of manufacturing the same.

본 발명의 일 측면에 따르면, (a) 증류수에 수용성 고분자를 녹여 고분자 템플레이트 용액을 마련하는 단계; (b) 칼슘 이온 전구체 용액, 포스페이트 이온 전구체 용액, 마그네슘 이온 전구체 용액 및 광열치료제 용액을 각각 마련하는 단계; (c) 상기 고분자 템플레이트 용액에 상기 광열치료제 용액을 먼저 투입하고, 수산화아파타이트가 생성되도록 상기 칼슘 이온 전구체 용액, 상기 포스페이트 이온 전구체 용액 및 상기 마그네슘 이온 전구체 용액을, 인(P) 대비 칼슘(Ca)과 마그네슘(Mg)의 몰 비율{(Ca+Mg)/P} = C (여기서 C는 미리 결정된 비율) 비율로 투입한 후 교반하고, 원심분리 및 건조하여 광열치료제를 함유하는 마그네슘이 일부 치환된 수산화아파타이트 분말을 제조하는 단계(Mg-HA-IR); (d) 상기 (c)단계에서 얻은 광열치료제를 함유하는 마그네슘이 일부 치환된 수산화아파타이트 분말을 젤라틴 및 증류수와 섞어 슬러리를 제조하는 단계; (e) 생분해성 고분자를 미리 결정된 제1 온도로 가열하여 균일한 용액을 제조한 후 이 용액을 몰드에 넣어 미리 결정된 제2 온도로 냉각하여 상분리 및 침전시키는 단계; (f) 상기 (e)단계에서 침전된 생분해성 고분자를 세척 후 건조하여 다공성 모노리스를 제조하는 단계; (g) 젤라틴, 히아루론산 및 수산화아파타이트를 증류수에 분산시켜 3D 프린팅용 용액을 제조한 후 이 용액을 상기 (f)단계에서 제조한 다공성 모노리스 위에 프린팅하여 3차원 형태의 수화젤층을 제조하는 단계; (g) 수화젤층을 1-에틸-3-(3-디메틸-아미노프로필)카보디이미드 (1-ethyl-3-(3-dimethylaminopropyl)carbodiimide, EDC)와 N-하이드로숙신이미드(N-hydrosuccinimide, NHS)의 혼합물을 이용하여 가교시켜 이중층구조의 복합 멤브레인을 제조하는 단계; 및 (h) 상기 이중층 구조의 복합 멤브레인 표면을 광열치료제를 함유하는 마그네슘이 일부 치환된 수산화아파타이트를 코팅하는 단계를 포함하는 것을 특징으로 하는, 골조직 광열치료용 이중층 구조의 복합 멤브레인의 제조방법이 제공될 수 있다.According to an aspect of the present invention, (a) preparing a polymer template solution by dissolving a water-soluble polymer in distilled water; (b) preparing a calcium ion precursor solution, a phosphate ion precursor solution, a magnesium ion precursor solution, and a photothermal treatment agent solution, respectively; (c) The photothermal treatment agent solution is first added to the polymer template solution, and the calcium ion precursor solution, the phosphate ion precursor solution, and the magnesium ion precursor solution are used to generate the hydroxide apatite. And magnesium (Mg) molar ratio {(Ca+Mg)/P} = C (where C is a predetermined ratio), stirred, centrifuged, and dried to partially replace magnesium containing photothermal therapy. Preparing hydroxyapatite powder (Mg-HA-IR); (d) preparing a slurry by mixing the magnesium-substituted hydroxide apatite powder containing the photothermal treatment agent obtained in step (c) with gelatin and distilled water; (e) heating the biodegradable polymer to a first predetermined temperature to prepare a homogeneous solution, and then putting the solution into a mold and cooling to a second predetermined temperature to separate and precipitate phases; (f) washing and drying the biodegradable polymer precipitated in step (e) to prepare a porous monolith; (g) preparing a solution for 3D printing by dispersing gelatin, hyaluronic acid, and hydroxyapatite in distilled water, and then printing the solution on the porous monolith prepared in step (f) to prepare a three-dimensional hydrogel layer; (g) The hydration gel layer was prepared with 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) and N-hydrosuccinimide. And crosslinking using a mixture of NHS) to prepare a double-layered composite membrane; And (h) coating the surface of the double-layered composite membrane with hydroxyapatite partially substituted with magnesium containing a photothermal treatment agent. Can be.

상기 (a)단계의 고분자 템플레이트용 수용성 고분자는 히아루론산, 알긴산 나트륨, 베타-사이클로덱스트린, 폴리비닐피롤리돈, 폴리비닐알코올, 라미나린, 풀루란 및 푸코이단으로 이루어진 그룹에서 선택된 1종 이상과 블록 공중합체인 폴리에틸렌글리콜-폴리프로필렌글리콜-폴리에틸렌글리콜(PEG-PPG-PEG)을 포함할 수 있다.The water-soluble polymer for the polymer template of step (a) is block copolymerized with at least one selected from the group consisting of hyaluronic acid, sodium alginate, beta-cyclodextrin, polyvinylpyrrolidone, polyvinyl alcohol, laminarin, pullulan, and fucoidan. Chain polyethylene glycol-polypropylene glycol-polyethylene glycol (PEG-PPG-PEG) may be included.

상기 (b)단계의 칼슘 이온 전구체는 질산칼슘, 염화칼슘, 황산칼슘 및 수산화칼슘으로 이루어진 그룹으로부터 선택된 1종 이상을 포함할 수 있다.The calcium ion precursor of step (b) may include at least one selected from the group consisting of calcium nitrate, calcium chloride, calcium sulfate, and calcium hydroxide.

상기 (b)단계의 포스페이트 이온 전구체는 제1 인산암모늄, 제2 인산암모늄, 제1 인산나트륨, 제2 인산나트륨, 제3 인산나트륨, 제1 인산칼륨, 제2 인산칼륨 및 제3 인산칼륨으로 이루어진 그룹에서 선택된 1종 이상을 포함할 수 있다.The phosphate ion precursor of step (b) is a first ammonium phosphate, a second ammonium phosphate, a first sodium phosphate, a second sodium phosphate, a third sodium phosphate, a first potassium phosphate, a second potassium phosphate, and a third potassium phosphate. It may include one or more selected from the group consisting of.

상기 (b)단계의 마그네슘 이온 전구첸는 황산마그네슘, 질산마그네슘, 염화마그네슘, 수산화마그네슘, 탄산마그네슘으로 이루어진 그룹에서 선택된 1종 이상을 포함할 수 있다.The magnesium ion precursor of step (b) may include at least one selected from the group consisting of magnesium sulfate, magnesium nitrate, magnesium chloride, magnesium hydroxide, and magnesium carbonate.

상기 (b)단계의 광열치료제는 시아닌계 염료인 인도시아닌 그린(indocyanine green, ICG)과 헵타메틴 시아닌계 염료인 IR-780, IR-783, IR-808, IR-825로 이루어진 그룹에서 선택된 1종 이상을 포함할 수 있다.The photothermal treatment agent of step (b) is selected from the group consisting of indocyanine green (ICG), which is a cyanine dye, and IR-780, IR-783, IR-808, and IR-825, which are heptamethine cyanine dyes. It may contain one or more.

상기 (c) 단계에서 마그네슘의 비율은 양이온을 구성하는 칼슘과 마그네슘을 합한 값에서 10몰% 내지 30몰%를 차지하여, 마그네슘이 일부 치환된 수산화아파타이트에서 마그네슘 원소가 전체 중량 대비 2.5중량% 내지 7.6중량%를 차지할 수 있다.In the step (c), the ratio of magnesium accounts for 10 mol% to 30 mol% from the sum of calcium and magnesium constituting the cation, and the magnesium element in the hydroxide apatite partially substituted with magnesium is 2.5% by weight to the total weight. It can occupy 7.6% by weight.

상기 (c) 단계에서 광열치료제의 함량은 마그네슘이 일부 치환된 수산화아파타이트 전체 중량 대비 1.3중량% 내지 4.8중량%를 차지할 수 있다.The content of the photothermal treatment agent in step (c) may account for 1.3% to 4.8% by weight of the total weight of the hydroxyapatite partially substituted with magnesium.

상기 (e) 단계에서 생분해성 고분자는 폴리락틱산, 폴리글리콜산, 폴리락틱산-글리콜산 공중합체, 폴리카프로락톤, 폴리감마글루탐산 산성 타입, 폴리감마글루탐산 염 타입 중에서 선택된 1종 이상을 포함할 수 있다.In the step (e), the biodegradable polymer may include at least one selected from polylactic acid, polyglycolic acid, polylactic acid-glycolic acid copolymer, polycaprolactone, poly-gamma-glutamic acid type, and poly-gamma-glutamic acid salt type. I can.

상기 제1 온도는 70~90℃이며, 상기 제2 온도는 -5~15℃이며, 상기 C = 1.67/1 일 수 있다. The first temperature may be 70 to 90°C, the second temperature may be -5 to 15°C, and C = 1.67/1.

본 발명의 다른 측면에 따르면, 상기 제조방법에 의하여 제조된 골조직 광열치료용 이중층 구조의 복합 멤브레인이 제공될 수 있다.According to another aspect of the present invention, a composite membrane having a double layer structure for photothermal treatment of bone tissue prepared by the above manufacturing method may be provided.

본 발명에 따르면, 생분해성 고분자를 이용하여 제조한 다공성 모노리스 위에 유무기 복합 혼합 용액을 3D 프린팅한 후 광열치료제를 함유하는 마그네슘이 일부 치환된 수산화아파타이트를 코팅함에 의해 이중층 구조의 복합 멤브레인을 제조함으로써, 골육종의 외과적 제거 수술 후에 잔존할 수 있는 골종양 조직에 의한 골육종의 재발을 방지하고, 연조직의 침투를 효과적으로 차단하여 정상 골조직의 재생을 효과적으로 유도시키는데 뛰어난 효과가 있다. According to the present invention, by 3D printing an organic-inorganic complex mixed solution on a porous monolith prepared using a biodegradable polymer, and then coating a partially substituted hydroxyapatite containing magnesium containing a photothermal agent, a dual-layered composite membrane is prepared. , It has an excellent effect in preventing recurrence of osteosarcoma due to bone tumor tissue that may remain after surgical removal of osteosarcoma, and effectively inducing the regeneration of normal bone tissue by effectively blocking the penetration of soft tissue.

도 1은, 본 발명에 따른, 골조직 광열치료용 이중층 구조의 복합 멤브레인의 제조방법을 도식화한 그림이다.
도 2는, 본 발명에 따라 제조된 생분해성 고분자 모노리스와 이중층 구조 복합 멤브레인의 디지털 사진이다.
도 3은, 본 발명에 따라 제조된 광열치료제를 함유하는 마그네슘이 일부 치환된 수산환아파타이트 분말을 주사전자현미경으로 관찰한 사진이다.
도 4는, 본 발명에 따라 제조된 광열치료제를 함유하는 마그네슘이 일부 치환된 수산환아파타이트 분말을 적외선 분광법을 이용해 표면 분석한 그래프이다.
도 5는, 본 발명에 따라 제조된 광열치료제를 함유하는 마그네슘이 일부 치환된 수산환아파타이트 분말을 에너지분산형 X-선 분광법을 이용해 원소분석한 그래프이다.
도 6은, 본 발명에 따라 제조된 광열치료제 및 광열치료제를 함유하는 마그네슘이 일부 치환된 수산화아파타이트 분말의 적외선 조사에 따른 발열 온도 변화와 열안정성을 나타낸 그래프이다.
도 7은, 본 발명에 따라 제조된 생분해성 고분자를 이용한 다공성 모노리스를 주사전자현미경으로 관찰한 사진이다.
도 8은, 본 발명에 따라 제조된 수산화아파타이트 함량이 다른 유무기 복합 수화젤을 주사현미경으로 관찰한 사진이다.
도 9는, 본 발명에 따라 제조된 내부 구조가 다른 유무기 복합 수화젤을 주사전자현미경으로 관찰한 사진이다.
도 10은, 본 발명에 따라 제조된 골조직 광열치료용 이중층 구조 복합 멤브레인을 주사전자현미경으로 관찰한 사진이다.
도 11은, 본 발명에 따라 제조된 골조직 광열치료용 이중층 구조 복합 멤브레인을 세포배양용 배지에 침지시켜 적외선에너지로 조사한 후 표면 온도 변화를 측정한 사진과 그래프이다.
도 12는, 본 발명에 따라 제조된 골조직 광열치료용 이중층 구조 복합 멤브레인의 세포독성 결과를 나타낸 사진과 그래프이다.
1 is a diagram schematically illustrating a method of manufacturing a double-layered composite membrane for photothermal treatment of bone tissue according to the present invention.
2 is a digital photograph of a biodegradable polymer monolith and a double-layer composite membrane prepared according to the present invention.
3 is a photograph of a hydroxy-cyclic apatite powder partially substituted with magnesium containing a photothermal treatment agent prepared according to the present invention, observed with a scanning electron microscope.
4 is a graph showing a surface analysis of a partially substituted hydroxyapatite powder containing magnesium containing a photothermal treatment agent prepared according to the present invention using infrared spectroscopy.
5 is a graph showing an elemental analysis of a hydroxycyclic apatite powder partially substituted with magnesium containing a photothermal treatment agent prepared according to the present invention using an energy dispersive X-ray spectroscopy method.
6 is a graph showing changes in exothermic temperature and thermal stability according to infrared irradiation of magnesium-substituted hydroxyapatite powder containing a photothermal treatment agent and a photothermal treatment agent prepared according to the present invention.
7 is a photograph of a porous monolith using a biodegradable polymer prepared according to the present invention observed with a scanning electron microscope.
8 is a photograph of an organic-inorganic composite hydration gel having different hydroxyapatite content prepared according to the present invention observed with a scanning microscope.
9 is a photograph of an organic-inorganic composite hydration gel having a different internal structure manufactured according to the present invention observed with a scanning electron microscope.
10 is a photograph of a double-layer structure composite membrane for photothermal treatment of bone tissue prepared according to the present invention observed with a scanning electron microscope.
11 is a photograph and graph of measuring a change in surface temperature after irradiation with infrared energy by immersing the bilayer structured composite membrane for photothermal treatment of bone tissue prepared according to the present invention in a cell culture medium.
12 is a photograph and graph showing the cytotoxicity results of the bilayer structured composite membrane for photothermal treatment of bone tissue prepared according to the present invention.

본 발명과 본 발명의 동작상의 이점 및 본 발명의 실시에 의하여 달성되는 목적을 충분히 이해하기 위해서는 본 발명의 바람직한 실시 예를 예시하는 첨부 도면 및 첨부 도면에 기재된 내용을 참조하여야만 한다.In order to fully understand the present invention, operational advantages of the present invention, and objects achieved by the implementation of the present invention, reference should be made to the accompanying drawings illustrating preferred embodiments of the present invention and the contents described in the accompanying drawings.

이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시 예를 설명함으로써, 본 발명을 상세히 설명한다. 다만, 본 발명을 설명함에 있어서 이미 공지된 기능 혹은 구성에 대한 설명은, 본 발명의 요지를 명료하게 하기 위하여 생략하기로 한다.Hereinafter, the present invention will be described in detail by describing a preferred embodiment of the present invention with reference to the accompanying drawings. However, in describing the present invention, a description of a function or configuration that is already known will be omitted in order to clarify the gist of the present invention.

본 명세서에 달리 정의하지 않는 한, 사용된 모든 기술 및 과학 용어는 당업계에 통상의 기술자가 통상적으로 이해하는 바와 같은 의미를 가진다. 본 명세서에 포함되는 용어를 포함하는 다양한 과학적 사전이 잘 알려져 있고, 당업계에서 이용가능하다. 본 명세서에 설명된 것과 유사 또는 등가인 임의의 방법 및 물질이 본 발명의 실시예 또는 실험예에 사용되는 것으로 발견되나, 몇몇 방법 및 물질이 설명되어 있다. 당업자가 사용하는 맥락에 따라, 다양하게 사용될 수 있기 때문에, 특정 방법학, 프로토콜 및 시약으로 본 발명을 제한하는 것으로 이해되어서는 안 된다.Unless otherwise defined herein, all technical and scientific terms used have the same meaning as commonly understood by one of ordinary skill in the art. Various scientific dictionaries including terms included herein are well known and available in the art. Although any methods and materials similar or equivalent to those described herein are found to be used in the examples or experimental examples of the present invention, several methods and materials have been described. It should not be understood as limiting the invention to specific methodologies, protocols and reagents, as those skilled in the art can use it in a variety of ways, depending on the context in which they are used.

본 명세서에서 사용되는 바와 같이, 단수형은 문맥이 명확하게 달리 지시하지 않으면 복수의 대상을 포함한다. 본 명세서에서 사용되는 바와 같이, 달리 언급되지 않는 한, “또는”은 “ 및/또는”을 의미한다. 더욱이, 용어 “포함하는” 뿐만 아니라, 다른 형태, 예를 들어, “가지는”, “이루어지는” 및 “구성되는”는 제한적이지 않다. As used herein, the singular includes a plurality of objects unless the context clearly dictates otherwise. As used herein, unless stated otherwise, “or” means “and/or”. Moreover, the terms “comprising” as well as other forms, such as “having”, “consisting of” and “consisting of” are not limiting.

실시예 1 Example 1

본 발명에 따른, 광열치료제를 함유하는 마그네슘이 일부 치환된 수산화아파타이트 분말 제조Preparation of hydroxyapatite powder partially substituted with magnesium containing photothermal therapy according to the present invention

본 발명의 광열치료제를 함유하는 마그네슘이 일부 치환된 수산화아파타이트(Mg-HA-IR) 분말을 제조하기 위해서 먼저 수용성 고분자인 폴리에틸렌글리콜-폴리프로필렌글리콜-폴리에틸렌글리콜 공중합체 2중량%와 히아루론산 0.2중량%를 증류수에 녹여 제조한 고분자 템플레이트 용액에 수용성 고분자 및 이온 전구체 무게 대비 3중량%의 광열치료제 IR-780을 녹여 수용성 고분자와 광열치료제 혼합 용액을 만들었다. 이 혼합 용액에 칼슘 이온 전구체인 질산칼슘 용액 및 마그네슘 이온 전구체인 질산마그네슘 용액을 투입하여 0.1~0.3M이 되도록 맞춘 후에 pH가 10이 되도록 0.1N 염산 또는 암모니아수로 조절하였다. 계속해서 pH가 10으로 맞추어진 0.1~0.5M의 포스페이트 이온 전구체인 제2 인산암모늄 용액을 고분자 템플레이트, 광열치료제와 칼슘 이온 및 마그네슘 이온 전구체가 들어 있는 용액에 (Ca+Mg)/P = 1.67/1이 되도록 45℃에서 교반 하면서 소량씩 투입하고, 투입 완료 후에 24시간 동안 계속해서 반응시켜서 광열치료제를 함유하는 마그네슘이 일부 치환된 수산화아파타이트 분말을 제조하였다. 여기서 (Ca+Mg)/P는 인(P) 대비 칼슘(Ca)과 마그네슘(Mg)의 몰 비율을 나타낸다.In order to prepare a partially substituted hydroxyapatite (Mg-HA-IR) powder containing the photothermal agent of the present invention, a water-soluble polymer, polyethylene glycol-polypropylene glycol-polyethylene glycol copolymer 2% by weight and hyaluronic acid 0.2% by weight In a polymer template solution prepared by dissolving in distilled water, 3% by weight of the photothermal treatment agent IR-780 was dissolved based on the weight of the water-soluble polymer and the ion precursor to prepare a mixed solution of the water-soluble polymer and the photothermal treatment agent. To this mixed solution, a calcium nitrate solution as a calcium ion precursor and a magnesium nitrate solution as a magnesium ion precursor were added to adjust the concentration to 0.1 to 0.3M, and then adjusted with 0.1N hydrochloric acid or aqueous ammonia so that the pH was 10. Subsequently, a 0.1~0.5M phosphate ion precursor, a second ammonium phosphate solution, whose pH is adjusted to 10, is added to a solution containing a polymer template, a photothermal agent, and a calcium ion and magnesium ion precursor (Ca+Mg)/P = 1.67/ A small amount was added while stirring at 45° C. so as to be 1, and the reaction was continued for 24 hours after the addition was completed to prepare a hydroxyapatite powder in which magnesium containing a photothermal treatment was partially substituted. Here, (Ca+Mg)/P represents the molar ratio of calcium (Ca) and magnesium (Mg) to phosphorus (P).

실시예 2 Example 2

본 발명에 따른, 다공성 모노리스 제조Porous monolith production according to the present invention

12 중량% 폴리락틱산을 1,4-디옥산과 2-부탄올 1:1 혼합용매에서 70~90℃, 예를 들어 80℃로 가열하면서 2시간 용해하여 용액을 제조하였다. 이때 70℃ 이하에서는 생분해성 고분자가 완전히 용해되지 않아서 균일한 용액의 제조가 어렵고, 90℃ 이상에서는 생분해성 고분자의 열분해의 가능성이 있다. 상기 단계에서 얻은 용액을 원판 형태를 만들 수 있는 테프론 몰드에 투입한 후 -5~15℃, 예를 들어 0℃에서 24시간 냉각시켜 상분리 반응을 진행한 후 비용매인 메탄올에 침적시켜 1,4-디옥산과 2-부탄올을 제거함과 동시에 기공을 형성시켜 다공성 모노리스를 제조하였다. 이때 -5℃ 이하에서는 생분해성 고분자의 침전속도가 너무 빨라 상분리가 완전히 일어나지 않을 가능성이 있고, 15℃ 이상에서는 생분해성 고분자의 침전이 일어나지 않을 가능성이 있다.A solution was prepared by dissolving 12% by weight polylactic acid in a 1,4-dioxane and 2-butanol 1:1 mixed solvent while heating at 70 to 90°C, for example, 80°C for 2 hours. At this time, it is difficult to prepare a uniform solution because the biodegradable polymer is not completely dissolved below 70°C, and there is a possibility of thermal decomposition of the biodegradable polymer above 90°C. After putting the solution obtained in the above step into a Teflon mold capable of forming a disc shape, cooling it at -5 to 15°C, for example, 0°C for 24 hours to proceed with a phase separation reaction, followed by immersion in methanol as a non-solvent to 1,4- A porous monolith was prepared by removing dioxane and 2-butanol and simultaneously forming pores. At this time, there is a possibility that phase separation does not occur completely because the sedimentation rate of the biodegradable polymer is too fast below -5°C, and there is a possibility that the precipitation of the biodegradable polymer does not occur above 15°C.

실시예 3Example 3

본 발명에 따른, 3D 프린팅 기법을 이용한 유무기 복합 수화젤층 제조Fabrication of organic-inorganic composite hydration gel layer using 3D printing technique according to the present invention

젤라틴 6중량%와 히아루론산 0.3중량%을 증류수에 녹이고, 수산화아파타이트 나노입자를 분산시켜 3D 프린팅용 용액을 제조하였다. 상기 단계에서 얻은 용액을 3D 프린터 넣고 실시예 2에서 제조한 다공성 모노리스를 하층부 지지체로 이용하여 상층부에 수화젤층을 프린팅한 후 3중량% EDC와 3중량% NHS가 녹아 있는 에탄올 용액에 침지시켜 12시간 가교시킨 후 증류수로 세척 및 동결건조하여 도 1에서 볼 수 있는 이중층 구조의 복합 멤브레인을 제조하였다.6% by weight of gelatin and 0.3% by weight of hyaluronic acid were dissolved in distilled water, and hydroxyapatite nanoparticles were dispersed to prepare a 3D printing solution. The solution obtained in the above step was put in a 3D printer, and the hydration gel layer was printed on the upper layer using the porous monolith prepared in Example 2 as a support for the lower layer, and then immersed in an ethanol solution in which 3 wt% EDC and 3 wt% NHS were dissolved for 12 hours. After crosslinking, washing with distilled water and freeze-drying were performed to prepare a double-layered composite membrane as shown in FIG. 1.

제조예 1Manufacturing Example 1

수산화아파타이트 나노입자를 10중량% 함유하는 유무기 복합 수화젤층 제조Preparation of organic-inorganic composite hydration gel layer containing 10% by weight of hydroxyapatite nanoparticles

상기 실시예 3의 제조방법 중 3D 프린팅용 용액을 제조하는 과정에서 수산화아파타이트 나노입자를 고분자 무게 대비 10중량% 사용하였고, 이 용액을 이용하여 상층부 수화젤층을 가로와 세로의 가닥이 90도로 교차하도록 프린팅함에 의해 이중층 구조의 복합 멤브레인(GEHA10)을 제조하였다.In the process of preparing the solution for 3D printing in the manufacturing method of Example 3, 10% by weight of hydroxyapatite nanoparticles were used based on the weight of the polymer, and using this solution, the upper hydrogel layer was crossed so that the horizontal and vertical strands cross 90 degrees. By printing, a double-layered composite membrane (GEHA10) was prepared.

제조예 2Manufacturing Example 2

수산화아파타이트 나노입자를 20중량% 함유하는 유무기 복합 수화젤층 제조Preparation of organic-inorganic composite hydration gel layer containing 20% by weight of hydroxyapatite nanoparticles

상기 실시예 3의 제조방법 중 3D 프린팅용 용액을 제조하는 과정에서 수산화아파타이트 나노입자를 고분자 무게 대비 20중량% 사용하였고, 이 용액을 이용하여 상층부 수화젤층을 가로와 세로의 가닥이 90도로 교차하도록 프린팅함에 의해 이중층 구조의 복합 멤브레인(GEHA20)을 제조하였다.In the process of preparing the solution for 3D printing in the manufacturing method of Example 3, 20% by weight of hydroxyapatite nanoparticles based on the weight of the polymer was used, and using this solution, the upper hydrogel layer was crossed so that the horizontal and vertical strands cross 90 degrees. By printing, a double-layered composite membrane (GEHA20) was prepared.

제조예 3Manufacturing Example 3

수산화아파타이트 나노입자를 40중량% 함유하는 유무기 복합 수화젤층 제조Preparation of organic-inorganic composite hydration gel layer containing 40% by weight of hydroxyapatite nanoparticles

상기 실시예 3의 제조방법 중 3D 프린팅용 용액을 제조하는 과정에서 수산화아파타이트 나노입자를 고분자 무게 대비 40중량% 사용하였고, 이 용액을 이용하여 상층부 수화젤층을 가로와 세로의 가닥이 90도로 교차하도록 프린팅함에 의해 이중층 구조의 복합 멤브레인(GEHA40)을 제조하였다.In the process of preparing the solution for 3D printing in the manufacturing method of Example 3, 40% by weight of hydroxyapatite nanoparticles based on the weight of the polymer was used, and using this solution, the upper hydrogel layer was crossed so that the horizontal and vertical strands cross 90 degrees. By printing, a double-layered composite membrane (GEHA40) was prepared.

제조예 4Manufacturing Example 4

지그재그로 교차하는 유무기 복합 수화젤층 제조Fabrication of organic-inorganic complex hydration gel layer intersecting in zigzag

상기 제조예 3의 제조방법 중 상층부 수화젤층을 가로와 세로의 가닥이 지그재그 형태로 교차하도록 프린팅함에 의해 이중층 구조의 복합 멤브레인(GEHA40ZZ)을 제조하였다.In the manufacturing method of Preparation Example 3, a double-layered composite membrane (GEHA40ZZ) was prepared by printing the upper hydration gel layer so that the horizontal and vertical strands intersect in a zigzag form.

제조예 5Manufacturing Example 5

45도로 교차하는 유무기 복합 수화젤층 제조Fabrication of organic-inorganic complex hydration gel layer crossing 45 degrees

상기 제조예 3의 제조방법 중 상층부 수화젤층을 가로와 세로의 가닥이 45도로 교차하도록 프린팅함에 의해 이중층 구조의 복합 멤브레인(GEHA4045)을 제조하였다.In the manufacturing method of Preparation Example 3, a double-layered composite membrane (GEHA4045) was prepared by printing the upper hydration gel layer so that the horizontal and vertical strands intersect at 45 degrees.

실시예 4 Example 4

본 발명에 따른, 골조직 광열치료용 이중층 구조의 복합 멤브레인 제조Preparation of a composite membrane of a double layer structure for photothermal treatment of bone tissue according to the present invention

상기 제조예 3으로부터 얻어진 이중층 구조의 복합 멤브레인(GEHA40) 표면을 2중량% 젤라틴이 녹아 있는 수용액에 고분자와 동일한 무게의 광열치료제 함유 마그네슘이 일부치환된 수산화아파타이트 분산시킨 후 코팅 및 세척하여 골조직 광열치료용 이중층 구조의 복합 멤브레인(GEHA40IR)을 제조하였다.Bone tissue photothermal treatment by dispersing the surface of the double-layered composite membrane (GEHA40) obtained in Preparation Example 3 above in an aqueous solution in which 2% by weight of gelatin was dissolved in magnesium containing a photothermal agent having the same weight as the polymer and partially substituted hydroxide apatite, followed by coating and washing. A composite membrane of a two-layer structure (GEHA40IR) was prepared.

실험예 1Experimental Example 1

본 발명에 따른, 광열치료제를 함유하는 마그네슘이 일부 치환된 수산화아파타이트 분말 형태 및 광열치료제 함량 분석Analysis of the form of hydroxyapatite powder in which magnesium containing a photothermal agent is partially substituted and the content of the photothermal agent according to the present invention

도 3은 상기 실시예 1에 따라 합성된 광역학치료제를 함유하는 마그네슘이 일부 치환된 수산화아파타이트 분말의 주사전자현미경(SEM, MIRA3, TESCAN) 이미지를 나타낸 것이다. 분말은 나노입자를 형성하고 있으나 이차응집을 일부 보이는 것으로 확인되었다. 나노입자에 포함되어있는 광열치료제의 함량을 자외선-가시광선 분광광도계(U-2900, Hitachi)를 이용하여 분석한 결과 최종생성물의 1.4중량%였다.FIG. 3 shows a scanning electron microscope (SEM, MIRA3, TESCAN) image of a partially substituted magnesium hydroxide apatite powder containing a photodynamic therapeutic agent synthesized according to Example 1. FIG. It was confirmed that the powder formed nanoparticles, but showed some secondary agglomeration. The content of the photothermal treatment agent contained in the nanoparticles was analyzed using an ultraviolet-visible spectrophotometer (U-2900, Hitachi) and found to be 1.4% by weight of the final product.

실험예 2Experimental Example 2

본 발명에 따른, 광열치료제를 함유하는 마그네슘이 일부 치환된 수산화아파타이트 분말의 표면 흡광도 분석Surface absorbance analysis of hydroxyapatite powder partially substituted with magnesium containing photothermal treatment according to the present invention

도 4는 상기 실시예 1에 따라 제조된 광열치료제를 함유하는 마그네슘이 일부 치환된 수산화아파타이트 분말의 표면 흡광도를 전반사 측정 퓨리에 변환 적외선 분광법(ATR-FTIR, ALPHA, Bruker optics)을 이용하여 400 ~ 4000 cm-1 범위에서 분석하였다.4 is a total reflection measurement of the surface absorbance of a partially substituted hydroxyapatite powder containing magnesium containing a photothermal treatment agent prepared according to Example 1 using Fourier transform infrared spectroscopy (ATR-FTIR, ALPHA, Bruker optics) from 400 to 4000. It was analyzed in the range of cm -1.

도 4와 같이, 모든 광열치료제의 함유 유무에 관계없이 모든 샘플에서 포스페이트 이온(PO43-)에 기인하는 피크가 1093, 1022, 972, 569 및 558 cm-1에서 나타났고, 수용성 고분자 템플레이트의 사용에 의해서 수산기에 기인하는 피크가 3296 cm-1에서 확인되었다. As shown in FIG. 4, peaks due to phosphate ions (PO4 3- ) appeared at 1093, 1022, 972, 569 and 558 cm -1 in all samples regardless of the presence or absence of all photothermal therapeutic agents, and use of a water-soluble polymer template The peak attributable to a hydroxyl group was confirmed at 3296 cm -1 by.

실험예 3Experimental Example 3

본 발명에 따른, 광열치료제를 함유하는 마그네슘이 일부 치환된 수산화아파타이트 분말의 원소 분석Elemental analysis of hydroxyapatite powder partially substituted with magnesium containing photothermal therapy according to the present invention

도 5는 상기 실시예 1에 따라 제조된 광열치료제를 함유하는 마그네슘이 일부 치환된 수산화아파타이트 분말을 에너지분산형 X-선 분광법(EDX, Horiba, Ltd., 0-20 keV)을 이용해 원소분석하였다.FIG. 5 is an elemental analysis of magnesium-substituted hydroxide apatite powder containing a photothermal treatment agent prepared according to Example 1 using an energy dispersive X-ray spectroscopy (EDX, Horiba, Ltd., 0-20 keV). .

도 5와 같이, 광열치료제의 함유 유무에 관계없이 모든 샘플에서 2.10keV에서는 인(P) 원소에 기인하는 피크가 나타났고 3.66keV에서는 칼슘(Ca) 원소에 기인하는 피크가 나타났고, 마그네슘(Mg) 원소에 기인하는 피크가 1.28keV에서 나타나 광열치료제를 함유하는 마그네슘이 일부 치환된 수산화아파타이트 분말 제조가 성공적으로 수행되었음이 확인되었다.As shown in FIG. 5, in all samples regardless of the presence or absence of the photothermal treatment agent, a peak due to phosphorus (P) element appeared at 2.10 keV, and a peak due to calcium (Ca) element appeared at 3.66 keV, and magnesium (Mg ) A peak due to the element appeared at 1.28 keV, confirming that the preparation of a partially substituted magnesium hydroxide apatite powder containing a photothermal agent was successfully performed.

실험예 4Experimental Example 4

본 발명에 따른, 광열치료제를 함유하는 마그네슘이 일부 치환된 수산화아파타이트 분말의 표면 온도 변화 및 열안정성 측정Measurement of surface temperature change and thermal stability of hydroxyapatite powder partially substituted with magnesium containing photothermal therapy according to the present invention

도 6은 상기 실시예 1에 따라 제조된 광열치료제를 함유하는 마그네슘이 일부 치환된 수산화아파타이트 분말에 적외선 에너지를 조사한 후 조사시간에 따른 표면온도 변화를 열화상 카메라(FLIR, E53)를 이용하여 반복적으로 측정하였다.Figure 6 is a thermal imaging camera (FLIR, E53) repeatedly using infrared energy after irradiation of infrared energy to a partially substituted hydroxyapatite powder containing magnesium containing the photothermal treatment agent prepared according to Example 1 above. It was measured as.

도 6과 같이, 마그네슘이 일부 치환된 수산화아파타이트로 캡슐화되지 않은 IR780의 경우 적외선 조사에 의해서 90℃까지 온도가 상승하지만 반복적인 적외선 조사에 의해서 온도상승이 일부 저하되는 것으로부터 IR780의 열안정성이 좋지 않음을 확인하였다. 그러나 마그네슘이 일부 치환된 수산화아파타이트로 캡슐화할 경우 적외선 조사에 의해서 약 105℃까지 온도가 상승하고 반복적인 적외선 조사에 의해서도 광열치료제의 온도는 거의 일정하게 유지하는 것으로부터 열안정성이 매우 우수함을 확인할 수 있다.As shown in FIG. 6, in the case of IR780 not encapsulated with hydroxyapatite partially substituted with magnesium, the temperature rises to 90°C by infrared irradiation, but the temperature rise partially decreases due to repeated infrared irradiation, so the thermal stability of IR780 is good. It was confirmed that it was not. However, when magnesium is partially substituted with hydroxyapatite, the temperature rises to about 105°C by infrared irradiation, and the temperature of the photothermal treatment agent is kept almost constant even by repeated infrared irradiation, indicating that the thermal stability is very excellent. have.

실험예 5Experimental Example 5

본 발명에 따른, 다공성 모노리스의 형태 분석Analysis of the morphology of the porous monolith according to the present invention

도 7은 상기 실시예 2에 따라 제조된 모노리스 표면의 주사전자현미경(SEM, MIRA3, TESCAN) 이미지를 나타낸 것으로 모노리스가 전체적으로 다공성이 잘 형성되었음을 확인하였다.FIG. 7 shows a scanning electron microscope (SEM, MIRA3, TESCAN) image of the surface of the monolith prepared according to Example 2, and it was confirmed that the monolith had a good overall porosity.

실험예 6Experimental Example 6

본 발명에 따른, 3D 프린팅 기법을 이용한 유무기 복합 수화젤층 형태 분석Form analysis of organic-inorganic complex hydration gel layer using 3D printing technique according to the present invention

도 8은 상기 제조예 1 내지 제조예 3에 따라 제조된 유무기 복합 수화젤층에 수산화아파타이트를 함유하는 이중층 구조의 복합 멤브레인 표면의 주사전자현미경(SEM, MIRA3, TESCAN) 이미지를 나타낸 것으로 유무기 복합 수화젤층이 전체적으로 다공성이 잘 형성되었고, 표면에 수산화아파타이트의 도입에 의해서 요철구조가 생성되었음을 확인하였다. 도 9는 상기 제조예 3 내지 제조예 5에 따라 제조된 내부 구조가 서로 다른 이중층 구조의 복합 멤브레인의 솔리드웍스를 이용한 모식도와 전자현미경(SEM, MIRA3, TESCAN)을 이용한 분석 사진이다.FIG. 8 shows a scanning electron microscope (SEM, MIRA3, TESCAN) image of the surface of a double-layered composite membrane containing hydroxyapatite in the organic-inorganic composite hydration gel layer prepared according to Preparation Examples 1 to 3 above. It was confirmed that the hydration gel layer had a good overall porosity, and that an uneven structure was generated by the introduction of hydroxyapatite on the surface. 9 is a schematic diagram using Solidworks and an analysis photograph using an electron microscope (SEM, MIRA3, TESCAN) of a double-layered composite membrane having different internal structures manufactured according to Preparation Examples 3 to 5 above.

실험예 7Experimental Example 7

본 발명에 따른, 골조직 치료용 이중층 구조의 복합 멤브레인의 형태 분석Analysis of the morphology of the double-layered composite membrane for bone tissue treatment according to the present invention

도 10은 상기 실시예 4에 따라 제조된 광열치료제를 함유하는 마그네슘이 일부 치환된 수산화아파타이트가 표면에 코팅된 골육종 치료용 이중층 구조의 복합 멤브레인 표면의 주사전자현미경(SEM, MIRA3, TESCAN) 이미지를 나타낸 것으로 표면에 수산화아파타이트가 표면에 코팅된 것을 확인하였다.10 is a scanning electron microscope (SEM, MIRA3, TESCAN) image of the surface of a double-layered composite membrane for treating osteosarcoma coated on the surface of a magnesium-substituted hydroxyapatite containing a photothermal treatment agent prepared according to Example 4 above. As shown, it was confirmed that hydroxyapatite was coated on the surface.

실험예 8Experimental Example 8

본 발명에 따른, 골조직 치료용 이중층 구조의 복합 멤브레인의 표면 온도 변화 측정Measurement of the surface temperature change of the double-layered composite membrane for bone tissue treatment according to the present invention

도 11은 상기 실시예 4에 따라 제조된 골조직 치료용 이중층 구조의 복합 멤브레인을 세포배양용 배지에 침지시켜 습윤상태에서 적외선 에너지를 조사한 후 조사시간에 따른 표면온도 변화를 열화상 카메라(FLIR, E53)를 이용하여 측정하였다.11 is a thermal imaging camera (FLIR, E53) showing the change in surface temperature according to the irradiation time after irradiating infrared energy in a wet state by immersing the double-layered composite membrane for bone tissue treatment prepared according to Example 4 in a cell culture medium. ) Was measured using.

도 11과 같이, 광열치료제를 함유하는 마그네슘이 일부 치환된 수산화아파타이트를 코팅한 복합 멤브레인에서는 적외선의 조사에 따라 표면온도가 45도 이상으로 높아지는 것이 확인되었다.As shown in FIG. 11, it was confirmed that the surface temperature of the composite membrane coated with hydroxyapatite partially substituted with magnesium containing a photothermal treatment agent was increased to 45 degrees or more upon irradiation with infrared rays.

실험예 9Experimental Example 9

본 발명에 따른, 골조직 치료용 이중층 구조의 복합 멤브레인의 세포독성 평가Cytotoxicity evaluation of the double-layered composite membrane for bone tissue treatment according to the present invention

도 12는 실시예 4에 따라 제조된 골조직 치료용 이중층 구조의 복합 멤브레인의 생체적합성을 세포독성시험을 통해서 평가한 결과를 나타낸 것이다. 마우스 섬유아세포인 L-929 세포를 ATCC에서 구매하여 세포독성에 사용하였으며 상기세포는 10% 우태아혈청(FBS)과 1% 페니실린-스트렙토마이신이 첨가된 기본배지인 RPMI 1640 배지에서 37℃, 5% CO2 조건으로 기본 배양하였다.12 shows the results of evaluating the biocompatibility of the bilayer composite membrane for bone tissue treatment prepared according to Example 4 through a cytotoxicity test. Mouse fibroblast L-929 cells were purchased from ATCC and used for cytotoxicity. The cells were 37° C. in RPMI 1640 medium, which is a basic medium supplemented with 10% fetal bovine serum (FBS) and 1% penicillin-streptomycin. Basic culture was carried out under% CO 2 conditions.

본 발명에 따른 이중층 구조의 복합 멤브레인의 세포독성을 확인하기 위하여 먼저 멤브레인을 멸균기로 멸균처리 한 다음 무균상태에서 75%, 50%, 25% 에탄올로 각각 2분간 소독하였다. 소독 후 멤브레인을 RPMI 1640배지 100mL에 넣고 37℃에서 3일 용출시켜 용출배지를 준비하였다.In order to confirm the cytotoxicity of the double-layered composite membrane according to the present invention, the membrane was first sterilized with a sterilizer and then sterilized for 2 minutes with 75%, 50%, and 25% ethanol under aseptic conditions, respectively. After disinfection, the membrane was put into 100 mL of RPMI 1640 medium and eluted at 37° C. for 3 days to prepare an elution medium.

상기 기본배양조건에서 24시간 배양한 L-929 세포의 기본배지를 상기 단계에서 준비한 각각의 용출배지로 갈아주고 하루배양 후 세포독성을 MTT assay로 확인하였다. 음성대조군은 기본배양배지에서 배양한 세포를, 양성대조군은 멸균증류수에서 배양한 세포를 사용하였다. The basic medium of L-929 cells cultured for 24 hours in the basic culture conditions was replaced with each elution medium prepared in the above step, and cytotoxicity was confirmed by MTT assay after 1 day incubation. Cells cultured in basic culture medium were used for the negative control group and cells cultured in sterile distilled water for the positive control group.

도 12과 같이, 이중층 구조 복합 멤브레인의 용출배지에서 93%로 높은 세포생존율을 타나냈다. 이를 통해 본 발명 골조직 치료용 이중층 구조의 복합 멤브레인은 세포독성이 없고 생체적합성이 우수한 것으로 확인되었다.As shown in FIG. 12, a high cell viability of 93% was exhibited in the elution medium of the double-layered composite membrane. Through this, it was confirmed that the dual-layered composite membrane for treatment of bone tissue of the present invention has no cytotoxicity and excellent biocompatibility.

이상 도면을 참조하여 본 실시예에 대해 상세히 설명하였지만 본 실시예의 권리범위가 전술한 도면 및 설명에 국한되지는 않는다.Although the present embodiment has been described in detail with reference to the drawings above, the scope of the present embodiment is not limited to the above-described drawings and description.

이와 같이 본 발명은 기재된 실시예에 한정되는 것이 아니고, 본 발명의 사상 및 범위를 벗어나지 않고 다양하게 수정 및 변형할 수 있음은 이 기술의 분야에서 통상의 지식을 가진 자에게 자명하다. 따라서 그러한 수정예 또는 변형예들은 본 발명의 특허청구범위에 속한다 하여야 할 것이다.As described above, the present invention is not limited to the described embodiments, and it is apparent to those of ordinary skill in the art that various modifications and variations can be made without departing from the spirit and scope of the present invention. Therefore, it should be said that such modifications or variations belong to the scope of the claims of the present invention.

Claims (11)

(a) 증류수에 수용성 고분자를 녹여 고분자 템플레이트 용액을 마련하는 단계;
(b) 칼슘 이온 전구체 용액, 포스페이트 이온 전구체 용액, 마그네슘 이온 전구체 용액 및 광열치료제 용액을 각각 마련하는 단계;
(c) 상기 고분자 템플레이트 용액에 상기 광열치료제 용액을 먼저 투입하고, 수산화아파타이트가 생성되도록 상기 칼슘 이온 전구체 용액, 상기 포스페이트 이온 전구체 용액 및 상기 마그네슘 이온 전구체 용액을, 인(P) 대비 칼슘(Ca)과 마그네슘(Mg)의 몰 비율{(Ca+Mg)/P} = C (여기서 C는 미리 결정된 비율) 비율로 투입한 후 교반하고, 원심분리 및 건조하여 광열치료제를 함유하는 마그네슘이 일부 치환된 수산화아파타이트 분말을 제조하는 단계(Mg-HA-IR);
(d) 상기 (c)단계에서 얻은 광열치료제를 함유하는 마그네슘이 일부 치환된 수산화아파타이트 분말을 젤라틴 및 증류수와 섞어 슬러리를 제조하는 단계;
(e) 생분해성 고분자를 미리 결정된 제1 온도로 가열하여 균일한 용액을 제조한 후 이 용액을 몰드에 넣어 미리 결정된 제2 온도로 냉각하여 상분리 및 침전시키는 단계;
(f) 상기 (e)단계에서 침전된 생분해성 고분자를 세척 후 건조하여 다공성 모노리스를 제조하는 단계;
(g) 젤라틴, 히아루론산 및 수산화아파타이트를 증류수에 분산시켜 3D 프린팅용 용액을 제조한 후 이 용액을 상기 (f)단계에서 제조한 다공성 모노리스 위에 프린팅하여 3차원 형태의 수화젤층을 제조하는 단계;
(g) 수화젤층을 1-에틸-3-(3-디메틸-아미노프로필)카보디이미드 (1-ethyl-3-(3-dimethylaminopropyl)carbodiimide, EDC)와 N-하이드로숙신이미드(N-hydrosuccinimide, NHS)의 혼합물을 이용하여 가교시켜 이중층구조의 복합 멤브레인을 제조하는 단계; 및
(h) 상기 이중층 구조의 복합 멤브레인 표면을 광열치료제를 함유하는 마그네슘이 일부 치환된 수산화아파타이트를 코팅하는 단계를 포함하는 것을 특징으로 하는, 골조직 광열치료용 이중층 구조의 복합 멤브레인의 제조방법.
(a) dissolving a water-soluble polymer in distilled water to prepare a polymer template solution;
(b) preparing a calcium ion precursor solution, a phosphate ion precursor solution, a magnesium ion precursor solution, and a photothermal treatment agent solution, respectively;
(c) The photothermal treatment agent solution is first added to the polymer template solution, and the calcium ion precursor solution, the phosphate ion precursor solution, and the magnesium ion precursor solution are used to generate the hydroxide apatite. And magnesium (Mg) molar ratio {(Ca+Mg)/P} = C (where C is a predetermined ratio), stirred, centrifuged, and dried to partially replace magnesium containing photothermal therapy. Preparing hydroxyapatite powder (Mg-HA-IR);
(d) preparing a slurry by mixing the magnesium-substituted hydroxide apatite powder containing the photothermal treatment agent obtained in step (c) with gelatin and distilled water;
(e) heating the biodegradable polymer to a first predetermined temperature to prepare a homogeneous solution, and then putting the solution into a mold and cooling to a second predetermined temperature to separate and precipitate phases;
(f) washing and drying the biodegradable polymer precipitated in step (e) to prepare a porous monolith;
(g) preparing a solution for 3D printing by dispersing gelatin, hyaluronic acid, and hydroxyapatite in distilled water, and then printing the solution on the porous monolith prepared in step (f) to prepare a three-dimensional hydrogel layer;
(g) The hydration gel layer was prepared with 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) and N-hydrosuccinimide. And crosslinking using a mixture of NHS) to prepare a double-layered composite membrane; And
(h) coating the surface of the double-layered composite membrane with hydroxyapatite partially substituted with magnesium containing a photothermal treatment agent.
제1항에 있어서,
상기 (a)단계의 고분자 템플레이트용 수용성 고분자는 히아루론산, 알긴산 나트륨, 베타-사이클로덱스트린, 폴리비닐피롤리돈, 폴리비닐알코올, 라미나린, 풀루란 및 푸코이단으로 이루어진 그룹에서 선택된 1종 이상과 블록 공중합체인 폴리에틸렌글리콜-폴리프로필렌글리콜-폴리에틸렌글리콜(PEG-PPG-PEG)을 포함하는 것을 특징으로 하는, 골조직 광열치료용 이중층 구조의 복합 멤브레인의 제조방법.
The method of claim 1,
The water-soluble polymer for the polymer template of step (a) is block copolymerized with at least one selected from the group consisting of hyaluronic acid, sodium alginate, beta-cyclodextrin, polyvinylpyrrolidone, polyvinyl alcohol, laminarin, pullulan, and fucoidan. Chain polyethylene glycol-polypropylene glycol-polyethylene glycol (PEG-PPG-PEG), characterized in that it comprises a composite membrane of a bilayer structure for photothermal treatment of bone tissue.
제1항에 있어서,
상기 (b)단계의 칼슘 이온 전구체는 질산칼슘, 염화칼슘, 황산칼슘 및 수산화칼슘으로 이루어진 그룹으로부터 선택된 1종 이상을 포함하는 것을 특징으로 하는, 골조직 광열치료용 이중층 구조의 복합 멤브레인의 제조방법.
The method of claim 1,
The calcium ion precursor of step (b) comprises at least one selected from the group consisting of calcium nitrate, calcium chloride, calcium sulfate, and calcium hydroxide.
제1항에 있어서,
상기 (b)단계의 포스페이트 이온 전구체는 제1 인산암모늄, 제2 인산암모늄, 제1 인산나트륨, 제2 인산나트륨, 제3 인산나트륨, 제1 인산칼륨, 제2 인산칼륨 및 제3 인산칼륨으로 이루어진 그룹에서 선택된 1종 이상을 포함하는 것을 특징으로 하는, 골조직 광열치료용 이중층 구조의 복합 멤브레인의 제조방법.
The method of claim 1,
The phosphate ion precursor of step (b) is a first ammonium phosphate, a second ammonium phosphate, a first sodium phosphate, a second sodium phosphate, a third sodium phosphate, a first potassium phosphate, a second potassium phosphate, and a third potassium phosphate. A method for producing a composite membrane of a bilayer structure for photothermal treatment of bone tissue, characterized in that it comprises at least one selected from the group consisting of.
제1항에 있어서,
상기 (b)단계의 마그네슘 이온 전구체는 황산마그네슘, 질산마그네슘, 염화마그네슘, 수산화마그네슘, 탄산마그네슘으로 이루어진 그룹에서 선택된 1종 이상을 포함하는 것을 특징으로 하는, 골조직 광열치료용 이중층 구조의 복합 멤브레인의 제조방법.
The method of claim 1,
The magnesium ion precursor of step (b) comprises at least one selected from the group consisting of magnesium sulfate, magnesium nitrate, magnesium chloride, magnesium hydroxide, and magnesium carbonate. Manufacturing method.
제1항에 있어서,
상기 (b)단계의 광열치료제는 시아닌계 염료인 인도시아닌 그린(indocyanine green, ICG)과 헵타메틴 시아닌계 염료인 IR-780, IR-783, IR-808, IR-825로 이루어진 그룹에서 선택된 1종 이상을 포함하는 것을 특징으로 하는, 골조직 광열치료용 이중층 구조의 복합 멤브레인의 제조방법.
The method of claim 1,
The photothermal treatment agent of step (b) is selected from the group consisting of indocyanine green (ICG), which is a cyanine dye, and IR-780, IR-783, IR-808, and IR-825, which are heptamethine cyanine dyes. A method for producing a composite membrane of a double-layer structure for photothermal treatment of bone tissue, characterized in that it comprises one or more.
제1항에 있어서,
상기 (c) 단계에서 마그네슘의 비율은 양이온을 구성하는 칼슘과 마그네슘을 합한 값에서 10몰% 내지 30몰%를 차지하여, 마그네슘이 일부 치환된 수산화아파타이트에서 마그네슘 원소가 전체 중량 대비 2.5중량% 내지 7.6중량%를 차지하는 것을 특징으로 하는, 골조직 광열치료용 이중층 구조의 복합 멤브레인의 제조방법.
The method of claim 1,
In the step (c), the ratio of magnesium accounts for 10 mol% to 30 mol% from the sum of calcium and magnesium constituting the cation, and in the hydroxide apatite partially substituted with magnesium, the magnesium element is from 2.5 wt% to the total weight. A method of manufacturing a composite membrane having a double layer structure for photothermal treatment of bone tissue, characterized in that it occupies 7.6% by weight.
제1항에 있어서,
상기 (c) 단계에서 광열치료제의 함량은 마그네슘이 일부 치환된 수산화아파타이트 전체 중량 대비 1.3중량% 내지 4.8중량%를 차지하는 것을 특징으로 하는, 골조직 광열치료용 이중층 구조의 복합 멤브레인의 제조방법.
The method of claim 1,
In the step (c), the content of the photothermal treatment agent accounts for 1.3% to 4.8% by weight of the total weight of the hydroxyapatite partially substituted with magnesium.
제1항에 있어서,
상기 (e) 단계에서 생분해성 고분자는 폴리락틱산, 폴리글리콜산, 폴리락틱산-글리콜산 공중합체, 폴리카프로락톤, 폴리감마글루탐산 산성 타입, 폴리감마글루탐산 염 타입 중에서 선택된 1종 이상을 포함하는 것을 특징으로 하는, 골조직 광열치료용 이중층 구조의 복합 멤브레인의 제조방법.
The method of claim 1,
In the step (e), the biodegradable polymer comprises at least one selected from polylactic acid, polyglycolic acid, polylactic acid-glycolic acid copolymer, polycaprolactone, poly-gamma-glutamic acid type, and poly-gamma-glutamic acid salt type. Characterized in that, the method for producing a composite membrane of a double-layer structure for photothermal treatment of bone tissue.
제1항에 있어서,
상기 제1 온도는 70~90℃이며,
상기 제2 온도는 -5~15℃이며,
상기 C = 1.67/1인 것을 특징으로 하는, 골조직 광열치료용 이중층 구조의 복합 멤브레인의 제조방법.
The method of claim 1,
The first temperature is 70 ~ 90 ℃,
The second temperature is -5 ~ 15 ℃,
C = 1.67/1, characterized in that, the method for producing a composite membrane of a double-layer structure for photothermal treatment of bone tissue.
제1항 내지 제10항 중 어느 한 항에 따른 제조방법에 의하여 제조된 것을 특징으로 하는, 골조직 광열치료용 이중층 구조의 복합 멤브레인.A composite membrane of a double-layer structure for photothermal treatment of bone tissue, characterized in that produced by the manufacturing method according to any one of claims 1 to 10.
KR1020190145324A 2019-11-13 2019-11-13 A double layer composite membrane for photothermal therapy of bone tissue and method for preparing the same KR102236212B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020190145324A KR102236212B1 (en) 2019-11-13 2019-11-13 A double layer composite membrane for photothermal therapy of bone tissue and method for preparing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020190145324A KR102236212B1 (en) 2019-11-13 2019-11-13 A double layer composite membrane for photothermal therapy of bone tissue and method for preparing the same

Publications (1)

Publication Number Publication Date
KR102236212B1 true KR102236212B1 (en) 2021-04-05

Family

ID=75462174

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020190145324A KR102236212B1 (en) 2019-11-13 2019-11-13 A double layer composite membrane for photothermal therapy of bone tissue and method for preparing the same

Country Status (1)

Country Link
KR (1) KR102236212B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113101409A (en) * 2021-04-09 2021-07-13 中山大学附属第三医院(中山大学肝脏病医院) Multifunctional compound bracket and preparation method and application thereof
CN115282335A (en) * 2022-08-05 2022-11-04 河北医科大学口腔医院 Preparation method of bone repair scaffold
KR20230049821A (en) * 2021-10-06 2023-04-14 단국대학교 천안캠퍼스 산학협력단 Ion-supported bioactive glass nanoparticle and preparation method thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5138818B1 (en) * 1963-07-18 1976-10-23
KR100713619B1 (en) * 2005-11-14 2007-05-02 재단법인서울대학교산학협력재단 Method for producing collagen/apatite composite membrane for guided bone regeneration
KR101260757B1 (en) 2012-04-30 2013-05-06 오스템임플란트 주식회사 Multi-layer absorbable barrier membranes for guiding bone tissue regeneration
KR101684790B1 (en) 2015-07-06 2016-12-08 대구가톨릭대학교산학협력단 A porous membrane having different specific surface double layer for hard tissue regeneration and method for preparing the same
KR101964907B1 (en) 2017-08-08 2019-04-02 오스템임플란트 주식회사 A Composite membrane stacked with collagen with different decomposition rate and a preparation method thereof
KR20190074437A (en) * 2017-12-20 2019-06-28 대구가톨릭대학교산학협력단 A manufacturing method of the porous biphasic calcium phosphate bone substitute materials having anti-inflammatory activity

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5138818B1 (en) * 1963-07-18 1976-10-23
KR100713619B1 (en) * 2005-11-14 2007-05-02 재단법인서울대학교산학협력재단 Method for producing collagen/apatite composite membrane for guided bone regeneration
KR101260757B1 (en) 2012-04-30 2013-05-06 오스템임플란트 주식회사 Multi-layer absorbable barrier membranes for guiding bone tissue regeneration
KR101684790B1 (en) 2015-07-06 2016-12-08 대구가톨릭대학교산학협력단 A porous membrane having different specific surface double layer for hard tissue regeneration and method for preparing the same
KR101964907B1 (en) 2017-08-08 2019-04-02 오스템임플란트 주식회사 A Composite membrane stacked with collagen with different decomposition rate and a preparation method thereof
KR20190074437A (en) * 2017-12-20 2019-06-28 대구가톨릭대학교산학협력단 A manufacturing method of the porous biphasic calcium phosphate bone substitute materials having anti-inflammatory activity

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Kanno et al., RSC advances(2017), Vol. 7, pp.33726-33732 *
Luo, Yongxiang, et al., Mater. Des.(2018), Vol. 146, pp. 12-19 *
Tamai, Koki et al., Mol. Cancer Ther.(2018), Vol. 17, pp. 1613-1622 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113101409A (en) * 2021-04-09 2021-07-13 中山大学附属第三医院(中山大学肝脏病医院) Multifunctional compound bracket and preparation method and application thereof
KR20230049821A (en) * 2021-10-06 2023-04-14 단국대학교 천안캠퍼스 산학협력단 Ion-supported bioactive glass nanoparticle and preparation method thereof
KR102650228B1 (en) 2021-10-06 2024-03-21 단국대학교 천안캠퍼스 산학협력단 Ion-supported bioactive glass nanoparticle and preparation method thereof
CN115282335A (en) * 2022-08-05 2022-11-04 河北医科大学口腔医院 Preparation method of bone repair scaffold
CN115282335B (en) * 2022-08-05 2023-08-29 河北医科大学口腔医院 Preparation method of bone repair stent

Similar Documents

Publication Publication Date Title
KR102236212B1 (en) A double layer composite membrane for photothermal therapy of bone tissue and method for preparing the same
Liao et al. Gold nanorods and nanohydroxyapatite hybrid hydrogel for preventing bone tumor recurrence via postoperative photothermal therapy and bone regeneration promotion
Wang et al. Cryogenic 3D printing of porous scaffolds for in situ delivery of 2D black phosphorus nanosheets, doxorubicin hydrochloride and osteogenic peptide for treating tumor resection-induced bone defects
US20070181239A1 (en) Artificial bone forming method by powder lamination method
CN104548095B (en) A kind of PLGA/MoS2Composite medicament stent material and its preparation method and application
CN104491888B (en) It is based on MoS2/Bi2S3Multi-functional diagnosis and treatment agent of PEG nanometer sheet and its preparation method and application
CN109010925A (en) A kind of preparation method of photo-thermal chemotherapy bone renovating material and tissue engineering bracket
Blackburn et al. Bionanomaterials for bone tumor engineering and tumor destruction
CN108992670A (en) Preparation and application of near-infrared light polymerization injectable hydrogel
KR20160027009A (en) Compositions and methods for use in medical diagnosis
CN113041402A (en) Double-function support with anti-tumor and tissue defect repairing function and preparation method thereof
CN111097070B (en) Injectable bioactive hydrogel for inhibiting tumor and promoting repair
CN113101409A (en) Multifunctional compound bracket and preparation method and application thereof
Esmaeili et al. Employing hydrogels in tissue engineering approaches to boost conventional cancer-based research and therapies
Zhang et al. A multifunctional nano-hydroxyapatite/MXene scaffold for the photothermal/dynamic treatment of bone tumours and simultaneous tissue regeneration
Jokanović et al. In Vivo investigation of ALBO-OS scaffold based on hydroxyapatite and PLGA
KR102279913B1 (en) A composition for endovascular treatment of aneurysms using a double crosslingking compound and preparation method thereof
Du et al. Bismuth-coated 80S15C bioactive glass scaffolds for photothermal antitumor therapy and bone regeneration
KR102198267B1 (en) Control Method of local release for target compounds by using patterning hydrogel to nanoporous membrane
KR102615727B1 (en) Hydrogel for vascular embolization with adjustable decomposition time and manufacturing method thereof
CN110420356A (en) A kind of Dual-functional integrated bone-cartilage complex tissue engineering rack for osteosarcoma clinical treatment
CN109432493A (en) Porous titanium framework of nano hydroxyapatite coating and its preparation method and application
JP6861960B2 (en) Porous material in which nanoparticles are composited and its manufacturing method
CN110801429B (en) Drug release fiber tube, preparation method thereof, drug controlled release stent and application
KR101650414B1 (en) Manufacturing method of dental-bone filler including crosslinked hyaluronic acid

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant