JP6861960B2 - Porous material in which nanoparticles are composited and its manufacturing method - Google Patents

Porous material in which nanoparticles are composited and its manufacturing method Download PDF

Info

Publication number
JP6861960B2
JP6861960B2 JP2016102976A JP2016102976A JP6861960B2 JP 6861960 B2 JP6861960 B2 JP 6861960B2 JP 2016102976 A JP2016102976 A JP 2016102976A JP 2016102976 A JP2016102976 A JP 2016102976A JP 6861960 B2 JP6861960 B2 JP 6861960B2
Authority
JP
Japan
Prior art keywords
nanoparticles
gelatin
porous material
triiron tetroxide
composite porous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016102976A
Other languages
Japanese (ja)
Other versions
JP2017210412A (en
Inventor
国平 陳
国平 陳
晶 張
晶 張
直輝 川添
直輝 川添
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Materials Science
Original Assignee
National Institute for Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Materials Science filed Critical National Institute for Materials Science
Priority to JP2016102976A priority Critical patent/JP6861960B2/en
Publication of JP2017210412A publication Critical patent/JP2017210412A/en
Application granted granted Critical
Publication of JP6861960B2 publication Critical patent/JP6861960B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、外科手術でがん組織を除去した部位に埋め込まれ、あるいはがん組織を直接覆い、近赤外光や磁場などを体外から照射されて発熱することにより、多孔質材料内あるいは周囲のがん細胞を死滅に至らしめる多孔質材料及びその製造方法に関する。 The present invention is implanted in a site from which cancer tissue has been removed by surgery, or directly covers the cancer tissue and is irradiated with near-infrared light or a magnetic field from outside the body to generate heat, thereby in or around the porous material. The present invention relates to a porous material that kills cancer cells and a method for producing the same.

がんはすべての病気の中でトップの死因であり、現在でも3人に1人ががんで死亡している。高齢化社会の進行に伴い、この割合は今後も増加すると予測されている。このような中、がんの根本的治療に対する社会のニーズはきわめて高く、いろいろな方法と治療薬が開発されている。現在、がんの治療法として、手術療法、化学療法、放射線療法が三大療法といわれている。 Cancer is the leading cause of death among all illnesses, and one in three people still die of cancer. It is predicted that this ratio will continue to increase as the aging society progresses. Under these circumstances, the social needs for the fundamental treatment of cancer are extremely high, and various methods and therapeutic agents have been developed. Currently, surgical therapy, chemotherapy, and radiation therapy are said to be the three major therapies for cancer.

がん三大療法のうち、がん組織を手術で切除する治療法は最も直接的である。手術療法では、がん組織を切除し、その周辺組織やリンパ節に転移があれば、それらも一緒に切除する。早期のがんやある程度の進行がんであっても、切除可能であれば手術療法が積極的に行われている。手術療法には、塊状のがん組織を一気に切除できるというメリットがある。 Of the three major cancer therapies, the most direct treatment is surgical removal of the cancerous tissue. In surgery, the cancerous tissue is removed, and if there are metastases in the surrounding tissue or lymph nodes, they are also removed. Even if the cancer is early stage or advanced to some extent, surgical treatment is actively performed if it can be resected. Surgical therapy has the advantage of being able to remove massive cancerous tissue at once.

ただし、手術療法では、手術メスを入れることによって生じた創部の治癒や全身機能の回復にある程度は時間がかかる。さらに、切除後の正常部位どうしをそのまま継ぎ合わせるため、切除した部位の大きさによっては臓器の機能が低下してしまう場合もある。こうしたデメリットを低減するために、最近では、切除する範囲をできるだけ最小限にとどめる方法や、内視鏡による腹腔鏡下・胸腔鏡下手術のように体への負担を少なくする手術も行われるようになった。 However, in surgical therapy, it takes some time to heal the wound and restore systemic function caused by inserting a scalpel. Furthermore, since the normal parts after excision are joined as they are, the function of the organ may deteriorate depending on the size of the excised part. In order to reduce these disadvantages, recently, methods to minimize the excision area and surgery to reduce the burden on the body such as endoscopic laparoscopic and thoracoscopic surgery are being performed. Became.

しかし現実には手術の後にかなりの頻度で再発が見られる。これは、肉眼では見えないがん細胞や微小ながん組織が手術後も体内に残存してしまうためである。手術で切除する範囲を小さくすればするほどがん細胞を取り残してしまう可能性が高くなり、再発のリスクが上昇する。 However, in reality, recurrence is quite frequent after surgery. This is because cancer cells and minute cancer tissues that are invisible to the naked eye remain in the body even after surgery. The smaller the surgical excision area, the more likely it is that the cancer cells will be left behind, increasing the risk of recurrence.

手術療法では、取り残したがん細胞や微小ながん組織をどのように治療するかが問題となる。通常、手術後には抗がん剤による治療、すなわち化学療法や放射線療法を併用することもある。このように複数の治療法を組み合わせて、総合的に治療を進める集学的治療が行われている。 In surgical therapy, how to treat leftover cancer cells and minute cancer tissues becomes a problem. Usually, after surgery, treatment with anticancer drugs, that is, chemotherapy or radiation therapy, may be used in combination. In this way, multidisciplinary treatment is performed in which a plurality of treatment methods are combined to promote comprehensive treatment.

前記の三大療法以外には、がん細胞が正常細胞に比べて熱に弱いという性質を利用し、がん細胞を死滅させる温熱療法が開発されている。高周波誘電加温法は、生体を電極で挟み全身を42℃程度に加温する方法である。ただし、血流の冷却作用のため、がん組織内部の温度は上がらず、がん組織を死滅させるには十分ではない。そこで、近赤外光や交流磁場の印加で発熱する磁性体をがん組織に取り込ませるため、近年、ナノサイズの磁性酸化鉄微粒子(非特許文献1)や磁性粒子を含有する医薬(たとえば、特許文献1、2)が検討されている。 In addition to the above three major therapies, hyperthermia has been developed that kills cancer cells by utilizing the property that cancer cells are more sensitive to heat than normal cells. The high-frequency dielectric heating method is a method in which a living body is sandwiched between electrodes and the whole body is heated to about 42 ° C. However, due to the cooling effect of blood flow, the temperature inside the cancer tissue does not rise, which is not enough to kill the cancer tissue. Therefore, in order to incorporate a magnetic substance that generates heat by applying near-infrared light or an alternating magnetic field into cancer tissue, in recent years, a drug containing nano-sized magnetic iron oxide fine particles (Non-Patent Document 1) and magnetic particles (for example, Patent Documents 1 and 2) are being studied.

これらのナノ粒子を血管注射し、血流を通じて磁性粒子をがん組織に集積させるが、大きながん組織を死滅させたい場合に十分な磁性粒子の集積量を確保するのは難しい。 These nanoparticles are vascularly injected and magnetic particles are accumulated in the cancer tissue through the bloodstream, but it is difficult to secure a sufficient amount of magnetic particles to be accumulated when it is desired to kill a large cancer tissue.

以上のような従来技術の現状から、がん組織を切除する範囲を大きくするほど、がん細胞を取り残してしまう可能性は低くなるが、切除した部位やその大きさによっては臓器の機能が大きく低下してしまう場合がある。逆に切除する範囲を小さくするほど、がん細胞を取り残してしまう可能性が高くなり、再発のリスクが上昇する。また術後に、がん再発を予防する目的でがん治療薬を注射投与すると、薬剤は血流を通じて全身を循環するため、がん組織への集積効率の低さや副作用の惹起という問題があった。このように従来技術では、手術による組織・臓器機能の低下する場合がある上に、放射線療法や化学療法による副作用に苦しむという問題があった。 From the current state of the prior art as described above, the larger the area where the cancer tissue is excised, the less likely it is that the cancer cells will be left behind, but the function of the organ will be greater depending on the excised site and its size. It may decrease. Conversely, the smaller the area to be resected, the more likely it is that the cancer cells will be left behind, increasing the risk of recurrence. In addition, when a cancer therapeutic drug is injected after surgery for the purpose of preventing cancer recurrence, the drug circulates throughout the body through the bloodstream, which causes problems such as low accumulation efficiency in cancer tissues and the occurrence of side effects. It was. As described above, in the prior art, there is a problem that the tissue / organ function may be deteriorated by surgery and the side effects of radiation therapy or chemotherapy may be suffered.

本発明は、このような実情に鑑み、外科手術でがん組織を切除した後に移植、あるいはがん組織に直接被覆するために使用できる磁性ナノ粒子/生体吸収性高分子複合多孔質材料を提供することを目的とする。 In view of such circumstances, the present invention provides a magnetic nanoparticles / bioabsorbable polymer composite porous material that can be used for transplantation after surgical excision of cancer tissue or for direct coating on cancer tissue. The purpose is to do.

本発明の一側面によれば、生体吸収性高分子と、外部刺激で発熱するナノ粒子とを含む、複合多孔質材料が与えられる。
ここで、前記ナノ粒子は磁性ナノ粒子であってよい。
また、前記磁性ナノ粒子は四酸化三鉄ナノ粒子または三酸化二鉄ナノ粒子であってよい。
また、前記ナノ粒子の粒径が1nmから1000nmの範囲であってよい。
また、その孔径が1〜4000μmの範囲であってよい。
本発明の他の側面によれば、外科的な手術でがん組織を除去した部位に埋め込まれ、またはがん組織を直接覆い、外部の近赤外光または磁場が照射されることによって発熱し、内部或いは周囲のがん細胞を死滅できる、前記何れかの複合多孔質材料が与えられる。
本発明の更に他の側面によれば、ナノ粒子と生体吸収性高分子との混合物から多孔質体を作製する、前記何れかの複合多孔質材料の製造方法が与えられる。
ここで、生体吸収性高分子の多孔質体の空孔表面にナノ粒子を形成してよい。
また、前記多孔質体の形成に当たって空孔形成剤を使用してよい。
また、前記空孔形成剤は氷であってよい。
According to one aspect of the present invention, a composite porous material containing a bioabsorbable polymer and nanoparticles that generate heat by an external stimulus is provided.
Here, the nanoparticles may be magnetic nanoparticles.
Further, the magnetic nanoparticles may be triiron tetroxide nanoparticles or diiron trioxide nanoparticles.
Further, the particle size of the nanoparticles may be in the range of 1 nm to 1000 nm.
Further, the pore diameter may be in the range of 1 to 4000 μm.
According to another aspect of the invention, heat is generated by being implanted in a surgically removed site of cancerous tissue or directly covering the cancerous tissue and being irradiated with external near-infrared light or a magnetic field. , Any of the above-mentioned composite porous materials capable of killing internal or surrounding cancer cells is provided.
According to still another aspect of the present invention, there is provided a method for producing any of the above-mentioned composite porous materials, which comprises producing a porous body from a mixture of nanoparticles and a bioabsorbable polymer.
Here, nanoparticles may be formed on the pore surface of the porous body of the bioabsorbable polymer.
Further, a pore-forming agent may be used in forming the porous body.
Further, the pore-forming agent may be ice.

本発明により、がん組織の切除部位に複合多孔質材料を移植し、あるいは複合多孔質材料でがん組織を覆うことにより、明確に局限され、しかも自由な形状の領域だけを発熱させることができる。また、場所毎の発熱量についても、場所毎に複合多孔質材料の試料量(厚さ等)やそこに使用する材料中のナノ粒子の含有量を変えるなどの処置により、調節可能である。従って、複雑な形状の領域に存在していたり、あるいは熱による損傷が深刻な障害をもたらす部位の近傍に存在するがん組織であっても、効率的に死滅させることができる。また、複合多孔質材料が体内で分解吸収されるようにすることもできる。更に、それにともなって放出された磁性ナノ粒子はがん細胞に取り込まれ、外科手術で取り残されたがん細胞を死滅させることができる。また、外部磁場を与えることで、がん組織とがん細胞を繰り返し加熱することにより死滅させることが可能である。また、多孔質構造により、がん細胞を複合多孔質材料内に侵入せしめることができ、がん細胞を効率的に死滅させることも可能となる。これにより、手術などにより更に散らばりやすくなったがん細胞を、体内に拡散する前に多孔質材料中に取り込んで、ここで加熱によって死滅させることができるようになる。 According to the present invention, by transplanting a composite porous material to the excision site of the cancer tissue or covering the cancer tissue with the composite porous material, it is possible to generate heat only in a clearly localized and freely shaped region. it can. Further, the calorific value for each place can also be adjusted by taking measures such as changing the sample amount (thickness, etc.) of the composite porous material and the content of nanoparticles in the material used therefor for each place. Therefore, even cancerous tissue that is present in a region of complex shape or in the vicinity of a site where thermal damage causes serious damage can be efficiently killed. It is also possible to allow the composite porous material to be decomposed and absorbed in the body. Furthermore, the magnetic nanoparticles released accordingly can be taken up by the cancer cells and kill the cancer cells left behind in the surgery. In addition, by applying an external magnetic field, it is possible to kill cancer tissues and cancer cells by repeatedly heating them. In addition, the porous structure allows cancer cells to invade the composite porous material, and can kill cancer cells efficiently. As a result, cancer cells that have become more easily scattered by surgery or the like can be taken into a porous material before being diffused into the body, and can be killed by heating here.

クエン酸修飾四酸化三鉄ナノ粒子とゼラチンとの重量比を1:99として作製した、表面修飾した四酸化三鉄ナノ粒子/ゼラチンの架橋複合多孔質材料の走査電子顕微鏡写真。Scanning electron micrograph of a crosslinked composite porous material of surface-modified triiron tetroxide nanoparticles / gelatin prepared with a weight ratio of citrate-modified triiron tetroxide nanoparticles to gelatin of 1:99. クエン酸修飾四酸化三鉄ナノ粒子とゼラチンとの重量比を5:95として作製した、表面修飾した四酸化三鉄ナノ粒子/ゼラチンの架橋複合多孔質材料の走査電子顕微鏡写真(上は低倍率、下は高倍率)。Scanning electron micrograph of surface-modified triiron tetroxide nanoparticles / gelatin cross-linked composite porous material prepared with a weight ratio of citrate-modified triiron tetroxide nanoparticles to gelatin of 5:95 (upper magnification) , Below is high magnification). クエン酸修飾四酸化三鉄ナノ粒子とゼラチンとの重量比を10:90として作製した、表面修飾した四酸化三鉄ナノ粒子/ゼラチンの架橋複合多孔質材料の走査電子顕微鏡写真(上は低倍率、下は高倍率)。Scanning electron micrograph of surface-modified triiron tetroxide nanoparticles / gelatin cross-linked composite porous material prepared with a weight ratio of citrate-modified triiron tetroxide nanoparticles to gelatin at 10:90 (upper magnification) , Below is high magnification). クエン酸修飾四酸化三鉄ナノ粒子とゼラチンとの重量比を15:85として作製した、表面修飾した四酸化三鉄ナノ粒子/ゼラチンの架橋複合多孔質材料の走査電子顕微鏡写真(上は低倍率、下は高倍率)。Scanning electron micrograph of surface-modified triiron tetroxide nanoparticles / gelatin cross-linked composite porous material prepared with a weight ratio of citrate-modified triiron tetroxide nanoparticles to gelatin at 15:85 (upper is low magnification). , Below is high magnification). クエン酸修飾四酸化三鉄ナノ粒子とゼラチンとの重量比を20:80として作製した、表面修飾した四酸化三鉄ナノ粒子/ゼラチンの架橋複合多孔質材料の走査電子顕微鏡写真(上は低倍率、下は高倍率)。Scanning electron micrograph of surface-modified triiron tetroxide nanoparticles / gelatin cross-linked composite porous material prepared with a weight ratio of citrate-modified triiron tetroxide nanoparticles to gelatin at 20:80 (upper magnification) , Below is high magnification). クエン酸修飾四酸化三鉄ナノ粒子とゼラチンとの重量比を30:70として作製した、表面修飾した四酸化三鉄ナノ粒子/ゼラチンの架橋複合多孔質材料の走査電子顕微鏡写真(上は低倍率、下は高倍率)。Scanning electron micrograph of surface-modified triiron tetroxide nanoparticles / gelatin cross-linked composite porous material prepared with a weight ratio of citrate-modified triiron tetroxide nanoparticles to gelatin at 30:70 (upper magnification) , Below is high magnification). クエン酸修飾四酸化三鉄ナノ粒子とゼラチンとの重量比を40:60として作製した、表面修飾した四酸化三鉄ナノ粒子/ゼラチンの架橋複合多孔質材料の走査電子顕微鏡写真(上は低倍率、下は高倍率)。Scanning electron micrograph of surface-modified triiron tetroxide nanoparticles / gelatin cross-linked composite porous material prepared with a weight ratio of citrate-modified triiron tetroxide nanoparticles to gelatin at 40:60 (upper magnification) , Below is high magnification). クエン酸修飾四酸化三鉄ナノ粒子とゼラチンとの重量比を10:90として作製した、クエン酸修飾四酸化三鉄ナノ粒子/ゼラチンの架橋複合多孔質材料の走査電子顕微鏡写真(上は低倍率、下は高倍率)。Scanning electron micrograph of a crosslinked composite porous material of citrate-modified triiron tetroxide nanoparticles / gelatin prepared with a weight ratio of citrate-modified triiron tetroxide nanoparticles to gelatin at 10:90 (upper is low magnification). , Below is high magnification). 未修飾四酸化三鉄ナノ粒子とゼラチンとの重量比を15:85として作製した、未修飾四酸化三鉄ナノ粒子/ゼラチンの架橋複合多孔質材料の走査電子顕微鏡写真(上は低倍率、下は高倍率)。Scanning electron micrograph of unmodified triiron tetroxide nanoparticles / gelatin crosslinked porous material prepared at a weight ratio of unmodified triiron tetroxide nanoparticles to gelatin at 15:85 (upper, lower magnification, lower) Is a high magnification). ポリビニルアルコール修飾四酸化三鉄ナノ粒子とゼラチンとの重量比を15:85として作製した、ポリビニルアルコール修飾四酸化三鉄ナノ粒子/ゼラチンの架橋複合多孔質材料の走査電子顕微鏡写真(上は低倍率、下は高倍率)。Scanning electron micrograph of a crosslinked composite porous material of polyvinyl alcohol-modified triiron tetroxide nanoparticles / gelatin prepared with a weight ratio of polyvinyl alcohol-modified triiron tetroxide nanoparticles to gelatin at 15:85 (upper is low magnification). , Below is high magnification). ポリアクリル酸で表面修飾した四酸化三鉄ナノ粒子とゼラチンとの重量比を15:85として作製した、ポリアクリル酸で表面修飾した四酸化三鉄ナノ粒子/ゼラチンの架橋複合多孔質材料の走査電子顕微鏡写真(上は低倍率、下は高倍率)。Scanning of crosslinked composite porous material of triiron tetroxide nanoparticles / gelatin surface-modified with polyacrylic acid prepared at a weight ratio of 15:85 between triiron tetroxide nanoparticles surface-modified with polyacrylic acid and gelatin. Scanning electron micrograph (low magnification on the top, high magnification on the bottom). ゼラチンで表面修飾した四酸化三鉄ナノ粒子とゼラチンとの重量比を1:99として作製した、ゼラチンで表面修飾した四酸化三鉄ナノ粒子/ゼラチンの架橋複合多孔質材料の走査電子顕微鏡写真(上は低倍率、下は高倍率)。Scanning electron micrograph (scanning electron micrograph) of a crosslinked composite porous material of gelatin surface-modified triiron tetroxide nanoparticles / gelatin prepared with a weight ratio of gelatin tetraoxide nanoparticles to gelatin of 1:99. The top is low magnification, the bottom is high magnification). 沈着法で作製した四酸化三鉄ナノ粒子/ゼラチンとの架橋複合多孔質材料の走査電子顕微鏡写真(上は低倍率、下は高倍率)。Scanning electron micrograph (upper is low magnification, lower is high magnification) of a crosslinked composite porous material with triiron tetroxide nanoparticles / gelatin prepared by the deposition method. a.ゼラチン濃度は2.0(w/v)%で、市販の四酸化三鉄ナノ粒子とゼラチンとの重量比を15:85として作製した、市販の四酸化三鉄ナノ粒子/ゼラチンの架橋複合多孔質材料の走査電子顕微鏡写真。b.ゼラチン濃度は4.0%で、市販の四酸化三鉄ナノ粒子とゼラチンとの重量比を15:85として作製した、市販の四酸化三鉄ナノ粒子/ゼラチンの架橋複合多孔質材料の走査電子顕微鏡写真。c.ゼラチン濃度は6.0%で、市販の四酸化三鉄ナノ粒子とゼラチンとの重量比を15:85として作製した、市販の四酸化三鉄ナノ粒子/ゼラチンの架橋複合多孔質材料の走査電子顕微鏡写真。a. Crosslinked composite porosity of commercially available triiron tetroxide nanoparticles / gelatin prepared with a gelatin concentration of 2.0 (w / v)% and a weight ratio of commercially available triiron tetroxide nanoparticles to gelatin at 15:85. Scanning electron micrograph of quality material. b. Scanning electrons of a commercially available crosslinked composite porous material of triiron tetroxide nanoparticles / gelatin prepared at a gelatin concentration of 4.0% and a weight ratio of commercially available triiron tetroxide nanoparticles to gelatin of 15:85. Microphotograph. c. Scanning electrons of a commercially available crosslinked composite porous material of triiron tetroxide nanoparticles / gelatin prepared at a gelatin concentration of 6.0% and a weight ratio of commercially available triiron tetroxide nanoparticles to gelatin of 15:85. Microphotograph. コラーゲン濃度は0.5%で、市販の四酸化三鉄ナノ粒子とコラーゲンとの重量比を15:85として作製した、市販の四酸化三鉄ナノ粒子/コラーゲンの架橋複合多孔質材料の走査電子顕微鏡写真。Scanning electrons of a commercially available crosslinked composite porous material of triiron tetroxide nanoparticles / collagen prepared at a collagen concentration of 0.5% and a weight ratio of commercially available triiron tetroxide nanoparticles to collagen of 15:85. Microphotograph. コラーゲン濃度は1.0%で、市販の四酸化三鉄ナノ粒子とコラーゲンとの重量比を15:85として作製した、市販の四酸化三鉄ナノ粒子/コラーゲンの架橋複合多孔質材料の走査電子顕微鏡写真。Scanning electrons of a commercially available crosslinked composite porous material of triiron tetroxide nanoparticles / collagen prepared at a collagen concentration of 1.0% and a weight ratio of commercially available triiron tetroxide nanoparticles to collagen of 15:85. Microphotograph. コラーゲン濃度は2.0%で、市販の四酸化三鉄ナノ粒子とコラーゲンとの重量比を15:85として作製した、市販の四酸化三鉄ナノ粒子/コラーゲンの架橋複合多孔質材料の走査電子顕微鏡写真。Scanning electrons of a commercially available crosslinked composite porous material of triiron tetroxide nanoparticles / collagen prepared at a collagen concentration of 2.0% and a weight ratio of commercially available triiron tetroxide nanoparticles to collagen of 15:85. Microphotograph. コラーゲン濃度は2.0%で、市販の四酸化三鉄ナノ粒子とコラーゲンとの重量比を15:85とし、大きさが425μm〜500μmの氷微粒子を用いて作製した、市販の四酸化三鉄ナノ粒子/コラーゲンの架橋複合多孔質材料の走査電子顕微鏡写真(上は低倍率、下は高倍率)。The collagen concentration is 2.0%, the weight ratio of the commercially available triiron tetroxide nanoparticles to collagen is 15:85, and the commercially available triiron tetroxide is produced by using ice fine particles having a size of 425 μm to 500 μm. Scanning electron micrograph of nanoparticle / collagen cross-linked composite porous material (upper is low magnification, lower is high magnification). クエン酸修飾四酸化三鉄ナノ粒子/ゼラチン架橋複合多孔質材料に近赤外光を照射したときの温度変化(光熱効果)。Gelはゼラチン、Fe−1、Fe−5、Fe−10、Fe−15のハイフンの後の数字はそれぞれクエン酸修飾四酸化三鉄ナノ粒子の重量分率(%)を表す。Temperature change (photothermal effect) when citrate-modified triiron tetroxide nanoparticles / gelatin cross-linked composite porous material is irradiated with near-infrared light. Gel Gelatin, Fe 3 O 4 -1, the weight of Fe 3 O 4 -5, Fe 3 O 4 -10, Fe 3 O 4 -15 of each digit of citric acid modification triiron tetroxide nanoparticles after the hyphen Represents a fraction (%).

以下、本発明をさらに詳述する。本発明における複合多孔質材料の基材には、生体吸収性天然高分子、生体吸収合成高分子を用いることができる。生体吸収性天然高分子は生体に由来する、生体吸収性合成高分子は人工物を原料に合成した生体吸収性を持つもので、生体吸収性と生体適合性を示すものであれば何れも使用できる。 Hereinafter, the present invention will be described in more detail. A bioabsorbable natural polymer or a bioabsorbable synthetic polymer can be used as the base material of the composite porous material in the present invention. Bioabsorbable natural polymers are derived from living organisms, bioabsorbable synthetic polymers are bioabsorbable synthetic polymers made from artificial materials, and any bioabsorbable polymer that exhibits bioabsorbability and biocompatibility is used. it can.

本発明において好ましく使用される生体吸収性高分子はゼラチン、コラーゲン、ヒアルロン酸、コンドロイチン硫酸、フィブロネクチン、ビトロネクチン、ラミニン、細胞成長因子、細胞分化制御因子、ポリ乳酸、ポリグリコール酸、乳酸とグリコール酸の共重合体、ポリ−ε−カプロラクトン、ポリ (グリセロールセバシン酸及びこれらの共重合体である。これらの生体吸収性合成高分子を1種類、あるいは2種類以上を混合してから用いることができる。本発明において好ましく使用される生体吸収性高分子はゼラチン、コラーゲン、あるいはゼラチンとコラーゲンを主成分とする混合物である。コラーゲンにはI、II、III、IV、V、VI、VIII、IX、X型などのものがあるが、本発明においてはこれらの何れも使用でき、これらの誘導体を使用してもよい。 Bioabsorbent polymers preferably used in the present invention are gelatin, collagen, hyaluronic acid, chondroitin sulfate, fibronectin, vitronectin, laminin, cell growth factor, cell differentiation regulator, polylactic acid, polyglycolic acid, lactic acid and glycolic acid. Copolymers, poly-ε-caprolactone, poly (glycerol sebacic acid and copolymers thereof. These bioabsorbable synthetic polymers can be used after one kind or a mixture of two or more kinds. The bioabsorbable polymer preferably used in the present invention is gelatin, collagen, or a mixture of gelatin and collagen as main components. Collagen includes I, II, III, IV, V, VI, VIII, IX, X. Although there are molds and the like, any of these can be used in the present invention, and derivatives thereof may be used.

磁性ナノ粒子と生体吸収性合成高分子との複合多孔質材料の空孔の孔径は1〜4000μm、好ましくは20〜1000μm程度とするのがよい。また、複合多孔質材料の大きさは、複合多孔質材料の使用態様によって適宜定めればよいが、通常一辺は0.01〜20cmで、好ましくは0.02〜5 cmである。その空隙率は、通常5〜99.9%、好ましくは50〜99.9%である。 The pore size of the pores of the composite porous material of the magnetic nanoparticles and the bioabsorbable synthetic polymer is preferably about 1 to 4000 μm, preferably about 20 to 1000 μm. The size of the composite porous material may be appropriately determined depending on the mode of use of the composite porous material, but is usually 0.01 to 20 cm on a side, preferably 0.02 to 5 cm. The porosity is usually 5-99.9%, preferably 50-99.9%.

上記の磁性ナノ粒子として、四酸化三鉄ナノ粒子あるいは三酸化二鉄ナノ粒子を使用してよいが、望ましいのは四酸化三鉄ナノ粒子である。更に磁性ナノ粒子としては従来公知のものの何れも使用してよい。これらの磁性ナノ粒子は公知の方法で合成してもよい。四酸化三鉄ナノ粒子として、市販の四酸化三鉄ナノ粒子を用いてもよいし、例えば下記の方法で合成してもよい。 As the above magnetic nanoparticles, triiron tetroxide nanoparticles or diiron trioxide nanoparticles may be used, but triiron tetroxide nanoparticles are preferable. Further, as the magnetic nanoparticles, any conventionally known ones may be used. These magnetic nanoparticles may be synthesized by a known method. As the triiron tetroxide nanoparticles, commercially available triiron tetroxide nanoparticles may be used, or may be synthesized by, for example, the following method.

まず、チオ硫酸ナトリウム(NaSO)を純水に溶かし、チオ硫酸ナトリウム水溶液を調製する。また、塩化鉄(III)六水和物(FeCl・6HO)を純水に溶解させて塩化鉄(III)水溶液を調製する。前記2種類の溶液に窒素ガスを通し、窒素雰囲気下で、塩化鉄(III)水溶液を撹拌しながら、チオ硫酸ナトリウム水溶液を滴下する。この混合溶液を75℃の水浴で撹拌しながら加熱し、アンモニア水を滴下し、40分間反応をおこなう。その後、反応溶液を室温まで冷却し、永久磁石で四酸化三鉄ナノ粒子を回収する。回収物を純水で4回洗浄し、これにより、表面が未修飾の四酸化三鉄ナノ粒子が得られる。上記の反応において、チオ硫酸ナトリウムの濃度は0.01g/mL〜0.5g/mLで、望ましいのは0.02g/mL〜0.1g/mLである。塩化鉄(III)六水和物の濃度は0.1g/mL〜10g/mLで、望ましいのは0.05g/mL〜1.0g/mLである。アンモニア水の濃度は25%〜28%で、望ましいのは25%である。 First, sodium thiosulfate (Na 2 SO 3 ) is dissolved in pure water to prepare an aqueous solution of sodium thiosulfate. Furthermore, iron (III) chloride hexahydrate (FeCl 3 · 6H 2 O) dissolved in pure water to prepare a iron (III) chloride solution. Nitrogen gas is passed through the two types of solutions, and an aqueous solution of sodium thiosulfate is added dropwise under a nitrogen atmosphere while stirring the aqueous solution of iron (III) chloride. The mixed solution is heated in a water bath at 75 ° C. with stirring, ammonia water is added dropwise, and the reaction is carried out for 40 minutes. Then, the reaction solution is cooled to room temperature, and the triiron tetroxide nanoparticles are recovered with a permanent magnet. The recovered product is washed with pure water four times to obtain triiron tetroxide nanoparticles with an unmodified surface. In the above reaction, the concentration of sodium thiosulfate is 0.01 g / mL to 0.5 g / mL, preferably 0.02 g / mL to 0.1 g / mL. The concentration of iron (III) chloride hexahydrate is 0.1 g / mL to 10 g / mL, preferably 0.05 g / mL to 1.0 g / mL. The concentration of aqueous ammonia is 25% to 28%, preferably 25%.

上記の磁性ナノ粒子は、表面修飾していないものでも、表面修飾したものでもいずれも利用できる。磁性ナノ粒子の表面修飾は、多孔質体の原料である生体吸収性物質の溶液と混合するときに混合溶液における磁性ナノ粒子の分散性を向上させるために行われるものである。表面修飾に用いられる分子として、クエン酸、ポリビニルアルコール、ポリエチレングリコール、ポリアクリル酸、ポリリジン、ポリグルタミン酸、ポリエチレンイミン、アルブミン、ゼラチンなどが挙げられる。これらの分子で磁性ナノ粒子の表面を修飾するためには、例えば上記の磁性ナノ粒子の合成反応過程で、アンモニア水を滴下してから、これらの分子の一種類か複数類の水溶液をさらに滴下し、40分間反応をおこなう。 Any of the above-mentioned magnetic nanoparticles can be used regardless of whether they are surface-modified or surface-modified. The surface modification of the magnetic nanoparticles is performed in order to improve the dispersibility of the magnetic nanoparticles in the mixed solution when mixed with the solution of the bioabsorbable substance which is the raw material of the porous body. Examples of the molecule used for surface modification include citric acid, polyvinyl alcohol, polyethylene glycol, polyacrylic acid, polylysine, polyglutamic acid, polyethyleneimine, albumin, gelatin and the like. In order to modify the surface of the magnetic nanoparticles with these molecules, for example, in the process of synthesizing the magnetic nanoparticles described above, aqueous ammonia is added dropwise, and then an aqueous solution of one or more of these molecules is further added dropwise. Then react for 40 minutes.

磁性ナノ粒子の粒径は1nmから1000nmのものを利用できるが、発熱効率や分散性を考えると望ましいのは2nmから500nmである。磁性ナノ粒子は粒径の均一なものでも良いし、不均一なものでもよい。 The particle size of the magnetic nanoparticles can be 1 nm to 1000 nm, but it is preferably 2 nm to 500 nm in consideration of heat generation efficiency and dispersibility. The magnetic nanoparticles may have a uniform particle size or may have a non-uniform particle size.

上記生体吸収性高分子を溶かす溶媒には、純水、純水とエタノールの混合溶媒、pHを調整した酢酸水溶液、塩酸水溶液、酢酸/水/エタノール混合溶媒、及び塩酸/エタノール混合溶媒、クロロホルム、四塩化炭素、ジオキサン、トリクロロ酢酸、ジメチルホルムアミド、塩化メチレン、酢酸エチル、アセトン、ヘキサフルオロイソプロパノール、ジメチルアセトアミド、ヘキサフルオロ−2−プロパノールなどが挙げられる。望ましい溶媒は純水、純水とエタノールとの混合溶媒、pHを調整した酢酸水溶液、pHを調製した塩酸水溶液、酢酸/水/エタノール混合溶媒、及び塩酸/エタノール混合溶媒である。pHを調整した溶液のpHは1〜6.5で、望ましいpHは2.5から6までである。エタノールと水との体積比は1:99から50:50でよいが、望ましくは1:99から20:80である。 The solvent for dissolving the bioabsorbable polymer includes pure water, a mixed solvent of pure water and ethanol, an aqueous acetic acid solution having an adjusted pH, an aqueous solution of hydrochloric acid, a mixed solvent of acetic acid / water / ethanol, and a mixed solvent of hydrochloric acid / ethanol, chloroform. Examples thereof include carbon tetrachloride, dioxane, trichloroacetic acid, dimethylformamide, methylene chloride, ethyl acetate, acetone, hexafluoroisopropanol, dimethylacetamide, hexafluoro-2-propanol and the like. Desirable solvents are pure water, a mixed solvent of pure water and ethanol, an aqueous acetic acid solution having an adjusted pH, an aqueous solution of hydrochloric acid having an adjusted pH, an acetic acid / water / ethanol mixed solvent, and a hydrochloric acid / ethanol mixed solvent. The pH of the adjusted pH is 1 to 6.5, with a preferred pH of 2.5 to 6. The volume ratio of ethanol to water may be 1:99 to 50:50, but is preferably 1:99 to 20:80.

生体吸収性高分子の溶液を調製する温度はその生体吸収性高分子が分解、ゲル化しない温度で行われる。通常は1〜60℃であるが、望ましくは4〜50℃である。 The temperature at which the solution of the bioabsorbable polymer is prepared is a temperature at which the bioabsorbable polymer does not decompose or gel. It is usually 1 to 60 ° C, but preferably 4 to 50 ° C.

磁性ナノ粒子と生体吸収性物質の多孔質高分子とを複合化する方法として、多孔質材料高分子と磁性ナノ粒子を混合してから多孔質化する方法と、多孔質材料を作製してから、その多孔質材料の空孔壁の表面で磁性ナノ粒子を形成、沈着させる方法とがある。磁性ナノ粒子と生体吸収性高分子との複合多孔質材料における磁性ナノ粒子と生体吸収性高分子との重量比は0.1:99.9から50:50までで、望ましくは0.5:99.5から20:80までである。 As a method of combining the magnetic nanoparticles and the porous polymer of the bioabsorbable substance, a method of mixing the porous material polymer and the magnetic nanoparticles and then making the porous material, and a method of preparing the porous material , There is a method of forming and depositing magnetic nanoparticles on the surface of the pore wall of the porous material. The weight ratio of the magnetic nanoparticles to the bioabsorbable polymer in the composite porous material of the magnetic nanoparticles and the bioabsorbable polymer is from 0.1: 99.9 to 50:50, preferably 0.5: From 99.5 to 20:80.

多孔質材料の生体吸収性高分子原料と磁性ナノ粒子とを混合してから多孔質化する方法では、まず生体吸収性高分子の溶液に磁性ナノ粒子を添加した後、超音波あるいは機械的な攪拌により、磁性ナノ粒子を生体吸収性物質によく分散させる。この分散溶液を用いて磁性ナノ粒子と生体吸収性高分子との複合多孔質材料を作製することができる。 In the method of mixing the bioabsorbable polymer raw material of the porous material and the magnetic nanoparticles and then making them porous, first, the magnetic nanoparticles are added to the solution of the bioabsorbable polymer, and then ultrasonic or mechanical. By stirring, the magnetic nanoparticles are well dispersed in the bioabsorbable substance. This dispersion solution can be used to prepare a composite porous material of magnetic nanoparticles and a bioabsorbable polymer.

前記磁性ナノ粒子と生体吸収性高分子との複合多孔質材料を作製する方法としては、例えば、前記磁性ナノ粒子と生体吸収性高分子からなる混合溶液をそのまま凍結乾燥する方法と、あらかじめ作製した氷微粒子を前記磁性ナノ粒子と生体吸収性高分子からなる混合溶液に添加し、多孔質化する方法とが挙げられる。 As a method for producing a composite porous material of the magnetic nanoparticles and a bioabsorbable polymer, for example, a method of freeze-drying a mixed solution of the magnetic nanoparticles and a bioabsorbable polymer as it is, or a method prepared in advance. Examples thereof include a method in which ice particles are added to a mixed solution composed of the magnetic nanoparticles and a bioabsorbable polymer to make them porous.

前記磁性ナノ粒子と生体吸収性高分子からなる混合溶液をそのまま凍結乾燥する方法では、磁性ナノ粒子と生体吸収性高分子の混合溶液を予備凍結する。その方法としては、例えば、生体吸収性高分子の溶液に磁性ナノ粒子を添加し、超音波あるいは機械的な攪拌により、磁性ナノ粒子を生体吸収性高分子によく分散させる。磁性ナノ粒子を均一に分散させた磁性ナノ粒子と生体吸収性高分子からなる混合溶液をフリーザーに数時間静置し、凍結する。フリーザーの温度は−1〜100℃で、望ましい温度は−5〜80℃である。凍結時間は1〜24時間で、望ましい凍結時間は2〜8時間である。 In the method of freeze-drying the mixed solution of the magnetic nanoparticles and the bioabsorbable polymer as it is, the mixed solution of the magnetic nanoparticles and the bioabsorbable polymer is pre-frozen. As a method, for example, magnetic nanoparticles are added to a solution of a bioabsorbable polymer, and the magnetic nanoparticles are well dispersed in the bioabsorbable polymer by ultrasonic waves or mechanical stirring. A mixed solution consisting of magnetic nanoparticles in which magnetic nanoparticles are uniformly dispersed and a bioabsorbable polymer is allowed to stand in a freezer for several hours and then frozen. The temperature of the freezer is -1 to 100 ° C, and the desired temperature is -5 to 80 ° C. The freezing time is 1 to 24 hours, and the desired freezing time is 2 to 8 hours.

あるいは、あらかじめ作製した氷微粒子を前記磁性ナノ粒子と生体吸収性高分子からなる混合溶液に添加し、多孔質化する方法を使用してもよい。この場合は、まず純水を容器に満たした液体窒素中に噴霧し、氷微粒子を作製する。形成した氷微粒子を低温チャンバー(−15℃)に容器ごと移し、容器内の液体窒素が気化して消失するまで、容器を静置する。その後、大きな目開きの篩と小さな目開きの篩とを用いて所定の粒径の氷を篩い分ける。何れの篩もその目開きは公称20〜2000μmで、望ましいのは公称50〜1000μmである。篩い分けた氷微粒子を−4℃の低温チャンバー内に1〜6時間静置し、氷微粒子の温度を−4℃で平衡化させる。そして、前記磁性ナノ粒子と生体吸収性高分子からなる混合溶液を−4℃の低温チャンバーに移し、数十分間静置することによって温度平衡化させる。温度を−4℃にした磁性ナノ粒子と生体吸収性高分子からなる混合溶液と前記の温度を−4℃にした篩い分けた氷微粒子を一定の体積mL対重量gの比率で−4℃の低温チャンバーで混合する。磁性ナノ粒子と生体吸収性高分子からなる混合溶液と氷微粒子との比率は、体積mL対重量gで99:1〜10:90で良いが、望ましい比率(体積mL対重量g)は80:20〜30:70である。氷微粒子が磁性ナノ粒子と生体吸収性高分子からなる混合溶液に均一に分散するようによく攪拌する。この混合物を−20℃で12時間静置した後、さらに−80℃で4時間静置することにより、混合物を凍結する。 Alternatively, a method of adding the ice fine particles prepared in advance to the mixed solution composed of the magnetic nanoparticles and the bioabsorbable polymer to make them porous may be used. In this case, first, pure water is sprayed into liquid nitrogen filled in a container to prepare ice fine particles. The formed ice fine particles are transferred to a low temperature chamber (-15 ° C.) together with the container, and the container is allowed to stand until the liquid nitrogen in the container is vaporized and disappears. Then, ice having a predetermined particle size is sieved using a sieve having a large opening and a sieve having a small opening. The mesh size of each sieve is nominally 20 to 2000 μm, preferably 50 to 1000 μm. The sieved ice particles are allowed to stand in a low temperature chamber at -4 ° C for 1 to 6 hours to equilibrate the temperature of the ice particles at -4 ° C. Then, the mixed solution composed of the magnetic nanoparticles and the bioabsorbable polymer is transferred to a low temperature chamber at -4 ° C. and allowed to stand for several tens of minutes to achieve temperature equilibrium. A mixed solution consisting of magnetic nanoparticles and a bioabsorbable polymer having a temperature of -4 ° C and sieved ice fine particles having a temperature of -4 ° C were mixed at a constant volume of mL to weight g at a ratio of -4 ° C. Mix in a low temperature chamber. The ratio of the mixed solution consisting of magnetic nanoparticles and the bioabsorbable polymer to the ice fine particles may be 99: 1 to 10:90 in volume mL to weight g, but the desirable ratio (volume mL to weight g) is 80: It is 20 to 30:70. Stir well so that the ice particles are uniformly dispersed in a mixed solution consisting of magnetic nanoparticles and a bioabsorbable polymer. The mixture is frozen at −20 ° C. for 12 hours and then at −80 ° C. for 4 hours.

上記2つの方法の何れにおいても、その過程で準備した凍結物を室温、5Pa以下の減圧下で3日間凍結乾燥を行うことにより、磁性ナノ粒子と生体吸収性天然高分子との複合多孔質構造を形成させる。 In either of the above two methods, the frozen material prepared in the process is freeze-dried at room temperature under a reduced pressure of 5 Pa or less for 3 days to form a composite porous structure of magnetic nanoparticles and a bioabsorbable natural polymer. To form.

前記の磁性ナノ粒子と生体吸収性天然高分子の複合多孔質材料を架橋することで多孔質材料の構造を安定させ、架橋複合多孔質材料とする。用いられる架橋方法としては、従来公知のものが何れも使用できる。一般的に蒸気法や溶液法を用いることができる。蒸気法で用いられる架橋剤としては、従来公知のものが何れも使用できる。好ましく使用される架橋剤は、グルタルアルデヒド、ホルムアルデヒド、パラホルムアルデヒドのようなアルデヒド類、特にグルタルアルデヒドである。 By cross-linking the composite porous material of the magnetic nanoparticles and the bioabsorbable natural polymer, the structure of the porous material is stabilized to obtain a cross-linked composite porous material. As the cross-linking method used, any conventionally known cross-linking method can be used. Generally, the vapor method or the solution method can be used. As the cross-linking agent used in the steam method, any conventionally known cross-linking agent can be used. Preferred cross-linking agents are aldehydes such as glutaraldehyde, formaldehyde, paraformaldehyde, especially glutaraldehyde.

前記の蒸気法は、上記の架橋剤をガス状にして用いるのが好ましい。具体的には、上記磁性ナノ粒子と生体吸収性天然高分子との複合多孔質材料を一定温度で一定濃度の架橋剤又はその水溶液で飽和した架橋剤蒸気の雰囲気下で一定時間架橋を行う。架橋温度は、上記磁性ナノ粒子と生体吸収性天然高分子との複合多孔質材料が溶解せず、且つ架橋剤の蒸気が形成できる範囲内で選定すればよく、通常、20℃〜50℃に設定される。架橋時間は、架橋剤の種類や架橋温度にもよるが、上記磁性ナノ粒子と生体吸収性天然高分子との複合多孔質材料の生体吸収性を阻害せず、かつ生体移植時にこのものが溶解しないような架橋固定化が行われる範囲に設定するのが望ましい。好ましい架橋時間は10分から12時間程度である。架橋反応後の磁性ナノ粒子と生体吸収性天然高分子との複合多孔質材料を室温で純水に浸漬して洗浄し、これを1回の洗浄として4回以上繰り返す。洗浄後未反応の活性官能基を失活させるため、グリシン水溶液に磁性ナノ粒子と生体吸収性天然高分子との複合多孔質材料を室温で数時間浸漬する。グリシン水溶液の濃度は0.01〜1.0Mで、望ましいのは0.05〜10.3Mである。温度は4℃〜37℃で、望ましいのは4℃から30℃である。時間は1〜24時間で、望ましいのは4〜12時間である。 In the steam method, it is preferable to use the above-mentioned cross-linking agent in the form of a gas. Specifically, the composite porous material of the magnetic nanoparticles and the bioabsorbable natural polymer is crosslinked at a constant temperature for a certain period of time in an atmosphere of a crosslinker saturated with a constant concentration of a crosslinker or an aqueous solution thereof. The cross-linking temperature may be selected within a range in which the composite porous material of the magnetic nanoparticles and the bioabsorbable natural polymer does not dissolve and vapor of the cross-linking agent can be formed, and is usually set to 20 ° C to 50 ° C. Set. The cross-linking time depends on the type of cross-linking agent and the cross-linking temperature, but does not inhibit the bioabsorbability of the composite porous material of the magnetic nanoparticles and the bioabsorbable natural polymer, and the cross-linking time dissolves at the time of biotransplantation. It is desirable to set the range so that cross-linking and immobilization will not occur. The preferred cross-linking time is about 10 minutes to 12 hours. The composite porous material of the magnetic nanoparticles after the cross-linking reaction and the bioabsorbable natural polymer is immersed in pure water at room temperature for cleaning, and this is repeated four or more times as one cleaning. In order to inactivate unreacted active functional groups after washing, a composite porous material of magnetic nanoparticles and a bioabsorbable natural polymer is immersed in an aqueous solution of glycine at room temperature for several hours. The concentration of the aqueous glycine solution is 0.01 to 1.0 M, preferably 0.05 to 10.3 M. The temperature is 4 ° C to 37 ° C, preferably 4 ° C to 30 ° C. The time is 1 to 24 hours, preferably 4 to 12 hours.

溶液架橋法では、カルボジイミド、アルデヒド類、或いはエポキシ類などの架橋剤とN−ヒドロキシコハク酸イミドなどの活性化剤を用いて架橋する。未架橋の磁性ナノ粒子と生体吸収性天然高分子との複合多孔質材料は水に溶解してしまうので、これらの架橋剤をエタノールと水の混合溶媒に溶解させ、数段階にかけて架橋する。各段階の混合溶媒のエタノール対水の割合は異なり、最初の段階から最終段階までエタノール対水の割合は高いほうから低いほうに変える。エタノール対水の割合は99/1から1/99までである。架橋温度は4℃から40℃で、望ましくは室温である。架橋剤の濃度は5mM〜500mMで、望ましくは10mM〜100mMである。活性化剤の濃度は5mM〜500mMで、望ましくは10mM〜100mMである。最後の架橋反応後の磁性ナノ粒子と生体吸収性天然高分子との複合多孔質材料を室温で純水に浸漬して洗浄し、これを1回の洗浄として4回以上繰り返す。洗浄後未反応の活性官能基を失活させるため、グリシン水溶液に磁性ナノ粒子と生体吸収性天然高分子との複合多孔質材料を室温で数時間浸漬する。グリシン水溶液の濃度は0.01〜1.0Mで、望ましくのは0.05〜10.3Mである。温度は4℃〜37℃で、望ましくは4℃から30度である。時間は1〜24時間で、望ましくは4〜12時間である。 In the solution cross-linking method, cross-linking is performed using a cross-linking agent such as carbodiimide, aldehydes or epoxies and an activator such as N-hydroxysuccinimide. Since the composite porous material of uncrosslinked magnetic nanoparticles and bioabsorbable natural polymer dissolves in water, these crosslinking agents are dissolved in a mixed solvent of ethanol and water and crosslinked in several steps. The ratio of ethanol to water in the mixed solvent of each stage is different, and the ratio of ethanol to water is changed from high to low from the first stage to the final stage. The ratio of ethanol to water is from 99/1 to 1/99. The cross-linking temperature is 4 ° C to 40 ° C, preferably room temperature. The concentration of the cross-linking agent is 5 mM to 500 mM, preferably 10 mM to 100 mM. The concentration of the activator is 5 mM to 500 mM, preferably 10 mM to 100 mM. The composite porous material of the magnetic nanoparticles and the bioabsorbable natural polymer after the final cross-linking reaction is washed by immersing it in pure water at room temperature, and this is repeated 4 times or more as one washing. In order to inactivate unreacted active functional groups after washing, a composite porous material of magnetic nanoparticles and a bioabsorbable natural polymer is immersed in an aqueous solution of glycine at room temperature for several hours. The concentration of the aqueous glycine solution is 0.01 to 1.0 M, preferably 0.05 to 10.3 M. The temperature is 4 ° C to 37 ° C, preferably 4 ° C to 30 ° C. The time is 1 to 24 hours, preferably 4 to 12 hours.

上記の架橋複合多孔質材料を30分間純水での洗浄を3回以上繰り返する。洗浄後、5Pa以下の減圧下で48時間凍結乾燥を行い、目的の磁性ナノ粒子と生体吸収性天然高分子との架橋複合多孔質材料の架橋複合多孔質材料を得る。 The above-mentioned crosslinked composite porous material is washed with pure water for 30 minutes three times or more. After washing, freeze-drying is carried out under a reduced pressure of 5 Pa or less for 48 hours to obtain a crosslinked composite porous material of a crosslinked composite porous material of the target magnetic nanoparticles and a bioabsorbable natural polymer.

あるいは、生体吸収性高分子からなる多孔質材料を作製した後で前記磁性ナノ粒子を多孔質材料の空孔壁面で形成、沈着させる方法(沈着法)を含む製造方法を使用することができる。この場合、生体吸収性高分子からなる多孔質材料の作製方法として、前記磁性ナノ粒子と生体吸収性高分子からなる混合溶液のかわりに、生体吸収性高分子のみの溶液にすれば、前記磁性ナノ粒子と生体吸収性高分子との複合多孔質材料を作製する方法(氷微粒子を利用と利用しない二つの方法)を適用することができる。その後の洗浄、架橋処理、ブロッキング処理工程は前記磁性ナノ粒子と生体吸収性高分子との複合多孔質材料のすべての工程と同じである。これにより、生体吸収性高分子の架橋多孔質材料を作製できる。 Alternatively, a production method including a method of forming and depositing the magnetic nanoparticles on the pore wall surface of the porous material after producing a porous material made of a bioabsorbable polymer (deposition method) can be used. In this case, as a method for producing a porous material made of a bioabsorbable polymer, if a solution containing only the bioabsorbable polymer is used instead of the mixed solution made of the magnetic nanoparticles and the bioabsorbable polymer, the magnetism A method for producing a composite porous material of nanoparticles and a bioabsorbable polymer (two methods using and not using ice fine particles) can be applied. Subsequent cleaning, cross-linking treatment, and blocking treatment steps are the same as all steps of the composite porous material of the magnetic nanoparticles and the bioabsorbable polymer. As a result, a crosslinked porous material of a bioabsorbable polymer can be produced.

その後、生体吸収性高分子多孔質材料の空孔壁面で磁性ナノ粒子を形成させることにより、磁性ナノ粒子と生体吸収性天然高分子との架橋複合多孔質材料の架橋複合多孔質材料を得る。そのためには、例えば、前記チオ硫酸ナトリウム水溶液と塩化鉄(III)水溶液に窒素ガスをバブリングした後、窒素雰囲気下で塩化鉄(III)水溶液を撹拌しながらチオ硫酸ナトリウム水溶液を滴下する。次に、生体吸収性高分子の架橋多孔質材料をチオ硫酸ナトリウム水溶液と塩化鉄(III)水溶液との混合溶液に染み付ける。この混合物から前記生体吸収性高分子架橋多孔質材料を取り出し、75℃の水浴で加熱した25%のアンモニア水に浸漬する。振とうしながら、60分間反応を行う。これにより、生体吸収性高分子架橋多孔質材料の空孔壁面に磁性ナノ粒子を形成させる。純水で6回以上洗浄した後、磁性ナノ粒子と生体吸収性高分子からなる架橋複合多孔質材料を得る。 Then, by forming magnetic nanoparticles on the pore wall surface of the bioabsorbable polymer porous material, a crosslinked composite porous material of the crosslinked composite porous material of the magnetic nanoparticles and the bioabsorbable natural polymer is obtained. For that purpose, for example, after bubbling nitrogen gas into the sodium thiosulfate aqueous solution and the iron (III) chloride aqueous solution, the sodium thiosulfate aqueous solution is dropped while stirring the iron (III) chloride aqueous solution in a nitrogen atmosphere. Next, the crosslinked porous material of the bioabsorbable polymer is impregnated into a mixed solution of an aqueous solution of sodium thiosulfate and an aqueous solution of iron (III) chloride. The bioabsorbable polymer crosslinked porous material is taken out of this mixture and immersed in 25% aqueous ammonia heated in a water bath at 75 ° C. React for 60 minutes while shaking. As a result, magnetic nanoparticles are formed on the pore wall surface of the bioabsorbable polymer crosslinked porous material. After washing with pure water 6 times or more, a crosslinked composite porous material composed of magnetic nanoparticles and a bioabsorbable polymer is obtained.

このような複合多孔質材料に対して外部から近赤外光や交流磁場などの刺激を与えると、磁性ナノ粒子は発熱し、がん細胞とがん組織を死滅させることができる。必要に応じて前記の外部刺激を繰り返し与え、磁性ナノ粒子を繰り返し発熱させることにより、がん細胞やがん組織への殺傷効果を高められると期待される。また、複合多孔質材料の基材である生体吸収性高分子は、多孔質であることから体内で急速に分解・吸収され、それにともなって磁性ナノ粒子が放出される。そして、磁性ナノ粒子は周囲の細胞に取り込まれ、周囲のがん細胞を死滅させることも可能である。これにより、がん組織とがん細胞を効率よく死滅させることが期待される。また、このような複合多孔質材料は、外部からの電気的な配線やあるいは加熱流体などの供給のための配管の接続なしで、複合体内部やその近傍部位を温熱療法に適した温度まで昇温させ、またその温度を所望の時間だけ維持することができる。更に、本発明に係る複合多孔質材料では、その周囲に存在する細胞を孔の中に効率よく取り込み、またそれを加熱することができる。従って、例えば手術後に切除箇所の近傍に残留したがん細胞を捕捉・死滅させることもできる。 When such a composite porous material is externally stimulated with near-infrared light or an alternating magnetic field, the magnetic nanoparticles generate heat and can kill cancer cells and cancer tissues. It is expected that the killing effect on cancer cells and cancer tissues can be enhanced by repeatedly applying the above-mentioned external stimulus as needed to repeatedly generate heat of the magnetic nanoparticles. In addition, since the bioabsorbable polymer, which is the base material of the composite porous material, is porous, it is rapidly decomposed and absorbed in the body, and magnetic nanoparticles are released accordingly. Then, the magnetic nanoparticles are taken up by the surrounding cells, and it is also possible to kill the surrounding cancer cells. This is expected to efficiently kill cancer tissues and cancer cells. In addition, such a composite porous material raises the temperature inside or near the composite to a temperature suitable for hyperthermia without connecting electrical wiring from the outside or piping for supplying a heating fluid or the like. It can be heated and maintained at that temperature for a desired period of time. Further, in the composite porous material according to the present invention, cells existing around the composite porous material can be efficiently taken into the pores and heated. Therefore, for example, cancer cells remaining in the vicinity of the excision site after surgery can be captured and killed.

以下では、本発明に係るナノ粒子を複合化した多孔質材料を各種作製して、その表面形状などを調べた結果を示す。なお、温熱療法自体の作用・効果は良く知られている事項であって、それは加熱機構の如何を問わずに発揮されるものであるから、以下では複合多孔質材料の製造方法と、その結果得られる特異な構造についての例を示す。また、本発明に係る多孔質材料が外部からの刺激により実際に発熱することを実証する。 The following shows the results of preparing various porous materials in which nanoparticles according to the present invention are composited and examining their surface shapes and the like. The action and effect of hyperthermia itself is a well-known matter, and it is exhibited regardless of the heating mechanism. Therefore, the method for producing a composite porous material and the result thereof are described below. An example of the obtained peculiar structure is shown. In addition, it will be demonstrated that the porous material according to the present invention actually generates heat due to an external stimulus.

[実施例1]
ゼラチン多孔質材料を作製するために、原料ゼラチンの濃度が0.1(w/w)%〜50.0(w/w)%の範囲内のものを用いた。クエン酸で修飾した四酸化三鉄ナノ粒子(以下、クエン酸修飾四酸化三鉄ナノ粒子と表記)とゼラチンの重量比が0.1:99.9〜50:50の範囲内で作製した。
[Example 1]
In order to prepare a gelatin porous material, a material having a concentration of raw material gelatin in the range of 0.1 (w / w)% to 50.0 (w / w)% was used. The weight ratio of citric acid-modified triiron tetroxide nanoparticles (hereinafter referred to as citrate-modified triiron tetroxide nanoparticles) and gelatin was in the range of 0.1: 99.9 to 50:50.

ゼラチンの濃度が4.0(w/v)%で、クエン酸修飾四酸化三鉄ナノ粒子とゼラチンの重量比が1:99、5:95、10:90、15:85、20:80、30:70と40:60のクエン酸修飾四酸化三鉄ナノ粒子/ゼラチンの架橋複合多孔質材料を作製した。大きさが425μm〜500μmの氷微粒子を多孔質材料の空孔形成剤として用いた。 The concentration of gelatin is 4.0 (w / v)%, and the weight ratio of citrate-modified triiron tetroxide nanoparticles to gelatin is 1:99, 5:95, 10:90, 15:85, 20:80, A crosslinked composite porous material of 30:70 and 40:60 citrate-modified triiron tetroxide nanoparticles / gelatin was prepared. Ice fine particles having a size of 425 μm to 500 μm were used as a pore-forming agent for the porous material.

まず、0.8gのブタ由来ゼラチンに30(v/v)% 酢酸水溶液10mLを加えて、45℃で2時間、つづいて室温で4時間撹拌し、8.0(w/v)%ゼラチン溶液を調製した。一方、クエン酸修飾四酸化三鉄ナノ粒子を調製した。チオ硫酸ナトリウム(Na)0.4gを20mL純水に溶解させ、チオ硫酸ナトリウム水溶液を調製した。塩化鉄(III)六水和物(FeCl・6HO)2.6gを40mLの純水に溶解させ、塩化鉄(III)水溶液を調製した。この二つの溶液に窒素ガスをバブリングした後、窒素雰囲気下で塩化鉄(III)水溶液40mLを撹拌しながらチオ硫酸ナトリウム水溶液20mLを滴下した。この混合溶液を75℃の水浴中で撹拌しながら加熱し、25%のアンモニア水4mLを滴下し、更に0.1g/mLのクエン酸水溶液10mLを滴下し、40分間反応を行った。これにより、クエン酸修飾四酸化三鉄ナノ粒子を得た。その後、反応溶液を室温まで冷却し、永久磁石を用いて四酸化三鉄ナノ粒子を回収した。回収物を純水で4回洗浄した後、適量の純水に分散させ、クエン酸修飾四酸化三鉄ナノ粒子の濃度を0.00081g/mL、0.0042g/mL、0.0089g/mL、0.014g/mL、0.020g/mL、0.034g/mLと0.053g/mLになるように調製した。 First, 10 mL of a 30 (v / v)% acetic acid aqueous solution was added to 0.8 g of porcine-derived gelatin, and the mixture was stirred at 45 ° C. for 2 hours and then at room temperature for 4 hours to obtain an 8.0 (w / v)% gelatin solution. Was prepared. On the other hand, citric acid-modified triiron tetroxide nanoparticles were prepared. 0.4 g of sodium thiosulfate (Na 2 S 2 O 3 ) was dissolved in 20 mL of pure water to prepare an aqueous sodium thiosulfate solution. Dissolved iron (III) chloride hexahydrate (FeCl 3 · 6H 2 O) 2.6g of pure water 40 mL, was prepared iron (III) chloride solution. After bubbling nitrogen gas into these two solutions, 20 mL of an aqueous sodium thiosulfate solution was added dropwise under a nitrogen atmosphere while stirring 40 mL of an aqueous iron (III) chloride solution. This mixed solution was heated with stirring in a water bath at 75 ° C., 4 mL of 25% ammonia water was added dropwise, and 10 mL of a 0.1 g / mL citric acid aqueous solution was added dropwise, and the reaction was carried out for 40 minutes. As a result, citrate-modified triiron tetroxide nanoparticles were obtained. Then, the reaction solution was cooled to room temperature, and triiron tetroxide nanoparticles were recovered using a permanent magnet. After washing the recovered product with pure water four times, it was dispersed in an appropriate amount of pure water, and the concentrations of the citrate-modified triiron tetroxide nanoparticles were adjusted to 0.00081 g / mL, 0.0042 g / mL, 0.0089 g / mL, It was prepared to be 0.014 g / mL, 0.020 g / mL, 0.034 g / mL and 0.053 g / mL.

一方、氷微粒子を作製するため、純水300mLを液体窒素10Lの入った容器に噴霧し、水滴を凍結させた。凍結物を−15℃の低温チャンバーに容器ごと移した。そのまま低温チャンバー内で約2時間静置することによって、液体窒素を気化させた。次に、低温チャンバー内で公称500μmの目開きをもつ篩と公称425μmの目開きをもつ篩を用いて大きさ425μm〜500μm氷を篩い分けた。低温チャンバー内の温度を−4℃に変更し、前記の氷微粒子を2時間静置し、氷微粒子の温度を−4℃に調製した。 On the other hand, in order to prepare ice fine particles, 300 mL of pure water was sprayed on a container containing 10 L of liquid nitrogen, and water droplets were frozen. The frozen product was transferred to a low temperature chamber at −15 ° C. together with the container. Liquid nitrogen was vaporized by allowing it to stand in a low temperature chamber for about 2 hours. Next, ice having a size of 425 μm to 500 μm was sieved using a sieve having a nominal opening of 500 μm and a sieve having a nominal opening of 425 μm in a low temperature chamber. The temperature in the low temperature chamber was changed to -4 ° C., the ice fine particles were allowed to stand for 2 hours, and the temperature of the ice fine particles was adjusted to -4 ° C.

前記の8.0(w/v)%ゼラチン溶液10mLと濃度が0.00081g/mL、0.0042g/mL、0.0089g/mL、0.014g/mL、0.020g/mL、0.034g/mLと0.053g/mLのクエン酸修飾四酸化三鉄ナノ粒子懸濁液10mLのそれぞれとを室温で混合し、超音波処理によりクエン酸修飾四酸化三鉄ナノ粒子をゼラチン溶液に均一に分散させた。調製した混合溶液のゼラチンの濃度は4.0(w/v)%で、クエン酸表面修飾四酸化三鉄ナノ粒子とゼラチンの重量比はそれぞれ1:99、5:95、10:90、15:85、20:80、30:70と40:60であった。これらのクエン酸表面修飾四酸化三鉄ナノ粒子/ゼラチン混合溶液を−4℃の低温チャンバーに移し、40分間静置することによって温度平衡化させた。温度を−4℃にしたクエン酸修飾四酸化三鉄ナノ粒子/ゼラチン混合溶液20mLと前記の大きさ425μm〜500μmの氷微粒子を7:3(体積mL対重量g)の比率で−4℃の低温チャンバーで混合した。氷微粒子がクエン酸修飾四酸化三鉄ナノ粒子/ゼラチン混合溶液に均一に分散するようによく攪拌した。この混合物を−20℃で12時間静置した後、さらに−80℃で4時間静置することにより、混合物を凍結させた。凍結物を室温、5Pa以下の減圧下で3日間凍結乾燥を行うことにより、クエン酸修飾四酸化三鉄ナノ粒子/ゼラチン複合多孔質構造を形成させた。 10 mL of the above 8.0 (w / v)% gelatin solution and concentrations of 0.00081 g / mL, 0.0042 g / mL, 0.0089 g / mL, 0.014 g / mL, 0.020 g / mL, 0.034 g / ML and 10 mL of each of 10 mL of a citric acid-modified triiron tetroxide nanoparticle suspension of 0.053 g / mL were mixed at room temperature, and the citrate-modified triiron tetroxide nanoparticles were uniformly mixed in a gelatin solution by ultrasonic treatment. Distributed. The concentration of gelatin in the prepared mixed solution was 4.0 (w / v)%, and the weight ratios of citric acid surface-modified triiron tetroxide nanoparticles and gelatin were 1:99, 5:95, 10:90, and 15 respectively. : 85, 20:80, 30:70 and 40:60. These citric acid surface-modified triiron tetroxide nanoparticles / gelatin mixed solution was transferred to a low temperature chamber at -4 ° C. and allowed to stand for 40 minutes for temperature equilibration. 20 mL of citric acid-modified triiron tetroxide nanoparticles / gelatin mixed solution at a temperature of -4 ° C and the above-mentioned ice fine particles having a size of 425 μm to 500 μm at a ratio of 7: 3 (volume mL to weight g) at -4 ° C. Mixed in a low temperature chamber. The ice particles were stirred well so as to be uniformly dispersed in the citric acid-modified triiron tetroxide nanoparticles / gelatin mixed solution. The mixture was allowed to stand at −20 ° C. for 12 hours and then at −80 ° C. for 4 hours to freeze the mixture. The frozen product was freeze-dried at room temperature under a reduced pressure of 5 Pa or less for 3 days to form a citric acid-modified triiron tetroxide nanoparticles / gelatin composite porous structure.

次に、クエン酸修飾四酸化三鉄ナノ粒子/ゼラチン複合多孔質材料を99.5%のエタノールで洗浄(10分間×1回)した。その後、次の3段階の工程に分けて逐次的に架橋反応を行った。第1段階の架橋反応工程では、エタノール/水(95/5、v/v)30mLに0.03gの2−モルホリノエタンスルホン酸(MES、終濃度0.1wt%)を撹拌しながら加えた。このMES溶液に0.288gの1−(3−ジメチルアミノプロピル)−3−エチルカルボジイミド塩酸塩(EDC、終濃度50mM)及び0.069gのN−ヒドロキシコハク酸イミド(NHS、終濃度20mM)を加えて10分間撹拌することにより、第1段階の架橋反応溶液を調製した。この第1段階の架橋反応溶液に前記のクエン酸修飾四酸化三鉄ナノ粒子/ゼラチン複合多孔質材料を室温で8時間浸漬することによって、第1段階の架橋反応を行った。第2段階の架橋反応工程では、エタノール/水(90/10、v/v)30mLに0.03gのMESを撹拌しながら加えた。このMES溶液に0.288gのEDC及び0.069gのNHSを加えて10分間撹拌することにより、第2段階の架橋反応溶液を調製した。この第2段階の架橋反応溶液に第1段階の架橋反応後のクエン酸修飾四酸化三鉄ナノ粒子/ゼラチン複合多孔質材料を室温で8時間浸漬し、第2段階の架橋反応を行った。第3段階の架橋反応工程では、エタノール/水(85/15、v/v)30mLに0.03gのMESを撹拌しながら加えた。このMES溶液に0.288gのEDC及び0.069gのNHSを加えて10分間撹拌することにより、第3段階の架橋反応溶液を調製した。この第3段階の架橋反応溶液に第2段階の架橋反応後のクエン酸修飾四酸化三鉄ナノ粒子/ゼラチン複合多孔質材料を室温で8時間浸漬して、第2段階の架橋反応を行った。最後の架橋反応後のクエン酸修飾四酸化三鉄ナノ粒子/ゼラチン複合多孔質材料を室温で30分間超純水に浸漬し、これを1回の洗浄として6回繰り返した。その後、0.1Mのグリシン水溶液にクエン酸修飾四酸化三鉄ナノ粒子/ゼラチン多孔質材料を室温で8時間浸漬した。その後、上記の30分間純水での洗浄を6回繰り返した。洗浄後、5Pa以下の減圧下で48時間凍結乾燥を行い、目的のクエン酸修飾四酸化三鉄ナノ粒子/ゼラチンの架橋複合多孔質材料を得た。 Next, the citrate-modified triiron tetroxide nanoparticles / gelatin composite porous material was washed with 99.5% ethanol (10 minutes x 1 time). Then, the cross-linking reaction was carried out sequentially in the following three steps. In the first step of the cross-linking reaction, 0.03 g of 2-morpholinoethan sulfonic acid (MES, final concentration 0.1 wt%) was added to 30 mL of ethanol / water (95/5, v / v) with stirring. 0.288 g of 1- (3-dimethylaminopropyl) -3-ethylcarbodiimide hydrochloride (EDC, final concentration 50 mM) and 0.069 g of N-hydroxysuccinimide (NHS, final concentration 20 mM) were added to this MES solution. In addition, the cross-linking reaction solution of the first step was prepared by stirring for 10 minutes. The first-step cross-linking reaction was carried out by immersing the citric acid-modified triiron tetroxide nanoparticles / gelatin composite porous material in the first-step cross-linking reaction solution at room temperature for 8 hours. In the second step of the cross-linking reaction, 0.03 g of MES was added to 30 mL of ethanol / water (90/10, v / v) with stirring. 0.288 g of EDC and 0.069 g of NHS were added to this MES solution, and the mixture was stirred for 10 minutes to prepare a second-stage cross-linking reaction solution. The citric acid-modified triiron tetroxide nanoparticles / gelatin composite porous material after the first-step cross-linking reaction was immersed in this second-step cross-linking reaction solution at room temperature for 8 hours to carry out the second-step cross-linking reaction. In the third-step cross-linking reaction step, 0.03 g of MES was added to 30 mL of ethanol / water (85/15, v / v) with stirring. 0.288 g of EDC and 0.069 g of NHS were added to this MES solution, and the mixture was stirred for 10 minutes to prepare a third-stage cross-linking reaction solution. The citric acid-modified triiron tetroxide nanoparticles / gelatin composite porous material after the second-stage cross-linking reaction was immersed in this third-stage cross-linking reaction solution at room temperature for 8 hours to carry out the second-stage cross-linking reaction. .. The citric acid-modified triiron tetroxide nanoparticles / gelatin composite porous material after the final cross-linking reaction was immersed in ultrapure water for 30 minutes at room temperature, and this was repeated 6 times as one washing. Then, the citric acid-modified triiron tetroxide nanoparticles / gelatin porous material was immersed in a 0.1 M aqueous glycine solution at room temperature for 8 hours. Then, the above-mentioned washing with pure water for 30 minutes was repeated 6 times. After washing, freeze-drying was carried out under reduced pressure of 5 Pa or less for 48 hours to obtain a crosslinked composite porous material of the desired citric acid-modified triiron tetroxide nanoparticles / gelatin.

得られた表面修飾した四酸化三鉄ナノ粒子/架橋ゼラチン多孔質材料の構造を走査電子顕微鏡で観察して、図1a〜図1gに示す像を得た。これらの図からも分かるように、ゼラチンの濃度を4.0(w/v)%として、クエン酸修飾四酸化三鉄ナノ粒子とゼラチンの重量比をそれぞれ1:99、5:95、10:90、15:85、20:80、30:70及び40:60として作製したクエン酸修飾四酸化三鉄ナノ粒子/ゼラチンの各架橋複合多孔質材料は、氷微粒子の大きさ及び形状を反映した空孔構造と球状の空孔を連通する空隙とからなる多孔質構造を有し、またクエン酸修飾四酸化三鉄ナノ粒子は空孔壁面で観察された。 The structure of the obtained surface-modified triiron tetroxide nanoparticles / crosslinked gelatin porous material was observed with a scanning electron microscope to obtain the images shown in FIGS. 1a to 1g. As can be seen from these figures, the weight ratio of the citrate-modified triiron tetroxide nanoparticles to the gelatin is 1:99, 5:95, 10:, respectively, with the gelatin concentration being 4.0 (w / v)%. The crosslinked composite porous materials of citrate-modified triiron tetroxide nanoparticles / gelatin prepared at 90, 15:85, 20:80, 30:70 and 40:60 reflected the size and shape of the ice microparticles. It had a porous structure consisting of a pore structure and voids communicating the spherical pores, and citric acid-modified triiron tetroxide nanoparticles were observed on the wall surface of the pores.

[実施例2]
クエン酸修飾四酸化三鉄ナノ粒子とゼラチンとの複合多孔質材料を作製した。ゼラチンの濃度は4.0(w/w)%であり、またクエン酸修飾四酸化三鉄ナノ粒子とゼラチンとの重量比は15:85とした。ここでは氷微粒子は使用しなかった。
[Example 2]
A composite porous material of citrate-modified triiron tetroxide nanoparticles and gelatin was prepared. The concentration of gelatin was 4.0 (w / w)%, and the weight ratio of citrate-modified triiron tetroxide nanoparticles to gelatin was 15:85. No ice particles were used here.

実施例1で作製した8.0(w/v)%のゼラチン溶液10mLと実施例1で作製した濃度が0.014g/mLのクエン酸修飾四酸化三鉄ナノ粒子懸濁液10mLととを室温で混合し、超音波処理により、クエン酸修飾四酸化三鉄ナノ粒子をゼラチン溶液に均一に分散させた。調製した混合溶液のゼラチンの濃度は4.0(w/v)%であり、クエン酸修飾四酸化三鉄ナノ粒子とゼラチンの重量比は15:85であった。このクエン酸修飾四酸化三鉄ナノ粒子/ゼラチン混合溶液を−80℃の低温で6時間静置することにより、混合物を凍結させた。凍結物を室温、5Pa以下の減圧下で3日間凍結乾燥を行うことにより、クエン酸修飾四酸化三鉄ナノ粒子/ゼラチン複合多孔質構造を形成させた。次に、実施例1と同様の洗浄、架橋、ブロッキング処理、凍結の各工程を経て、クエン酸修飾四酸化三鉄ナノ粒子/ゼラチンの架橋複合多孔質材料を得た。 10 mL of the 8.0 (w / v)% gelatin solution prepared in Example 1 and 10 mL of a citric acid-modified triiron tetroxide nanoparticle suspension prepared in Example 1 having a concentration of 0.014 g / mL were added. The mixture was mixed at room temperature, and the citrate-modified triiron tetroxide nanoparticles were uniformly dispersed in the gelatin solution by sonication. The concentration of gelatin in the prepared mixed solution was 4.0 (w / v)%, and the weight ratio of citrate-modified triiron tetroxide nanoparticles to gelatin was 15:85. The mixture was frozen by allowing the citric acid-modified triiron tetroxide nanoparticles / gelatin mixed solution to stand at a low temperature of −80 ° C. for 6 hours. The frozen product was freeze-dried at room temperature under a reduced pressure of 5 Pa or less for 3 days to form a citric acid-modified triiron tetroxide nanoparticles / gelatin composite porous structure. Next, through the same washing, cross-linking, blocking treatment, and freezing steps as in Example 1, a cross-linked composite porous material of citric acid-modified triiron tetroxide nanoparticles / gelatin was obtained.

得られたクエン酸修飾四酸化三鉄ナノ粒子/ゼラチンの架橋複合多孔質材料の構造を走査電子顕微鏡で観察した。その走査電子顕微鏡写真を図2に示す。ゼラチンの濃度が4.0(w/v)%であり、またクエン酸修飾四酸化三鉄ナノ粒子とゼラチンとの重量比が15:85で作製した四酸化三鉄ナノ粒子/ゼラチンの架橋複合多孔質材料は、扁平な空孔を有し、四酸化三鉄ナノ粒子は空孔壁面で観察された。 The structure of the obtained crosslinked composite porous material of citric acid-modified triiron tetroxide nanoparticles / gelatin was observed with a scanning electron microscope. The scanning electron micrograph is shown in FIG. Crosslinked composite of triiron tetroxide nanoparticles / gelatin prepared at a gelatin concentration of 4.0 (w / v)% and a weight ratio of citrate-modified triiron tetroxide nanoparticles to gelatin of 15:85. The porous material had flat pores, and triiron tetroxide nanoparticles were observed on the pore wall surface.

[実施例3]
未修飾四酸化三鉄ナノ粒子とゼラチンとの複合多孔質材料を作製した。ゼラチンの濃度は4.0(w/v)%、四酸化三鉄ナノ粒子とゼラチンとの重量比は15:85とした。ここでは、空孔形成剤として氷微粒子を使用しなかった。
[Example 3]
A composite porous material of unmodified triiron tetroxide nanoparticles and gelatin was prepared. The concentration of gelatin was 4.0 (w / v)%, and the weight ratio of triiron tetroxide nanoparticles to gelatin was 15:85. Here, ice fine particles were not used as the pore forming agent.

まず、未修飾の四酸化三鉄ナノ粒子(未修飾四酸化三鉄ナノ粒子と表記)を調製した。実施例1で作製したチオ硫酸ナトリウム水溶液及び塩化鉄(III)水溶液にそれぞれ窒素ガスを通し、次に、窒素ガス雰囲気下で、塩化鉄(III)水溶液40mLを撹拌しながらチオ硫酸ナトリウム水溶液20mLを滴下した。この混合溶液を75℃の水浴で撹拌しながら加熱し、25%のアンモニア水4mLを滴下し、40分間反応を行った。これにより、表面修飾していない四酸化三鉄ナノ粒子を得た。その後、反応溶液を室温まで冷却し、永久磁石で四酸化三鉄ナノ粒子を集めた。これを純水で4回洗浄した後、未修飾四酸化三鉄ナノ粒子を純水に分散させ、未修飾四酸化三鉄ナノ粒子の濃度を0.014g/mLになるように調製した。 First, unmodified triiron tetroxide nanoparticles (denoted as unmodified triiron tetroxide nanoparticles) were prepared. Nitrogen gas is passed through each of the sodium thiosulfate aqueous solution and the iron (III) chloride aqueous solution prepared in Example 1, and then 20 mL of the sodium thiosulfate aqueous solution is added while stirring 40 mL of the iron (III) chloride aqueous solution under a nitrogen gas atmosphere. Dropped. The mixed solution was heated with stirring in a water bath at 75 ° C., 4 mL of 25% aqueous ammonia was added dropwise, and the reaction was carried out for 40 minutes. As a result, triiron tetroxide nanoparticles without surface modification were obtained. Then, the reaction solution was cooled to room temperature, and triiron tetroxide nanoparticles were collected with a permanent magnet. After washing this with pure water four times, the unmodified triiron tetroxide nanoparticles were dispersed in pure water, and the concentration of the unmodified triiron tetroxide nanoparticles was adjusted to 0.014 g / mL.

実施例1で作製した8.0(w/v)%のゼラチン溶液10mLと前記の濃度が0.014g/mLの未修飾四酸化三鉄ナノ粒子懸濁液10mLとを室温で混合し、超音波処理により未修飾四酸化三鉄ナノ粒子をゼラチン溶液に均一に分散させた。調製した混合溶液のゼラチンの濃度は4.0(w/v)%であり、また未修飾四酸化三鉄ナノ粒子とゼラチンの重量比は15:85であった。この四酸化三鉄ナノ粒子/ゼラチン混合溶液を−80℃で6時間静置することにより、混合物を凍結させた。凍結物を室温、5Pa以下の減圧下で3日間凍結乾燥を行うことにより、未修飾四酸化三鉄ナノ粒子/ゼラチン複合多孔質構造を形成させた。次に、実施例1と同様の洗浄、架橋、ブロッキング処理、凍結の各工程を経て、未修飾四酸化三鉄ナノ粒子/ゼラチンの架橋複合多孔質材料を得た。 10 mL of the 8.0 (w / v)% gelatin solution prepared in Example 1 and 10 mL of the unmodified triiron tetroxide nanoparticle suspension having the above concentration of 0.014 g / mL were mixed at room temperature and sonicated. Unmodified triiron tetroxide nanoparticles were uniformly dispersed in the gelatin solution by sonication. The concentration of gelatin in the prepared mixed solution was 4.0 (w / v)%, and the weight ratio of unmodified triiron tetroxide nanoparticles to gelatin was 15:85. The mixture was frozen by allowing the triiron tetroxide nanoparticles / gelatin mixture solution to stand at −80 ° C. for 6 hours. The frozen product was freeze-dried at room temperature under a reduced pressure of 5 Pa or less for 3 days to form an unmodified triiron tetroxide nanoparticles / gelatin composite porous structure. Next, through the same washing, cross-linking, blocking treatment, and freezing steps as in Example 1, a cross-linked composite porous material of unmodified triiron tetroxide nanoparticles / gelatin was obtained.

得られた四酸化三鉄ナノ粒子/ゼラチンの架橋複合多孔質材料を走査電子顕微鏡で観察して、図3に示す像を得た。ゼラチンの濃度が4.0(w/v)%であり、また表面修飾していない四酸化三鉄ナノ粒子とゼラチンの重量比が15:85で作製した未修飾四酸化三鉄ナノ粒子/ゼラチンの架橋複合多孔質材料は、扁平な空孔を有し、その空孔壁面では未修飾四酸化三鉄ナノ粒子が観察された。 The obtained crosslinked composite porous material of triiron tetroxide nanoparticles / gelatin was observed with a scanning electron microscope to obtain the image shown in FIG. Unmodified triiron tetroxide nanoparticles / gelatin prepared at a gelatin concentration of 4.0 (w / v)% and a weight ratio of gelatin to unmodified triiron tetroxide nanoparticles at 15:85. The crosslinked composite porous material of No. 1 had flat pores, and unmodified triiron tetroxide nanoparticles were observed on the walls of the pores.

[実施例4]
ポリビニルアルコール修飾四酸化三鉄ナノ粒子とゼラチンとの複合多孔質材料を作製した。ゼラチンの濃度は4.0(w/w)%であり、またポリビニルアルコール修飾四酸化三鉄ナノ粒子とゼラチンの重量比は15:85であった。ここでは空孔形成剤として氷微粒子を使用しなかった。
[Example 4]
A composite porous material of polyvinyl alcohol-modified triiron tetroxide nanoparticles and gelatin was prepared. The concentration of gelatin was 4.0 (w / w)%, and the weight ratio of polyvinyl alcohol-modified triiron tetroxide nanoparticles to gelatin was 15:85. Here, ice fine particles were not used as the pore forming agent.

まず、ポリビニルアルコールで修飾した四酸化三鉄ナノ粒子(以下、ポリビニルアルコール修飾四酸化三鉄ナノ粒子と表記)を調製した。実施例1で作製したチオ硫酸ナトリウム水溶液及び塩化鉄(III)水溶液にそれぞれ窒素ガスをバブリングした後、窒素雰囲気下で塩化鉄(III)水溶液40mLを撹拌しながらチオ硫酸ナトリウム水溶液20mLを滴下した。この混合溶液を75℃の水浴で撹拌しながら加熱し、25%のアンモニア水4mLを滴下し、更に重量平均分子量が22,000のポリビニルアルコールの水溶液(0.1g/mL)10mLを滴下した後、40分間反応を行った。これにより、ポリビニルアルコール修飾四酸化三鉄ナノ粒子を得た。その後、反応溶液を室温まで冷却し、磁石で四酸化三鉄ナノ粒子を集めた。これを純水で4回洗浄した後、ポリビニルアルコール修飾四酸化三鉄ナノ粒子を純水に分散させ、ポリビニルアルコール修飾四酸化三鉄ナノ粒子の濃度を0.014g/mLになるように調製した。 First, polyvinyl alcohol-modified triiron tetroxide nanoparticles (hereinafter referred to as polyvinyl alcohol-modified triiron tetroxide nanoparticles) were prepared. After bubbling nitrogen gas into each of the sodium thiosulfate aqueous solution and the iron (III) chloride aqueous solution prepared in Example 1, 20 mL of the sodium thiosulfate aqueous solution was added dropwise under a nitrogen atmosphere while stirring 40 mL of the iron (III) chloride aqueous solution. This mixed solution is heated with stirring in a water bath at 75 ° C., 4 mL of 25% ammonia water is added dropwise, and 10 mL of an aqueous solution of polyvinyl alcohol (0.1 g / mL) having a weight average molecular weight of 22,000 is added dropwise. , The reaction was carried out for 40 minutes. As a result, polyvinyl alcohol-modified triiron tetroxide nanoparticles were obtained. Then, the reaction solution was cooled to room temperature, and triiron tetroxide nanoparticles were collected with a magnet. After washing this with pure water four times, polyvinyl alcohol-modified triiron tetroxide nanoparticles were dispersed in pure water, and the concentration of polyvinyl alcohol-modified triiron tetroxide nanoparticles was adjusted to 0.014 g / mL. ..

実施例1で作製した8.0(w/v)%のゼラチン溶液10mLと前記の濃度が0.014g/mLのポリビニルアルコール修飾四酸化三鉄ナノ粒子懸濁液10mLとを室温で混合し、超音波処理によりポリビニルアルコール修飾四酸化三鉄ナノ粒子をゼラチン溶液に均一に分散させた。調製した混合溶液のゼラチンの濃度は4.0(w/v)%であり、またポリビニルアルコール修飾四酸化三鉄ナノ粒子とゼラチンの重量比は15:85であった。このポリビニルアルコール修飾四酸化三鉄ナノ粒子/ゼラチン混合溶液を−80℃の低温で6時間静置することにより、混合物を凍結させた。凍結物を室温、5Pa以下の減圧下で3日間凍結乾燥を行うことにより、ポリビニルアルコール修飾四酸化三鉄ナノ粒子/ゼラチン複合多孔質構造を形成させた。次に、実施例1と同様の洗浄、架橋、ブロッキング処理、凍結の各工程を経て、ポリビニルアルコール修飾四酸化三鉄ナノ粒子/ゼラチンの架橋複合多孔質材料を得た。 10 mL of the 8.0 (w / v)% gelatin solution prepared in Example 1 and 10 mL of the polyvinyl alcohol-modified triiron tetroxide nanoparticle suspension having the above concentration of 0.014 g / mL were mixed at room temperature. Polyvinyl alcohol-modified triiron tetroxide nanoparticles were uniformly dispersed in the gelatin solution by sonication. The concentration of gelatin in the prepared mixed solution was 4.0 (w / v)%, and the weight ratio of polyvinyl alcohol-modified triiron tetroxide nanoparticles to gelatin was 15:85. The mixture was frozen by allowing the polyvinyl alcohol-modified triiron tetroxide nanoparticles / gelatin mixed solution to stand at a low temperature of −80 ° C. for 6 hours. The frozen product was freeze-dried at room temperature under a reduced pressure of 5 Pa or less for 3 days to form a polyvinyl alcohol-modified triiron tetroxide nanoparticles / gelatin composite porous structure. Next, through the same washing, cross-linking, blocking treatment, and freezing steps as in Example 1, a cross-linked composite porous material of polyvinyl alcohol-modified triiron tetroxide nanoparticles / gelatin was obtained.

得られたポリビニルアルコール修飾四酸化三鉄ナノ粒子/ゼラチンの架橋複合多孔質材料の構造を走査電子顕微鏡で観察した。その、走査電子顕微鏡写真を図4に示す。ゼラチンの濃度が4.0(w/v)%で、ポリビニルアルコール修飾四酸化三鉄ナノ粒子とゼラチンとの重量比が15:85で作製したポリビニルアルコール修飾四酸化三鉄ナノ粒子/ゼラチンの架橋複合多孔質材料は扁平な空孔を有し、空孔壁面ではポリビニルアルコール修飾四酸化三鉄ナノ粒子が観察された。 The structure of the obtained crosslinked composite porous material of polyvinyl alcohol-modified triiron tetroxide nanoparticles / gelatin was observed with a scanning electron microscope. The scanning electron micrograph is shown in FIG. Crosslinks of polyvinyl alcohol-modified triiron tetroxide nanoparticles / gelatin prepared at a gelatin concentration of 4.0 (w / v)% and a weight ratio of polyvinyl alcohol-modified triiron tetroxide nanoparticles to gelatin of 15:85. The composite porous material had flat pores, and polyvinyl alcohol-modified triiron tetroxide nanoparticles were observed on the walls of the pores.

[実施例5]
ポリアクリル酸で表面修飾した四酸化三鉄ナノ粒子とゼラチンの複合多孔質材料を作製した。ゼラチンの濃度は4.0(w/w)%、ポリアクリル酸で表面修飾した四酸化三鉄ナノ粒子とゼラチンの重量比が15:85であった。空孔形成剤として氷微粒子を使用しなかった。
[Example 5]
A composite porous material of triiron tetroxide nanoparticles and gelatin surface-modified with polyacrylic acid was prepared. The concentration of gelatin was 4.0 (w / w)%, and the weight ratio of triiron tetroxide nanoparticles surface-modified with polyacrylic acid to gelatin was 15:85. No ice particles were used as the pore forming agent.

まず、ポリアクリル酸で表面修飾した四酸化三鉄ナノ粒子(以下、ポリアクリル酸修飾四酸化三鉄ナノ粒子と表記)を調製した。実施例1で作製したチオ硫酸ナトリウム水溶液及び塩化鉄(III)水溶液にそれぞれ窒素ガスをバブリングした後、窒素雰囲気下で塩化鉄(III)水溶液40mLを撹拌しながら、チオ硫酸ナトリウム水溶液20mLを滴下した。この混合溶液を75℃の水浴で撹拌しながら加熱し、25%のアンモニア水4mLを滴下し、更に重量平均分子量が450,000のポリアクリル酸の水溶液(0.1g/mL)10mLを滴下した後、40分間反応を行った。これにより、ポリアクリル酸修飾四酸化三鉄ナノ粒子を得た。その後、反応溶液を室温まで冷却し、永久磁石で四酸化三鉄ナノ粒子を集めた。これを純水で4回洗浄した後、ポリアクリル酸で表面修飾した四酸化三鉄ナノ粒子を純水に分散させ、ポリアクリル酸修飾四酸化三鉄ナノ粒子の濃度を0.014g/mLになるように調製した。 First, triiron tetroxide nanoparticles surface-modified with polyacrylic acid (hereinafter referred to as polyacrylic acid-modified triiron tetroxide nanoparticles) were prepared. After bubbling nitrogen gas into each of the sodium thiosulfate aqueous solution and the iron (III) chloride aqueous solution prepared in Example 1, 20 mL of the sodium thiosulfate aqueous solution was added dropwise while stirring 40 mL of the iron (III) chloride aqueous solution in a nitrogen atmosphere. .. This mixed solution was heated with stirring in a water bath at 75 ° C., 4 mL of 25% aqueous ammonia was added dropwise, and 10 mL of an aqueous solution of polyacrylic acid (0.1 g / mL) having a weight average molecular weight of 450,000 was added dropwise. After that, the reaction was carried out for 40 minutes. As a result, polyacrylic acid-modified triiron tetroxide nanoparticles were obtained. Then, the reaction solution was cooled to room temperature, and triiron tetroxide nanoparticles were collected with a permanent magnet. After washing this with pure water four times, triiron tetroxide nanoparticles surface-modified with polyacrylic acid were dispersed in pure water to bring the concentration of triiron tetroxide nanoparticles modified with polyacrylic acid to 0.014 g / mL. It was prepared to be.

実施例1で作製した8.0(w/v)%のゼラチン溶液10mLと前記の濃度が0.014g/mLのポリアクリル酸で表面修飾した四酸化三鉄ナノ粒子懸濁液10mLとを室温で混合し、超音波処理によりポリアクリル酸で表面修飾した四酸化三鉄ナノ粒子をゼラチン溶液に均一に分散させた。調製した混合溶液のゼラチンの濃度は4.0(w/v)%、ポリアクリル酸修飾四酸化三鉄ナノ粒子とゼラチンの重量比が15:85であった。このポリアクリル酸で表面修飾した四酸化三鉄ナノ粒子/ゼラチン混合溶液を−80℃の低温で6時間静置することにより、混合物を凍結させた。凍結物を室温、5Pa以下の減圧下で3日間凍結乾燥を行うことにより、ポリアクリル酸で表面修飾した四酸化三鉄ナノ粒子/ゼラチン複合多孔質構造を形成させた。次に、実施例1と同様な洗浄、架橋、ブロッキング処理、凍結の各工程を経て、ポリアクリル酸修飾四酸化三鉄ナノ粒子/ゼラチンの架橋複合多孔質材料を得た。 10 mL of the 8.0 (w / v)% gelatin solution prepared in Example 1 and 10 mL of the triiron tetroxide nanoparticle suspension surface-modified with polyacrylic acid having the above concentration of 0.014 g / mL were added to room temperature. The triiron tetroxide nanoparticles surface-modified with polyacrylic acid by sonication were uniformly dispersed in a gelatin solution. The concentration of gelatin in the prepared mixed solution was 4.0 (w / v)%, and the weight ratio of polyacrylic acid-modified triiron tetroxide nanoparticles to gelatin was 15:85. The mixture was frozen by allowing the triiron tetroxide nanoparticles / gelatin mixed solution surface-modified with polyacrylic acid to stand at a low temperature of −80 ° C. for 6 hours. The frozen product was freeze-dried at room temperature under a reduced pressure of 5 Pa or less for 3 days to form a triiron tetroxide nanoparticles / gelatin composite porous structure surface-modified with polyacrylic acid. Next, through the same washing, cross-linking, blocking treatment, and freezing steps as in Example 1, a cross-linked composite porous material of polyacrylic acid-modified triiron tetroxide nanoparticles / gelatin was obtained.

得られたポリアクリル酸修飾四酸化三鉄ナノ粒子/ゼラチンの架橋複合多孔質材料の構造を走査電子顕微鏡で観察した。その走査電子顕微鏡写真を図4に示す。ゼラチンの濃度が4.0(w/v)%で、ポリアクリル酸で表面修飾した四酸化三鉄ナノ粒子とゼラチンとの重量比を15:85として作製したポリアクリル酸で表面修飾した四酸化三鉄ナノ粒子/ゼラチンの架橋複合多孔質材料は扁平な空孔を有し、その空孔壁面ではポリアクリル酸修飾四酸化三鉄ナノ粒子が観察された。 The structure of the obtained crosslinked composite porous material of polyacrylic acid-modified triiron tetroxide nanoparticles / gelatin was observed with a scanning electron microscope. The scanning electron micrograph is shown in FIG. Surface-modified tetroxide with polyacrylic acid prepared at a gelatin concentration of 4.0 (w / v)% and a weight ratio of gelatin tetraoxide nanoparticles surface-modified with polyacrylic acid of 15:85. The crosslinked composite porous material of triiron nanoparticles / gelatin had flat pores, and polyacrylic acid-modified triiron tetroxide nanoparticles were observed on the walls of the pores.

[実施例6]
ゼラチンで表面修飾した四酸化三鉄ナノ粒子とゼラチンの複合多孔質材料を作製した。ゼラチンの濃度は4.0(w/w)%であり、ゼラチンで表面修飾した四酸化三鉄ナノ粒子とゼラチンの重量比は1:99とした。ここでは氷微粒子を使用しなかった。
[Example 6]
A composite porous material of triiron tetroxide nanoparticles and gelatin surface-modified with gelatin was prepared. The concentration of gelatin was 4.0 (w / w)%, and the weight ratio of triiron tetroxide nanoparticles surface-modified with gelatin to gelatin was 1:99. No ice particles were used here.

まず、ゼラチンで表面修飾した四酸化三鉄ナノ粒子(四酸化三鉄ナノ粒子と呼ぶ)を調製した。実施例1で作製したチオ硫酸ナトリウム水溶液及び塩化鉄(III)水溶液にそれぞれ窒素ガスをバブリングした後、窒素雰囲気下で塩化鉄(III)水溶液40mLを撹拌しながらチオ硫酸ナトリウム水溶液20mLを滴下した。この混合溶液を75℃の水浴で撹拌しながら加熱し、25%のアンモニア水4mLを滴下し、更に重量平均分子量が約110,000のゼラチンの水溶液(0.1g/mL)10mLを滴下した後、40分間反応を行った。これにより、ゼラチンで表面修飾した四酸化三鉄ナノ粒子を得た。その後、反応溶液を室温まで冷却し、永久磁石で四酸化三鉄ナノ粒子を集めた。これを純水で4回洗浄した後、ゼラチンで表面修飾した四酸化三鉄ナノ粒子を純水に分散させ、ゼラチンで表面修飾した四酸化三鉄ナノ粒子の濃度を0.00081g/mLになるように調製した。 First, triiron tetroxide nanoparticles (called triiron tetroxide nanoparticles) surface-modified with gelatin were prepared. After bubbling nitrogen gas into each of the sodium thiosulfate aqueous solution and the iron (III) chloride aqueous solution prepared in Example 1, 20 mL of the sodium thiosulfate aqueous solution was added dropwise under a nitrogen atmosphere while stirring 40 mL of the iron (III) chloride aqueous solution. This mixed solution is heated with stirring in a water bath at 75 ° C., 4 mL of 25% ammonia water is added dropwise, and 10 mL of an aqueous gelatin solution (0.1 g / mL) having a weight average molecular weight of about 110,000 is added dropwise. , The reaction was carried out for 40 minutes. As a result, triiron tetroxide nanoparticles surface-modified with gelatin were obtained. Then, the reaction solution was cooled to room temperature, and triiron tetroxide nanoparticles were collected with a permanent magnet. After washing this with pure water four times, the triiron tetroxide nanoparticles surface-modified with gelatin are dispersed in pure water, and the concentration of the triiron tetroxide nanoparticles surface-modified with gelatin becomes 0.00081 g / mL. Prepared as follows.

実施例1で作製した8.0(w/v)%のゼラチン溶液10mLと前記の濃度が0.00081g/mLのゼラチンで表面修飾した四酸化三鉄ナノ粒子懸濁液10mLとを室温で混合し、超音波処理によりゼラチンで表面修飾した四酸化三鉄ナノ粒子をゼラチン溶液に均一に分散させた。調製した混合溶液のゼラチンの濃度は4.0(w/v)%であり、ゼラチンで表面修飾した四酸化三鉄ナノ粒子とゼラチンとの重量比は1:90であった。このゼラチンで表面修飾した四酸化三鉄ナノ粒子/ゼラチン混合溶液を−80℃の低温で6時間静置することにより、混合物を凍結させた。凍結物を室温、5Pa以下の減圧下で3日間凍結乾燥を行うことにより、ゼラチンで表面修飾した四酸化三鉄ナノ粒子/ゼラチン複合多孔質構造を形成させた。次に、実施例1と同様の洗浄、架橋、ブロッキング処理、凍結の各工程を経て、ゼラチンで表面修飾した四酸化三鉄ナノ粒子/ゼラチンの架橋複合多孔質材料を得た。 10 mL of the 8.0 (w / v)% gelatin solution prepared in Example 1 and 10 mL of a triiron tetroxide nanoparticle suspension surface-modified with gelatin having a concentration of 0.00081 g / mL were mixed at room temperature. Then, the triiron tetroxide nanoparticles surface-modified with gelatin by ultrasonic treatment were uniformly dispersed in the gelatin solution. The concentration of gelatin in the prepared mixed solution was 4.0 (w / v)%, and the weight ratio of triiron tetroxide nanoparticles surface-modified with gelatin to gelatin was 1:90. The mixture was frozen by allowing the gelatin surface-modified triiron tetroxide nanoparticles / gelatin mixed solution to stand at a low temperature of −80 ° C. for 6 hours. The frozen product was freeze-dried at room temperature under a reduced pressure of 5 Pa or less for 3 days to form a triiron tetroxide nanoparticles / gelatin composite porous structure surface-modified with gelatin. Next, through the same washing, cross-linking, blocking treatment, and freezing steps as in Example 1, a cross-linked composite porous material of triiron tetroxide nanoparticles / gelatin surface-modified with gelatin was obtained.

得られたゼラチンで表面修飾した四酸化三鉄ナノ粒子/ゼラチンの架橋複合多孔質材料の構造を走査電子顕微鏡で観察し、走査電子顕微鏡写真を図6に示す。ゼラチンの濃度が4.0(w/v)%で、ゼラチンで表面修飾した四酸化三鉄ナノ粒子とゼラチンの重量比が1:99で作製したゼラチンで表面修飾した四酸化三鉄ナノ粒子/ゼラチンの架橋複合多孔質材料は、扁平な空孔を有し、空孔壁面では四酸化三鉄ナノ粒子が観察された。 The structure of the obtained crosslinked composite porous material of triiron tetroxide nanoparticles / gelatin surface-modified with gelatin was observed with a scanning electron microscope, and a scanning electron micrograph is shown in FIG. Triiron tetroxide nanoparticles surface-modified with gelatin prepared at a gelatin concentration of 4.0 (w / v)% and a weight ratio of gelatin to triiron tetroxide nanoparticles surface-modified with gelatin at a weight ratio of 1:99 / The crosslinked composite porous material of gelatin had flat pores, and triiron tetroxide nanoparticles were observed on the walls of the pores.

[実施例7]
ゼラチン多孔質材料を作製した後その空孔壁の表面で四酸化三鉄ナノ粒子を形成させることにより、四酸化三鉄ナノ粒子とゼラチンの複合多孔質材料を沈着法によって作製した。
[Example 7]
A composite porous material of triiron tetroxide nanoparticles and gelatin was prepared by a deposition method by forming triiron tetroxide nanoparticles on the surface of the pore wall after preparing the porous gelatin material.

実施例1で作製した4.0(w/v)%のゼラチン溶液10mLを−80℃の低温で6時間静置することにより、ゼラチン溶液を凍結させた。凍結物を室温、5Pa以下の減圧下で3日間凍結乾燥を行うことにより、多孔質構造を形成した。次に、実施例1と同様の洗浄、架橋、ブロッキング処理、凍結の各工程を経て、ゼラチンの架橋多孔質材料を得た。 The gelatin solution was frozen by allowing 10 mL of the 4.0 (w / v)% gelatin solution prepared in Example 1 to stand at a low temperature of −80 ° C. for 6 hours. A porous structure was formed by freeze-drying the frozen product at room temperature under a reduced pressure of 5 Pa or less for 3 days. Next, a crosslinked porous material of gelatin was obtained through the same washing, cross-linking, blocking treatment, and freezing steps as in Example 1.

実施例1で作製したチオ硫酸ナトリウム水溶液及び塩化鉄(III)水溶液にそれぞれ窒素ガスをバブリングした後、窒素雰囲気下で塩化鉄(III)水溶液40mLを撹拌しながらチオ硫酸ナトリウム水溶液20mLを滴下した。ゼラチンの架橋多孔質材料をチオ硫酸ナトリウム水溶液と塩化鉄(III)水溶液との混合溶液に染み付けた。この混合物からゼラチンの架橋多孔質材料を取り出し、75℃の水浴で加熱した25%のアンモニア水10mLに入れた。振動しながら、60分間反応を行った。これにより、ゼラチン多孔質材料の空孔壁面に四酸化三鉄ナノ粒子を形成させた。純水で10回洗浄した後、四酸化三鉄ナノ粒子/ゼラチンの架橋複合多孔質材料を得た。 After bubbling nitrogen gas into each of the sodium thiosulfate aqueous solution and the iron (III) chloride aqueous solution prepared in Example 1, 20 mL of the sodium thiosulfate aqueous solution was added dropwise under a nitrogen atmosphere while stirring 40 mL of the iron (III) chloride aqueous solution. The crosslinked porous material of gelatin was soaked in a mixed solution of an aqueous solution of sodium thiosulfate and an aqueous solution of iron (III) chloride. The crosslinked porous material of gelatin was removed from this mixture and placed in 10 mL of 25% aqueous ammonia heated in a water bath at 75 ° C. The reaction was carried out for 60 minutes while vibrating. As a result, triiron tetroxide nanoparticles were formed on the pore wall surface of the porous gelatin material. After washing 10 times with pure water, a crosslinked composite porous material of triiron tetroxide nanoparticles / gelatin was obtained.

作製した四酸化三鉄ナノ粒子/ゼラチンの架橋複合多孔質材料の構造を走査電子顕微鏡で観察した。その走査電子顕微鏡写真を図7に示す。四酸化三鉄ナノ粒子/ゼラチンの架橋複合多孔質材料は扁平な空孔を有し、空孔壁面では四酸化三鉄ナノ粒子が観察された。 The structure of the prepared crosslinked composite porous material of triiron tetroxide nanoparticles / gelatin was observed with a scanning electron microscope. The scanning electron micrograph is shown in FIG. The crosslinked composite porous material of triiron tetroxide nanoparticles / gelatin had flat pores, and triiron tetroxide nanoparticles were observed on the walls of the pores.

[実施例8]
ゼラチンの濃度条件を2.0(w/v)%、4.0(w/v)%、6.0(w/v)%として、株式会社フェローテックから商品名が磁性ナノ粒子(表面コーティングなし)、型番:EMG1111として提供される市販の四酸化三鉄ナノ粒子(他の実施例で「市販の四酸化三鉄ナノ粒子」として言及されているものも同じ製品である)を用いて、四酸化三鉄ナノ粒子とゼラチンとの重量比が15:85の四酸化三鉄ナノ粒子/ゼラチンの架橋複合多孔質材料を作製した。ここでは氷微粒子を使用しなかった。
[Example 8]
The gelatin concentration condition is 2.0 (w / v)%, 4.0 (w / v)%, 6.0 (w / v)%, and the trade name is magnetic nanoparticles (surface coating) from Fellow Tech Co., Ltd. None), Model: EMG1111 using commercially available triiron tetroxide nanoparticles (the same product is also referred to as "commercially available triiron tetroxide nanoparticles" in other examples). A crosslinked composite porous material of triiron tetroxide nanoparticles / gelatin having a weight ratio of triiron tetroxide nanoparticles to gelatin of 15:85 was prepared. No ice particles were used here.

まず、0.4g、0.8gと1.2gのブタ由来ゼラチンにそれぞれ30(v/v)%酢酸水溶液10mLを加えて、45℃で2時間撹拌し、つづいて室温で4時間撹拌し、4.0、8.0と12.0(w/v)%ゼラチンの溶液を調製した。 First, 10 mL of a 30 (v / v)% acetic acid aqueous solution was added to 0.4 g, 0.8 g, and 1.2 g of pig-derived gelatin, respectively, and the mixture was stirred at 45 ° C. for 2 hours, and then at room temperature for 4 hours. Solutions of 4.0, 8.0 and 12.0 (w / v)% gelatin were prepared.

続いて、市販の四酸化三鉄ナノ粒子を純水に分散させ、濃度が0.0071g/mL、0.014g/mLと0.0211g/mLになるように調製した。 Subsequently, commercially available triiron tetroxide nanoparticles were dispersed in pure water, and the concentrations were adjusted to 0.0071 g / mL, 0.014 g / mL, and 0.0211 g / mL.

前記の4.0(w/v)%のゼラチン溶液10mLと前記の濃度が0.0071g/mLの四酸化三鉄ナノ粒子懸濁液10mLとを、前記の8.0(w/v)%のゼラチン溶液10mLと前記の濃度が0.014g/mLの四酸化三鉄ナノ粒子懸濁液10mLとを、また前記の12.0(w/v)%のゼラチン溶液10mLと前記の濃度が0.0211g/mLの四酸化三鉄ナノ粒子懸濁液10mLとをそれぞれ室温で混合し、超音波処理により四酸化三鉄ナノ粒子をゼラチン溶液に均一に分散させることによって、クエン酸修飾四酸化三鉄ナノ粒子とゼラチンとの重量比が15:85であって、ゼラチンの濃度が2.0、4.0及び6.0(w/v)%である懸濁液を調製した。 10 mL of the 4.0 (w / v)% gelatin solution and 10 mL of the triiron tetroxide nanoparticle suspension with a concentration of 0.0071 g / mL were added to the 8.0 (w / v)%. 10 mL of gelatin solution and 10 mL of triiron tetraoxide nanoparticle suspension having the above concentration of 0.014 g / mL, and 10 mL of the above 12.0 (w / v)% gelatin solution and the above concentration of 0. .0211 g / mL triiron tetroxide nanoparticle suspension 10 mL each was mixed at room temperature, and triiron tetroxide nanoparticles were uniformly dispersed in a gelatin solution by ultrasonic treatment to modify citrate-modified triiron tetroxide. Suspensions were prepared in which the weight ratio of iron nanoparticles to gelatin was 15:85 and the concentration of gelatin was 2.0, 4.0 and 6.0 (w / v)%.

これらの市販の四酸化三鉄ナノ粒子/ゼラチン懸濁液を−80℃の低温で6時間静置することにより、混合物を凍結させた。凍結物を室温、5Pa以下の減圧下で3日間凍結乾燥を行うことにより、市販の四酸化三鉄ナノ粒子/ゼラチン複合多孔質構造を形成した。次に、実施例1と同様の洗浄、架橋、ブロッキング処理、凍結の各工程を経て、市販の四酸化三鉄ナノ粒子/ゼラチンの架橋複合多孔質材料を作製した。 The mixture was frozen by allowing these commercially available triiron tetroxide nanoparticles / gelatin suspensions to stand at a low temperature of −80 ° C. for 6 hours. The frozen product was freeze-dried at room temperature under a reduced pressure of 5 Pa or less for 3 days to form a commercially available triiron tetroxide nanoparticles / gelatin composite porous structure. Next, through the same washing, cross-linking, blocking treatment, and freezing steps as in Example 1, a commercially available cross-linked composite porous material of triiron tetroxide nanoparticles / gelatin was prepared.

作製した市販の四酸化三鉄ナノ粒子/ゼラチンの架橋複合多孔質材料の構造を走査電子顕微鏡で観察した。その走査電子顕微鏡写真を図8に示す。ゼラチンの濃度がそれぞれ2.0、4.0及び6.0(w/v)%であって市販の四酸化三鉄ナノ粒子とゼラチンとの重量比が15:85で作製した市販の四酸化三鉄ナノ粒子/ゼラチンの各架橋複合多孔質材料は不規則な空孔を持ち、空孔壁面では四酸化三鉄ナノ粒子が観察された。 The structure of the produced commercially available crosslinked composite porous material of triiron tetroxide nanoparticles / gelatin was observed with a scanning electron microscope. The scanning electron micrograph is shown in FIG. Commercially available tetroxide prepared with gelatin concentrations of 2.0, 4.0 and 6.0 (w / v)% and a weight ratio of commercially available triiron tetroxide nanoparticles to gelatin of 15:85, respectively. Each crosslinked composite porous material of triiron nanoparticles / gelatin had irregular pores, and triiron tetroxide nanoparticles were observed on the walls of the pores.

[実施例9]
コラーゲンの濃度条件が0.5(w/v)%、1.0(w/v)%と2.0(w/v)%で、市販の四酸化三鉄ナノ粒子を用いて、四酸化三鉄ナノ粒子とコラーゲンとの重量比が15:85の四酸化三鉄ナノ粒子/コラーゲンの架橋複合多孔質材料を作製した。ここでは氷微粒子を使用しなかった。
[Example 9]
Collagen concentration conditions are 0.5 (w / v)%, 1.0 (w / v)% and 2.0 (w / v)%, and tetraoxidation is performed using commercially available triiron tetroxide nanoparticles. A crosslinked composite porous material of triiron tetroxide nanoparticles / collagen having a weight ratio of triiron nanoparticles to collagen of 15:85 was prepared. No ice particles were used here.

まず、純水に酢酸溶液を添加し、pHが3.0の酢酸水溶液を作製した。pHが3.0の酢酸水溶液と無水エタノールとを90:10(v/v)の割合で混合し、水/エタノール混合溶液を調製した。水/エタノール混合溶液を4℃の低温チャンバーに12時間静置し、水/エタノール混合溶液の温度を4℃に調整した。0.1g、0.2g及び0.4gのブタ由来のタイプIコラーゲンをそれぞれ温度が4℃の水/エタノール混合溶液10mLに入れ、4℃のチャンバーで48時間撹拌し、1.0、2.0及び4.0(w/v)%コラーゲンの溶液を調製した。 First, an acetic acid solution was added to pure water to prepare an acetic acid aqueous solution having a pH of 3.0. An aqueous acetic acid solution having a pH of 3.0 and absolute ethanol were mixed at a ratio of 90:10 (v / v) to prepare a water / ethanol mixed solution. The water / ethanol mixed solution was allowed to stand in a low temperature chamber at 4 ° C. for 12 hours, and the temperature of the water / ethanol mixed solution was adjusted to 4 ° C. 0.1 g, 0.2 g and 0.4 g of type I collagen derived from pigs were placed in 10 mL of a water / ethanol mixed solution having a temperature of 4 ° C., respectively, and stirred in a chamber at 4 ° C. for 48 hours. Solutions of 0 and 4.0 (w / v)% collagen were prepared.

続いて、市販の四酸化三鉄ナノ粒子を純水に分散させ、四酸化三鉄ナノ粒子の濃度を0.0018g/mL、0.0035g/mL及び0.0071g/mLになるように調製した。これらの溶液を4℃のチャンバーで10時間静置し、溶液の温度を4℃に調整した。 Subsequently, commercially available triiron tetroxide nanoparticles were dispersed in pure water, and the concentrations of the triiron tetroxide nanoparticles were adjusted to 0.0018 g / mL, 0.0035 g / mL, and 0.0071 g / mL. .. These solutions were allowed to stand in a 4 ° C. chamber for 10 hours to adjust the temperature of the solutions to 4 ° C.

前記の1.0(w/v)%のコラーゲン溶液10mLと前記の濃度が0.0018g/mLの市販の四酸化三鉄ナノ粒子懸濁液10mLとを、また前記の2.0(w/v)%のコラーゲン溶液10mLと前記の濃度が0.0035g/mLの市販の四酸化三鉄ナノ粒子懸濁液10mLとを、更に前記の4.0(w/v)%のゼラチン溶液10mLと前記の濃度が0.0071g/mLの四酸化三鉄ナノ粒子懸濁液10mLとを、それぞれを4℃のチャンバーで混合し、超音波処理により四酸化三鉄ナノ粒子をゼラチン溶液に均一に分散させ、市販の四酸化三鉄ナノ粒子とコラーゲンの重量比が15:85で、コラーゲンの濃度は0.5、1.0及び2.0(w/v)%の懸濁液を調製した。 10 mL of the 1.0 (w / v)% collagen solution and 10 mL of a commercially available triiron tetroxide nanoparticle suspension with a concentration of 0.0018 g / mL, and the 2.0 (w / w / v). 10 mL of v)% collagen solution and 10 mL of commercially available triiron tetroxide nanoparticle suspension with the above concentration of 0.0035 g / mL were further combined with 10 mL of the above 4.0 (w / v)% gelatin solution. 10 mL of the triiron tetroxide nanoparticle suspension having a concentration of 0.0071 g / mL was mixed in a chamber at 4 ° C., and the triiron tetroxide nanoparticles were uniformly dispersed in a gelatin solution by ultrasonic treatment. Then, a suspension having a weight ratio of commercially available triiron tetroxide nanoparticles to collagen of 15:85 and a concentration of collagen of 0.5, 1.0 and 2.0 (w / v)% was prepared.

これらの市販の四酸化三鉄ナノ粒子/コラーゲンの懸濁液を−80℃の低温で6時間静置することにより、混合物を凍結させた。凍結物を室温、5Pa以下の減圧下で3日間凍結乾燥を行うことにより、市販の四酸化三鉄ナノ粒子/コラーゲン複合多孔質構造を形成した。次に、実施例1と同様の洗浄、架橋、ブロッキング処理、凍結の各工程を経て、市販の四酸化三鉄ナノ粒子/コラーゲンの架橋複合多孔質材料を作製した。 The mixture was frozen by allowing these commercially available triiron tetroxide nanoparticles / collagen suspensions to stand at a low temperature of −80 ° C. for 6 hours. The frozen product was freeze-dried at room temperature under a reduced pressure of 5 Pa or less for 3 days to form a commercially available triiron tetroxide nanoparticles / collagen composite porous structure. Next, through the same washing, cross-linking, blocking treatment, and freezing steps as in Example 1, a commercially available cross-linked composite porous material of triiron tetroxide nanoparticles / collagen was prepared.

作製した市販の四酸化三鉄ナノ粒子/コラーゲンの架橋複合多孔質材料の構造を走査電子顕微鏡で観察した。その走査電子顕微鏡写真を図9に示す。コラーゲンの濃度がそれぞれ0.5、1.0及び2.0(w/v)%で、市販の四酸化三鉄ナノ粒子とコラーゲンとの重量比が15:85で作製した市販の四酸化三鉄ナノ粒子/コラーゲンの各架橋複合多孔質材料は不規則な空孔を持ち、空孔壁面では四酸化三鉄ナノ粒子が観察された。 The structure of the produced commercially available crosslinked composite porous material of triiron tetroxide nanoparticles / collagen was observed with a scanning electron microscope. The scanning electron micrograph is shown in FIG. Commercially available trioxide trioxide produced with collagen concentrations of 0.5, 1.0 and 2.0 (w / v)%, respectively, and a weight ratio of commercially available triiron tetroxide nanoparticles to collagen of 15:85. Each crosslinked composite porous material of iron nanoparticles / collagen had irregular pores, and triiron tetroxide nanoparticles were observed on the walls of the pores.

[実施例10]
コラーゲンの濃度条件を2.0(w/v)%とし、また市販の四酸化三鉄ナノ粒子を用いて、四酸化三鉄ナノ粒子とコラーゲンとの重量比が15:85の四酸化三鉄ナノ粒子/コラーゲンの架橋複合多孔質材料を作製した。ここでは、大きさが425μm〜500μmの氷微粒子を多孔質材料の作製に用いた。
[Example 10]
The collagen concentration condition is 2.0 (w / v)%, and using commercially available triiron tetroxide nanoparticles, the weight ratio of triiron tetroxide nanoparticles to collagen is 15:85. A crosslinked composite porous material of nanoparticles / collagen was prepared. Here, ice fine particles having a size of 425 μm to 500 μm were used for producing a porous material.

実施例9で調製した4.0(w/v)%のコラーゲン溶液10mLと実施例9で調製した濃度が0.0071g/mLの市販の四酸化三鉄ナノ粒子懸濁液10mLとを4℃のチャンバーで混合し、超音波処理により四酸化三鉄ナノ粒子をゼラチン溶液に均一に分散させることにより、市販の四酸化三鉄ナノ粒子とコラーゲンとの重量比が15:85で、コラーゲンの濃度は2.0(w/v)%の懸濁液を調製した。この市販の四酸化三鉄ナノ粒子/コラーゲン混合溶液を−4℃の低温チャンバーに移し、40分間静置し、温度平衡化を行った。温度を−4℃にした市販の四酸化三鉄ナノ粒子/コラーゲン混合溶液20mLと実施例1で作製して温度を−4℃にバランスした大きさ425μm〜500μmの氷微粒子とを、7:3(重量g対体積mL)の比率で−4℃の低温チャンバーで混合した。氷微粒子が市販の四酸化三鉄ナノ粒子/コラーゲン混合溶液に均一に分散するようによく攪拌した。この混合物を−20℃の低温で12時間静置した後、さらに−80℃の低温で4時間静置することにより、混合物を凍結させた。次に、実施例1と同様の凍結乾燥、洗浄、架橋、ブロッキング処理、凍結の各工程を経て、氷微粒子を用いての市販の四酸化三鉄ナノ粒子/コラーゲンの架橋複合多孔質材料を作製した。 10 mL of a 4.0 (w / v)% collagen solution prepared in Example 9 and 10 mL of a commercially available triiron tetroxide nanoparticle suspension having a concentration of 0.0071 g / mL prepared in Example 9 were mixed at 4 ° C. By mixing in the same chamber and uniformly dispersing triiron tetroxide nanoparticles in a gelatin solution by ultrasonic treatment, the weight ratio of commercially available triiron tetroxide nanoparticles to collagen is 15:85, and the concentration of collagen. Prepared a 2.0 (w / v)% suspension. This commercially available triiron tetroxide nanoparticles / collagen mixed solution was transferred to a low temperature chamber at -4 ° C. and allowed to stand for 40 minutes for temperature equilibration. 20 mL of a commercially available triiron tetroxide nanoparticles / collagen mixed solution having a temperature of -4 ° C and ice particles having a size of 425 μm to 500 μm prepared in Example 1 and having a temperature balanced at -4 ° C were mixed at 7: 3. The mixture was mixed in a low temperature chamber at -4 ° C. in a ratio of (weight g to volume mL). The ice particles were stirred well so as to be uniformly dispersed in a commercially available triiron tetroxide nanoparticles / collagen mixed solution. The mixture was frozen by allowing it to stand at a low temperature of −20 ° C. for 12 hours and then at a low temperature of −80 ° C. for 4 hours. Next, through the same steps of freeze-drying, washing, cross-linking, blocking treatment, and freezing as in Example 1, a commercially available cross-linked composite porous material of triiron tetroxide nanoparticles / collagen using ice fine particles was prepared. did.

作製した氷微粒子を用いた場合の市販の四酸化三鉄ナノ粒子/コラーゲンの架橋複合多孔質材料の構造を走査電子顕微鏡で観察した。その走査電子顕微鏡写真を図10に示す。氷微粒子を用いた場合の市販の四酸化三鉄ナノ粒子/コラーゲンの架橋複合多孔質材料は、氷微粒子のサイズを反映した球状の空孔構造及び球状の空孔を連通する空隙からなる多孔質構造を有し、空孔壁面では四酸化三鉄ナノ粒子が観察された。 The structure of a commercially available crosslinked composite porous material of triiron tetroxide nanoparticles / collagen when the prepared ice particles were used was observed with a scanning electron microscope. The scanning electron micrograph is shown in FIG. The commercially available crosslinked composite porous material of triiron tetroxide nanoparticles / collagen when using ice fine particles is a porous structure consisting of a spherical pore structure reflecting the size of the ice fine particles and voids communicating with the spherical pores. It has a structure, and triiron tetroxide nanoparticles were observed on the wall surface of the pores.

[実施例11]
本実施例では、クエン酸修飾四酸化三鉄ナノ粒子/ゼラチン架橋複合多孔質材料の光熱効果を調べた。実施例1で作製した複合多孔質材料を細胞培養用培地に浸漬し、波長805nm、出力密度1.6Wcm−2の近赤外レーザー光を照射した。
[Example 11]
In this example, the photothermal effect of the citrate-modified triiron tetroxide nanoparticles / gelatin crosslinked porous material was investigated. The composite porous material prepared in Example 1 was immersed in a cell culture medium and irradiated with near-infrared laser light having a wavelength of 805 nm and an output density of 1.6 Wcm-2.

照射時間と複合多孔質材料の温度との関係を図11に示す。前記複合多孔質材料の温度は近赤外レーザー光の照射によって上昇し、がんの温熱療法で必要とされる温度である42.5℃以上に加熱することができた。さらに、前記複合多孔質材料におけるクエン酸修飾四酸化三鉄ナノ粒子の含率が増加するにつれて、温度の上昇速度が増加した。これに対して、クエン酸修飾四酸化三鉄ナノ粒子と複合化していない架橋ゼラチン多孔質材料では、温度はほとんど上昇しなかった。以上のことから、クエン酸修飾四酸化三鉄ナノ粒子/ゼラチン架橋複合多孔質材料の光熱効果が確認された。生体内で前記複合多孔質材料を加熱する方法として近赤外レーザー光を用いることは可能なので、本発明の複合多孔質材料はがんの温熱療法に好適である。 The relationship between the irradiation time and the temperature of the composite porous material is shown in FIG. The temperature of the composite porous material was raised by irradiation with near-infrared laser light, and could be heated to 42.5 ° C. or higher, which is the temperature required for hyperthermia of cancer. Furthermore, as the content of the citrate-modified triiron tetroxide nanoparticles in the composite porous material increased, the rate of temperature rise increased. On the other hand, in the crosslinked gelatin porous material not composited with the citrate-modified triiron tetroxide nanoparticles, the temperature hardly increased. From the above, the photothermal effect of the citric acid-modified triiron tetroxide nanoparticles / gelatin crosslinked porous material was confirmed. Since it is possible to use near-infrared laser light as a method for heating the composite porous material in a living body, the composite porous material of the present invention is suitable for hyperthermia for cancer.

なお、磁性体のナノ粒子に交流磁場を印加することでもこれらのナノ粒子を発熱させることができることは良く知られている。従って、本実施例において近赤外レーザー光照射に代えて交流磁場を印加しても、その磁場の強さを調節することによって図11に示したものと同様な結果を得ることができること
は明らかである。
It is well known that these nanoparticles can also generate heat by applying an alternating magnetic field to the nanoparticles of a magnetic material. Therefore, it is clear that even if an alternating magnetic field is applied instead of the near-infrared laser light irradiation in this embodiment, the same result as that shown in FIG. 11 can be obtained by adjusting the strength of the magnetic field. Is.

特許第5031979号Patent No. 5031979 特許第5321772号Patent No. 5321772

Shih-Hsiang Liao et.al., International Journal of Nanomedicine, 10 3315-3328 (2015).Shih-Hsiang Liao et.al., International Journal of Nanomedicine, 10 3315-3328 (2015).

Claims (8)

生体吸収性高分子を含む多孔質体と、
前記多孔質体の空孔表面に形成された、外部刺激で発熱するナノ粒子と、を含
孔径が1〜4000μmの範囲であり、
がん組織の切除部位への移植、又は、がん細胞の被覆に用いられる、複合多孔質材料。
Porous bodies containing bioabsorbable polymers and
The formed pores surface of the porous body, seen containing nanoparticles which generates heat by an external stimulus, and
The pore diameter is in the range of 1 to 4000 μm.
A composite porous material used for transplantation of cancer tissue to the excision site or coating of cancer cells.
前記ナノ粒子は磁性ナノ粒子である、請求項1に記載の複合多孔質材料。 The composite porous material according to claim 1, wherein the nanoparticles are magnetic nanoparticles. 前記磁性ナノ粒子は四酸化三鉄ナノ粒子または三酸化二鉄ナノ粒子である、請求項2に記載の複合多孔質材料。 The composite porous material according to claim 2, wherein the magnetic nanoparticles are triiron tetroxide nanoparticles or diiron trioxide nanoparticles. 前記ナノ粒子の粒径が1nmから1000nmの範囲である、請求項1から3の何れかに記載の複合多孔質材料。 The composite porous material according to any one of claims 1 to 3, wherein the nanoparticles have a particle size in the range of 1 nm to 1000 nm. 前記ナノ粒子が、クエン酸、ポリビニルアルコール、ポリエチレングリコール、ポリアクリル酸、ポリリジン、ポリグルタミン酸、ポリエチレンイミン、アルブミン、及び、ゼラチンからなる群より選択される少なくとも1種の分子により表面修飾されている、請求項1から4の何れかに記載の複合多孔質材料。 The nanoparticles are surface-modified with at least one molecule selected from the group consisting of citric acid, polyvinyl alcohol, polyethylene glycol, polyacrylic acid, polylysine, polyglutamic acid, polyethyleneimine, albumin, and gelatin. The composite porous material according to any one of claims 1 to 4. ナノ粒子と生体吸収性高分子との混合物から多孔質体を作製する、請求項1から5の何れかに記載の複合多孔質材料の製造方法。 The method for producing a composite porous material according to any one of claims 1 to 5, wherein a porous body is prepared from a mixture of nanoparticles and a bioabsorbable polymer. 前記多孔質体の形成に当たって空孔形成剤を使用する、請求項に記載の複合多孔質材料の製造方法。 The method for producing a composite porous material according to claim 6 , wherein a pore-forming agent is used to form the porous body. 前記空孔形成剤は氷である、請求項に記載の複合多孔質材料の製造方法。
The method for producing a composite porous material according to claim 7 , wherein the pore-forming agent is ice.
JP2016102976A 2016-05-24 2016-05-24 Porous material in which nanoparticles are composited and its manufacturing method Active JP6861960B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016102976A JP6861960B2 (en) 2016-05-24 2016-05-24 Porous material in which nanoparticles are composited and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016102976A JP6861960B2 (en) 2016-05-24 2016-05-24 Porous material in which nanoparticles are composited and its manufacturing method

Publications (2)

Publication Number Publication Date
JP2017210412A JP2017210412A (en) 2017-11-30
JP6861960B2 true JP6861960B2 (en) 2021-04-21

Family

ID=60474424

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016102976A Active JP6861960B2 (en) 2016-05-24 2016-05-24 Porous material in which nanoparticles are composited and its manufacturing method

Country Status (1)

Country Link
JP (1) JP6861960B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109928376A (en) * 2018-11-07 2019-06-25 贵州唯特高新能源科技有限公司 A kind of preparation method of the high-pressure solid LiFePO4 of metal ion mixing
CN112044460B (en) * 2020-08-05 2022-11-08 太原理工大学 Method for enhancing graphite-phase carbon nitride mineralization tetracycline antibiotics

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005137973A (en) * 2003-11-04 2005-06-02 Futaba Shoji Kk Magnetic adsorbent, its manufacturing method and water treatment method
JP5154785B2 (en) * 2006-11-30 2013-02-27 国立大学法人東京工業大学 Apatite-coated magnetic nanoparticles with high biocompatibility

Also Published As

Publication number Publication date
JP2017210412A (en) 2017-11-30

Similar Documents

Publication Publication Date Title
Wang et al. Cryogenic 3D printing of porous scaffolds for in situ delivery of 2D black phosphorus nanosheets, doxorubicin hydrochloride and osteogenic peptide for treating tumor resection-induced bone defects
Gao et al. Magnetic hydrogel with optimally adaptive functions for breast cancer recurrence prevention
Saveleva et al. Hybrid PCL/CaCO3 scaffolds with capabilities of carrying biologically active molecules: Synthesis, loading and in vivo applications
Xue et al. AMF responsive DOX-loaded magnetic microspheres: transmembrane drug release mechanism and multimodality postsurgical treatment of breast cancer
Liu et al. A novel trans-lymphatic drug delivery system: implantable gelatin sponge impregnated with PLGA–paclitaxel microspheres
Zhang et al. A multifunctional antibacterial coating on bone implants for osteosarcoma therapy and enhanced osteointegration
US6562374B1 (en) Biodegradable porous polymer scaffolds for tissue engineering prepared from an effervescent mixture and its preparation
JP2022084312A (en) Composite porous material formed of black phosphorous nano-sheet and bioabsorbable polymer, and method for producing the same
CN102065915B (en) Medical composition and medical kit
WO2021189192A1 (en) Bone tissue engineering scaffold having gradually antibacterial and bone regeneration promoting functions, manufacturing method for scaffold, and applications thereof
CN110215438B (en) Preparation method and application of mesoporous silicon nanoparticles carrying anthracyclines and photosensitizers
JP6914487B2 (en) Composite porous material of nanoparticles for cancer hyperthermia and bioabsorbable polymer and its manufacturing method
US20070092557A1 (en) Method of preparing biodegradable dual pore polymer scaffolds for tissue engineering
Ye et al. Phase-change composite filled natural nanotubes in hydrogel promote wound healing under photothermally triggered drug release
JP6861960B2 (en) Porous material in which nanoparticles are composited and its manufacturing method
Piras et al. Self-assembled low-molecular-weight gelator injectable microgel beads for delivery of bioactive agents
Hu et al. Engineering BPQDs/PLGA nanospheres-integrated wood hydrogel bionic scaffold for combinatory bone repair and osteolytic tumor therapy
Chauhan et al. Comprehensive evaluation of degradable and cost-effective plasmonic nanoshells for localized photothermolysis of cancer cells
JP5902112B2 (en) Bone tissue repair material manufacturing method
Qi et al. Injectable and self-healing nanocomposite hydrogel loading needle-like nano-hydroxyapatite and graphene oxide for synergistic tumour proliferation inhibition and photothermal therapy
CN113041402A (en) Double-function support with anti-tumor and tissue defect repairing function and preparation method thereof
CN111481737A (en) Magnetic temperature-sensitive hydrogel for near-infrared light-controlled release of nitric oxide, and preparation and application thereof
Pan et al. Mesoporous porphyrinic metal-organic framework nanoparticles/3D nanofibrous scaffold as a versatile platform for bone tumor therapy
Li et al. Colon cancer exosome-derived biomimetic nanoplatform for curcumin-mediated sonodynamic therapy and calcium overload
Zheng et al. Photothermal effective CeO2NPs combined in thermosensitive hydrogels with enhanced antibacterial, antioxidant and vascularization performance to accelerate infected diabetic wound healing

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190401

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200407

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200520

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201013

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210323

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210323

R150 Certificate of patent or registration of utility model

Ref document number: 6861960

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210618

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250