KR102235549B1 - Novel bio-conjugation kit using bifunctional linker and Cys-tagged SpyTag/Catcher for ADC - Google Patents

Novel bio-conjugation kit using bifunctional linker and Cys-tagged SpyTag/Catcher for ADC Download PDF

Info

Publication number
KR102235549B1
KR102235549B1 KR1020190131172A KR20190131172A KR102235549B1 KR 102235549 B1 KR102235549 B1 KR 102235549B1 KR 1020190131172 A KR1020190131172 A KR 1020190131172A KR 20190131172 A KR20190131172 A KR 20190131172A KR 102235549 B1 KR102235549 B1 KR 102235549B1
Authority
KR
South Korea
Prior art keywords
tagged
cys
conjugation
spycatcher
spytag
Prior art date
Application number
KR1020190131172A
Other languages
Korean (ko)
Inventor
권찬호
김재훈
이병섭
Original Assignee
주식회사 바이오맥스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 바이오맥스 filed Critical 주식회사 바이오맥스
Priority to KR1020190131172A priority Critical patent/KR102235549B1/en
Application granted granted Critical
Publication of KR102235549B1 publication Critical patent/KR102235549B1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/68Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment
    • A61K47/6889Conjugates wherein the antibody being the modifying agent and wherein the linker, binder or spacer confers particular properties to the conjugates, e.g. peptidic enzyme-labile linkers or acid-labile linkers, providing for an acid-labile immuno conjugate wherein the drug may be released from its antibody conjugated part in an acidic, e.g. tumoural or environment
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/62Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being a protein, peptide or polyamino acid
    • A61K47/65Peptidic linkers, binders or spacers, e.g. peptidic enzyme-labile linkers

Abstract

Disclosed is a novel bio-conjugation kit having a more stable and higher conjugation efficiency that addresses the disadvantages of an existing chemical conjugation method and a post-translational conjugation method as a linker for stable conjugation of an antibody and a drug in the development of ADC. The present invention provides an antibody-drug conjugation kit for forming antibody-drug conjugates (ADC), comprising: a cys-tagged SpyTag oligopeptide; cys-tagged SpyCatcher protein; and a bifunctional cross-linker conjugated to a thiol group of cysteine of the SpyTag or the SpyCatcher.

Description

항체-약물 복합체 형성을 위한 이관능성 링커와 시스테인이 태그된 스파이태그/캐쳐를 이용한 고효율 접합 키트{Novel bio-conjugation kit using bifunctional linker and Cys-tagged SpyTag/Catcher for ADC}High-efficiency conjugation kit using bifunctional linker and cysteine-tagged spy tag/catcher for antibody-drug complex formation {Novel bio-conjugation kit using bifunctional linker and Cys-tagged SpyTag/Catcher for ADC}

본 발명은 항체-약물 복합체 형성을 위한 접합 키트에 관한 것으로, 보다 상세하게는 고효율로 항체-약물 복합체 형성이 가능한 접합 키트에 관한 것이다.The present invention relates to a conjugation kit for forming an antibody-drug complex, and more particularly, to a conjugation kit capable of forming an antibody-drug complex with high efficiency.

항체-약물 복합체(Antibody-drug conjugates; ADC)는 가장 빠르게 성장하고 있는 제약 분야로서, 2000년대 이전 개발된 1세대 ADC(first-generation ADC)에서 발전하여 현재 3세대 ADC(third-generation ADC)로 발전해가고 있다.Antibody-drug conjugates (ADCs) are the fastest-growing pharmaceutical field, developed from first-generation ADCs (ADCs) developed before the 2000s and now into third-generation ADCs (third-generation ADCs). It is developing.

다국적 제약사들은 기존 약물들의 특허권이 만료됨에 따라 새로운 신약 개발과 함께 기존 치료용 단백질들을 개선한 개량생물의약품인 바이오베터(biobetter) 개발을 활발히 진행하고 있다.Multinational pharmaceutical companies are actively developing biobetters, which are improved biologics that improve existing therapeutic proteins along with the development of new drugs as the patent rights of existing drugs have expired.

체내안정성을 개선하기 위한 바이오베터의 기술로는 당쇄부가(Glycosylation), 페길레이션(PEGylation), 단백질 융합, 아미노산 치환, Fc 엔지니어링, 친화도 성숙(Affinity Maturation), 항체 절편, ADC, 이중표적 항체 기술 등이 있다.Biobetter technology to improve stability in the body includes sugar chain addition (Glycosylation), PEGylation (PEGylation), protein fusion, amino acid substitution, Fc engineering, affinity maturation, antibody fragmentation, ADC, dual target antibody technology. Etc.

이와 같은 기술들 중 ADC 기술을 적용한 항체의약품 바이오베터가 활발히 개발 중이며, Roche사의 Kadcyla는 2013년 FDA 승인을 받은 최초의 ADC 암치료제로서 전이성 유방암에 특이적으로 결합하는 항체에 세포독성물질을 연결자를 이용해 연결하여 암세포를 죽이는 치료제로 개발되었다.Among these technologies, an antibody drug biobetter applying ADC technology is being actively developed, and Roche's Kadcyla is the first ADC cancer treatment that was approved by the FDA in 2013, and is a linker of cytotoxic substances to antibodies that specifically bind to metastatic breast cancer. It was developed as a therapeutic agent that kills cancer cells by connecting them.

이러한 ADC는 차세대 치료제로 그 우수성이 입증되고 있으며, 향후 제약사들의 새로운 치료제 개발과 기존 약물의 효능을 증가시키는 데 적용되는 추세이다. 초기 ADC는 항체와 약물의 단순 접합을 이용하여 일차원적인 표적치료제로서 개발되었다. 이후 2세대 ADC의 개발은 높은 세포독성 약물의 접합(higher levels of cytotoxic drug conjugation), 낮은 수준의 자가 작동 항체(lower levels of naked antibodies), 높은 안정성의 연결자를 이용한 약물과 항체의 접합(more-stable linkers between the drug and antibody)으로 이루어졌다. 최근의 3세대 ADC의 개발 목표는 2세대 ADC보다 세포독성 약물을 표적에 효과적으로 전달하기 위한 방향으로 가고 있으며, 이를 위해서는 항체와 약물의 효과적이며 안정적인 접합을 위한 최적의 연결자(linker)의 연구가 필요하다.These ADCs are proving their excellence as a next-generation treatment, and are being applied to the development of new treatments by pharmaceutical companies and to increase the efficacy of existing drugs in the future. Early ADCs were developed as a one-dimensional target therapy using simple conjugation of antibodies and drugs. Since then, the development of second-generation ADCs has led to higher levels of cytotoxic drug conjugation, lower levels of naked antibodies, and drug-antibody conjugation using linkers of high stability. stable linkers between the drug and antibody). The recent development goal of the 3rd generation ADC is in the direction of more effective delivery of cytotoxic drugs to the target than the 2nd generation ADC, and for this, it is necessary to study the optimal linker for effective and stable conjugation of antibodies and drugs. Do.

기존 ADC의 항체와 합성약물, 독소, 단백질 치료제 등을 접합하는 방법에는 화학적 접합(Chemical linking system), 유전적 접합(Genetical linking system) 및 번역 후 접합(Post-translational linking system) 방식이 있다.Methods of conjugating conventional ADC antibodies with synthetic drugs, toxins, and protein therapeutics include chemical linking systems, genetic linking systems, and post-translational linking systems.

화학적 접합 기술은 다양한 작용기(amino-, thiol-, aldehyde-, carboxyl-, alkyl- 등)에 대해 화학적 접합 반응에 의해서 화학적 접합자를 이용하여 표적 접합체와 공유결합을 형성하는 기술로, 이관능성(bifunctional) 작용기의 도입으로 항체와 효소와 같은 단백질을 비롯해서 비오틴(biotin), 형광표지물질과 같은 다양한 표지 접합자에 대해 접합할 수 있어서 상용화된 접합 키트 및 관련 시약으로 개발되어 다양한 분야에서 활용되고 있다.Chemical conjugation technology is a technology that forms a covalent bond with a target conjugate using a chemical conjugate through a chemical conjugation reaction for various functional groups (amino-, thiol-, aldehyde-, carboxyl-, alkyl-, etc.). ) With the introduction of functional groups, it can be conjugated to proteins such as antibodies and enzymes, as well as to various label conjugates such as biotin and fluorescent labeling materials, and has been developed as a commercialized conjugation kit and related reagents, and is used in various fields.

번역 후 접합 기술의 경우 그람 양성 병원균인 스타필로코쿠스 아우레우스(Staphylococcus aureus), 코리네박테리움 디프테리애(Corynebacterium diphtheriae)와 스트렙토코쿠스 뉴모니애(Streptococcus pneumoniae)의 세포외 단백질에 의한 번역 후 접합(Post-translational bio-conjugation)을 위한 이소펩타이드(Isopeptide) 결합 형성이 발견되었고, 이를 이용해 두 개의 단백질을 펩타이드 공유 결합으로 연결하여 새로운 융합 단백질을 만드는 연구가 이루어지고 있고, 최근 스트렙토코쿠스 피오제네스(Streptococcus pyogenes)의 세포외 단백질인 FbaB(fibronectin adhesion protein)에 대한 연구에서 CnaB2 도메인이 발견되었고 이 도메인에 의한 이소펩타이드 결합 형성 기작이 밝혀졌다고, 또한, 최근에는 스트렙토코쿠스 뉴모니애에서 유사한 이소펩타이드 결합을 형성하는 도메인이 발견되었다(도 1 참조). SpyTag 태깅과 SpyCatcher 태깅에 의해서 번역 후에 접합이 도 1과 같이 매우 빠르고 안정적으로 별도의 효소처리 없이 안정적인 펩타이드 결합을 높은 접합율로 형성할 수 있다.In the case of post-translational conjugation, Gram-positive pathogens Staphylococcus aureus , Corynebacterium diphtheriae , and Streptococcus pneumoniae were induced by extracellular proteins. The formation of isopeptide bonds for post-translational bio-conjugation was discovered, and research is being conducted to create a new fusion protein by linking two proteins by covalent peptide bonds. In the study of fibronectin adhesion protein (FbaB), an extracellular protein of Streptococcus pyogenes , the CnaB2 domain was discovered and the mechanism of formation of isopeptide bonds by this domain was revealed.In addition, recently, Streptococcus pneumoniae A domain forming a similar iso-peptide bond was found in (see Fig. 1). By the SpyTag tagging and SpyCatcher tagging, the conjugation after translation is very fast and stable as shown in FIG. 1, and a stable peptide bond can be formed at a high conjugation rate without separate enzyme treatment.

이러한 기술을 이용한 ADC를 위한 접합 키트와 시약들은 상용화되어 제품 판매되고 있는데, 이들 제품들은 접합 반응의 안정성, 효율성, 적용 접합대상에 접합할 수 있는 범용성이 낮아 이를 해결하기 위한 다양한 연구가 진행중이다.Conjugation kits and reagents for ADCs using this technology are commercially available and sold. These products have low stability, efficiency, and versatility that can be conjugated to the application conjugation target, and various studies are underway to solve this problem.

현재 상용화된 제품들은 위의 접합 기술들 중 화학 접합 기술을 적용한 ADC를 만들기 위한 접합류와 시약류들이 판매되고 있다. 이러한 제품들 중 접합 키트는 상당히 제한적으로 사용할 수 있는 제품들이며, 다수는 이러한 접합 반응을 할 수 있는 시약이 판매되고 있다.Currently, commercially available products are on sale of conjugates and reagents for making ADCs to which chemical conjugation technology is applied among the above conjugation technologies. Among these products, conjugation kits are products that can be used in a very limited manner, and many of them are sold with reagents capable of such conjugation reactions.

화학 접합 방식은 항체와 접합하는 대상을 화학반응을 통해 공유결합으로 연결할 수 있는 연결자인 크로스-링커(Cross-linker)를 이용하여 접합하는 기술로, 화학 접합 방식을 이용한 접합 방식은 크로스-링커를 이용함에 있어 접합 효율이 낮은 단점을 갖고 있다. 낮은 접합 효율성으로 인해 크로스-링커를 항체의 몰농도에 20배에서 500배의 고농도로 처리하여 사용하고 있으며, 이로 인하여 생산하려는 ADC의 공정 중 접합 과정에서 많은 비용이 집중되고 있다.The chemical conjugation method is a technology that uses a cross-linker, a linker that can covalently connect the object to be conjugated with an antibody through a chemical reaction, and the conjugation method using the chemical conjugation method uses a cross-linker. In use, it has a disadvantage of low bonding efficiency. Due to the low conjugation efficiency, cross-linker is used by treating the cross-linker at a high concentration of 20 to 500 times the molar concentration of the antibody, and for this reason, a lot of cost is concentrated in the conjugation process of the ADC to be produced.

이러한 기존 크로스-링커가 갖는 낮은 접합 효율을 개선하기 위해 미국의 Solulink bioscience사에서는 새로운 화학 접합 방식을 이용한 키트와 접합 시약을 상용화하였다. 이 기술은 화학 접합 방식에서 높은 반응성과 안정성을 부여하기 위해서 새로운 작용기로 Hynic과 4FB를 화학적 연결자(chemical cross-linker)로 도입하여 기존 제품에 비해 높은 접합 효율(80%)을 보이는 접합 기술 이용하여 단백질 접합 키트와 접합을 위한 크로스-링커(cross-linker)를 제품화하였다.In order to improve the low conjugation efficiency of the existing cross-linker, Solulink Bioscience of the United States has commercialized a kit and conjugation reagent using a new chemical conjugation method. This technology uses a bonding technology that shows high bonding efficiency (80%) compared to existing products by introducing Hynic and 4FB as a chemical cross-linker as a new functional group in order to give high reactivity and stability in the chemical bonding method. A protein conjugation kit and a cross-linker for conjugation were commercialized.

한편, 번역 후 접합 기술을 이용하기 위해서는 항체를 재조합 단백질 기술을 이용하여 하이브리도마 세포(hybridoma cell) 또는 미생물에서 발현시켜 만들어 낼 때 SpyTag 또는 SpyCatcher를 태깅(tagging)하여 발현시킨 후 연결하려는 접합물도 재조합 단백질 기술을 이용하여 항체에 태깅한 SpyTag 또는 SpyCatcher와 이소펩타이드 결합할 수 있는 SpyTag 또는 SpyCatcher를 상보적으로 태깅 후 발현하여 혼합하여 접합한다. 이러한 과정을 거친 후 접합해야 하는 이유 때문에 기존의 항체 및 접합물을 그대로 사용할 수 없는 단점이 있다. 또한, 접합을 할 수 있는 대상이 화학적 합성을 통해 얻어지는 약물 또는 독소가 아닌 생체분자인 단백질과 펩타이드 만을 이용할 수 있어 범용성이 낮다.On the other hand, in order to use the post-translational conjugation technology, when the antibody is expressed in hybridoma cells or microorganisms using recombinant protein technology, the conjugates to be linked are also expressed by tagging SpyTag or SpyCatcher. Using recombinant protein technology, SpyTag or SpyCatcher tagged to the antibody and SpyTag or SpyCatcher that can bind isopeptides are complementarily tagged, expressed, mixed, and conjugated. There is a disadvantage in that the existing antibodies and conjugates cannot be used as they are because of the reason to be conjugated after passing through this process. In addition, the versatility is low because only proteins and peptides, which are biomolecules, not drugs or toxins obtained through chemical synthesis can be used for conjugation.

이러한 번역 후 접합 기술에 있어 최근 번역 후 접합 관련 시약 및 키트로서 Kerafast사에서는 단백질 커플링 시약(protein coupling reagents)을 상용화하여 판매하고 있다. 그러나, 접합하려는 생체물질을 재조합 단백질로 동시에 발현시켜 접합체를 생성해야 하므로 재조합 기술로 발현할 수 없는 고분자 생체물질이나 화학물질을 표적으로 접합할 수 없어 범용성이 낮은 문제가 있다.In the post-translational conjugation technology, Kerafast has recently commercialized and sold protein coupling reagents as reagents and kits related to post-translational conjugation. However, since a conjugate must be generated by simultaneously expressing a biomaterial to be conjugated as a recombinant protein, there is a problem of low versatility because a polymeric biomaterial or chemical material that cannot be expressed by recombinant technology cannot be conjugated as a target.

[선행특허문헌][Prior Patent Literature]

- 한국공개특허 제10-2015-0068942호(2015.06.22. 공개)-Korean Patent Application Publication No. 10-2015-0068942 (published on June 22, 2015)

- 한국공개특허 제10-2013-0138608호(2013.12.19. 공개)-Korean Patent Publication No. 10-2013-0138608 (published on December 19, 2013)

- 한국공개특허 제10-2014-0013417호(2014.02.05. 공개)-Korean Patent Application Publication No. 10-2014-0013417 (published on February 5, 2014)

- 미국공개특허 제2014/0171635호(2014.01.19. 공개)-US Patent Publication No. 2014/0171635 (published on January 19, 2014)

- 미국등록특허 제9,547,003호(2017.01.17. 등록)-U.S. Patent No. 9,547,003 (registered on January 17, 2017)

- 미국등록특허 제6,218,160호(2001.04.17. 등록)-U.S. Patent No. 6,218,160 (registered on April 17, 2001)

- 유럽공개특허 제2295407호(2011.03.16. 공개)-European Patent Publication No. 2295407 (published on March 16, 2011)

본 발명은 ADC의 개발에 있어 항체와 약물의 안정적인 접합을 위한 연결자로서, 기존의 화학적 접합 방식과 번역 후 접합 방식의 단점을 개선한 보다 안정적이며 높은 접합 효율을 갖는 새로운 접합 키트를 제공하고자 한다.The present invention is a linker for stable conjugation of an antibody and a drug in the development of an ADC, and an object of the present invention is to provide a new conjugation kit having a more stable and high conjugation efficiency that improves the disadvantages of the conventional chemical conjugation method and the post-translation conjugation method.

상기 과제를 해결하기 위하여 본 발명은, 항체-약물 복합체(Antibody-drug conjugates; ADC) 형성을 위한 항체 및 약물 간 접합 키트로서, 시스테인이 태그된(Cys-Tagged) 스파이태그(SpyTag) 올리고 펩타이드; 시스테인이 태그된(Cys-Tagged) 스파이캐쳐(SpyCatcher) 단백질; 및 상기 스파이태그 또는 상기 스파이캐쳐의 시스테인의 티올기에 접합되는 이관능성 링커(bifuctional cross-linker);를 포함하는 접합 키트를 제공한다.In order to solve the above problems, the present invention provides an antibody-drug conjugate kit for forming an antibody-drug conjugates (ADC), comprising: a cysteine-tagged (Cys-Tagged) spy tag (SpyTag) oligopeptide; Cysteine-tagged (Cys-Tagged) SpyCatcher protein; And a bifunctional linker conjugated to a thiol group of the cysteine of the spy tag or the spy catcher.

또한, 상기 시스테인이 태그된(Cys-Tagged) 스파이태그(SpyTag) 올리고 펩타이드는 서열번호 1의 아미노산 서열로 표시되는 것을 특징으로 하는 접합 키트를 제공한다.In addition, the cysteine-tagged (Cys-Tagged) SpyTag oligo peptide provides a conjugation kit, characterized in that the amino acid sequence of SEQ ID NO: 1.

또한, 상기 시스테인이 태그된(Cys-Tagged) 스파이캐쳐(SpyCatcher) 단백질은 서열번호 2의 아미노산 서열로 표시되는 것을 특징으로 하는 접합 키트를 제공한다.In addition, the cysteine-tagged (Cys-Tagged) SpyCatcher protein provides a conjugation kit, characterized in that it is represented by the amino acid sequence of SEQ ID NO: 2.

또한, 상기 이관능성 링커(bifuctional cross-linker)는 일 말단기가 말레이미드(maleimide)기인 헤테로 이관능성 링커인 것을 특징으로 하는 접합 키트를 제공한다.In addition, the bifunctional linker (bifuctional cross-linker) provides a conjugation kit, characterized in that one end group is a heterobifunctional linker having a maleimide group.

본 발명은 항체-약물 복합체(Antibody-drug conjugates; ADC) 형성을 위한 항체 및 약물 간 접합 키트로서, 시스테인이 태그된(Cys-Tagged) 스파이태그(SpyTag)/스파이캐쳐(SpyCatcher 및 이관능성 링커(bifuctional cross-linker)를 포함함으로써, 다양한 화학 접합 방식을 번역 후 접합 단백질에 도입하여 보다 안정적이며 높은 접합 효율(90% 이상)을 가지며, 기존의 낮은 범용성의 문제를 극복하고, 다양한 물질을 접합할 수 있는 범용성이 높은 접합 키트를 제공할 수 있다.The present invention is a conjugation kit between antibodies and drugs for the formation of antibody-drug conjugates (ADC), and a cysteine-tagged (Cys-Tagged) SpyTag/SpyCatcher and a bifunctional linker ( bifuctional cross-linker), by introducing various chemical conjugation methods into the conjugated protein after translation, has a more stable and high conjugation efficiency (over 90%), overcomes the problem of low versatility and conjugates various materials. A bonding kit with high versatility can be provided.

도 1은 종래 CnaB2 도메인에서 발견된 번역 후 접합에 의한 isopeptide 형성 기작 원리와 그 활용 가능성에 대해 설명하는 모식도,
도 2는 본 발명에 따른 번역 후 접합 기술과 화학적 접합 기술을 복합한 ADC를 위한 접합 키트를 설명하는 모식도,
도 3은 본 발명에서 SpyTag의 아미노산 서열과 유전자 변형을 통한 Cysteine을 태깅한 SpyTag의 아미노산 서열을 설명하는 모식도,
도 4는 본 발명에서 SpyCatcher의 아미노산 서열과 유전자 변형을 통한 Cysteine을 태깅한 SpyCatcher의 아미노산 서열을 설명하는 모식도,
도 5는 항체의 접합을 위한 목표 부위 중에서 본 발명에 따른 접합 키트의 항체 접합을 위한 방법을 설명하는 모식도,
도 6은 본 발명에서 Cys 태깅 SpyTag과 SpyCatcher에 Maleimide-hydrazine bifunctional cross-linker를 접합하는 과정을 설명하는 모식도,
도 7은 본 발명에 따른 접합 키트 중에서 SpyTag-Hyd를 이용하여 항체의 당사슬에 접합하는 과정을 설명하는 모식도,
도 8은 본 발명에 따른 접합 키트의 접합율 비교 성능 시험 방법을 설명하는 모식도,
도 9는 본 발명에 따른 접합 키트를 이용한 암세포 표적 항체와 doxorubicin에 적용하여 생성된 ADC를 이용한 바이오시밀러 항체-복합체 형성 검증을 위한 시험 방법을 설명하는 모식도,
도 10은 본 발명의 실시예에서 Cys-tagged SpyCatcher 재조합 단백질을 E.coli에서 발현하기 위해 이용된 pETDuet vector를 설명하는 모식도,
도 11은 본 발명의 실시예에서 Cys-tagged SpyCatcher 재조합 단백질의 E. coli strain에 따른 발현 시험 결과를 나타낸 사진,
도 12는 본 발명의 실시예에서 Cys-tagged SpyCatcher 재조합 단백질의 배양 온도에 따른 발현 시험 결과를 나타낸 사진,
도 13은 본 발명의 실시예에서 Cys-tagged SpyCatcher 재조합 단백질의 IPTG 농도에 따른 발현 시험 결과를 나타낸 사진,
도 14는 본 발명의 실시예에서 FPLC/His affinity column을 이용한 재조합 Cys-tagged SpyCatcher의 정제 결과를 나타낸 사진,
도 15는 본 발명의 실시예에서 HPLC를 이용한 합성 Cys-tagged SpyTag의 순도 측정 결과를 나타낸 그래프,
도 16은 본 발명의 실시예에서 LC-MS를 이용한 Cys-tagged SpyTag의 분자량 분석 결과를 나타낸 그래프,
도 17은 본 발명의 실시예에서 화학연결자와 번역 후 접합 기술이 적용된 단백질 접합 시험 결과를 나타낸 사진.
1 is a schematic diagram explaining the principle of the mechanism of isopeptide formation by post-translational conjugation found in the conventional CnaB2 domain and its availability;
2 is a schematic diagram illustrating a conjugation kit for an ADC combining a post-translational conjugation technology and a chemical conjugation technology according to the present invention;
3 is a schematic diagram illustrating the amino acid sequence of SpyTag and the amino acid sequence of SpyTag tagged with Cysteine through genetic modification in the present invention.
4 is a schematic diagram illustrating the amino acid sequence of SpyCatcher and the amino acid sequence of SpyCatcher tagged Cysteine through genetic modification in the present invention,
5 is a schematic diagram illustrating a method for conjugating an antibody of a conjugation kit according to the present invention among target sites for conjugation of an antibody,
6 is a schematic diagram illustrating a process of bonding a maleimide-hydrazine bifunctional cross-linker to Cys tagging SpyTag and SpyCatcher in the present invention,
7 is a schematic diagram illustrating a process of conjugating to the oligosaccharide of an antibody using SpyTag-Hyd in the conjugation kit according to the present invention;
8 is a schematic diagram illustrating a bonding rate comparison performance test method of the bonding kit according to the present invention,
9 is a schematic diagram illustrating a test method for verifying formation of a biosimilar antibody-complex using an ADC generated by applying a cancer cell target antibody and doxorubicin using a conjugation kit according to the present invention;
10 is a schematic diagram illustrating the pETDuet vector used to express the Cys-tagged SpyCatcher recombinant protein in E.coli in the embodiment of the present invention,
11 is a photograph showing the results of the expression test according to the E. coli strain of the Cys-tagged SpyCatcher recombinant protein in the embodiment of the present invention,
12 is a photograph showing the expression test result according to the culture temperature of the Cys-tagged SpyCatcher recombinant protein in the embodiment of the present invention,
13 is a photograph showing the results of the expression test according to the IPTG concentration of the Cys-tagged SpyCatcher recombinant protein in the embodiment of the present invention,
14 is a photograph showing the purification result of a recombinant Cys-tagged SpyCatcher using FPLC/His affinity column in an embodiment of the present invention;
15 is a graph showing the purity measurement result of a synthetic Cys-tagged SpyTag using HPLC in an embodiment of the present invention;
16 is a graph showing the molecular weight analysis result of Cys-tagged SpyTag using LC-MS in an embodiment of the present invention;
17 is a photograph showing the result of a protein conjugation test to which a chemical linker and post-translational conjugation technology are applied in an embodiment of the present invention.

이하에서는 본 발명의 바람직한 실시예를 상세하게 설명한다. 본 발명을 설명함에 있어서 관련된 공지 기술에 대한 구체적인 설명이 본 발명의 요지를 흐리게 할 수 있다고 판단되는 경우 그 상세한 설명을 생략하기로 한다. 명세서 전체에서, 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한, 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있음을 의미한다.Hereinafter, a preferred embodiment of the present invention will be described in detail. In describing the present invention, when it is determined that a detailed description of a related known technology may obscure the subject matter of the present invention, a detailed description thereof will be omitted. Throughout the specification, when a part "includes" a certain component, it means that other components may be further included rather than excluding other components unless otherwise stated.

본 발명은 항체-약물 복합체(Antibody-drug conjugates; ADC) 형성을 위한 항체 및 약물 간 접합 키트로서, 시스테인이 태그된(Cys-Tagged) 스파이태그(SpyTag) 올리고 펩타이드; 시스테인이 태그된(Cys-Tagged) 스파이캐쳐(SpyCatcher) 단백질; 및 상기 스파이태그 또는 상기 스파이캐쳐의 시스테인의 티올기에 접합되는 이관능성 링커(bifuctional cross-linker);를 포함하는 접합 키트를 개시한다.The present invention is a conjugation kit between antibodies and drugs for the formation of antibody-drug conjugates (ADC), comprising: a cysteine-tagged (Cys-Tagged) spy tag (SpyTag) oligopeptide; Cysteine-tagged (Cys-Tagged) SpyCatcher protein; And a bifunctional linker conjugated to a thiol group of the cysteine of the spy tag or the spy catcher.

도 2는 본 발명에 따른 번역 후 접합 기술과 화학적 접합 기술을 복합한 ADC를 위한 접합 키트를 설명하는 모식도이다.2 is a conjugation kit for an ADC that combines a post-translational conjugation technology and a chemical conjugation technology according to the present invention. It is a schematic diagram to explain.

본 발명에 따른 ADC 형성을 위한 항체 및 약물 간 접합 키트는 번역 후 접합 기술과 화학적 접합 기술의 접목시킨 ADC를 위한 접합 키트로서, 번역 후 접합 기술을 이용하여 SpyTag와 SpyCatcher에 의한 높은 접합율을 구현하고, 화학적 접합 기술을 이용함으로써 다양한 화학적 접합자를 도입하여 다양한 표적 접합체와 접합할 수 있는 범용성을 높인 ADC를 위한 접합 키트이다.The antibody-to-drug conjugation kit for ADC formation according to the present invention is a conjugation kit for ADC that combines post-translational conjugation technology and chemical conjugation technology, and realizes high conjugation rate by SpyTag and SpyCatcher using post-translational conjugation technology. It is a conjugation kit for ADC with improved versatility that can be conjugated with various target conjugates by introducing various chemical conjugates by using chemical conjugation technology.

다양한 표적 접합체와의 범용성 향상을 위해 본 발명에서는 재조합 기술을 이용하여 SpyTag와 SpyCatcher에 시스테인(Cysteine)을 도입하여 Cys-Tagged SpyTag와 SpyCatcher를 제조하고, 여기에 자체 다양한 작용기를 가진 화학적 연결자를 도입함으로써 항체, 효소, 형광체, biotin 등과 같은 다양한 표지 접합체를 접합할 수 있는 범용성이 우수한 접합 키트를 제공할 수 있다.In order to improve the versatility with various target conjugates, in the present invention, Cysteine was introduced into SpyTag and SpyCatcher using recombinant technology to prepare Cys-Tagged SpyTag and SpyCatcher, and chemical linkers having their own various functional groups were introduced. It is possible to provide a conjugation kit having excellent versatility capable of conjugating various labeled conjugates such as antibodies, enzymes, phosphors, biotin, and the like.

전술한 바와 같이, 기존 접합 기술은 화학 접합 기술, 유전적 접합 기술, 번역 후 접합 기술 중 단 하나의 기술만을 이용하여 접합체를 만드는 방식을 이용하는 데 그쳐, 각 기술이 갖는 한계를 극복하고 이를 서로 보완하는 기술로서 두 가지 이상의 기술을 복합한 상용 기술 내지 제품은 전무한 상황이다. 또한, 상용 제품들의 경우 대부분 시약회사들이 접합을 위한 시약을 판매하거나 Cross-linker에 독소를 연결 후 판매하고 있고, 또한 다수의 회사는 접합 서비스를 제공하는 방식으로 이루어지고 있으나, 본 발명에 따른 접합 기술은 기존의 방식을 모두 사용하면서 단점을 줄이고 장점을 증강시킨 개념으로, 항체의 다양한 접합부위에 약물을 연결할 수 있으며, 또한 약물을 다양한 방식으로 연결할 수 있는 장점을 가진다. 이를 통해 본 발명은 기존의 Cross-linker를 이용한 화학 접합 방식의 단점인 낮은 접합 효율을 극복하기 위해 번역 후 접합 기술인 SpyTag & SpyCatcher를 이용한 접합 기술을 적용하여 높은 접합율을 갖는 ADC용 접합 키트를 제공할 수 있게 된다.As described above, the existing conjugation technology uses only one of chemical conjugation technology, genetic conjugation technology, and post-translational conjugation technology to create conjugates, thereby overcoming the limitations of each technology and complementing them. There is no commercial technology or product that combines two or more technologies as a technology to be used. In addition, in the case of commercial products, most reagent companies sell reagents for conjugation or sell after linking toxins to a cross-linker, and many companies provide conjugation services, but conjugation according to the present invention. The technology is a concept that reduces disadvantages and enhances advantages while using all of the existing methods, and has the advantage of being able to connect drugs to various conjugation sites of antibodies, and also to connect drugs in various ways. Through this, the present invention provides a bonding kit for ADC having a high bonding rate by applying a bonding technique using SpyTag & SpyCatcher, a post-translation bonding technique, in order to overcome the low bonding efficiency, which is a disadvantage of the conventional chemical bonding method using a cross-linker. You can do it.

본 발명에서 제공하고자 하는 번역 후 접합 기술과 화학적 접합 기술을 이용한 효과적인 생체분자 접합 키트는 SpyCatcher와 SpyTag를 이용한 번역 후 접합 기술을 적용함으로써 효율성을 높이고 다양한 Cross-linker를 이용하여 범용성을 높인 ADC를 위한 접합 키트로서, 접합 키트의 제품화 시 번역 후 접합 기술 적용을 위한 생체 접합자와 항체에 표지하기 위한 작용기를 가진 cross-linker를 자체 제조할 수 있는 생산 공정을 구축하여, 접합 키트의 안정적 생산 뿐 아니라 각각의 반제품의 제품화를 통한 접합 관련 시약의 제품화가 가능하다.Effective biomolecule conjugation kit using post-translational conjugation technology and chemical conjugation technology to be provided in the present invention is for ADC that increases efficiency by applying post-translational conjugation technology using SpyCatcher and SpyTag, and increases versatility by using various cross-linkers. As a conjugation kit, a production process capable of self-manufacturing bioconjugates for application of post-translational conjugation technology and a cross-linker with functional groups for labeling antibodies when commercialization of conjugation kits is established, as well as stable production of conjugation kits, respectively. It is possible to commercialize conjugation-related reagents through commercialization of semi-finished products.

이하, 본 발명에 따른 접합 키트의 세부 구성에 대해 구체적으로 설명한다.Hereinafter, a detailed configuration of the bonding kit according to the present invention will be described in detail.

재조합 기술을 이용한 Cys-tagged SpyTag와 SpyCatcher의 제조Production of Cys-tagged SpyTag and SpyCatcher using recombinant technology

본 발명에서는 번역 후 접합 기술을 이용한 접합 키트의 제공을 위해 SpyCatcher와 SpyTag를 유전자 조작기술을 이용한다. 즉, SpyCatcher 또는 SpyTag의 말단에 cross-linker와 공유결합할 수 있는 작용기를 갖도록 thiol기를 갖는 cysteine을 태깅하여 대장균에서 대량생산할 수 있도록 재조합 기술을 이용하여 고발현시켜 고순도로 정제 제조 생산할 수 있도록 한다.In the present invention To provide a splicing kit using post-translational splicing technology, SpyCatcher and SpyTag are genetically engineered. That is, by tagging cysteine having a thiol group at the end of SpyCatcher or SpyTag to have a functional group that can covalently bond with a cross-linker, it is highly expressed using recombinant technology so that it can be mass-produced in E.

SpyTag(13개의 amino acids, 1.5 kDa) 유전자 서열은 공지되어 있으며, 유전자 변형을 통해 SpyTag에 cysteine을 갖는 태깅 peptide를 넣어서 재조합 기술을 이용하여 대장균에서 대량생산하여 고발현 및 고순도로 제조 생산할 수 있으며, 본 발명에서 고발현 및 고순도의 제조 생산이 확인된 Cys-Tagged SpyTag는 도 3에 나타낸 바와 같이, 서열번호 1의 아미노산 서열로 표시되는 올리고 펩타이드이다.The gene sequence of SpyTag (13 amino acids, 1.5 kDa) is known, and it can be mass-produced in E. coli using recombinant technology by inserting a tagging peptide with cysteine into SpyTag through genetic modification, and produced with high expression and high purity. Cys-Tagged SpyTag, which has been confirmed to produce high expression and high purity in the present invention, is an oligopeptide represented by the amino acid sequence of SEQ ID NO: 1, as shown in FIG. 3.

SpyCatcher(138개의 amino acids, 15 kDa) 유전자 서열 역시 공지되어 있으며, 유전자 변형을 통해 SpyCatcher에 Tyrosine(Y)을 포인트 유전자 변형을 통해 Cysteine(C)으로 변형시켜 Cysteine이 태깅된 SpyCatcher를 재조합 기술을 이용하여 대장균에서 대량생산하여 고발현 및 고순도로 제조 생산할 수 있으며, 본 발명에서 고발현 및 고순도의 제조 생산이 확인된 Cys-Tagged SpyCatcher는 도 4에 나타낸 바와 같이, 서열번호 2의 아미노산 서열로 표시되는 단백질이다.SpyCatcher (138 amino acids, 15 kDa) gene sequence is also known, and by genetic modification, Tyrosine (Y) in SpyCatcher is transformed into Cysteine (C) through point genetic modification, and SpyCatcher tagged with Cysteine is modified using recombinant technology. Thus, it can be mass-produced in E. coli to be manufactured and produced with high expression and high purity, and Cys-Tagged SpyCatcher, which has been confirmed to produce high expression and high purity in the present invention, is represented by the amino acid sequence of SEQ ID NO: 2, as shown in FIG. It's a protein.

Cys-tagged SpyTag와 SpyCatcher의 고순도 제조 생산을 위해 이의 발현 조건을 최적화할 필요가 있으며, 이는 FPLC를 이용하여 affinity chromatogrpahy와 gel chromatography를 통해 단백질 고순도 정제 분리 시스템으로 순도 95% 이상의 Cys-tagged SpyTag와 SpyCatcher를 확보할 수 있다.Cys-tagged SpyTag and SpyCatcher need to optimize their expression conditions for high-purity manufacturing and production. This is a protein high-purity purification separation system through affinity chromatogrpahy and gel chromatography using FPLC. Cys-tagged SpyTag and SpyCatcher with a purity of 95% or more Can be secured.

화학 합성 반응을 통한 화학적 연결자(cross-linker)의 합성Synthesis of chemical cross-linkers through chemical synthesis reactions

본 발명에서 cross-linker는 당 업계에서 사용되는 공지의 cross-linker가 제한 없이 사용될 수 있으며, 참고로, 이하에서 화학 합성 반응 공정을 통해 spyCather와 SpyTag의 cysteine에 연결할 cross-linker를 제조 생산하는 방법을 소개하기로 한다.In the present invention, a cross-linker known in the art may be used without limitation, and for reference, a method for manufacturing and producing a cross-linker to be connected to the cysteine of spyCather and SpyTag through a chemical synthesis reaction process hereinafter Let me introduce you.

합성되는 cross-linker는 cysteine의 thiol기와 화학반응을 통해 공유결합을 할 수 있도록 maleimide 작용기를 갖도록 하는 것이 바람직하며, 또한, 항체에 공유결합으로 결합하기 위한 lysine의 amine- 기나 cysteine의 thol- 기를 목표로 한 NHS- 작용기를 갖는 bifuctional cross-linker나 항체의 당 사슬을 접합하기 위한 hydrazide- 기를 가진 bifuctional cross-linker로 합성하는 것이 바람직하다.It is preferable that the synthesized cross-linker has a maleimide functional group so that it can covalently bond with the thiol group of cysteine, and also aims the amine- group of lysine or the thol- group of cysteine to covalently bond to the antibody. It is preferable to synthesize a bifuctional cross-linker having a NHS- functional group or a bifuctional cross-linker having a hydrazide- group for conjugating the sugar chain of the antibody.

하기 반응식 1과 같이, cysteine의 thiol 작용기와 당사슬의 aldehyde 작용기를 각각 접합하기 위한 malemide-hydrazine cross-linker들을 다양한 길이와 절단 사이트 또는 용해도 증가를 위한 PEGylation linker를 도입한 다양한 bifunctional cross-linker로 제조할 수 있다.As shown in Scheme 1 below, malemide-hydrazine cross-linkers for conjugating each of the thiol functional groups of cysteine and the aldehyde functional groups of the sugar chains can be prepared with various bifunctional cross-linkers with various lengths and cleavage sites or PEGylation linkers for increasing solubility. I can.

[반응식 1][Scheme 1]

Figure 112019107697431-pat00001
Figure 112019107697431-pat00001

또한, 하기 반응식 2와 같이, cysteine의 thiol 작용기와 단백질의 amine 작용기를 각각 접합하기 위한 malemide-azide, NHS-alkyl 등의 cross-linker들을 다양한 길이와 절단 사이트 또는 용해도 증가를 위한 PEGylation linker를 도입한 다양한 bifunctional cross-linker로 제조할 수 있다.In addition, as shown in Scheme 2 below, cross-linkers such as malemide-azide and NHS-alkyl for conjugating the thiol functional group of cysteine and the amine functional group of the protein, respectively, are introduced into various lengths and cleavage sites or PEGylation linkers for increasing solubility. It can be manufactured with a variety of bifunctional cross-linkers.

[반응식 2][Scheme 2]

Figure 112019107697431-pat00002
Figure 112019107697431-pat00002

또한, 하기 반응식 3과 같이, cysteine의 thiol 작용기에 접합하고 streptavidin에 비공유적으로 접합할 수 있는 malemide-biotin의 cross-linker들을 다양한 길이와 절단 사이트 또는 용해도 증가를 위한 PEGylation linker를 도입한 다양한 bifunctional cross-linker로 제조할 수 있다.In addition, as shown in Scheme 3 below, cross-linkers of malemide-biotin, which can be conjugated to the thiol functional group of cysteine and non-covalently conjugated to streptavidin, are various bifunctional crosses with various lengths and cleavage sites or PEGylation linkers for increasing solubility. It can be manufactured with -linker.

[반응식 3][Scheme 3]

Figure 112019107697431-pat00003
Figure 112019107697431-pat00003

본 발명에서는 Bifunctional cross-linker의 고순도 제조 생산을 위해 각각의 합성 linker들의 화학 합성 반응 조건을 최적화하고, 이를 silica gel column을 통해 정제함으로써 순도 95% 이상의 합성 linker들을 확보할 수 있다.In the present invention, by optimizing the chemical synthesis reaction conditions of each synthetic linker for high-purity manufacturing production of a bifunctional cross-linker, and purifying it through a silica gel column, synthetic linkers having a purity of 95% or more can be secured.

번역 후 접합 기술과 화학적 접합 기술을 복합한 접합 키트Bonding kit that combines post-translational bonding technology and chemical bonding technology

본 발명에서는 재조합 기술로 확보한 Cys-SpyCatcher 및 Cys-SpyTag와, cross-linker를 최적으로 접합시키는 조건을 도출하고, 이를 통해 재조합 기술을 이용하여 제조된 Cys-tagged SpyTag와 SpyCatcher 및 다양한 화학적 연결자를 접합시킴으로써 새로운 높은 접합율과 범용성을 갖는 접합 키트를 제공하게 된다.In the present invention, conditions for optimally conjugating Cys-SpyCatcher and Cys-SpyTag secured by recombination technology and cross-linker are derived, and through this, Cys-tagged SpyTag and SpyCatcher prepared using recombinant technology and various chemical linkers are By bonding, a bonding kit having a new high bonding rate and versatility is provided.

이때, 화학적 접합자의 maleimide기를 통한 안정적이고 효율적인 cysteine의 thiol기와의 반응을 위한 온도, pH, 두 반응물의 당량 등의 최적화 공정 조건을 도출하고 보다 높고 안정적인 접합 반응을 통해 제조되는 새로운 복합 접합 키트를 제시할 수 있다.At this time, the optimal process conditions such as temperature, pH, and equivalent weight of the two reactants for the stable and efficient reaction of cysteine with the thiol group through the maleimide group of the chemical conjugate are derived, and a new complex bonding kit manufactured through a higher and more stable conjugation reaction is presented. can do.

한편, 항체에 접합하기 위한 목표 부위와 접합 방법은 예컨대, 도 5에 나타낸 바와 같이 다양한 방법이 제시될 수 있다. 이 중에서 항체 접합 효율성과 범용성 향상 측면에서 항체의 당사슬을 접합하기 위해 당사슬의 aldehyde기에 접합할 수 있는 hydrazine-tagged SpyTag/Spycatcher가 이용될 수 있다(도 6 및 도 7 참조).On the other hand, as the target site for conjugation to the antibody and a conjugation method, for example, as shown in FIG. 5, various methods may be presented. Among them, a hydrazine-tagged SpyTag/Spycatcher capable of conjugating to an aldehyde group of the oligosaccharide chain may be used in order to conjugate the oligosaccharide of the antibody in terms of improving antibody conjugation efficiency and versatility (see FIGS. 6 and 7 ).

또한, 항체의 lysine의 amine기와 cysteine의 thiol기에 접합하기 위한 azide- 기와 alkyl- 기를 이용한 click chemistry를 경유한 NHS(N-hydroxysuccinimide)기 또는 maleimide기를 갖는 NHS-tagged SpyTag/Spycatcher 또는 maleimide-tagged SpyTag/Spycatcher가 이용될 수 있고, 항체의 다양한 이미징 연구 및 다양한 연구적 활용을 위해 biotin- 기의 도입을 위한 biotin-tagged SpyTag/Spycatcher가 이용될 수 있다.In addition, NHS-tagged SpyTag/Spycatcher or maleimide-tagged SpyTag/ Spycatcher may be used, and biotin-tagged SpyTag/Spycatcher for introducing a biotin- group may be used for various imaging studies of antibodies and various research applications.

상기 방법으로 제조되는 다양한 linker가 접합된 Linker-SpyTag와 Linker-SpyCatcher를 FPLC를 이용하여 gel chromatography를 통해 순도 95% 이상을 가진 각각의 Linker-SpyTag와 Linker-SpyCatcher을 확보할 수 있다.Each Linker-SpyTag and Linker-SpyCatcher having a purity of 95% or more can be obtained through gel chromatography using FPLC with Linker-SpyTag and Linker-SpyCatcher to which various linkers prepared by the above method are conjugated.

접합 키트의 성능 검증 방법How to verify the performance of the bonding kit

본 발명에 따라 제조되는 접합 키트를 항체에 적용하여 접합율을 테스트함으로써 접합 키트의 성능을 검증할 수 있다(도 8 참조). 접합율은 SDS-PAGE를 통해 제조되는 접합 키트를 이용한 목표 항체와 접합체의 접합율을 하기 수학식 1에 따라 계산될 수 있다.The performance of the conjugation kit can be verified by testing the conjugation rate by applying the conjugation kit prepared according to the present invention to an antibody (see FIG. 8). The conjugation rate can be calculated according to Equation 1 below for the conjugation rate of the target antibody and the conjugate using a conjugation kit prepared through SDS-PAGE.

[수학식 1][Equation 1]

접합율(%) = 생성물 / 반응물 × 100Conjugation rate (%) = product / reactant × 100

바이오시밀러 항체-약물 복합체 형성을 위한 접합 키트의 성능 검증 방법Method for verifying the performance of a conjugation kit for formation of a biosimilar antibody-drug complex

본 발명에 따라 제조되는 접합 키트의 항체-약물 복합체 형성을 통한 성능 검증을 위한 방법으로, 예컨대, 접합 키트를 이용하여 특정 세포에 대한 표적 항체와 대표적인 항암 약물인 doxorubicin 또는 형광 물질 등에 적용하여 접합 키트에 의한 항체-약물 복합체 형성에 대한 성능을 검증할 수 있다.A method for verifying the performance of the conjugation kit prepared according to the present invention through the formation of an antibody-drug complex, for example, a conjugation kit by applying a target antibody to a specific cell and a representative anticancer drug such as doxorubicin or a fluorescent substance using a conjugation kit. It is possible to verify the performance of the antibody-drug complex formation by.

도 9에 나타낸 바와 같이, 제조되는 접합 키트를 이용하여 doxorubicin 또는 형광 물질과 특정 세포에 대한 표적 항체에 적용하여 항체-약물 복합체를 형성하게 하고, 이를 표적 세포에 적용하여 표적 세포에 대해서만 상호 작용하는지를 형광이미지 분석법을 통해 분석함으로써 제조되는 접합 키트에 의해서 항체-약물 복합체 형성이 이루어졌는지를 규명할 수 있다.As shown in Figure 9, using the prepared conjugation kit, doxorubicin or a fluorescent substance and a target antibody against a specific cell are applied to form an antibody-drug complex, and this is applied to the target cell to determine whether it interacts only with the target cell. By analyzing through fluorescence image analysis, it can be confirmed whether the antibody-drug complex was formed by the prepared conjugation kit.

이때, Anti-HER2 antibody 등의 항체 1개 이상을 이용하여 HER2 over-expressing cell lines인 SKBR-3(breast cancer), NHI3T6.7(Fiberblast) 등의 표적 세포에 대해서 상호작용하는지를 형광이미지 분석법을 통해 분석할 수 있다.At this time, by using one or more antibodies such as Anti-HER2 antibody, it is determined whether they interact with target cells such as SKBR-3 (breast cancer), NHI3T6.7 (Fiberblast), which are HER2 over-expressing cell lines, through fluorescence image analysis. Can be analyzed.

이하, 실시예를 들어 본 발명을 보다 상세히 설명한다.Hereinafter, the present invention will be described in more detail with reference to examples.

재조합 Cys-tagged SpyCatcher 제조Recombinant Cys-tagged SpyCatcher manufacturing

(1) DNA sequence(1) DNA sequence

공지된 Spy-Cacher의 유전자 서열에는 티올기(-SH)를 갖는 cysteine이 포함되어 있지 않다. Chemical cross-linker의 maleimide와 반응하여 연결될 수 있는 cysteine을 유전자 재조합 기술을 이용하여 SpyCatcher에 삽입을 통해 Cys-tagged SpyCatcher를 제조하였다.Cysteine having a thiol group (-SH) is not included in the gene sequence of the known Spy-Cacher. Cysteine, which can be linked by reacting with maleimide of a chemical cross-linker, was inserted into SpyCatcher using genetic recombination technology to prepare a Cys-tagged SpyCatcher.

Cystein의 삽입을 위해 SpyCatcher의 primer를 제작하여 vector에서 분리한 후 cystein codon 염기서열을 삽입할 수 있는 primer를 제작하여 중합효소연쇄기술로 삽입하였다. Cysteine이 삽입되었는지 확인하기 위하여 DNA sequencing 하여 cysteine이 삽입됨을 확인하였으며(서열번호 3), 구체적인 방법은 다음과 같다.For the insertion of Cystein, a primer of SpyCatcher was prepared, separated from the vector, and a primer capable of inserting the cystein codon sequence was prepared and inserted by polymerase chain technology. In order to confirm whether Cysteine was inserted, it was confirmed that cysteine was inserted by DNA sequencing (SEQ ID NO: 3), and the specific method is as follows.

PCR을 통해 증폭시키기 위해 primer 세트(primer-1 및 primer-2, 각각 서열번호 4 및 5)를 사용하여 Cys tagged SpyCatcher를 원래 SpyCatcher gene plasmid를 template로 하여 유전자를 증폭시킨 후 gel purification하여 Ampicillin resistance gene을 가지고 있는 T-Vector에 TA cloning하여 E.coli에서 plasmid를 생성할 수 있게 하였다. 삽입한 T-Vector를 Blue/white screening을 할 수 있는 E.coli competent strain인 DH5α에 형질전환 하였다. 형질전환 한 E. coli(DH5α)를 50 ㎍/㎖ ampicillin이 첨가된 LB 배지에 37℃에서 180 rpm으로 16시간 배양한 후 X-Gal/IPTG plate에 도말하여 blue/white screening하여 Cys tagged SpyCatcher plasmid를 선별하였다. 선별한 plasmid를 DH5α에 형질전환 시켜 다량의 plasmid를 확보하여 DNA sequencing으로 Cys tagged SpyCatcher를 확인하였다. 이후, 확인된 Cys tagged SpyCatcher를 대장균에서 재조합 단백질로 발현할 수 있는 E. coli expression vector로 옮기기 위하여, 제한효소를 이용하여 절단 후 E. coli expression vector인 pDuet vector에 삽입하였다. Cys tagged SpyCatcher T vector를 제한효소인 NcoI, NotI, EcoRV, Afill, HindⅢ 및 SacI으로 제한효소 처리 후 전기영동으로 agarose gel에서 DNA fragment를 gel purification하였다. Purification 한 DNA fragment를 E. coli expression vector인 pDuet vector에 제한효소(NcoI, NotI, EcoRV, Afill, HindⅢ 및 SacI)를 이용하여 삽입하였다. 이후, Cys tagged SypCatcher를 삽입한 vector를 Blue/white screening을 할 수 있는 E.coli competent strain인 DH5α에 형질전환 하였다. 형질전환 한 E. coli(DH5α)를 50 ㎍/㎖ ampicillin이 첨가된 LB 배지에 37℃에서 180 rpm으로 16시간 배양한 후 X-Gal/IPTG plate에 도말하여 blue/white screening하여 Cys tagged SpyCatcher plasmid를 선별하였다. 선별된 plasmid를 DNA sequencing 하여 최종적으로 확인하였다.In order to amplify through PCR, use a primer set (primer-1 and primer-2, respectively, SEQ ID NOs: 4 and 5), and amplify the gene using the original SpyCatcher gene plasmid as a template for the Cys tagged SpyCatcher, and then gel purification to the Ampicillin resistance gene. TA cloning was performed on a T-Vector that had a plasmid to generate plasmid in E. coli. The inserted T-Vector was transformed into DH5α, an E.coli competent strain capable of blue/white screening. Transformed E. coli (DH5α) was cultured in LB medium supplemented with 50 µg/ml ampicillin at 37°C for 16 hours at 180 rpm, spread on X-Gal/IPTG plate, blue/white screened, and Cys tagged SpyCatcher plasmid Was selected. The selected plasmid was transformed into DH5α to secure a large amount of plasmid, and the Cys tagged SpyCatcher was confirmed by DNA sequencing. Then, in order to transfer the identified Cys tagged SpyCatcher to an E. coli expression vector that can be expressed as a recombinant protein in E. coli, it was cut using a restriction enzyme and inserted into the pDuet vector, an E. coli expression vector. Cys tagged SpyCatcher T vector was subjected to restriction enzyme treatment with restriction enzymes NcoI, NotI, EcoRV, Afill, HindIII and SacI, followed by gel purification of DNA fragments on agarose gel by electrophoresis. The purified DNA fragment was inserted into the pDuet vector, an E. coli expression vector, using restriction enzymes (NcoI, NotI, EcoRV, Afill, HindIII, and SacI). Thereafter, the vector containing the Cys tagged SypCatcher was transformed into DH5α, an E.coli competent strain capable of blue/white screening. Transformed E. coli (DH5α) was cultured in LB medium supplemented with 50 µg/ml ampicillin at 37°C for 16 hours at 180 rpm, spread on X-Gal/IPTG plate, blue/white screened, and Cys tagged SpyCatcher plasmid Was selected. The selected plasmid was finally confirmed by DNA sequencing.

이후, Cysteine을 삽입한 Cys-tagged SpyCatcher를 pETDuet expression vector(Invitrogen, 도 10 참조)에 cloning하여 E. coli에서 발현할 수 있게 제작하였다. Cys-tagged SpyCatcher를 삽입한 pETDuet vector는 6×histidine을 같이 발현시킬 수 있는 expression vector로서 발현시킨 이후 affinity column을 이용하여 정제할 수 있게 하였다.Thereafter, Cysteine-inserted Cys-tagged SpyCatcher was cloned into a pETDuet expression vector (Invitrogen, see Fig. 10) to be expressed in E. coli. The pETDuet vector into which the Cys-tagged SpyCatcher was inserted was expressed as an expression vector capable of expressing 6×histidine, and then purified using an affinity column.

(2) Amino acid sequence(2) Amino acid sequence

상기 DNA sequence로 발현되는 재조합 SpyCatcher는 서열번호 2의 아미노산 서열로 표시되고, 70번째 위치에 Cys을 포함하며 이를 이용하여 화학연결자의 maleimide와 특이적으로 연결된다.The recombinant SpyCatcher expressed by the DNA sequence is represented by the amino acid sequence of SEQ ID NO: 2, contains Cys at the 70th position, and is specifically linked to the maleimide of the chemical linker using this.

(3) Cys-tagged SpyCatcher 재조합 단백질의 E. coli strain에 따른 발현 시험(3) Expression test of Cys-tagged SpyCatcher recombinant protein according to E. coli strain

재조합 단백질을 발현시킬 수 있는 E. coli strain을 비교 실험하였다. 사용된 strain으로 BL21(DE3) 및 Rosetta2(DE3)를 비교하였다. Cys-tagged SpyCatcher를 발현시키기 위하여 두 strain에 Cys-tagged SpyCatcher를 transformation하고, 50 ㎍/㎖의 ampicillin이 포함된 LB 배지로 전배양하였다. 전배양한 배양약을 1% 접종하여 광학밀도(Optical density O.D.)가 0.8~1일 때 isopropyl β-D-1-thiogalactopyranoside(IPTG) 1 mM을 처리하여 Cys-tagged SpyCatcher를 overexpression 시켰다. 37℃에서 overnight 배양하여 Cys-tagged SpyCatcher 재조합 단백질을 생산하였다. 이후, 배양액 1.5 ㎖를 원심분리하여 bacterial cell을 모아 PBS로 현탁 후 초음파장치로 파쇄하여 13,000 rpm으로 10분 원심분리하여 상층액을 SDS-PAGE로 확인하고 그 결과를 도 11에 나타내었다. The E. coli strain capable of expressing the recombinant protein was compared and tested. BL21 (DE3) and Rosetta2 (DE3) were compared with the strain used. In order to express Cys-tagged SpyCatcher, Cys-tagged SpyCatcher was transformed into two strains, and pre-cultured with LB medium containing 50 µg/ml of ampicillin. Cys-tagged SpyCatcher was overexpressed by inoculating 1% of the pre-cultured culture drug and treating with 1 mM isopropyl β-D-1-thiogalactopyranoside (IPTG) when the optical density OD was 0.8-1. Cys-tagged SpyCatcher recombinant protein was produced by incubating overnight at 37°C. Thereafter, 1.5 ml of the culture solution was centrifuged, the bacterial cells were collected, suspended in PBS, crushed with an ultrasonic device, centrifuged at 13,000 rpm for 10 minutes, and the supernatant was confirmed by SDS-PAGE, and the results are shown in FIG. 11.

도 11을 참조하면, E. coli strain 중 BL21(DE3)에서 재조합 Cys-tagged SpyCatcher가 발현되는 것으로부터, BL21(DE3) strain을 이용하여 Cys-tagged SpyCatcher를 제조 생산할 수 있음이 확인되었다.Referring to Figure 11, from the expression of the recombinant Cys-tagged SpyCatcher in BL21 (DE3) of the E. coli strain, it was confirmed that the Cys-tagged SpyCatcher can be manufactured and produced using the BL21 (DE3) strain.

(4) Cys-tagged SpyCatcher 재조합 단백질의 온도에 따른 발현 시험(4) Expression test according to temperature of Cys-tagged SpyCatcher recombinant protein

Cys-tagged SpyCatcher의 수율에 대한 배양 온도의 영향을 파악하기 위해 배양 온도를 달리하여 발현 시험을 수행하였다. 배양 온도에 따른 재조합 단백질의 발현을 확인하기 위해 competent E. coli strain인 BL21(DE3)에 Cys-tagged SpyCatcher를 E. coli expression vector로 형질전환하였다. 이 BL21(DE3)를 50 ㎍/㎖의 ampicillin이 포함된 LB 배지로 전배양하였다. 배양액을 1% 접종하여 광학밀도(Optical density O.D.)를 측정하여 0.8~1이 될 때 1 mM IPTG를 처리하여 Cys-tagged SpyCatcher를 overexpression 시켰다. 이후, Overnight 배양한 BL21(DE3)를 1.5 ㎖ 원심 분리하여 PBS에 현탁 후 초음파장치로 파쇄하여 13,000 rpm으로 원심분리하여 상층액을 SDS-PAGE로 발현을 확인하고 그 결과를 도 12에 나타내었다.In order to determine the effect of the culture temperature on the yield of Cys-tagged SpyCatcher, an expression test was performed by varying the culture temperature. To confirm the expression of the recombinant protein according to the culture temperature, Cys-tagged SpyCatcher was transformed into an E. coli expression vector in BL21 (DE3), a competent E. coli strain. This BL21(DE3) was pre-cultured with LB medium containing 50 µg/ml of ampicillin. The culture medium was inoculated with 1% and the optical density OD was measured. When the concentration reached 0.8-1, 1 mM IPTG was treated to overexpress the Cys-tagged SpyCatcher. Thereafter, the BL21 (DE3) cultured overnight was centrifuged at 1.5 ml, suspended in PBS, crushed with an ultrasonic device, and centrifuged at 13,000 rpm to confirm the expression of the supernatant by SDS-PAGE, and the results are shown in FIG. 12.

도 12를 참조하면, 37℃에서 배양하는 것보다 lac operon 전사인자인 IPTG 처리 후 온도를 내려 충분히 Cys-tagged SpyCatcher가 발현될 수 있게 배양하는 것이 효율적인 것으로 나타났다. 즉, 광학밀도(Optical density O.D.) 값이 0.8~1까지 36~38℃ 수준에서 배양하고, IPTG 처리 후에는 16~20℃ 수준에서 overnight 배양하여 수행되는 것이 바람직한 것을 확인하였다.Referring to FIG. 12, it was found that it is more efficient to culture so that Cys-tagged SpyCatcher can be sufficiently expressed by lowering the temperature after IPTG treatment, which is a lac operon transcription factor, rather than culturing at 37°C. That is, it was confirmed that the optical density (O.D.) value is 0.8 to 1, cultured at the level of 36 ~ 38 ℃, after the IPTG treatment, it is preferable to culture overnight at the level of 16 ~ 20 ℃.

(5) Cys-tagged SpyCatcher 재조합 단백질의 IPTG(Isopropyl-β-D-thiogalactopyranoside) 처리 농도에 따른 발현 시험(5) Expression test according to the concentration of IPTG (Isopropyl-β-D-thiogalactopyranoside) treatment of Cys-tagged SpyCatcher recombinant protein

Cys-tagged SpyCatcher를 cloning한 expression vector의 lac operon 전사인자인 IPTG의 농도에 따른 Cys-tagged SpyCatcher의 발현을 확인하였다. Cys-tagged Spy-Cather를 cloning한 pETDuet vector를 BL21(DE3)에 transformation한 뒤 ampicillin 50 ㎍/㎖이 포함된 LB 배지에 전배양하여 이를 1% 농도로 접종하여 37℃에서 광학밀도(Optical density O.D.)가 0.8~1일 때 IPTG를 농도 별로 처리 후 18℃에서 overnight 배양하였다. 배양한 BL21(DE3)를 1.5 ㎖ 원심분리하여 회수하여 PBS에 현탁 후 초음파장치로 파쇄하였다. 이후, 13,000 rpm에서 10분간 원심분리하여 상층액을 SDS-PAGE로 발현을 확인하고, 그 결과를 도 13에 나타내었다.Expression of Cys-tagged SpyCatcher was confirmed according to the concentration of IPTG, a lac operon transcription factor, of the expression vector cloning Cys-tagged SpyCatcher. The pETDuet vector cloning Cys-tagged Spy-Cather was transformed into BL21 (DE3), pre-cultured in LB medium containing 50 ㎍/㎖ of ampicillin, and inoculated at a concentration of 1%. Optical density OD When) is 0.8 to 1, IPTG was treated by concentration and incubated overnight at 18°C. Cultured BL21 (DE3) was collected by centrifugation at 1.5 ml, suspended in PBS, and crushed with an ultrasonic device. Thereafter, centrifugation was performed at 13,000 rpm for 10 minutes to confirm the expression of the supernatant by SDS-PAGE, and the results are shown in FIG. 13.

도 13을 참조하면, 0.25~2 mM의 IPTG를 처리한 조건에서 1 mM IPTG를 처리하였을 때 Cys-tagged SpyCatcher의 발현이 가장 높은 것으로부터, Cys-tagged SpyCatcher의 발현에 광학밀도(Optical density O.D.) 값이 0.8~1 일 때 IPTG를 0.8~1.2 mM 수준으로 처리하여 Cys-tagged SpyCatcher를 생산하는 것이 바람직한 것을 확인하였다.Referring to FIG. 13, the expression of Cys-tagged SpyCatcher was highest when 1 mM IPTG was treated under conditions of 0.25 to 2 mM IPTG, and thus, optical density OD of Cys-tagged SpyCatcher expression. When the value was 0.8 to 1, it was confirmed that it is desirable to produce Cys-tagged SpyCatcher by treating IPTG at a level of 0.8 to 1.2 mM.

(6) 재조합 Cys-Tagged SpyCatcher의 정제(6) Purification of recombinant Cys-Tagged SpyCatcher

상기 배양 조건에서의 재조합 Cys-tagged SpyCatcher를 E. coli에서 발현시켜 FPLC를 이용하여 재조합 Cys-tagged SpyCatcher를 정제하였다. 이를 위해 E. coli expression vector를 이용, Cys-tagged SpyCatcher를 competent E. coli strain BL21(DE3)에 형질도입(transformation)하여 50 ㎍/㎖ ampicillin의 LB agar plate에 도말하여 37℃에서 16 hr 배양하였다. ampicillin 선택배지에서 자란 BL21(DE3)를 single colony picking하여 50 ㎍/㎖의 ampicillin이 함유된 LB 배지 10 ㎖에 접종하여 37℃, 180 rpm으로 overnight 배양하였다. 전배양한 BL21(DE3)를 200 ㎖ ampicillin LB 배지에 1% 접종하여 30℃에서 OD600 값이 0.8~1까지 배양하였다. OD600 값이 0.8~1일 때 Cys-tagged SpyCatcher를 overexpression 시키기 위해 1 mM의 isopropyl-β-D-thiogalactopyranoside(IPTG)를 처리하여 18℃에서 overnight 배양하였다. 배양한 BL21(DE3)를 4,000 rpm으로 30분간 원심분리하여 회수하여 PBS buffer 10 ㎖로 현탁하였다. 현탁한 cell을 초음파장치로 10분간 파쇄한 뒤 13,000 rpm으로 원심분리 후 상층액을 0.45 ㎛ syringe filter로 filtering 후 FPLC(NGC chromatography system, Bio-Rad)를 사용하여 His affinity column(HiTrap FF, GE healthcare)으로 정제하였다. His binding buffer(solution A)는 20 mM sodium phosphate, 500 mM NaCl, 5 mM imidazol(pH 7.5)를 사용하였으며, Elution buffer(solution B)는 20 mM sodium phosphate, 500 mM NaCl, 500 mM imidazol(pH 7.4)을 사용하였다. 정제한 Cys-tagged SpyCatcher는 장기적 보관과 이용상의 안정성을 높이기 위하여 3,000 dalton centrifugal filter를 사용하여 50 mM phosphate, 150 mM NaCl(pH 7.4)의 저장 용액으로 buffer change 해주었다. 정제한 Cys-tagged SpyCatcher를 SDS-PAGE로 정제도를 확인하고 BCA assy로 단백질을 정량하였고 그 결과를 도 14에 나타내었다.Recombinant Cys-tagged SpyCatcher under the above culture conditions was expressed in E. coli , and the recombinant Cys-tagged SpyCatcher was purified using FPLC. For this, Cys-tagged SpyCatcher was transformed into competent E. coli strain BL21 (DE3) using E. coli expression vector, plated on LB agar plate of 50 ㎍/㎖ ampicillin, and cultured at 37° C. for 16 hr. . BL21 (DE3) grown in ampicillin selective medium was single colony picked, inoculated into 10 ㎖ of LB medium containing 50 ㎍/㎖ of ampicillin, and cultured overnight at 37° C. and 180 rpm. The pre-cultured BL21 (DE3) was inoculated in 200 ml ampicillin LB medium by 1% and incubated at 30° C. to an OD600 of 0.8-1. When the OD600 value was 0.8 to 1, 1 mM isopropyl-β-D-thiogalactopyranoside (IPTG) was treated to overexpress the Cys-tagged SpyCatcher and incubated overnight at 18°C. Cultured BL21 (DE3) was recovered by centrifugation at 4,000 rpm for 30 minutes and suspended in 10 ml of PBS buffer. After crushing the suspended cells for 10 minutes with an ultrasonic device, centrifugation at 13,000 rpm, filter the supernatant with a 0.45 µm syringe filter, and use a His affinity column (HiTrap FF, GE) using FPLC (NGC chromatography system, Bio-Rad). healthcare). His binding buffer (solution A) was 20 mM sodium phosphate, 500 mM NaCl, 5 mM imidazol (pH 7.5), and the elution buffer (solution B) was 20 mM sodium phosphate, 500 mM NaCl, 500 mM imidazol (pH 7.4). ) Was used. The purified Cys-tagged SpyCatcher was buffered with a stock solution of 50 mM phosphate and 150 mM NaCl (pH 7.4) using a 3,000 dalton centrifugal filter to enhance long-term storage and stability in use. Purification of the purified Cys-tagged SpyCatcher was confirmed by SDS-PAGE, and the protein was quantified with BCA assy, and the results are shown in FIG. 14.

도 14를 참조하면, 정제 전의 cell lysate의 Cys-tagged SpyCatcher(15 kDa)를 표지된 6X-histidine으로 affinity column을 이용, 높은 정제도(95%)로 생산할 수 있었고, 이로부터 Cys-tagged SpyCatcher 재조합 단백질 생산에 affinity column을 이용한 정제법을 사용하는 것이 바람직한 것을 확인하였다.Referring to FIG. 14, Cys-tagged SpyCatcher (15 kDa) of cell lysate before purification could be produced with high purity (95%) using an affinity column labeled with 6X-histidine, from which Cys-tagged SpyCatcher recombination It was confirmed that it is preferable to use a purification method using an affinity column for protein production.

Cys-tagged SpyTag 제조Cys-tagged SpyTag manufacturing

공지된 SpyTag의 아미노산 서열은 AHIVMVDAYKPTK(1.5 KDa)로 chemical cross linker와 결합하기 위한 -SH 작용기를 갖는 cysteine이 포함되어 있지 않다. 따라서 기존 SpyTag에 Cystein을 삽입하여 cross-linker를 연결할 수 있게 제작하였다. 삽입되는 cysteine은 C-teminal end에 위치하게 제작하였으며, 공지의 SpyTag에 바로 삽입하는 것이 아닌, extra linker residue 사이에 cysteine이 위치하도록 삽입하였다. 또한, 유전자 조작을 통한 삽입이 아닌 당 업계에서 공지된 oligo peptide synthesis 방법을 이용하여 Cys-tagged SpyTag를 합성하였다. 이 Cys-tagged SpyTag의 아미노산 서열은 서열번호 1과 같다.The known amino acid sequence of SpyTag is AHIVMVDAYKPTK (1.5 KDa), which does not contain cysteine having -SH functional group for binding to a chemical cross linker. Therefore, Cystein was inserted into the existing SpyTag to connect the cross-linker. The inserted cysteine was made to be located at the C-teminal end, and instead of being directly inserted into a known SpyTag, it was inserted so that the cysteine was located between the extra linker residues. In addition, Cys-tagged SpyTag was synthesized using an oligo peptide synthesis method known in the art rather than insertion through genetic manipulation. The amino acid sequence of this Cys-tagged SpyTag is as shown in SEQ ID NO: 1.

Cys-tagged SpyTag의 peptide synthesis 후 HPLC(Prominence, Shimadzu)를 이용하여 순도를 분석하였다. C18, 5 ㎛, 120 Å column(Capcell pak, Shiseido)을 이용하여 3~70% gradient로 A:B solution(Solution A: 0.1% TFA water, Solution B: 0.1% TFA acetonitrile)을 1 ㎖/min의 flow rate으로 흘려 분석하였고 그 결과를 도 15에 나타내었다.After synthesis of the Cys-tagged SpyTag peptide, the purity was analyzed using HPLC (Prominence, Shimadzu). A:B solution (Solution A: 0.1% TFA water, Solution B: 0.1% TFA acetonitrile) with a 3~70% gradient using a C18, 5 µm, 120 Å column (Capcell pak, Shiseido) at 1 ml/min. Flow rate was analyzed and the results are shown in FIG. 15.

도 15를 참조하면, 6.308 min에서 peak가 확인되며 각 peak의 area를 적분하여 %로 분석한 결과 95%의 순도를 확인하였다.Referring to FIG. 15, a peak was observed at 6.308 min, and as a result of integrating the area of each peak and analyzing it as %, a purity of 95% was confirmed.

또한, 합성한 Cys-tagged SpyTag의 분자량을 확인하기 위하여 MS(LCMS-2020, Shimadzu) analysis로 분석하였고 그 결과 도 16에 나타낸 바와 같이, 1,890의 분자량을 확인하였다.In addition, in order to confirm the molecular weight of the synthesized Cys-tagged SpyTag, it was analyzed by MS (LCMS-2020, Shimadzu) analysis, and as a result, as shown in FIG. 16, a molecular weight of 1,890 was confirmed.

ConjugationConjugation

(1) 화학연결자와 Cys-tagged Spy-Tag/Catcher의 연결(1) Connection between chemical linker and Cys-tagged Spy-Tag/Catcher

Cys-tagged Spy-Tag/catcher의 cysteine의 -SH와 반응을 하여 공유결합을 만들 수 있는 maleimide bifunctional cross-linker를 사용하였다.A maleimide bifunctional cross-linker capable of making a covalent bond by reacting with -SH of cysteine of Cys-tagged Spy-Tag/catcher was used.

Cross-linker는 양 말단이 다른 작용기를 갖는 hetero bifunctional linker로 한 쪽은 -SH기와 반응하는 maleimide이고, 다른 쪽은 접합의 대상에 따라 NSH, Hydrazide, azide, alkyl, biotin 등을 포함한다. 본 실시예에서는 하기 화학식 1로 표시되는 N-(κ-maleimidoundecanoic acid) hydrazide, trifluoroacetic acid salt를 사용하였다.Cross-linker is a hetero bifunctional linker having different functional groups at both ends. One side is a maleimide reacting with -SH group, and the other side includes NSH, Hydrazide, azide, alkyl, biotin, etc. depending on the object of conjugation. In this example, N-(κ-maleimidoundecanoic acid) hydrazide and trifluoroacetic acid salt represented by the following Chemical Formula 1 were used.

[화학식 1][Formula 1]

Figure 112019107697431-pat00004
Figure 112019107697431-pat00004

Cys-tagged Spy-Tag/Catcher에 pH 6~7의 amine기를 갖지 않은 버퍼(phosphate buffer)를 이용하여 낮은 rpm으로 교반하여 결합시켰다. 이후, desalting column을 이용하여 잔여 cross-linker를 제거하여 화학 연결자가 결합된 Cys-tagged Spy-Tag/Catcher를 수득하였다.Cys-tagged Spy-Tag/Catcher was combined by stirring at low rpm using a buffer without an amine group having a pH of 6-7. Thereafter, the residual cross-linker was removed using a desalting column to obtain a Cys-tagged Spy-Tag/Catcher to which a chemical linker was bound.

(2) 화학연결자와 연결된 Cys-tagged Spy-Tag/Catcher와 target molecule의 연결(2) Cys-tagged Spy-Tag/Catcher connected with chemical connector and target molecule connection

Cys-tagged Spy-Tag/Catcher에 연결된 cross-linker의 작용기(NSH, Hydrazide, azide, alkyl, biotin)에 따라 맞는 target molecule의 반응 작용기와 반응시켜 연결시킬 수 있다. 각 작용기는 그에 맞는 반응 pH와 반응 시간이 나누어 지므로 이를 확인하여 연결시킨다. 화학연결자와 연결된 Cys-tagged Spy-Tag/Catcher에 pH 6~7의 amine기를 갖지 않은 완충용액(phosphate, MES, MOPS, citrate-phosphate buffer)을 이용하여 반응 환경을 조성한다. 이때, 사용되는 완충용액의 농도는 50~150 mM로 한다. 또한, 사용되는 완충용액으로 Dithiothreitol, 2-Mercaptoethanol, tris(2-carboxyethyl)phosphine과 같은 환원제가 포함되지 않은 완충용액을 사용한다. 접합시키는 단백질과의 당량비는 1:5~10의 비율로 화학연결자가 연결된 Cys-tagged Spy-Tag/Catcher와 실온 이하의 온도에서 1~2시간 100~300 rpm으로 교반해 반응시킨다. 반응 후 잔여 반응물을 제거하기 위하여 1 kDa 내지 7 kDa 이하의 size column 또는 10 kDa cut off filter를 사용하여 연결된 대상만을 확보한다.Depending on the functional groups (NSH, Hydrazide, azide, alkyl, biotin) of the cross-linker connected to the Cys-tagged Spy-Tag/Catcher, it can be linked by reacting with the reactive functional groups of the target molecule. Each functional group is divided into a corresponding reaction pH and reaction time, so check this and connect. A reaction environment is created by using a buffer solution (phosphate, MES, MOPS, citrate-phosphate buffer) that does not have an amine group having a pH of 6-7 in the Cys-tagged Spy-Tag/Catcher connected to a chemical linker. At this time, the concentration of the buffer solution used is 50 to 150 mM. In addition, a buffer solution that does not contain reducing agents such as dithiothreitol, 2-Mercaptoethanol, and tris(2-carboxyethyl)phosphine is used as the buffer solution to be used. The equivalent ratio with the protein to be conjugated is 1:5-10, and reacted with a Cys-tagged Spy-Tag/Catcher connected to a chemical linker by stirring at 100-300 rpm for 1-2 hours at a temperature below room temperature. In order to remove residual reactants after the reaction, only the connected object is secured using a size column of 1 kDa to 7 kDa or less or a 10 kDa cut off filter.

(3) Cys-tagged SpyTag와 Cys-tagged SpyCatcher의 연결(3) Connection between Cys-tagged SpyTag and Cys-tagged SpyCatcher

Cys-tagged SpyCatcher와 SpyTag에 화학연결자를 연결 후 각각 다른 단백질을 접합시켜 번역 후 접합으로 SpyCatcher와 SpyTag로 연결이 되는지 확인하였다.After connecting a chemical linker to Cys-tagged SpyCatcher and SpyTag, different proteins were conjugated to each other, and after translation, it was confirmed that the linkages were made to SpyCatcher and SpyTag.

Cys-tagged SpyTag에 mcharry 단백질을 접합시키고 Cys-tagged SpyCatcher에 GN1b와 EGFRb을 접합시켰다. 이후, 각 단백질과 연결된 Cys-tagged Spy-Tag/Catcher를 혼합하여 30분간 반응시켰다. 반응물을 SDS-PAGE를 이용하여 확인하였고, 그 결과를 도 17에 나타내었다.The mcharry protein was conjugated to Cys-tagged SpyTag, and GN1b and EGFRb were conjugated to Cys-tagged SpyCatcher. Then, Cys-tagged Spy-Tag/Catcher linked to each protein was mixed and reacted for 30 minutes. The reaction product was confirmed using SDS-PAGE, and the results are shown in FIG. 17.

도 17을 참조하면, Spy-Tag/Catcher가 번역 후 접합하여 연결됨을 알 수 있고, 이로부터 화학연결자와 번역 후 접합기술을 동시에 사용한 접합 기술을 확인하였다.Referring to FIG. 17, it can be seen that the Spy-Tag/Catcher is connected by bonding after translation, and from this, it was confirmed that the bonding technology using the chemical linker and the post-translation bonding technology at the same time.

이상으로 본 발명의 바람직한 실시예를 상세하게 설명하였다. 본 발명의 설명은 예시를 위한 것이며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태 쉽게 변형이 가능하다는 것을 이해할 수 있을 것이다.The preferred embodiments of the present invention have been described in detail above. The description of the present invention is for illustrative purposes only, and those of ordinary skill in the art to which the present invention pertains will be able to understand that other specific forms can be easily modified without changing the technical spirit or essential features of the present invention.

따라서, 본 발명의 범위는 상기 상세한 설명보다는 후술하는 특허청구범위에 의하여 나타내어지며, 특허청구범위의 의미, 범위 및 그 균등 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.Therefore, the scope of the present invention is indicated by the claims to be described later rather than the detailed description, and all changes or modified forms derived from the meaning, scope and equivalent concepts of the claims are included in the scope of the present invention. It must be interpreted.

<110> Biomax Co., Ltd. <120> Novel bio-conjugation kit using bifunctional linker and Cys-tagged SpyTag/Catcher for ADC <130> NP19-10092 <160> 5 <170> KoPatentIn 3.0 <210> 1 <211> 18 <212> PRT <213> Artificial Sequence <220> <223> Cys-Tagged SpyTag <400> 1 Ala His Ile Val Met Val Asp Ala Tyr Lys Pro Thr Lys Gly Ser Cys 1 5 10 15 Gly Gly <210> 2 <211> 128 <212> PRT <213> Artificial Sequence <220> <223> Cys-Tagged SpyCatcher <400> 2 Met Gly Ser Ser His His His His His His Ser Gln Asp Pro Met Val 1 5 10 15 Asp Thr Leu Ser Gly Leu Ser Ser Glu Gln Gly Gln Ser Gly Asp Met 20 25 30 Thr Ile Glu Glu Asp Ser Ala Thr His Ile Lys Phe Ser Lys Arg Asp 35 40 45 Glu Asp Gly Lys Glu Leu Ala Gly Ala Thr Met Glu Leu Arg Asp Ser 50 55 60 Ser Gly Lys Thr Ile Cys Thr Trp Ile Ser Asp Gly Gln Val Lys Asp 65 70 75 80 Phe Tyr Leu Tyr Pro Gly Lys Tyr Thr Phe Val Glu Thr Ala Ala Pro 85 90 95 Asp Gly Tyr Glu Val Ala Thr Ala Ile Thr Phe Thr Val Asn Glu Gln 100 105 110 Gly Gln Val Thr Val Asn Gly Lys Ala Thr Lys Gly Asp Ala His Ile 115 120 125 <210> 3 <211> 384 <212> DNA <213> Artificial Sequence <220> <223> Cys-Tagged SpyCatcher <400> 3 atgggcagca gccatcacca tcatcaccac agccaggatc cgatggttga taccttatca 60 ggtttatcaa gtgagcaagg tcagtccggt gatatgacaa ttgaagaaga tagtgctacc 120 catattaaat tctcaaaacg tgatgaggac ggcaaagagt tagctggtgc aactatggag 180 ttgcgtgatt catctggtaa aactatttgt acatggattt cagatgggca agtgaaagat 240 ttctacctgt atccaggaaa atatacattt gtcgaaaccg cagcaccaga cggttatgag 300 gtagcaactg ctattacctt tacagttaat gagcaaggtc aggttactgt aaatggcaaa 360 gcaactaaag gtgacgctca tatt 384 <210> 4 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> Primer-1 <400> 4 tctggtaaaa ctatttgtac atggatttca gatgg 35 <210> 5 <211> 34 <212> DNA <213> Artificial Sequence <220> <223> Primer-2 <400> 5 ccatctgaaa tccatgtaca aatagtttta ccag 34 <110> Biomax Co., Ltd. <120> Novel bio-conjugation kit using bifunctional linker and Cys-tagged SpyTag/Catcher for ADC <130> NP19-10092 <160> 5 <170> KoPatentIn 3.0 <210> 1 <211> 18 <212> PRT <213> Artificial Sequence <220> <223> Cys-Tagged SpyTag <400> 1 Ala His Ile Val Met Val Asp Ala Tyr Lys Pro Thr Lys Gly Ser Cys 1 5 10 15 Gly Gly <210> 2 <211> 128 <212> PRT <213> Artificial Sequence <220> <223> Cys-Tagged SpyCatcher <400> 2 Met Gly Ser Ser His His His His His His Ser Gln Asp Pro Met Val 1 5 10 15 Asp Thr Leu Ser Gly Leu Ser Ser Glu Gln Gly Gln Ser Gly Asp Met 20 25 30 Thr Ile Glu Glu Asp Ser Ala Thr His Ile Lys Phe Ser Lys Arg Asp 35 40 45 Glu Asp Gly Lys Glu Leu Ala Gly Ala Thr Met Glu Leu Arg Asp Ser 50 55 60 Ser Gly Lys Thr Ile Cys Thr Trp Ile Ser Asp Gly Gln Val Lys Asp 65 70 75 80 Phe Tyr Leu Tyr Pro Gly Lys Tyr Thr Phe Val Glu Thr Ala Ala Pro 85 90 95 Asp Gly Tyr Glu Val Ala Thr Ala Ile Thr Phe Thr Val Asn Glu Gln 100 105 110 Gly Gln Val Thr Val Asn Gly Lys Ala Thr Lys Gly Asp Ala His Ile 115 120 125 <210> 3 <211> 384 <212> DNA <213> Artificial Sequence <220> <223> Cys-Tagged SpyCatcher <400> 3 atgggcagca gccatcacca tcatcaccac agccaggatc cgatggttga taccttatca 60 ggtttatcaa gtgagcaagg tcagtccggt gatatgacaa ttgaagaaga tagtgctacc 120 catattaaat tctcaaaacg tgatgaggac ggcaaagagt tagctggtgc aactatggag 180 ttgcgtgatt catctggtaa aactatttgt acatggattt cagatgggca agtgaaagat 240 ttctacctgt atccaggaaa atatacattt gtcgaaaccg cagcaccaga cggttatgag 300 gtagcaactg ctattacctt tacagttaat gagcaaggtc aggttactgt aaatggcaaa 360 gcaactaaag gtgacgctca tatt 384 <210> 4 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> Primer-1 <400> 4 tctggtaaaa ctatttgtac atggatttca gatgg 35 <210> 5 <211> 34 <212> DNA <213> Artificial Sequence <220> <223> Primer-2 <400> 5 ccatctgaaa tccatgtaca aatagtttta ccag 34

Claims (4)

항체-약물 복합체(Antibody-drug conjugates; ADC) 형성을 위한 항체 및 약물 간 접합 키트로서,
시스테인이 태그된(Cys-Tagged) 스파이태그(SpyTag) 올리고 펩타이드;
시스테인이 태그된(Cys-Tagged) 스파이캐쳐(SpyCatcher) 단백질; 및
상기 스파이태그 또는 상기 스파이캐쳐의 시스테인의 티올기에 접합되는 이관능성 링커(bifuctional cross-linker);
를 포함하는 접합 키트.
As a conjugation kit between antibodies and drugs for formation of antibody-drug conjugates (ADC),
Cysteine-tagged (Cys-Tagged) spy tag (SpyTag) oligo peptide;
Cysteine-tagged (Cys-Tagged) SpyCatcher protein; And
A bifunctional linker conjugated to the thiol group of the cysteine of the spy tag or the spy catcher;
Bonding kit comprising a.
제1항에 있어서,
상기 시스테인이 태그된(Cys-Tagged) 스파이태그(SpyTag) 올리고 펩타이드는 서열번호 1의 아미노산 서열로 표시되는 것을 특징으로 하는 접합 키트.
The method of claim 1,
The cysteine-tagged (Cys-Tagged) spy tag (SpyTag) oligo peptide is a conjugation kit, characterized in that represented by the amino acid sequence of SEQ ID NO: 1.
제1항에 있어서,
상기 시스테인이 태그된(Cys-Tagged) 스파이캐쳐(SpyCatcher) 단백질은 서열번호 2의 아미노산 서열로 표시되는 것을 특징으로 하는 접합 키트.
The method of claim 1,
The cysteine-tagged (Cys-Tagged) SpyCatcher protein is a conjugation kit, characterized in that the amino acid sequence of SEQ ID NO: 2.
제1항에 있어서,
상기 이관능성 링커(bifuctional cross-linker)는 일 말단기가 말레이미드(maleimide)기인 헤테로 이관능성 링커인 것을 특징으로 하는 접합 키트.
The method of claim 1,
The bifunctional linker (bifuctional cross-linker) is a conjugation kit, characterized in that one end group is a heterobifunctional linker having a maleimide group.
KR1020190131172A 2019-10-22 2019-10-22 Novel bio-conjugation kit using bifunctional linker and Cys-tagged SpyTag/Catcher for ADC KR102235549B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020190131172A KR102235549B1 (en) 2019-10-22 2019-10-22 Novel bio-conjugation kit using bifunctional linker and Cys-tagged SpyTag/Catcher for ADC

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020190131172A KR102235549B1 (en) 2019-10-22 2019-10-22 Novel bio-conjugation kit using bifunctional linker and Cys-tagged SpyTag/Catcher for ADC

Publications (1)

Publication Number Publication Date
KR102235549B1 true KR102235549B1 (en) 2021-04-02

Family

ID=75466350

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020190131172A KR102235549B1 (en) 2019-10-22 2019-10-22 Novel bio-conjugation kit using bifunctional linker and Cys-tagged SpyTag/Catcher for ADC

Country Status (1)

Country Link
KR (1) KR102235549B1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070054682A (en) * 2004-09-23 2007-05-29 제넨테크, 인크. Cystein engineered antibodies and conjugates
KR20130097628A (en) * 2012-02-24 2013-09-03 성균관대학교산학협력단 Antibody-drug conjugate comprising apolipoprotein

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070054682A (en) * 2004-09-23 2007-05-29 제넨테크, 인크. Cystein engineered antibodies and conjugates
KR20130097628A (en) * 2012-02-24 2013-09-03 성균관대학교산학협력단 Antibody-drug conjugate comprising apolipoprotein

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Protein Expression and Purification 117 (2016) 44-51 *

Similar Documents

Publication Publication Date Title
AU2005263555B2 (en) Expression-enhanced polypeptides
ES2880336T3 (en) Methods and products for the synthesis of fusion proteins
WO2018230257A1 (en) IgG-BINDING PEPTIDE, AND SPECIFIC MODIFICATION OF ANTIBODY WITH SAID PEPTIDE
US5420105A (en) Polymeric carriers for non-covalent drug conjugation
KR20180002734A (en) SPECIFIC MODIFICATION OF ANTIBODY BY IgG-BINDING PEPTIDE
WO2017013129A1 (en) Her2 binding proteins based on di-ubiquitin muteins
US11813336B2 (en) Targeted compounds for the site-specific coupling of chemical moieties comprising a peptide linker
KR20180095862A (en) C-terminal lysine conjugated immunoglobulin
Kim et al. Tribody: robust self-assembled trimeric targeting ligands with high stability and significantly improved target-binding strength
EP3706804B1 (en) Fusion proteins with specificity for ed-b and long serum half-life for diagnosis or treatment of cancer
CN101848939A (en) Protein G-oligonucleotide conjugate
EP3620464A1 (en) Car cell having crosslinked disulfide bridge on antigen recognizing moiety
WO2011135040A1 (en) Fluorescent antibody fusion protein, its production and use
Minamihata et al. Tyrosine coupling creates a hyperbranched multivalent protein polymer using horseradish peroxidase via bipolar conjugation points
Yu et al. Efficient labeling of native human IgG by proximity-based sortase-mediated isopeptide ligation
KR102235549B1 (en) Novel bio-conjugation kit using bifunctional linker and Cys-tagged SpyTag/Catcher for ADC
Moutsiopoulou et al. Bioorthogonal protein conjugation: application to the development of a highly sensitive bioluminescent immunoassay for the detection of interferon-γ
CN113166217A (en) Novel FOLR1 specific binding protein for cancer diagnosis and treatment
US20210275586A1 (en) Use of a car cell having crosslinked disulfide bridge on antigen recognizing moiety for targetting cancer cells
CN110117312B (en) Lipid binding protein-antigen capture module complex, and preparation method and application thereof
US9914757B2 (en) Methionyl tRNA synthetase for biosynthesis of photomethionine-labeled protein and method for preparing photoactive protein G variant using same
US5912322A (en) Modified pseudomonas exotoxin PE40
WO2001041811A2 (en) Carrier peptide and method for delivery of molecules into cells
CA2012732C (en) Production of modified pe40
AU631200B2 (en) Production of modified pe40

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant