KR102228863B1 - Fabrication method of honeycomb structure and honeycomb structured thermochemical heat storage materials - Google Patents

Fabrication method of honeycomb structure and honeycomb structured thermochemical heat storage materials Download PDF

Info

Publication number
KR102228863B1
KR102228863B1 KR1020170116585A KR20170116585A KR102228863B1 KR 102228863 B1 KR102228863 B1 KR 102228863B1 KR 1020170116585 A KR1020170116585 A KR 1020170116585A KR 20170116585 A KR20170116585 A KR 20170116585A KR 102228863 B1 KR102228863 B1 KR 102228863B1
Authority
KR
South Korea
Prior art keywords
honeycomb structure
heat storage
mixture
storage material
honeycomb
Prior art date
Application number
KR1020170116585A
Other languages
Korean (ko)
Other versions
KR20190029247A (en
Inventor
김홍수
이재용
서두원
김시경
김태우
김혁주
김근회
Original Assignee
한국에너지기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국에너지기술연구원 filed Critical 한국에너지기술연구원
Priority to KR1020170116585A priority Critical patent/KR102228863B1/en
Publication of KR20190029247A publication Critical patent/KR20190029247A/en
Application granted granted Critical
Publication of KR102228863B1 publication Critical patent/KR102228863B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/0006Honeycomb structures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/08Materials not undergoing a change of physical state when used
    • C09K5/14Solid materials, e.g. powdery or granular
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D20/0056Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using solid heat storage material
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • C04B2235/6021Extrusion moulding
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Structural Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Press-Shaping Or Shaping Using Conveyers (AREA)

Abstract

본 발명은 무기수산화물 및 수계 바인더를 혼합하여 혼합물을 얻는 단계; 상기 혼합물에 물을 첨가하여 허니컴 구조체 제조용 조성물을 제조하는 단계; 및 상기 허니컴 구조체 제조용 조성물을 압출 성형하여 허니컴 구조체로 제조하는 단계를 포함하는 허니컴 구조체의 제조 방법 및 상기 허니컴 구조체의 제조 방법에 따라 허니컴 구조체를 제조하는 단계; 및 상기 허니컴 구조체를 열처리하여, 허니컴 구조의 열저장재를 제조하는 단계를 포함 하는 허니컴 구조의 열저장재 제조 방법에 관한 것이다.The present invention comprises the steps of obtaining a mixture by mixing an inorganic hydroxide and an aqueous binder; Preparing a composition for producing a honeycomb structure by adding water to the mixture; And manufacturing a honeycomb structure according to the method of manufacturing a honeycomb structure and the method of manufacturing the honeycomb structure, including the step of extruding the composition for producing the honeycomb structure into a honeycomb structure. And heat-treating the honeycomb structure to produce a heat storage material having a honeycomb structure.

Description

허니컴 구조체의 제조 방법 및 허니컴 구조의 열저장재 제조 방법{FABRICATION METHOD OF HONEYCOMB STRUCTURE AND HONEYCOMB STRUCTURED THERMOCHEMICAL HEAT STORAGE MATERIALS}Manufacturing method of honeycomb structure and method of manufacturing heat storage material of honeycomb structure {FABRICATION METHOD OF HONEYCOMB STRUCTURE AND HONEYCOMB STRUCTURED THERMOCHEMICAL HEAT STORAGE MATERIALS}

본 발명은 무기수산화물 및 수계 바인더의 혼합물에 물을 첨가하여 허니컴 구조체의 제조 방법 및 상기 허니컴 구조체를 열처리하여 허니컴 구조의 열저장재의 제조 방법에 관한 것이다.The present invention relates to a method of manufacturing a honeycomb structure by adding water to a mixture of an inorganic hydroxide and an aqueous binder, and a method of manufacturing a heat storage material having a honeycomb structure by heat-treating the honeycomb structure.

신재생에너지 보급과 에너지효율의 중요성이 커지면서 에너지 저장 기술의 중요성이 점차 증대되고 있으며 전기저장뿐 아니라 열저장 기술도 점차 중요해지고 있다. As the importance of the supply of new and renewable energy and energy efficiency increases, the importance of energy storage technology is gradually increasing, and not only electricity storage but also heat storage technology is becoming increasingly important.

열 저장 기술 가운데 가장 오랫동안 열을 저장할 수 있는 기술이 열화학 축열 기술이다. 열화학 축열 기술은 화학 반응이 가역적으로 일어나는 물질에 흡열 반응을 일으킴으로써 열을 저장하고, 발열 반응을 일으킴으로써 열을 얻는 기술로서 아래와 같은 반응이 대표적인 열화학 축열 반응이다.Thermochemical heat storage technology is the technology that can store heat for the longest time among heat storage technologies. Thermochemical heat storage technology is a technology that stores heat by causing an endothermic reaction to a material in which a chemical reaction occurs reversibly, and obtains heat by causing an exothermic reaction. The following reactions are typical thermochemical heat storage reactions.

(흡열반응) Mg(OH)2 → MgO + H2O(Endothermic reaction) Mg(OH) 2 → MgO + H 2 O

(발열반응) MgO + H2O → Mg(OH)2 (Exothermic reaction) MgO + H 2 O → Mg(OH) 2

잠열 저장이나 현열 저장은 축방열 과정 중 액상이 발생하기 때문에 성형 문제가 발생하지 않으나, 열화학 축열 기술은 고체 상태를 유지하면서 축방열을 일으키기 때문에 성형된 형태가 중요하다. 앞에서 기술한 MgO는 수분과 반응하여 발열하고 고온의 공기와 접촉함으로써 흡열하므로 기체와 고체가 쉽게 접촉할 수 있도록 허니컴 형태로 성형하는 것이 축방열 속도를 빠르게 하는데 유리하다.Latent heat storage or sensible heat storage does not cause a molding problem because a liquid phase is generated during the axial heat storage process, but the thermochemical heat storage technology produces axial heat while maintaining a solid state, so the molded form is important. MgO described above reacts with moisture to generate heat and absorbs heat by contacting with high-temperature air. Therefore, it is advantageous to form a honeycomb shape so that gas and solid can easily contact the axial heat dissipation rate.

일반적으로 세라믹 분말은 가소성을 가지고 있지 않아 바인더와 물을 세라믹 분말에 첨가하고 혼련과 반죽을 거쳐 적당한 가소성을 얻은 후 압출을 통해 허니컴을 얻는다. MgO는 물을 섞으면 발열하면서 Mg(OH)2로 화학 반응을 일으키며 화학 반응 결과 생성된 물질이 딱딱해져서 가소성을 얻을 수 없었기 때문에 압출하기 어려운 소재로 알려져 있다.In general, ceramic powder does not have plasticity, so a binder and water are added to the ceramic powder, kneaded and kneaded to obtain suitable plasticity, and then a honeycomb is obtained through extrusion. MgO is known as a material that is difficult to extrude because when water is mixed, it generates heat and causes a chemical reaction with Mg(OH) 2 , and the material produced as a result of the chemical reaction becomes hard and plasticity cannot be obtained.

구체적으로, MgO와 물을 반응시켜 Mg(OH)2를 얻는 과정에서 화학량론 이상의 물을 첨가하여야 하고 얻어진 Mg(OH)2의 강도가 커서 분쇄 공정이 필요하고, 분쇄할 때 소음과 분진이 발생하는 문제가 있었다. Specifically, in the process of obtaining Mg(OH) 2 by reacting MgO and water, water having a stoichiometry or higher must be added, and the strength of the obtained Mg(OH) 2 is large, requiring a pulverization process, and noise and dust are generated when pulverizing. There was a problem.

미국공개특허 US2015-0344763, 2015.12.03 공개US published patent US2015-0344763, 2015.12.03 published

본 발명은 종래기술의 상기와 같은 문제를 해결하기 위하여 안출된 것으로서, 무기수산화물과 같은 열화학 축열물질을 물과 반응시키는 공정 없이 또한 발열 현상이나 반죽이 굳어지는 현상 없이 허니컴 형상으로 성형할 수 있는 허니컴 구조체의 제조 방법 및 허니컴 구조의 열저장재 제조 방법을 제공하는 것을 목적으로 한다.The present invention was conceived to solve the above problems of the prior art, and a honeycomb that can be molded into a honeycomb shape without a process of reacting a thermochemical heat storage material such as inorganic hydroxide with water and without a phenomenon of heat generation or hardening of dough. An object of the present invention is to provide a method for manufacturing a structure and a method for manufacturing a heat storage material having a honeycomb structure.

또한, 본 발명은 허니컴 구조의 열저장재의 제조 시 열처리 단계에서 강도가 약해지는 현상을 보완할 수 있는 열저장재의 제조 방법을 제공하는 것을 목적으로 한다.In addition, it is an object of the present invention to provide a method of manufacturing a heat storage material capable of compensating for a phenomenon in which strength is weakened during a heat treatment step when manufacturing a heat storage material having a honeycomb structure.

본 발명은, 무기수산화물 및 수계 바인더를 혼합하여 혼합물을 얻는 단계; 상기 혼합물에 물을 첨가하여 허니컴 구조체 제조용 조성물을 제조하는 단계; 및 상기 허니컴 구조체 제조용 조성물을 압출 성형하여 허니컴 구조체로 제조하는 단계를 포함하는 허니컴 구조체의 제조 방법을 제공한다.The present invention comprises the steps of obtaining a mixture by mixing an inorganic hydroxide and an aqueous binder; Preparing a composition for producing a honeycomb structure by adding water to the mixture; And extruding the composition for producing a honeycomb structure to form a honeycomb structure.

본 발명에서, 상기 무기수산화물은 수산화마그네슘, 수산화칼슘, 수산화철 및 수산화아연으로 이루어진 군에서 선택되는 1종 이상일 수 있다.In the present invention, the inorganic hydroxide may be one or more selected from the group consisting of magnesium hydroxide, calcium hydroxide, iron hydroxide and zinc hydroxide.

본 발명에서, 상기 혼합물을 얻는 단계는, 무기수산화물과 산화알루미늄을 혼합하여 예비 혼합물을 얻는 단계; 및 상기 예비 혼합물에 수계 바인더를 혼합하여 혼합물을 얻는 단계를 포함할 수 있다.In the present invention, the step of obtaining the mixture includes: obtaining a preliminary mixture by mixing an inorganic hydroxide and aluminum oxide; And mixing the preliminary mixture with an aqueous binder to obtain a mixture.

본 발명에서, 상기 수계 바인더는 상기 무기수산화물 대비 5 내지 30 중량%로 혼합되는 것일 수 있다.In the present invention, the aqueous binder may be mixed in an amount of 5 to 30% by weight based on the inorganic hydroxide.

본 발명에서, 상기 수계 바인더는 상기 예비 혼합물 대비 5 내지 30 중량%로 혼합되는 것일 수 있다.In the present invention, the aqueous binder may be mixed in an amount of 5 to 30% by weight compared to the preliminary mixture.

본 발명에서, 상기 물은 상기 혼합물 대비 3 내지 80 중량%로 첨가되는 것일 수 있다.In the present invention, the water may be added in an amount of 3 to 80% by weight of the mixture.

본 발명은, 상기 허니컴 구조체의 제조 방법에 따라 허니컴 구조체를 제조하는 단계; 및 상기 허니컴 구조체를 열처리하여, 허니컴 구조의 열저장재를 제조하는 단계를 포함 하는 허니컴 구조의 열저장재의 제조 방법을 제공한다.The present invention comprises the steps of manufacturing a honeycomb structure according to the method of manufacturing the honeycomb structure; And heat-treating the honeycomb structure to produce a heat storage material having a honeycomb structure.

본 발명은 무기수산화물과 같은 열화학 축열물질을 물과 반응시키는 공정 없이 또한 발열 현상이나 반죽이 굳어지는 현상 없이 허니컴 형상으로 성형할 수 있으며, 허니컴 구조의 열저장재의 제조 시 열처리 단계에서 강도가 약해지는 현상을 보완할 수 있다.The present invention can be molded into a honeycomb shape without a process of reacting a thermochemical heat storage material such as an inorganic hydroxide with water and without a heat generation phenomenon or a hardening phenomenon, and strength is weakened in the heat treatment step when manufacturing a heat storage material having a honeycomb structure. The phenomenon can be compensated.

도 1은 수산화마그네슘의 XRD 분석 결과이다.
도 2는 열처리된 수산화마그네슘의 XRD 분석 결과이다.
도 3은 수산화마그네슘의 DSC 분석 결과이다.
도 4는 실시 예 1에 따른 허니컴 구조체의 압출 사진이다.
도 5는 실시 예 2에 따른 허니컴 구조체의 압출 사진이다.
도 6은 실시 예 3에 따른 허니컴 구조체의 압출 사진이다.
도 7은 실시 예 4에 따른 허니컴 구조체의 압출 사진이다.
도 8은 실시 예 5에 따른 허니컴 구조체의 압출 사진이다.
도 9는 실험 예 1에 따른 허니컴 구조의 열저장재의 DSC 분석 결과이다.
도 10은 실험 예 2에 따른 허니컴 구조의 열저장재의 DSC 분석 결과이다.
도 11은 실험 예 3에 따른 허니컴 구조의 열저장재의 DSC 분석 결과이다.
도 12는 실험 예 4에 따른 허니컴 구조의 열저장재의 DSC 분석 결과이다.
1 is an XRD analysis result of magnesium hydroxide.
2 is an XRD analysis result of heat-treated magnesium hydroxide.
3 is a result of DSC analysis of magnesium hydroxide.
4 is an extrusion photograph of a honeycomb structure according to Example 1. FIG.
5 is an extrusion photograph of a honeycomb structure according to Example 2.
6 is an extrusion photograph of a honeycomb structure according to Example 3.
7 is an extrusion photograph of a honeycomb structure according to Example 4.
8 is an extrusion photograph of a honeycomb structure according to Example 5.
9 is a DSC analysis result of a heat storage material having a honeycomb structure according to Experimental Example 1.
10 is a DSC analysis result of a heat storage material having a honeycomb structure according to Experimental Example 2.
11 is a DSC analysis result of a heat storage material having a honeycomb structure according to Experimental Example 3.
12 is a DSC analysis result of the heat storage material having a honeycomb structure according to Experimental Example 4.

하기 실시 예는 본 발명을 예시하기 위한 것으로서 본 발명은 하기 실시 예에 의해 한정되지 않고 다양하게 수정 및 변경될 수 있다. 본 발명을 설명하기에 앞서 관련된 공지기능 및 구성에 대한 구체적 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우 그에 대한 설명은 생략하기로 한다.The following examples are intended to illustrate the present invention, and the present invention is not limited by the following examples and may be variously modified and changed. Prior to describing the present invention, when it is determined that a detailed description of related known functions and configurations may unnecessarily obscure the subject matter of the present invention, a description thereof will be omitted.

본 명세서에 개시되어 있는 본 발명의 개념에 따른 실시 예들에 대해서 특정한 구조적 또는 기능적 설명은 단지 본 발명의 개념에 따른 실시 예들을 설명하기 위한 목적으로 예시된 것으로서, 본 발명의 개념에 따른 실시 예들은 다양한 형태들로 실시될 수 있으며 본 명세서에 설명된 실시 예들에 한정되지 않으며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물, 또는 대체물을 포함한다.Specific structural or functional descriptions of the embodiments according to the concept of the present invention disclosed in the present specification are exemplified only for the purpose of describing the embodiments according to the concept of the present invention, and the embodiments according to the concept of the present invention are It may be implemented in various forms and is not limited to the embodiments described herein, and includes all changes, equivalents, or substitutes included in the spirit and scope of the present invention.

이하, 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.

허니컴 구조체의 제조 방법은, 무기수산화물 및 수계 바인더를 혼합하여 혼합물을 얻는 단계, 상기 혼합물에 물을 첨가하여 허니컴 구조체 제조용 조성물을 제조하는 단계 및 상기 허니컴 구조체 제조용 조성물을 압출 성형하여 허니컴 구조체로 제조하는 단계를 포함한다.The method of manufacturing a honeycomb structure includes obtaining a mixture by mixing an inorganic hydroxide and an aqueous binder, preparing a composition for manufacturing a honeycomb structure by adding water to the mixture, and extruding the composition for producing a honeycomb structure to produce a honeycomb structure. Includes steps.

상기 무기수산화물은 수산화마그네슘, 수산화칼슘, 수산화철 및 수산화아연으로 이루어진 군에서 선택되는 1종 이상일 수 있다. 바람직하게는, 상기 무기수산화물은 수산화마그네슘일 수 있다.The inorganic hydroxide may be one or more selected from the group consisting of magnesium hydroxide, calcium hydroxide, iron hydroxide, and zinc hydroxide. Preferably, the inorganic hydroxide may be magnesium hydroxide.

상기 수계 바인더는 PVA(polyvinyl alcohol), PEG(polyethylene glycol), MC(methylene cellulose), PEO(polyethylene oxide), 아크릴계 화합물 및 wax로 이루어진 군에서 선택되는 1종 이상일 수 있다.The aqueous binder may be at least one selected from the group consisting of polyvinyl alcohol (PVA), polyethylene glycol (PEG), methylene cellulose (MC), polyethylene oxide (PEO), acrylic compounds, and waxes.

상기 수계 바인더는 상기 무기수산화물 대비 5 내지 30 중량%로 혼합될 수 있으며, 바람직하게는, 8 내지 15 중량%로 혼합될 수 있다. 상기 수계 바인더가 5 중량% 이하로 혼합되면, 상기 허니컴 구조체 제조용 조성물이 충분한 가소성을 가지지 않아 압출할 수 없으며, 30 중량% 이상으로 혼합되면, 후술되는, 상기 수계 바인더 제거를 위한 열처리 공정 후 허니컴 구조의 열저장재의 압축강도가 현저히 저하될 수 있다.The aqueous binder may be mixed in an amount of 5 to 30% by weight relative to the inorganic hydroxide, and preferably, it may be mixed in an amount of 8 to 15% by weight. When the aqueous binder is mixed in less than 5% by weight, the composition for manufacturing the honeycomb structure cannot be extruded because it does not have sufficient plasticity, and when it is mixed in more than 30% by weight, the honeycomb structure after the heat treatment process for removing the aqueous binder, which will be described later The compressive strength of the heat storage material may be significantly reduced.

상기 물은 상기 혼합물 대비 3 내지 80 중량%로 혼합될 수 있으며, 바람직하게는, 8 내지 65 중량%로 혼합될 수 있다. 상기 물이 3 중량% 이하로 혼합되면 상기 허니컴 구조체 제조용 조성물의 유동성이 저하되어 압출할 수 없으며, 80 중량% 이상으로 혼합되면 유동성이 지나치게 좋아져서 상기 허니컴 구조체가 압출용 몰드를 통과한 후 형상을 유지할 수 없게 된다.The water may be mixed in an amount of 3 to 80% by weight relative to the mixture, and preferably, it may be mixed in an amount of 8 to 65% by weight. If the water is mixed in less than 3% by weight, the fluidity of the composition for producing the honeycomb structure is lowered and it cannot be extruded, and if it is mixed in more than 80% by weight, the fluidity becomes too good, and the shape of the honeycomb structure after passing through the extrusion mold is changed. It becomes impossible to maintain.

종래 기술과 같이, 무기산화물(예를 들어, 산화마그네슘)에 물을 첨가하여 조성물을 제조하는 경우, 발열반응이 발생되어 형성된 상기 조성물은 매우 단단하여 성형성이 저하될 수 있다.As in the prior art, when a composition is prepared by adding water to an inorganic oxide (eg, magnesium oxide), the composition formed by the exothermic reaction is very hard and moldability may be deteriorated.

반면, 본 발명과 같이 상기 무기수산화물을 포함하는 상기 혼합물에 상기 물을 첨가하여 상기 허니컴 구조체 제조용 조성물을 제조하는 경우, 상기 허니컴 구조체 제조용 조성물은 반죽 상태로 제조되어 우수한 성형성을 가질 수 있다. 이에 따라, 상기 허니컴 구조체 제조용 조성물을 압출 성형하여 상기 허니컴 구조체를 제조할 시, 별도의 분쇄 공정이 요구되지 않을 수 있다.On the other hand, when the composition for producing the honeycomb structure is prepared by adding water to the mixture containing the inorganic hydroxide as in the present invention, the composition for producing the honeycomb structure may be prepared in a kneaded state, thereby having excellent moldability. Accordingly, when manufacturing the honeycomb structure by extrusion molding the composition for producing the honeycomb structure, a separate grinding process may not be required.

상기 혼합물을 얻는 단계는 무기수산화물과 산화알루미늄을 혼합하여 예비 혼합물을 얻는 단계 및 상기 예비 혼합물에 수계 바인더를 혼합하여 혼합물을 얻는 단계를 포함할 수 있다.The step of obtaining the mixture may include obtaining a preliminary mixture by mixing an inorganic hydroxide and aluminum oxide, and mixing the preliminary mixture with an aqueous binder to obtain a mixture.

상기 산화알루미늄은 상기 허니컴 구조체 제조용 조성물 대비 1 내지 10 중량%로 혼합될 수 있으며, 바람직하게는, 5 중량%로 혼합될 수 있다.The aluminum oxide may be mixed in an amount of 1 to 10% by weight, and preferably, in an amount of 5% by weight, relative to the composition for manufacturing the honeycomb structure.

상기 허니컴 구조체 제조용 조성물이 상기 산화알루미늄을 포함함에 따라, 상기 허니컴 구조체의 압축강도가 향상될 수 있다.As the composition for manufacturing the honeycomb structure includes the aluminum oxide, the compressive strength of the honeycomb structure may be improved.

상기 혼합물이 상기 산화알루미늄을 포함하는 경우, 상기 수계 바인더는 상기 예비 혼합물의 중량 대비 5 내지 30 중량%로 혼합될 수 있으며, 바람직하게는, 8 내지 15 중량%로 혼합될 수 있다.When the mixture includes the aluminum oxide, the aqueous binder may be mixed in an amount of 5 to 30% by weight, preferably 8 to 15% by weight, based on the weight of the preliminary mixture.

허니컴 구조의 열저장재의 제조 방법은, 상기 허니컴 구조체의 제조 방법에 따라 허니컴 구조체를 제조하는 단계 및 상기 허니컴 구조체를 열처리하여, 허니컴 구조의 열저장재를 제조하는 단계를 포함할 수 있다.The method of manufacturing a heat storage material having a honeycomb structure may include manufacturing a honeycomb structure according to the manufacturing method of the honeycomb structure, and preparing a heat storage material having a honeycomb structure by heat-treating the honeycomb structure.

구체적으로, 상기 허니컴 구조체의 열처리(heating)는 상기 수계 바인더를 제거하기 위한 구성으로, 상기 무기수산화물이 열처리되어 산화된, 무기산화물 및 상기 산화알루미늄 각각의 녹는점보다 낮은 온도에서 수행되며, 구성 성분(예를 들어, 무기수산화물이 열처리되어 산화된 무기산화물 또는 상기 무기산화물 및 산화알루미늄)의 녹는점 가까이 가열하여 구성 성분의 입자들 간 인접 면에서 접합이 이루어지는 소결(sintering)과는 상이한 구성으로 이해될 수 있다.Specifically, heating of the honeycomb structure is a configuration for removing the aqueous binder, and is performed at a temperature lower than the melting point of each of the inorganic oxide and the aluminum oxide, which is oxidized by heat treatment of the inorganic hydroxide. (For example, it is understood as a different composition from sintering, in which an inorganic hydroxide is heat-treated and oxidized, or the inorganic oxide and aluminum oxide) are heated near the melting point and bonded at the adjacent surfaces of the constituent particles. Can be.

이하, 시험 예 및 실시 예를 참조하여 본 발명을 상세하게 설명한다.Hereinafter, the present invention will be described in detail with reference to test examples and examples.

시험 예: 수산화마그네슘의 XRD 및 DSC 분석.Test Example: XRD and DSC analysis of magnesium hydroxide.

수산화마그네슘(Martin Marietta Magnesia Specialties사의 MagShield S) 분말을 XRD(X-ray Diffraction) 분석하여 XRD 패턴을 도 1에 나타내었고, 상기 수산화마그네슘 분말을 600℃에서 3시간 동안 열처리한 뒤 XRD 분석하여 XRD 패턴을 도 2에 나타내었고, 상기 수산화마그네슘 분말을 DSC(Differential scanning calorimetry) 분석하여 분석 결과를 도 3에 나타내었다.MagShield S (Martin Marietta Magnesia Specialties' MagShield S) powder was analyzed by XRD (X-ray Diffraction) to show an XRD pattern in FIG. 2, the magnesium hydroxide powder was analyzed by DSC (Differential scanning calorimetry), and the analysis results are shown in FIG. 3.

도 1을 참조하면, 수산화마그네슘의 XRD 패턴을 확인할 수 있다. 도 2를 참조하면, 수산화마그네슘 및 산화마그네슘의 XRD 패턴을 확인할 수 있다. 이에 따라, 수산화마그네슘이 열처리되는 경우, 산화마그네슘으로 변환된다는 것을 알 수 있다.Referring to FIG. 1, the XRD pattern of magnesium hydroxide can be confirmed. Referring to FIG. 2, an XRD pattern of magnesium hydroxide and magnesium oxide can be confirmed. Accordingly, it can be seen that when magnesium hydroxide is heat-treated, it is converted into magnesium oxide.

도 3을 참조하면, 수산화마그네슘은 313℃에서 888J/g의 흡열 특성을 나타내는 것을 확인할 수 있다. 이에 따라, 수산화마그네슘은 축방열 특성이 우수하여, 화학적 열저장재의 출발 물질로 사용되기에 적합하다는 것을 알 수 있다.Referring to FIG. 3, it can be seen that magnesium hydroxide exhibits an endothermic property of 888 J/g at 313°C. Accordingly, it can be seen that magnesium hydroxide has excellent axial heat dissipation properties and is suitable for use as a starting material for a chemical heat storage material.

실시 예 1 내지 5에 따른 허니컴 구조체의 제조.Preparation of honeycomb structures according to Examples 1 to 5.

수산화마그네슘으로써 Martin Marietta Magnesia Specialties사의 MagShield S 800g과 바인더로써 Yuken 사의 YB-132A 80g을 혼합하여 혼합물을 제조하고, 상기 혼합물에 물 308g을 첨가하여 조성물을 제조한 뒤, 직경이 40mm인 40cells/in2의 원형 압출용 몰드를 이용하는 Sanko Shoji사의 진공압출기(V-20)로 상기 조성물을 압출 성형하여 30cm 길이의 실시 예 1에 따른 허니컴 구조체를 제조하였다.A mixture was prepared by mixing 800 g of Martin Marietta Magnesia Specialties' MagShield S as magnesium hydroxide and 80 g of Yuken's YB-132A as a binder, and 308 g of water was added to the mixture to prepare a composition, and then 40 cells/in 2 with a diameter of 40 mm. The composition was extrusion-molded with a vacuum extruder (V-20) of Sanko Shoji using a circular extrusion mold to prepare a honeycomb structure according to Example 1 having a length of 30 cm.

도 4는 실시 예 1에 따른 허니컴 구조체의 압출 사진이다.4 is an extrusion photograph of a honeycomb structure according to Example 1. FIG.

수산화마그네슘으로써 Martin Marietta Magnesia Specialties사의 MagShield S 733g, 삼전순약 사의 99.0% 산화알루미늄 67g 및 바인더로써 Yuken 사의 YB-132A 80g을 혼합하여 수산화마그네슘과 산화알루미늄의 혼합 몰 비(mole ratio)가 95:5인 혼합물을 제조하고, 상기 혼합물에 물 277g을 첨가하여 조성물을 제조한 뒤, 실시 예 1에 따른 허니컴 구조체의 제조 방법에서와 동일한 압출 성형 공정을 통해 실시 예 2에 따른 허니컴 구조체를 제조하였다.MagShield S 733g of Martin Marietta Magnesia Specialties as magnesium hydroxide, 67g of 99.0% aluminum oxide of Samjeon Pure Chemicals, and 80g of YB-132A of Yuken as a binder are mixed, so that the mixed molar ratio of magnesium hydroxide and aluminum oxide is 95:5. A mixture was prepared, and 277 g of water was added to the mixture to prepare a composition, and then a honeycomb structure according to Example 2 was manufactured through the same extrusion process as in the method of manufacturing a honeycomb structure according to Example 1.

도 5는 실시 예 2에 따른 허니컴 구조체의 압출 사진이다.5 is an extrusion photograph of a honeycomb structure according to Example 2.

실시 예 2에 따른 허니컴 구조체의 제조 방법에서, 수산화마그네슘을 670g, 산화알루미늄을 130g, 물을 290g으로 변경하여, 수산화마그네슘과 산화알루미늄의 혼합 몰 비가 90:10인 실시 예 3에 따른 허니컴 구조체를 제조하였다.In the method of manufacturing the honeycomb structure according to Example 2, the honeycomb structure according to Example 3 was changed to 670 g of magnesium hydroxide, 130 g of aluminum oxide, and 290 g of water, and the mixing molar ratio of magnesium hydroxide and aluminum oxide was 90:10. Was prepared.

도 6은 실시 예 3에 따른 허니컴 구조체의 압출 사진이다.6 is an extrusion photograph of a honeycomb structure according to Example 3.

실시 예 2에 따른 허니컴 구조체의 제조 방법에서, 수산화마그네슘을 611g, 산화알루미늄을 189g, 물을 290g으로 변경하여, 수산화마그네슘과 산화알루미늄의 혼합 몰 비가 85:15인 실시 예 4에 따른 허니컴 구조체를 제조하였다.In the method of manufacturing the honeycomb structure according to Example 2, the honeycomb structure according to Example 4 was changed to 611 g of magnesium hydroxide, 189 g of aluminum oxide, and 290 g of water, and the mixing molar ratio of magnesium hydroxide and aluminum oxide was 85:15. Was prepared.

도 7은 실시 예 4에 따른 허니컴 구조체의 압출 사진이다.7 is an extrusion photograph of a honeycomb structure according to Example 4.

실시 예 2에 따른 허니컴 구조체의 제조 방법에서, 수산화마그네슘을 557g, 산화알루미늄을 243g, 물을 286g으로 변경하여, 수산화마그네슘과 산화알루미늄의 혼합 몰 비가 80:20인 실시 예 5에 따른 허니컴 구조체를 제조하였다.In the method of manufacturing a honeycomb structure according to Example 2, the honeycomb structure according to Example 5 was changed to 557 g of magnesium hydroxide, 243 g of aluminum oxide, and 286 g of water, and the mixing molar ratio of magnesium hydroxide and aluminum oxide was 80:20. Was prepared.

도 8은 실시 예 5에 따른 허니컴 구조체의 압출 사진이다.8 is an extrusion photograph of a honeycomb structure according to Example 5.

실시 예 1 내지 5에 따른 허니컴 구조체의 성분 및 조성비를 하기 [표 1]에 비교 정리하였다.The components and composition ratios of the honeycomb structures according to Examples 1 to 5 were compared and summarized in the following [Table 1].

수산화마그네슘(g)Magnesium hydroxide (g) 산화알루미늄(g)Aluminum oxide (g) 바인더(g)Binder (g) 물(g)Water(g) 실시 예 1Example 1 800800 -- 8080 308308 실시 예 2Example 2 733733 6767 277277 실시 예 3Example 3 670670 130130 290290 실시 예 4Example 4 611611 189189 290290 실시 예 5Example 5 557557 243243 286286

시험 예: 실시 예 1 내지 5에 따른 허니컴 구조체의 압축강도 분석.Test Example: Analysis of compressive strength of honeycomb structures according to Examples 1 to 5.

실시 예 1 내지 5에 따른 허니컴 구조체를 직경 35mm, 높이 40mm 크기의 원기둥 형태의 시편으로 가공한 뒤, crosshead speed가 1mm/min으로 설정된 Instron Series IX Automated Material Testing System을 이용하여, 바인더가 제거되지 않은 실시 예 1 내지 5에 따른 허니컴 구조체의 압축강도를 분석하였다.After processing the honeycomb structure according to Examples 1 to 5 into a cylindrical specimen having a diameter of 35 mm and a height of 40 mm, using the Instron Series IX Automated Material Testing System with a crosshead speed of 1 mm/min, the binder was not removed. The compressive strength of the honeycomb structures according to Examples 1 to 5 was analyzed.

또한, 실시 예 1 내지 4에 따른 허니컴 구조체를 직경 35mm, 높이 40mm 크기의 원기둥 형태의 시편으로 가공하고 500℃에서 500분 동안 열처리한 뒤, crosshead speed가 1mm/min으로 설정된 Instron Series IX Automated Material Testing System을 이용하여, 바인더가 제거된 실시 예 1 내지 4에 따른 허니컴 구조체의 압축강도를 분석하였다.In addition, after processing the honeycomb structure according to Examples 1 to 4 into a cylindrical specimen having a diameter of 35 mm and a height of 40 mm, heat treatment at 500°C for 500 minutes, Instron Series IX Automated Material Testing with a crosshead speed of 1 mm/min. Using the system, the compressive strength of the honeycomb structures according to Examples 1 to 4 in which the binder was removed was analyzed.

실시 예 1 내지 5에 따른 허니컴 구조체의 바인더 제거 전 및 바인더 제거 후 압축강도를 하기 [표 2]에 나타내었다.The compressive strength of the honeycomb structures according to Examples 1 to 5 before and after removal of the binder are shown in Table 2 below.

실시 예 1Example 1 실시 예 2Example 2 실시 예 3Example 3 실시 예 4Example 4 실시 예 5Example 5 바인더 제거 전 압축강도Compressive strength before removing binder 6.54±0.43MPa6.54±0.43MPa 5.21±0.51MPa5.21±0.51MPa 5.17±0.72MPa5.17±0.72MPa 4.91±0.20MPa4.91±0.20MPa 3.99±0.14MPa3.99±0.14MPa 바인더 제거 후 압축강도Compressive strength after removing the binder 178±76kPa178±76kPa 187±52kPa187±52kPa 94±14kPa94±14kPa 56±8kPa56±8kPa --

상기 [표 1]을 참조하면, 실시 예 1 내지 5에 따른 허니컴 구조체의 바인더 제거 전 압축강도는 약 4 내지 7MPa이고, 바인더 제거 후 압축강도는 약 50 내지 250kPa이며 산화알루미늄의 함량이 5mol%인 경우 압축강도가 가장 우수한 것을 알 수 있다.Referring to [Table 1], the compressive strength of the honeycomb structures according to Examples 1 to 5 before removing the binder is about 4 to 7 MPa, the compressive strength after removing the binder is about 50 to 250 kPa, and the content of aluminum oxide is 5 mol%. In this case, it can be seen that the compressive strength is the best.

실시 예 6 및 7에 따른 허니컴 구조의 열저장재 제조.Manufacturing of a honeycomb-structured heat storage material according to Examples 6 and 7.

실시 예 1에 따른 허니컴 구조체를 500℃에서 500분 동안 열처리하여 바인더가 제거된 실시 예 6에 따른 허니컴 구조의 열저장재를 제조하였다.The honeycomb structure according to Example 1 was heat-treated at 500° C. for 500 minutes to prepare a heat storage material having a honeycomb structure according to Example 6 from which the binder was removed.

실시 예 2에 따른 허니컴 구조체를 500℃에서 500분 동안 열처리하여 바인더가 제거된 실시 예 7에 따른 허니컴 구조의 열저장재를 제조하였다.The honeycomb structure according to Example 2 was heat-treated at 500° C. for 500 minutes to prepare a heat storage material having a honeycomb structure according to Example 7 in which the binder was removed.

실험 예 1 내지 4에 따른 허니컴 구조의 열저장재의 DSC 분석.DSC analysis of the heat storage material having a honeycomb structure according to Experimental Examples 1 to 4.

실시 예 6에 따른 허니컴 구조의 열저장재를 500℃에서 60분 동안 열처리하여 수산화마그네슘을 산화마그네슘으로 변환시키고, 물을 첨가하여 방열시키는, 축방열 사이클(cycle)을 20회 반복하여 실험 예 1에 따른 허니컴 구조의 열저장재의 DSC 분석을 수행하였다.Experimental Example 1 by repeating the axial heat dissipation cycle 20 times in which the heat storage material of the honeycomb structure according to Example 6 was heat-treated at 500°C for 60 minutes to convert magnesium hydroxide into magnesium oxide, and heat radiated by adding water. DSC analysis of the heat storage material having a honeycomb structure according to

실험 예 1에 따른 허니컴 구조의 열저장재의 DSC 분석 수행에서, 축방열 사이클 반복 횟수를 30회로 변경하여, 실험 예 2에 따른 허니컴 구조의 열저장재의 DSC 분석을 수행하였다.In the DSC analysis of the honeycomb structured heat storage material according to Experimental Example 1, the number of repetitions of the axial heat dissipation cycle was changed to 30, and DSC analysis of the honeycomb structured heat storage material according to Experimental Example 2 was performed.

실시 예 7에 따른 허니컴 구조의 열저장재를 500℃에서 60분 동안 열처리하여 수산화마그네슘을 산화마그네슘으로 변환시키고, 120℃ 건조기에서 24시간동안 건조하여 방열시키는, 축방열 사이클을 1회 수행하여 실험 예 3에 따른 허니컴 구조의 열저장재의 DSC 분석을 수행하였다.The heat storage material of the honeycomb structure according to Example 7 was heat-treated at 500°C for 60 minutes to convert magnesium hydroxide into magnesium oxide, and dried in a dryer at 120°C for 24 hours to radiate heat, and an axial heat dissipation cycle was performed once. DSC analysis of the heat storage material having a honeycomb structure according to Example 3 was performed.

실시 예 7에 따른 허니컴 구조의 열저장재를 500℃에서 30분 동안 열처리하여 수산화마그네슘을 산화마그네슘으로 변환시키고, 100 증기를 사용하여 30분 동안 방열시키는 축방열 사이클을 50회 반복하여 실험 예 4에 따른 허니컴 구조의 열저장재의 DSC 분석을 수행하였다.Experimental Example 4 by heat-treating the heat storage material having a honeycomb structure according to Example 7 at 500°C for 30 minutes to convert magnesium hydroxide into magnesium oxide, and repeating the axial heat dissipation cycle 50 times in which heat is radiated for 30 minutes using 100 steam. DSC analysis of the heat storage material having a honeycomb structure according to

실험 예 1 내지 4에 따른 허니컴 구조의 열저장재의 DSC 분석 결과를 각각, 도 9 내지 12에 나타내었다.DSC analysis results of the honeycomb-structured heat storage materials according to Experimental Examples 1 to 4 are shown in FIGS. 9 to 12, respectively.

도 9 및 10을 참조하면, 실험 예 1 및 2에 따른 허니컴 구조의 열저장재의 DSC 분석 결과, 실시 예 6에 따른 허니컴 구조의 열저장재는 축방열 사이클이 반복 수행되는 경우에도, 우수한 축방열 특성을 유지하는 것을 알 수 있다.9 and 10, DSC analysis results of the honeycomb-structured thermal storage material according to Experimental Examples 1 and 2, the honeycomb-structured thermal storage material according to Example 6, excellent heat storage and heat dissipation characteristics even when the heat storage cycle is repeatedly performed. Can be seen to keep.

구체적으로, 실험 예 1에 따른 허니컴 구조의 열저장재의 DSC 분석 수행 시, 실시 예 6에 따른 허니컴 구조의 열저장재의 흡열 특성은 303.66℃에서 1029J/g으로 측정되며, 실험 예 2에 따른 허니컴 구조의 열저장재의 DSC 분석 수행 시, 실시 예 6에 따른 허니컴 구조의 열저장재의 흡열 특성은 300.86℃에서 1047J/g으로 측정되는 것을 알 수 있다.Specifically, when performing DSC analysis of the honeycomb structured heat storage material according to Experimental Example 1, the heat absorbing property of the honeycomb structured heat storage material according to Example 6 was measured at 303.66°C to 1029 J/g, and the honeycomb structure according to Experimental Example 2 When performing the DSC analysis of the heat storage material of, it can be seen that the heat absorbing property of the heat storage material of the honeycomb structure according to Example 6 was measured as 1047 J/g at 300.86°C.

도 11 및 12를 참조하면, 실험 예 3 및 4에 따른 허니컴 구조의 열저장재의 DSC 분석 결과를 확인할 수 있다.11 and 12, DSC analysis results of the honeycomb-structured thermal storage material according to Experimental Examples 3 and 4 can be confirmed.

실험 예 3에 따른 허니컴 구조의 열저장재의 DSC 분석 수행 시, 실시 예 7에 따른 허니컴 구조의 열저장재의 흡열 특성은 304.73℃에서 734.7J/g으로 측정되며, 실험 예 4에 따른 허니컴 구조의 열저장재의 DSC 분석 수행 시, 실시 예 7에 따른 허니컴 구조의 열저장재의 흡열 특성은 287.86℃에서 547.1J/g으로 측정되는 것을 알 수 있다.When performing DSC analysis of the honeycomb structured heat storage material according to Experimental Example 3, the heat absorbing property of the honeycomb structured heat storage material according to Example 7 was measured as 734.7 J/g at 304.73°C, and the heat of the honeycomb structure according to Experimental Example 4 When performing the DSC analysis of the storage material, it can be seen that the heat absorbing property of the heat storage material having a honeycomb structure according to Example 7 was measured as 547.1 J/g at 287.86°C.

Claims (7)

수산화마그네슘 및 수계 바인더를 혼합하여 혼합물을 얻는 단계;
상기 혼합물에 물을 첨가하여 허니컴 구조체 제조용 조성물을 제조하는 단계;
상기 허니컴 구조체 제조용 조성물을 압출 성형하여 허니컴 구조체로 제조하는 단계; 및
상기 수계 바인더를 제거하기 위해 상기 허니컴 구조체를 열처리하여, 허니컴 구조의 열화학 축열 저장재를 제조하는 단계를 포함하며,
상기 수계 바인더는 PVA(polyvinyl alcohol), PEG(polyethylene glycol), MC(methylene cellulose), PEO(polyethylene oxide), 아크릴계 화합물 및 왁스로 이루어진 군에서 선택되는 1종 이상인 것을 포함하는 것이고,
상기 허니컴 구조체 제조용 조성물에는 납석이 포함되지 않는 것인, 허니컴 구조의 열화학 축열 저장재의 제조 방법.
Mixing magnesium hydroxide and an aqueous binder to obtain a mixture;
Preparing a composition for producing a honeycomb structure by adding water to the mixture;
Extruding the composition for producing a honeycomb structure to produce a honeycomb structure; And
Heat-treating the honeycomb structure to remove the aqueous binder, and manufacturing a thermochemical heat storage storage material having a honeycomb structure,
The aqueous binder includes one or more selected from the group consisting of PVA (polyvinyl alcohol), PEG (polyethylene glycol), MC (methylene cellulose), PEO (polyethylene oxide), acrylic compound, and wax,
The composition for producing a honeycomb structure does not contain pyrophyllite, a method for producing a thermochemical heat storage storage material having a honeycomb structure.
삭제delete 청구항 1에 있어서,
상기 혼합물을 얻는 단계는
수산화마그네슘과 산화알루미늄을 혼합하여 예비 혼합물을 얻는 단계; 및
상기 예비 혼합물에 수계 바인더를 혼합하여 혼합물을 얻는 단계를 포함하는, 허니컴 구조의 열화학 축열 저장재의 제조 방법.
The method according to claim 1,
The step of obtaining the mixture
Mixing magnesium hydroxide and aluminum oxide to obtain a preliminary mixture; And
A method for producing a thermochemical heat storage storage material having a honeycomb structure, comprising the step of obtaining a mixture by mixing an aqueous binder with the preliminary mixture.
청구항 3에 있어서,
상기 수계 바인더는 상기 예비 혼합물 100 중량부 대비 5 내지 30 중량부로 혼합되는 것인, 허니컴 구조의 열화학 축열 저장재의 제조 방법.
The method of claim 3,
The aqueous binder is mixed in an amount of 5 to 30 parts by weight based on 100 parts by weight of the preliminary mixture.
청구항 1에 있어서,
상기 수계 바인더는 상기 수산화마그네슘 100 중량부 대비 5 내지 30 중량부로 혼합되는 것인, 허니컴 구조의 열화학 축열 저장재의 제조 방법.
The method according to claim 1,
The aqueous binder is mixed in an amount of 5 to 30 parts by weight based on 100 parts by weight of the magnesium hydroxide, a method for producing a thermochemical heat storage storage material having a honeycomb structure.
청구항 1에 있어서,
상기 물은 상기 혼합물 100 중량부 대비 3 내지 80 중량부로 첨가되는 것인, 허니컴 구조의 열화학 축열 저장재의 제조 방법.
The method according to claim 1,
The water is added in an amount of 3 to 80 parts by weight based on 100 parts by weight of the mixture.
삭제delete
KR1020170116585A 2017-09-12 2017-09-12 Fabrication method of honeycomb structure and honeycomb structured thermochemical heat storage materials KR102228863B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020170116585A KR102228863B1 (en) 2017-09-12 2017-09-12 Fabrication method of honeycomb structure and honeycomb structured thermochemical heat storage materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020170116585A KR102228863B1 (en) 2017-09-12 2017-09-12 Fabrication method of honeycomb structure and honeycomb structured thermochemical heat storage materials

Publications (2)

Publication Number Publication Date
KR20190029247A KR20190029247A (en) 2019-03-20
KR102228863B1 true KR102228863B1 (en) 2021-03-17

Family

ID=66036527

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020170116585A KR102228863B1 (en) 2017-09-12 2017-09-12 Fabrication method of honeycomb structure and honeycomb structured thermochemical heat storage materials

Country Status (1)

Country Link
KR (1) KR102228863B1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013203584A (en) * 2012-03-28 2013-10-07 Ngk Insulators Ltd Porous material, method for manufacturing the same, and honeycomb structure

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101421267B1 (en) * 2012-06-20 2014-07-18 (주) 칸테크 Method of Manufacturing Cordierite Honeycomb Using Agalmatolite
KR20140028705A (en) * 2012-08-30 2014-03-10 세이브기술 (주) Method for producing ceramic honeycomb structure
EP2938696B1 (en) 2012-12-27 2020-02-05 Nederlandse Organisatie voor toegepast- natuurwetenschappelijk onderzoek TNO Composite material for heat storage and method for preparation

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013203584A (en) * 2012-03-28 2013-10-07 Ngk Insulators Ltd Porous material, method for manufacturing the same, and honeycomb structure

Also Published As

Publication number Publication date
KR20190029247A (en) 2019-03-20

Similar Documents

Publication Publication Date Title
KR101283793B1 (en) Functional inorganic board and manufacturing method thereof
JP2010503605A (en) Low CTE isotropic graphite
JP2008545612A5 (en)
CN1956936A (en) Ceramic body paste, ceramic green body, ceramic structure, and methods for producing those
US8679997B2 (en) Ceramic clay, ceramic formed article, and ceramic structure, and manufacturing methods thereof
CN103922750A (en) Wear-resistant silicon nitride ceramic material and preparation method thereof
JP2011162746A (en) Molded article of chemical heat storage material and method for producing the same
CN107586124A (en) High-strength light composite ceramic material and preparation method thereof
TWI359836B (en)
JP2011005417A (en) Honeycomb filter and method of manufacturing the same
JPH0471166A (en) Manufacture of air electrode material for solid electrolyte fuel cell
KR102228863B1 (en) Fabrication method of honeycomb structure and honeycomb structured thermochemical heat storage materials
KR102145716B1 (en) Manufacturing method of the aluminum titanate ceramics
JP5264263B2 (en) Chemical heat storage material, chemical heat storage material molded body, and manufacturing method thereof
KR102094412B1 (en) Thermochemical heat storage material of honeycomb structure and method for manufacturing thereof
JP2009222273A (en) Method of manufacturing chemical heat storage material molded product
JP2009256519A (en) Chemical thermal storage medium composite and method for producing the same
KR102286850B1 (en) Poruos ceramic having excellent mechanical property and insulation and method for manufacturing thereof
US8859447B2 (en) Columnar aluminum titanate and method for producing same
KR101867171B1 (en) Method of preparing honeycomb structure
JP4054872B2 (en) Alumina porous ceramics and method for producing the same
DE102015001547A1 (en) Alumina sintered body and method for its production
JP2007290934A (en) Ceramic green body and its producing method
JP4096096B2 (en) Hexaluminate porous ceramics and method for producing the same
TWI778121B (en) Composite material and process for the production thereof

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
X091 Application refused [patent]
AMND Amendment
E902 Notification of reason for refusal
AMND Amendment
X701 Decision to grant (after re-examination)
GRNT Written decision to grant