KR102228174B1 - Concrete mixing composition having high intensity - Google Patents

Concrete mixing composition having high intensity Download PDF

Info

Publication number
KR102228174B1
KR102228174B1 KR1020200078235A KR20200078235A KR102228174B1 KR 102228174 B1 KR102228174 B1 KR 102228174B1 KR 1020200078235 A KR1020200078235 A KR 1020200078235A KR 20200078235 A KR20200078235 A KR 20200078235A KR 102228174 B1 KR102228174 B1 KR 102228174B1
Authority
KR
South Korea
Prior art keywords
electric pole
waste
mixture
waste electric
comparative example
Prior art date
Application number
KR1020200078235A
Other languages
Korean (ko)
Inventor
이창현
Original Assignee
이창현
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 이창현 filed Critical 이창현
Priority to KR1020200078235A priority Critical patent/KR102228174B1/en
Application granted granted Critical
Publication of KR102228174B1 publication Critical patent/KR102228174B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/04Waste materials; Refuse
    • C04B18/16Waste materials; Refuse from building or ceramic industry
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/02Granular materials, e.g. microballoons
    • C04B14/04Silica-rich materials; Silicates
    • C04B14/048Granite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/02Granular materials, e.g. microballoons
    • C04B14/04Silica-rich materials; Silicates
    • C04B14/06Quartz; Sand
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/02Granular materials, e.g. microballoons
    • C04B14/30Oxides other than silica
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/04Waste materials; Refuse
    • C04B18/16Waste materials; Refuse from building or ceramic industry
    • C04B18/167Recycled materials, i.e. waste materials reused in the production of the same materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B20/00Use of materials as fillers for mortars, concrete or artificial stone according to more than one of groups C04B14/00 - C04B18/00 and characterised by shape or grain distribution; Treatment of materials according to more than one of the groups C04B14/00 - C04B18/00 specially adapted to enhance their filling properties in mortars, concrete or artificial stone; Expanding or defibrillating materials
    • C04B20/0076Use of materials as fillers for mortars, concrete or artificial stone according to more than one of groups C04B14/00 - C04B18/00 and characterised by shape or grain distribution; Treatment of materials according to more than one of the groups C04B14/00 - C04B18/00 specially adapted to enhance their filling properties in mortars, concrete or artificial stone; Expanding or defibrillating materials characterised by the grain distribution
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B20/00Use of materials as fillers for mortars, concrete or artificial stone according to more than one of groups C04B14/00 - C04B18/00 and characterised by shape or grain distribution; Treatment of materials according to more than one of the groups C04B14/00 - C04B18/00 specially adapted to enhance their filling properties in mortars, concrete or artificial stone; Expanding or defibrillating materials
    • C04B20/02Treatment
    • C04B20/026Comminuting, e.g. by grinding or breaking; Defibrillating fibres other than asbestos
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B20/00Use of materials as fillers for mortars, concrete or artificial stone according to more than one of groups C04B14/00 - C04B18/00 and characterised by shape or grain distribution; Treatment of materials according to more than one of the groups C04B14/00 - C04B18/00 specially adapted to enhance their filling properties in mortars, concrete or artificial stone; Expanding or defibrillating materials
    • C04B20/02Treatment
    • C04B20/04Heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B20/00Use of materials as fillers for mortars, concrete or artificial stone according to more than one of groups C04B14/00 - C04B18/00 and characterised by shape or grain distribution; Treatment of materials according to more than one of the groups C04B14/00 - C04B18/00 specially adapted to enhance their filling properties in mortars, concrete or artificial stone; Expanding or defibrillating materials
    • C04B20/10Coating or impregnating
    • C04B20/1055Coating or impregnating with inorganic materials
    • C04B20/107Acids or salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • C04B28/04Portland cements
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2201/00Mortars, concrete or artificial stone characterised by specific physical values
    • C04B2201/50Mortars, concrete or artificial stone characterised by specific physical values for the mechanical strength
    • C04B2201/52High compression strength concretes, i.e. with a compression strength higher than about 55 N/mm2, e.g. reactive powder concrete [RPC]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Civil Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

The present invention relates to a high-strength concrete blend composition comprising: a waste electric pole; a waste insulator; granite; cement; and water, and can form a high-strength concrete structure having compressive strength of 900 to 1,000 kgf/cm^2. In addition, high strength in high salinity environments, acidic atmospheric environments, and high salinity waters are consistently maintained, and adhesion with reinforcing bars even in an underwater environment is remarkably improved.

Description

고강도콘크리트 배합조성물 {CONCRETE MIXING COMPOSITION HAVING HIGH INTENSITY}High-strength concrete mixing composition {CONCRETE MIXING COMPOSITION HAVING HIGH INTENSITY}

본 발명은 고강도콘크리트 배합조성물에 관한 것이며, 900 내지1,000kgf/㎠의 압축강도를 가지며, 고염대기환경, 산성대기환경 및 고염도수중에서도 고강도가 일정하게 유지되는 장점을 갖고, 수중환경에서도 철근과의 밀착유지력이 현저하게 향상된 고강도콘크리트 배합조성물에 관한 것이다.The present invention relates to a high-strength concrete blending composition, has a compressive strength of 900 to 1,000kgf/㎠, has the advantage of maintaining a constant high strength even in a high salt atmosphere, acidic atmosphere and high salt water, and It relates to a high-strength concrete blending composition with remarkably improved adhesion retention.

콘크리트는 철근과 함께 다양한 건축 및 건설을 위하여 사용되며, 건물 및 시설물의 고층화 및 대형화에 따라 점차 고강도의 콘크리트가 요구되고 있으며, 고염대기환경, 산성대기환경 및 고습환경에서도 안정적으로 강도가 유지될 수 있는 콘크리트에 대한 개발이 요구되고 있다.Concrete is used for various buildings and constructions along with reinforcement. As buildings and facilities become taller and larger, high-strength concrete is gradually required, and strength can be stably maintained even in high salt, acid, and high humidity environments. Development of existing concrete is required.

한편, 전력 수송을 위하여 설치되는 전신주의 사용연한이 다하게 되는 경우 이를 철거하여 얻게 되는 폐전주는 점점 늘어가고 있는 추세이며, 하기 특허문헌 1에서는 이와 같은 폐전주 재생골재를 이용한 고강도콘크리트 배합조성물이 개시되어 있다.On the other hand, when the service life of a telephone pole installed for electric power transportation is exhausted, the waste electric pole obtained by removing it is gradually increasing, and in Patent Document 1 below, a high-strength concrete compound composition using the recycled aggregate of the waste electric pole is disclosed. Has been.

그러나, 특허문헌 1에 개시된 콘크리트 배합조성물은 최근들어 각종 건물 및 시설물의 고층화 및 대형화에 따라 더욱 요구조건이 높아진 콘크리트의 강도를 얻지 못하는 한계가 있었고, 특히 이는 고염대기환경, 산성대기환경 및 고염도수중에서 강도가 저하되는 문제가 있었으며, 특히 수중환경에서 철근과의 밀착유지력이 충분히 발휘되지 못하는 문제점이 있었다.However, the concrete mix composition disclosed in Patent Document 1 has a limitation in that it cannot obtain the strength of concrete, which has become more demanding due to the rise and size of various buildings and facilities in recent years, and in particular, this is a high salt atmosphere, acidic atmosphere, and high salinity. There was a problem in that the strength was lowered in water, and in particular, there was a problem in that close adhesion with reinforcing bars was not sufficiently exhibited in an underwater environment.

이에 따라, 폐전주를 활용하여 자원의 재활용을 도모하면서도 고층화 및 대형화에 따라 더욱 요구조건이 높아진 콘크리트의 강도를 구비하고, 고염대기환경, 산성대기환경 및 고염도수중에서 강도가 저하되지 않으며, 수중환경에서도 철근과의 밀착유지력이 충분히 발휘될 수 있는 신규한 고강도콘크리트 배합조성물에 대한 개발이 절실히 요구되는 실정이다.Accordingly, while promoting the recycling of resources by using waste electric poles, it has the strength of concrete, which is more demanding due to high-rise and large-scale, and the strength does not decrease in high-salt, acidic, and high-salt water. There is an urgent need to develop a novel high-strength concrete blending composition that can sufficiently exhibit the ability to maintain close contact with reinforcing bars even in the environment.

특허문헌 1: 대한민국 등록특허공보 제10-0404495호 (2003.11.05)Patent Document 1: Republic of Korea Patent Publication No. 10-0404495 (2003.11.05)

이에 본 발명에서는 폐전주; 폐애자; 화강암; 시멘트; 및 물을 포함하는 고강도콘크리트 배합조성물을 제조함으로써 문제점을 해결할 수 있음을 발견하였고, 본 발명은 이에 기초하여 완성되었다.Therefore, in the present invention, Pung Jeonju; Lung insulator; granite; cement; And it was found that the problem can be solved by preparing a high-strength concrete blending composition comprising water, and the present invention was completed based on this.

따라서, 본 발명의 하나의 관점은 폐전주를 활용하여 자원의 재활용을 도모하면서도 고층화 및 대형화에 따라 더욱 요구조건이 높아진 콘크리트의 강도를 구비하고, 고염대기환경, 산성대기환경 및 고염도수중에서 강도가 저하되지 않으며, 수중환경에서도 철근과의 밀착유지력이 충분히 발휘될 수 있는 신규한 고강도콘크리트 배합조성물을 제공하는데 있다.Therefore, one aspect of the present invention is to provide the strength of concrete, which is more demanded according to the high-rise and large-sized water, while promoting the recycling of resources by utilizing the waste electric pole, and the strength in high salt atmosphere, acid atmosphere, and high salt water. It is intended to provide a novel high-strength concrete blending composition that does not deteriorate and can sufficiently exhibit close adhesion with reinforcing bars even in an underwater environment.

본 발명의 일 구현예에 따른 고강도콘크리트 배합조성물은 폐전주; 폐애자; 화강암; 시멘트; 및 물을 포함한다.The high-strength concrete blending composition according to an embodiment of the present invention is used as waste Jeonju; Lung insulator; granite; cement; And water.

본 발명의 일 구현예에 따른 고강도콘크리트 배합조성물에 있어서, 상기 화강암은 변성 화강암이며, 상기 변성 화강암은 화강암을 5 내지 10㎜의 평균입경을 갖도록 분쇄하여 화강암 분쇄물을 준비하는 화강암 분쇄단계 (S100); 상기 화강암 분쇄물을 20 내지 50% 농도의 황산수용액에 침지시켜 산처리 화강암 분쇄물을 준비하는 산처리단계(S200); 및 상기 산처리 화강암 분쇄물을 고온 소성로에 넣고 800 내지 1,000℃의 온도로 소성하여 소성 화강암 분쇄물을 준비하는 소성처리단계(S300);를 거쳐 형성되는 것을 특징으로 한다.In the high-strength concrete blending composition according to an embodiment of the present invention, the granite is a modified granite, and the modified granite is a granite crushing step of preparing a pulverized granite by pulverizing the granite to have an average particle diameter of 5 to 10 mm (S100 ); An acid treatment step (S200) of preparing an acid-treated granite pulverized product by immersing the granite pulverized product in an aqueous sulfuric acid solution having a concentration of 20 to 50%; And a sintering treatment step (S300) of preparing a sintered granite pulverized product by placing the acid-treated granite pulverized product in a high-temperature sintering furnace and firing at a temperature of 800 to 1,000°C.

본 발명의 일 구현예에 따른 고강도콘크리트 배합조성물에 있어서, 상기 폐전주는 제1폐전주혼합물, 제2폐전주혼합물 및 제3폐전주혼합물의 형태로 포함되며, 상기 제1폐전주혼합물은 폐전주를 분쇄하여 1 내지 5㎜의 평균입경을 갖도록 준비된 제1폐전주 분쇄물을 석회분말 및 물과 혼합하여 형성되며, 상기 제2폐전주혼합물은 폐전주를 분쇄하여 5 내지 10㎜의 평균입경을 갖도록 준비된 제2폐전주 분쇄물을 20 내지 50% 농도의 황산수용액에 침지시켜 산처리하고, 이와 같이 산처리된 제2폐전주 분쇄물을 석회분말 및 물과 혼합하여 형성되며, 상기 제3폐전주혼합물은 폐전주를 분쇄하여 10 내지 20㎜의 평균입경을 갖도록 준비된 제3폐전주 분쇄물을 20 내지 50% 농도의 황산수용액에 침지시켜 산처리하고, 이와 같이 산처리된 제3폐전주 분쇄물에 1,400 내지 1,500℃의 화염을 가한 후, 이를 석회분말 및 물과 혼합하여 형성되는 것을 특징으로 한다.In the high-strength concrete mixture composition according to an embodiment of the present invention, the waste electric pole is included in the form of a first waste electric pole mixture, a second waste electric pole mixture, and a third waste electric pole mixture, and the first waste electric pole mixture is Is formed by mixing the pulverized first waste electric pole prepared to have an average particle diameter of 1 to 5 mm with lime powder and water, and the second waste electric pole mixture pulverizes the waste electric pole to obtain an average particle diameter of 5 to 10 mm. The second pulverized waste electric pole prepared to have is acid-treated by immersing it in an aqueous sulfuric acid solution of 20 to 50% concentration, and the second pulverized waste electric pole thus acid-treated is formed by mixing lime powder and water, and the third waste For the mixture of electric poles, the pulverized third waste electric pole prepared to have an average particle diameter of 10 to 20 mm by pulverizing the waste electric pole is acid-treated by immersing it in an aqueous sulfuric acid solution of 20 to 50% concentration, and the acid-treated third waste electric pole is crushed. It is characterized in that it is formed by applying a flame of 1,400 to 1,500 ℃ to water, and then mixing it with lime powder and water.

본 발명의 일 구현예에 따른 고강도콘크리트 배합조성물에 있어서, 상기 폐애자는 제1폐애자혼합물 및 제1폐애자혼합물의 형태로 포함되며, 상기 제1폐애자혼합물은 폐애자를 분쇄하여 1 내지 5㎜의 평균입경을 갖도록 형성된 제1폐애자 분쇄물과 1 내지 5㎜의 평균입경을 갖는 모래를 혼합한 혼합물에 1,000 내지 1,200℃의 화염을 가하여 형성된 것이고, 상기 제2폐애자혼합물은 폐애자를 분쇄하여 5 내지 10㎜의 평균입경을 갖도록 형성된 제2폐애자 분쇄물과 1 내지 5㎜의 평균입경을 갖는 모래를 혼합한 혼합물에 1,000 내지 1,200℃의 화염을 가하여 형성된 것일 수 있다.In the high-strength concrete mixture composition according to an embodiment of the present invention, the waste insulator is included in the form of a first waste insulator mixture and a first waste insulator mixture, and the first waste insulator mixture is 1 to 1 by pulverizing the waste insulator. It is formed by applying a flame of 1,000 to 1,200°C to a mixture of the first waste insulator pulverized material formed to have an average particle diameter of 5 mm and sand having an average particle diameter of 1 to 5 mm, and the second waste insulator mixture is a waste insulator mixture. It may be formed by adding a flame of 1,000 to 1,200°C to a mixture of the second waste insulator pulverized material formed to have an average particle diameter of 5 to 10 mm and sand having an average particle diameter of 1 to 5 mm.

본 발명에 따른 고강도콘크리트 배합조성물은 900 내지1,000kgf/㎠의 압축강도를 갖는 고강도콘크리트 구조체를 형성할 수 있으며, 고염대기환경, 산성대기환경 및 고염도수중에서도 고강도가 일정하게 유지되는 장점을 갖고, 수중환경에서도 철근과의 밀착유지력이 현저하게 향상된 장점을 갖는다.The high-strength concrete blending composition according to the present invention can form a high-strength concrete structure having a compressive strength of 900 to 1,000kgf/㎠, and has the advantage of maintaining a constant high strength even in a high salt atmosphere, acid atmosphere, and high salt water. , It has the advantage of remarkably improved adhesion and retention with reinforcing bars even in an underwater environment.

본 발명을 좀 더 구체적으로 설명하기 전에, 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정되어서는 아니되며, 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다. 따라서, 본 명세서에 기재된 실시 예의 구성은 본 발명의 바람직한 하나의 예에 불과할 뿐이고, 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형 예들이 있을 수 있음을 이해하여야 한다.Before describing the present invention in more detail, terms or words used in the specification and claims are not to be limited to their usual or dictionary meanings, and the concept of terms is appropriate to describe the invention in the best way. It should be interpreted as a meaning and concept consistent with the technical idea of the present invention on the basis of the principle that it can be defined. Therefore, the configuration of the embodiment described in the present specification is only one preferred example of the present invention, and does not represent all the technical spirit of the present invention, and various equivalents and modifications that can replace them at the time of the present application It should be understood that there may be.

이하, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 본 발명을 용이하게 실시할 수 있도록, 첨부된 도면을 참고하여 본 발명의 구성을 상세히 설명한다.Hereinafter, the configuration of the present invention will be described in detail with reference to the accompanying drawings so that those skilled in the art can easily implement the present invention.

본 발명은 고강도콘크리트 배합조성물에 관한 것이며, 900 내지1,000kgf/㎠의 압축강도를 가지며, 고염대기환경, 산성대기환경 및 고염도수중에서도 고강도가 일정하게 유지되는 장점을 갖고, 수중환경에서도 철근과의 밀착유지력이 현저하게 향상된 고강도콘크리트 배합조성물에 관한 것이다.The present invention relates to a high-strength concrete blending composition, has a compressive strength of 900 to 1,000kgf/㎠, has the advantage of maintaining a constant high strength even in a high salt atmosphere, acidic atmosphere and high salt water, and It relates to a high-strength concrete blending composition with remarkably improved adhesion retention.

본 발명의 일 구현예에 따른 고강도콘크리트 배합조성물은 폐전주; 폐애자; 화강암; 시멘트; 및 물을 포함한다.The high-strength concrete blending composition according to an embodiment of the present invention is used as waste Jeonju; Lung insulator; granite; cement; And water.

본 발명에 따른 고강도콘크리트 배합조성물은 사용연한이 경과한 전신주를 철거하여 수거된 폐전주 및 폐애자를 사용하는 점에서 자원의 재활용이 가능하다는 점에서 장점을 갖는다.The high-strength concrete blending composition according to the present invention has an advantage in that resources can be recycled in that it uses the waste electricity poles and waste insulators collected by removing the power poles that have passed their service life.

한편, 본 발명에서는 폐전주만을 사용하는 경우에 저하될 수 있는 강도 및 내화학성 등을 보강하기 위하여 폐애자를 함께 사용하는 점에 특징이 있다.On the other hand, the present invention is characterized in that a waste insulator is used together to reinforce strength and chemical resistance that may be degraded when only waste electrical poles are used.

특히, 본 발명에서는 콘크리트의 강도를 더욱 향상시키고 내산성 등을 향상시키기 위하여 화강암을 사용하는 점에 특징이 있으며, 특히 화강암을 황산처리 및 고온소성처리를 연속으로 거쳐 이를 변성시킴으로써 본 발명의 콘크리트 배합조성물을 이용하여 제조된 콘크리트 구조물의 강도 및 내구성을 더욱 향상시킬 수 있는 점에 특징이 있다.In particular, the present invention is characterized in that granite is used to further improve the strength of concrete and to improve acid resistance, and in particular, the concrete compound composition of the present invention by modifying the granite through successive sulfuric acid treatment and high temperature firing treatment. It is characterized in that it can further improve the strength and durability of the concrete structure manufactured by using.

즉, 본 발명의 일 구현예에 따른 고강도콘크리트 배합조성물에 있어서, 상기 화강암은 변성 화강암이며, 상기 변성 화강암은 화강암을 5 내지 10㎜의 평균입경을 갖도록 분쇄하여 화강암 분쇄물을 준비하는 화강암 분쇄단계 (S100); 상기 화강암 분쇄물을 20 내지 50% 농도의 황산수용액에 침지시켜 산처리 화강암 분쇄물을 준비하는 산처리단계(S200); 및 상기 산처리 화강암 분쇄물을 고온 소성로에 넣고 800 내지 1,000℃의 온도로 소성하여 소성 화강암 분쇄물을 준비하는 소성처리단계(S300);를 거쳐 형성되는 것을 특징으로 한다.That is, in the high-strength concrete blending composition according to an embodiment of the present invention, the granite is a modified granite, and the modified granite is a granite crushing step of preparing a granite pulverized product by pulverizing the granite to have an average particle diameter of 5 to 10 mm. (S100); An acid treatment step (S200) of preparing an acid-treated granite pulverized product by immersing the granite pulverized product in an aqueous sulfuric acid solution having a concentration of 20 to 50%; And a sintering treatment step (S300) of preparing a sintered granite pulverized product by placing the acid-treated granite pulverized product in a high-temperature sintering furnace and firing at a temperature of 800 to 1,000°C.

또한, 본 발명에 사용되는 폐전주는 아래 설명된 것과 같은 제1폐전주혼합물, 제2폐전주혼합물 및 제3폐전주혼합물의 형태로 포함된다.In addition, the waste electric pole used in the present invention is included in the form of a first waste electric pole mixture, a second waste electric pole mixture, and a third waste electric pole mixture as described below.

즉, 본 발명의 일 구현예에 따른 고강도콘크리트 배합조성물에 있어서, 상기 폐전주는 제1폐전주혼합물, 제2폐전주혼합물 및 제3폐전주혼합물의 형태로 포함되며, 상기 제1폐전주혼합물은 폐전주를 분쇄하여 1 내지 5㎜의 평균입경을 갖도록 준비된 제1폐전주 분쇄물을 석회분말 및 물과 혼합하여 형성되며, 상기 제2폐전주혼합물은 폐전주를 분쇄하여 5 내지 10㎜의 평균입경을 갖도록 준비된 제2폐전주 분쇄물을 20 내지 50% 농도의 황산수용액에 침지시켜 산처리하고, 이와 같이 산처리된 제2폐전주 분쇄물을 석회분말 및 물과 혼합하여 형성되며, 상기 제3폐전주혼합물은 폐전주를 분쇄하여 10 내지 20㎜의 평균입경을 갖도록 준비된 제3폐전주 분쇄물을 20 내지 50% 농도의 황산수용액에 침지시켜 산처리하고, 이와 같이 산처리된 제3폐전주 분쇄물에 1,400 내지 1,500℃의 화염을 가한 후, 이를 석회분말 및 물과 혼합하여 형성되는 것을 특징으로 한다.That is, in the high-strength concrete mixture composition according to an embodiment of the present invention, the waste electric pole is included in the form of a first waste electric pole mixture, a second waste electric pole mixture, and a third waste electric pole mixture, and the first waste electric pole mixture is It is formed by mixing the pulverized product of the first waste electric pole prepared to have an average particle diameter of 1 to 5 mm by pulverizing the waste electric pole with lime powder and water, and the second mixture of the waste electric pole pulverizes the waste electric pole to have an average of 5 to 10 mm. The second pulverized waste electric pole prepared to have a particle diameter is immersed in an aqueous sulfuric acid solution having a concentration of 20 to 50% for acid treatment, and the second pulverized waste electric pole thus acid-treated is mixed with lime powder and water. 3 The waste electric pole mixture is acid-treated by immersing the pulverized third waste electric pole prepared to have an average particle diameter of 10 to 20 mm by pulverizing the waste electric pole in an aqueous sulfuric acid solution of 20 to 50% concentration. It is characterized in that it is formed by applying a flame of 1,400 to 1,500 ℃ to the pulverized electric pole, and then mixing it with lime powder and water.

본 발명의 일 구현예에 따른 고강도콘크리트 배합조성물에 있어서, 상기 폐애자는 제1폐애자혼합물 및 제1폐애자혼합물의 형태로 포함되며, 상기 제1폐애자혼합물은 폐애자를 분쇄하여 1 내지 5㎜의 평균입경을 갖도록 형성된 제1폐애자 분쇄물과 1 내지 5㎜의 평균입경을 갖는 모래를 혼합한 혼합물에 1,000 내지 1,200℃의 화염을 가하여 형성된 것이고, 상기 제2폐애자혼합물은 폐애자를 분쇄하여 5 내지 10㎜의 평균입경을 갖도록 형성된 제2폐애자 분쇄물과 1 내지 5㎜의 평균입경을 갖는 모래를 혼합한 혼합물에 1,000 내지 1,200℃의 화염을 가하여 형성된 것일 수 있다.In the high-strength concrete mixture composition according to an embodiment of the present invention, the waste insulator is included in the form of a first waste insulator mixture and a first waste insulator mixture, and the first waste insulator mixture is 1 to 1 by pulverizing the waste insulator. It is formed by applying a flame of 1,000 to 1,200°C to a mixture of the first waste insulator pulverized material formed to have an average particle diameter of 5 mm and sand having an average particle diameter of 1 to 5 mm, and the second waste insulator mixture is a waste insulator mixture. It may be formed by adding a flame of 1,000 to 1,200°C to a mixture of the second waste insulator pulverized material formed to have an average particle diameter of 5 to 10 mm and sand having an average particle diameter of 1 to 5 mm.

<제조예 1><Production Example 1>

폐전주를 분쇄하여 3㎜의 평균입경을 갖도록 준비된 제1폐전주 분쇄물을 석회분말 및 물과 100:50:100의 중량비로 혼합하여 제1폐전주혼합물을 제조하였다.The first waste electric pole mixture was prepared by pulverizing the waste electric pole and mixing the pulverized product of the first waste electric pole prepared to have an average particle diameter of 3 mm with lime powder and water at a weight ratio of 100:50:100.

폐전주를 분쇄하여 8㎜의 평균입경을 갖도록 준비된 제2폐전주 분쇄물을 40부피% 농도를 갖는 황산수용액에 30분간 침지시켜 산처리하고, 이와 같이 산처리된 제2폐전주 분쇄물을 석회분말 및 물과 100:50:100의 중량비로 혼합하여 제2폐전주혼합물을 제조하였다.The second pulverized waste electric pole, prepared to have an average particle diameter of 8 mm by crushing the waste electric pole, is acid-treated by immersing it in an aqueous sulfuric acid solution having a concentration of 40% by volume for 30 minutes. Powder and water were mixed in a weight ratio of 100:50:100 to prepare a second waste electrolyzer mixture.

폐전주를 분쇄하여 15㎜의 평균입경을 갖도록 준비된 제3폐전주 분쇄물을 40부피% 농도를 갖는 황산수용액에 30분간 침지시켜 산처리하고, 이와 같이 산처리된 제3폐전주 분쇄물에 1,400℃의 화염을 고르게 30분간 가한 후, 실온으로 냉각시키고 이를 석회분말 및 물과 100:50:100의 중량비로 혼합하여 제3폐전주혼합물을 제조하였다.The pulverized third waste electric pole prepared to have an average particle diameter of 15 mm by pulverizing the waste electric pole was acid-treated by immersing it in an aqueous sulfuric acid solution having a concentration of 40% by volume for 30 minutes, and 1,400 in the pulverized product of the third waste electric pole thus acid-treated. After evenly applying a flame at °C for 30 minutes, it was cooled to room temperature and mixed with lime powder and water in a weight ratio of 100:50:100 to prepare a third waste electroporation mixture.

<제조예 2><Production Example 2>

화강암을 8㎜의 평균입경을 갖도록 분쇄하여 화강암 분쇄물을 준비하고, 이와 같이 준비된 화강암 분쇄물을 40부피%의 농도를 갖는 황산수용액에 침지시켜 화강암 분쇄물을 산처리하였으며, 산처리 화강암 분쇄물을 고온 소성로에 넣고 1,000℃의 온도로 2시간 동안 소성하여 소성 화강암 분쇄물을 제조하였다.The granite pulverized product was prepared by pulverizing the granite to have an average particle diameter of 8 mm, and the granite pulverized product was acid-treated by immersing the prepared granite pulverized product in an aqueous sulfuric acid solution having a concentration of 40% by volume. Was put in a high-temperature sintering furnace and calcined at a temperature of 1,000° C. for 2 hours to prepare a calcined granite pulverized product.

<제조예 3><Production Example 3>

폐애자를 분쇄하여 3㎜의 평균입경을 갖도록 형성된 제1폐애자 분쇄물과 3㎜의 평균입경을 갖는 모래를 1:1의 중량비로 혼합한 혼합물에 고르게 1,100℃의 화염을 30분간 가하여 제1폐애자혼합물을 제조하였다.The first waste insulator pulverized and formed to have an average particle diameter of 3㎜ and a mixture of sand having an average particle diameter of 3㎜ in a weight ratio of 1:1 were evenly mixed with a 1,100℃ flame for 30 minutes. A waste insulator mixture was prepared.

폐애자를 분쇄하여 8㎜의 평균입경을 갖도록 형성된 제2폐애자 분쇄물과 3㎜의 평균입경을 갖는 모래를 1:1의 중량비로 혼합한 혼합물에 고르게 1,100℃의 화염을 30분간 가하여 제2폐애자혼합물을 제조하였다.2nd waste insulator pulverized and formed to have an average particle diameter of 8 mm and a mixture of sand having an average particle diameter of 3 mm in a weight ratio of 1:1 were evenly mixed with a 1,100°C flame for 30 minutes. A waste insulator mixture was prepared.

<실시예 1><Example 1>

상기 제조예 1을 통하여 제조된 제1폐전주혼합물 100㎏, 제2폐전주혼합물 100㎏ 및 제3폐전주혼합물 100㎏을 상기 제조예 2를 통하여 제조된 소성 화강암 분쇄물 50㎏, 상기 제조예 3을 통하여 제조된 제1폐애자혼합물 10㎏ 및 제2폐애자혼합물 10㎏, 포틀랜드 시멘트 50㎏ 및 물 300리터와 혼합하여 고강도콘크리트 배합조성물을 제조하였다.100 kg of the 1st waste electric pole mixture, 100 kg of the 2nd waste electric pole mixture, and 100 kg of the 3rd waste electric pole mixture prepared through Preparation Example 1, 50 kg of the calcined granite pulverized product prepared through Preparation Example 2, the above Preparation Example A high-strength concrete blending composition was prepared by mixing with 10 kg of the first waste insulator mixture and 10 kg of the second waste insulator mixture, 50 kg of Portland cement and 300 liters of water.

<실시예 2> (철강슬래그 추가)<Example 2> (Steel slag addition)

상기 제조예 1을 통하여 제조된 제1폐전주혼합물 100㎏, 제2폐전주혼합물 100㎏ 및 제3폐전주혼합물 100㎏을 상기 제조예 2를 통하여 제조된 소성 화강암 분쇄물 50㎏, 상기 제조예 3을 통하여 제조된 제1폐애자혼합물 10㎏ 및 제2폐애자혼합물 10㎏, 포틀랜드 시멘트 50㎏, 철강슬래그 10㎏ 및 물 300리터와 혼합하여 고강도콘크리트 배합조성물을 제조하였다.100 kg of the 1st waste electric pole mixture, 100 kg of the 2nd waste electric pole mixture, and 100 kg of the 3rd waste electric pole mixture prepared through Preparation Example 1, 50 kg of the calcined granite pulverized product prepared through Preparation Example 2, the above Preparation Example The first waste insulator mixture 10 kg and the second waste insulator mixture 10 kg, Portland cement 50 kg, steel slag 10 kg, and 300 liters of water were mixed to prepare a high-strength concrete blending composition.

<실시예 3> (철강슬래그 및 폐LCD분쇄물 추가)<Example 3> (addition of steel slag and waste LCD crushed product)

상기 제조예 1을 통하여 제조된 제1폐전주혼합물 100㎏, 제2폐전주혼합물 100㎏ 및 제3폐전주혼합물 100㎏을 상기 제조예 2를 통하여 제조된 소성 화강암 분쇄물 50㎏, 상기 제조예 3을 통하여 제조된 제1폐애자혼합물 10㎏ 및 제2폐애자혼합물 10㎏, 포틀랜드 시멘트 50㎏, 철강슬래그 10㎏, 폐LCD분쇄물 10㎏ 및 물 300리터와 혼합하여 고강도콘크리트 배합조성물을 제조하였다.100 kg of the 1st waste electric pole mixture, 100 kg of the 2nd waste electric pole mixture, and 100 kg of the 3rd waste electric pole mixture prepared through Preparation Example 1, 50 kg of the calcined granite pulverized product prepared through Preparation Example 2, the above Preparation Example The first waste insulator mixture 10 kg and the second waste insulator mixture 10 kg, Portland cement 50 kg, steel slag 10 kg, waste LCD pulverized material 10 kg, and 300 liters of water are mixed to prepare a high-strength concrete compound composition. I did.

<비교예 1> (3㎜ 평균입경을 갖는 미처리 폐전주 분쇄물 사용)<Comparative Example 1> (Use of pulverized untreated waste electric pole having an average particle diameter of 3 mm)

3㎜의 평균입경을 갖도록 분쇄된 폐전주 분쇄물 300㎏을 상기 제조예 2를 통하여 제조된 소성 화강암 분쇄물 50㎏, 상기 제조예 3을 통하여 제조된 제1폐애자혼합물 10㎏ 및 제2폐애자혼합물 10㎏, 포틀랜드 시멘트 50㎏ 및 물 300리터와 혼합하여 콘크리트 배합조성물을 제조하였다.300 kg of pulverized waste electric pole pulverized to have an average particle diameter of 3 mm, 50 kg of calcined granite pulverized product prepared through Preparation Example 2, 10 kg of the first waste insulator mixture prepared through Preparation Example 3, and the second waste A concrete mix composition was prepared by mixing with 10 kg of insulator mixture, 50 kg of Portland cement and 300 liters of water.

<비교예 2> (8㎜ 평균입경을 갖는 미처리 폐전주 분쇄물 사용)<Comparative Example 2> (Use of pulverized untreated waste electric pole having an average particle diameter of 8 mm)

8㎜의 평균입경을 갖도록 분쇄된 폐전주 분쇄물 300㎏을 상기 제조예 2를 통하여 제조된 소성 화강암 분쇄물 50㎏, 상기 제조예 3을 통하여 제조된 제1폐애자혼합물 10㎏ 및 제2폐애자혼합물 10㎏, 포틀랜드 시멘트 50㎏ 및 물 300리터와 혼합하여 콘크리트 배합조성물을 제조하였다.300 kg of the pulverized waste electric pole pulverized to have an average particle diameter of 8 mm, 50 kg of the calcined granite crushed product prepared through Preparation Example 2, 10 kg of the first waste insulator mixture prepared through Preparation Example 3, and the second waste A concrete mix composition was prepared by mixing with 10 kg of insulator mixture, 50 kg of Portland cement and 300 liters of water.

<비교예 3> (15㎜ 평균입경을 갖는 미처리 폐전주 분쇄물 사용)<Comparative Example 3> (using the pulverized material of untreated waste electric pole having an average particle diameter of 15 mm)

15㎜의 평균입경을 갖도록 분쇄된 폐전주 분쇄물 300㎏을 상기 제조예 2를 통하여 제조된 소성 화강암 분쇄물 50㎏, 상기 제조예 3을 통하여 제조된 제1폐애자혼합물 10㎏ 및 제2폐애자혼합물 10㎏, 포틀랜드 시멘트 50㎏ 및 물 300리터와 혼합하여 콘크리트 배합조성물을 제조하였다.300 kg of the pulverized waste electric pole pulverized to have an average particle diameter of 15 mm, 50 kg of the calcined granite crushed product prepared through Preparation Example 2, 10 kg of the first waste insulator mixture prepared through Preparation Example 3, and the second waste A concrete mix composition was prepared by mixing with 10 kg of insulator mixture, 50 kg of Portland cement and 300 liters of water.

<비교예 4> (미처리 화강암 분쇄물 사용)<Comparative Example 4> (Use of untreated granite pulverized material)

상기 제조예 1을 통하여 제조된 제1폐전주혼합물 100㎏, 제2폐전주혼합물 100㎏ 및 제3폐전주혼합물 100㎏을 8㎜의 평균입경을 갖는 화강암 분쇄물 50㎏, 상기 제조예 3을 통하여 제조된 제1폐애자혼합물 10㎏ 및 제2폐애자혼합물 10㎏, 포틀랜드 시멘트 50㎏ 및 물 300리터와 혼합하여 콘크리트 배합조성물을 제조하였다.100 kg of the first waste electrophoresis mixture prepared through Preparation Example 1, 100 kg of the second waste electrophoresis mixture, and 100 kg of the third waste electrophoresis mixture, 50 kg of granite pulverized material having an average particle diameter of 8 mm, and Preparation Example 3 A concrete compound composition was prepared by mixing with 10 kg of the first waste insulator mixture and 10 kg of the second waste insulator mixture, 50 kg of Portland cement and 300 liters of water.

<비교예 5> (3㎜ 평균입경을 갖는 미처리 폐애자 분쇄물 사용)<Comparative Example 5> (Use of untreated waste insulator pulverized material having an average particle diameter of 3 mm)

상기 제조예 1을 통하여 제조된 제1폐전주혼합물 100㎏, 제2폐전주혼합물 100㎏ 및 제3폐전주혼합물 100㎏을 상기 제조예 2를 통하여 제조된 소성 화강암 분쇄물 50㎏, 3㎜ 평균입경을 갖는 폐애자 분쇄물 20㎏, 포틀랜드 시멘트 50㎏ 및 물 300리터와 혼합하여 콘크리트 배합조성물을 제조하였다.100kg of the 1st waste electric pole mixture, 100kg of the 2nd waste electric pole mixture, and the 3rd 100kg of the waste electric pole mixture prepared through Preparation Example 1 were 50kg of the calcined granite crushed product prepared through Preparation Example 2, 3㎜ average A concrete blending composition was prepared by mixing with 20 kg of waste insulator pulverized material having a particle diameter, 50 kg of Portland cement, and 300 liters of water.

<비교예 6> (8㎜ 평균입경을 갖는 미처리 폐애자 분쇄물 사용)<Comparative Example 6> (Use of untreated waste insulator pulverized material having an average particle diameter of 8 mm)

상기 제조예 1을 통하여 제조된 제1폐전주혼합물 100㎏, 제2폐전주혼합물 100㎏ 및 제3폐전주혼합물 100㎏을 상기 제조예 2를 통하여 제조된 소성 화강암 분쇄물 50㎏, 8㎜ 평균입경을 갖는 폐애자 분쇄물 20㎏, 포틀랜드 시멘트 50㎏ 및 물 300리터와 혼합하여 콘크리트 배합조성물을 제조하였다.The average of the crushed sintered granite 50 kg and 8 mm prepared through Preparation Example 2 for 100 kg of the 1st waste electrophoresis mixture, 100 kg of the 2nd waste electrophoresis mixture, and 100 kg of the 3rd waste electrophoresis mixture prepared through Preparation Example 1 A concrete blending composition was prepared by mixing with 20 kg of waste insulator pulverized material having a particle diameter, 50 kg of Portland cement, and 300 liters of water.

<비교예 7> (실시예 1에서 소성 화강암 분쇄물 제거)<Comparative Example 7> (Removing the calcined granite pulverized material in Example 1)

상기 제조예 1을 통하여 제조된 제1폐전주혼합물 100㎏, 제2폐전주혼합물 100㎏ 및 제3폐전주혼합물 100㎏을 상기 제조예 3을 통하여 제조된 제1폐애자혼합물 10㎏ 및 제2폐애자혼합물 10㎏, 포틀랜드 시멘트 50㎏ 및 물 300리터와 혼합하여 콘크리트 배합조성물을 제조하였다.100kg of the 1st waste electric pole mixture, 100kg of the 2nd waste electric pole mixture, and 100kg of the 3rd waste electric pole mixture prepared through Preparation Example 1, 10kg and the second of the first waste insulator mixture prepared through Preparation Example 3 A concrete mix composition was prepared by mixing with 10 kg of waste insulator mixture, 50 kg of Portland cement and 300 liters of water.

<비교예 8> (실시예 1에서 제1폐애자혼합물 및 제2폐애자혼합물 제거)<Comparative Example 8> (Removing the first waste insulator mixture and the second waste insulator mixture in Example 1)

상기 제조예 1을 통하여 제조된 제1폐전주혼합물 100㎏, 제2폐전주혼합물 100㎏ 및 제3폐전주혼합물 100㎏을 상기 제조예 2를 통하여 제조된 소성 화강암 분쇄물 50㎏, 포틀랜드 시멘트 50㎏ 및 물 300리터와 혼합하여 콘크리트 배합조성물을 제조하였다.100 kg of the 1st waste electric pole mixture, 100 kg of the 2nd waste electric pole mixture, and 100 kg of the 3rd waste electric pole mixture prepared through Preparation Example 1, 50 kg of calcined granite pulverized product prepared through Preparation Example 2, and Portland Cement 50 It was mixed with kg and 300 liters of water to prepare a concrete blending composition.

[실험 1] <압축강도 테스트>[Experiment 1] <Compressive strength test>

상기 실시예 1 내지 3 및 비교예 1 내지 8을 통하여 제조된 콘크리트 배합조성물을 직경 10㎝ 및 높이 30㎝의 원통형상의 틀에 담아 양생하여 콘크리트 구조체를 제작하였다. 이와 같이 제작된 콘크리트 구조체를 이용하여 압축강도(kgf/㎠)를 테스트하였으며, 그 결과를 하기 표 1에 나타내었다.The concrete mixture composition prepared through Examples 1 to 3 and Comparative Examples 1 to 8 was put in a cylindrical frame having a diameter of 10 cm and a height of 30 cm and cured to produce a concrete structure. The compressive strength (kgf/cm2) was tested using the concrete structure thus produced, and the results are shown in Table 1 below.

구분division 압축강도(kgf/㎠)Compressive strength (kgf/㎠) 실시예 1Example 1 956956 실시예 2Example 2 1,1231,123 실시예 3Example 3 1,3251,325 비교예 1Comparative Example 1 642642 비교예 2Comparative Example 2 638638 비교예 3Comparative Example 3 635635 비교예 4Comparative Example 4 648648 비교예 5Comparative Example 5 641641 비교예 6Comparative Example 6 642642 비교예 7Comparative Example 7 533533 비교예 8Comparative Example 8 528528

상기 표 1의 결과를 살펴보면, 실시예 1 내지 3의 압축강도가 비교예 1 내지 8에 비하여 매우 우수한 것을 확인할 수 있다.Looking at the results of Table 1, it can be seen that the compressive strength of Examples 1 to 3 is very superior to that of Comparative Examples 1 to 8.

[실험 2] <고염환경에서의 압축강도 유지력 테스트>[Experiment 2] <Test for retaining compressive strength in high salt environment>

상기 실시예 1 내지 3 및 비교예 1 내지 8을 통하여 제조된 콘크리트 배합조성물을 직경 10㎝ 및 높이 30㎝의 원통형상의 틀에 담아 양생하여 콘크리트 구조체를 제작하였다. 이와 같이 제작된 콘크리트 구조체를 10wt% 농도의 소금물에 6개월간 담가 두고 꺼내어 이들의 압축강도(kgf/㎠)를 테스트하였으며, 그 결과를 하기 표 2에 나타내었다.The concrete mixture composition prepared through Examples 1 to 3 and Comparative Examples 1 to 8 was put in a cylindrical frame having a diameter of 10 cm and a height of 30 cm and cured to produce a concrete structure. The concrete structure thus produced was immersed in salt water of 10 wt% concentration for 6 months and taken out, and their compressive strength (kgf/cm 2) was tested, and the results are shown in Table 2 below.

구분division 압축강도(kgf/㎠)Compressive strength (kgf/㎠) 실시예 1Example 1 945945 실시예 2Example 2 1,0181,018 실시예 3Example 3 1,3151,315 비교예 1Comparative Example 1 421421 비교예 2Comparative Example 2 408408 비교예 3Comparative Example 3 412412 비교예 4Comparative Example 4 420420 비교예 5Comparative Example 5 401401 비교예 6Comparative Example 6 406406 비교예 7Comparative Example 7 359359 비교예 8Comparative Example 8 364364

상기 표 2의 결과를 살펴보면, 실시예 1 내지 3은 고염환경에 장기간 노출되더라도 압축강도에 거의 변화가 없는 것을 확인할 수 있다.Looking at the results of Table 2, it can be seen that Examples 1 to 3 have almost no change in compressive strength even when exposed to a high salt environment for a long period of time.

[실험 3] <고산성환경에서의 압축강도 유지력 테스트>[Experiment 3] <Test for retaining compressive strength in high acid environment>

상기 실시예 1 내지 3 및 비교예 1 내지 8을 통하여 제조된 콘크리트 배합조성물을 직경 10㎝ 및 높이 30㎝의 원통형상의 틀에 담아 양생하여 콘크리트 구조체를 제작하였다. 이와 같이 제작된 콘크리트 구조체를 30wt%의 농도를 갖는 황산수용액에 6개월간 담가 두고 꺼내어 이들의 압축강도(kgf/㎠)를 테스트하였으며, 그 결과를 하기 표 3에 나타내었다.The concrete mixture composition prepared through Examples 1 to 3 and Comparative Examples 1 to 8 was put in a cylindrical frame having a diameter of 10 cm and a height of 30 cm and cured to produce a concrete structure. The concrete structure thus produced was immersed in an aqueous sulfuric acid solution having a concentration of 30wt% for 6 months and taken out, and their compressive strength (kgf/cm2) was tested, and the results are shown in Table 3 below.

구분division 압축강도(kgf/㎠)Compressive strength (kgf/㎠) 실시예 1Example 1 945945 실시예 2Example 2 1,0111,011 실시예 3Example 3 1,3151,315 비교예 1Comparative Example 1 421421 비교예 2Comparative Example 2 415415 비교예 3Comparative Example 3 398398 비교예 4Comparative Example 4 405405 비교예 5Comparative Example 5 385385 비교예 6Comparative Example 6 396396 비교예 7Comparative Example 7 354354 비교예 8Comparative Example 8 345345

상기 표 3의 결과를 살펴보면, 실시예 1 내지 3은 고산성환경에 장기간 노출되더라도 압축강도에 거의 변화가 없는 것을 확인할 수 있다.Looking at the results of Table 3, it can be seen that Examples 1 to 3 showed little change in compressive strength even when exposed to a high acid environment for a long time.

[실험 4] <고화염노출 후 압축강도 유지력 테스트>[Experiment 4] <Test for retaining compressive strength after exposure to high flame>

상기 실시예 1 내지 3 및 비교예 1 내지 8을 통하여 제조된 콘크리트 배합조성물을 직경 10㎝ 및 높이 30㎝의 원통형상의 틀에 담아 양생하여 콘크리트 구조체를 제작하였다. 이와 같이 제작된 콘크리트 구조체를 가마에 넣고 800℃의 열을 3시간 동안 가한 후, 꺼내어 서서히 실온으로 냉각시키고 이를 이용하여 압축강도(kgf/㎠)를 테스트하였으며, 그 결과를 하기 표 4에 나타내었다.The concrete mixture composition prepared through Examples 1 to 3 and Comparative Examples 1 to 8 was put in a cylindrical frame having a diameter of 10 cm and a height of 30 cm and cured to produce a concrete structure. The concrete structure thus produced was put in a kiln and heat of 800°C was applied for 3 hours, then taken out and gradually cooled to room temperature, and the compressive strength (kgf/cm2) was tested using this, and the results are shown in Table 4 below. .

구분division 압축강도(kgf/㎠)Compressive strength (kgf/㎠) 실시예 1Example 1 939939 실시예 2Example 2 1,0981,098 실시예 3Example 3 1,2291,229 비교예 1Comparative Example 1 487487 비교예 2Comparative Example 2 457457 비교예 3Comparative Example 3 481481 비교예 4Comparative Example 4 465465 비교예 5Comparative Example 5 459459 비교예 6Comparative Example 6 458458 비교예 7Comparative Example 7 325325 비교예 8Comparative Example 8 329329

상기 표 4의 결과를 살펴보면, 고화염환경에 노출된 경우에도 실시예 1 내지 3은 압축강도에 거의 변화가 없는 것을 확인할 수 있다.Looking at the results of Table 4, it can be seen that even when exposed to a high flame environment, Examples 1 to 3 showed little change in compressive strength.

[실험 5] <철근과의 밀착유지력 테스트 1>[Experiment 5] <Test 1 for holding force with reinforcing bar>

상기 실시예 1 내지 3 및 비교예 1 내지 8을 통하여 제조된 콘크리트 배합조성물을 중앙에 직경 3㎝의 철근이 수직으로 구비된 직경 10㎝ 및 높이 5㎝의 원통형상의 틀에 담아 양생하여 철근이 내장된 콘크리트 구조체를 제작하였다.The concrete mixture composition prepared through Examples 1 to 3 and Comparative Examples 1 to 8 was cured by placing it in a cylindrical frame having a diameter of 10 cm and a height of 5 cm with a vertical reinforcing bar having a diameter of 3 cm in the center and curing the reinforcing bar. The finished concrete structure was fabricated.

이와 같이 제작된 철근-콘크리트 구조체를 이용하여 콘크리트 구조체 견고하게 고정시킨채 철근에 압력을 가함으로써 철근과 콘크리트 구조체를 분리시키는 실험을 수행하였으며, 철근과 콘크리트 구조체를 분리시키는데 요구되는 파괴강도(kN/㎡)를 측정하였고, 그 결과를 하기 표 5에 나타내었다.Using the reinforced-concrete structure thus produced, an experiment was conducted to separate the reinforcing bar and the concrete structure by applying pressure to the reinforcing bar while firmly fixing the concrete structure, and the fracture strength required to separate the reinforcing bar and the concrete structure (kN/ M 2) was measured, and the results are shown in Table 5 below.

구분division 파괴강도(kN/㎡)Breaking strength (kN/㎡) 실시예 1Example 1 2323 실시예 2Example 2 3535 실시예 3Example 3 4646 비교예 1Comparative Example 1 1515 비교예 2Comparative Example 2 1414 비교예 3Comparative Example 3 1313 비교예 4Comparative Example 4 1515 비교예 5Comparative Example 5 1616 비교예 6Comparative Example 6 1414 비교예 7Comparative Example 7 1212 비교예 8Comparative Example 8 1010

상기 표 5의 결과를 살펴보면, 실시예 1 내지 3의 파괴강도가 비교예 1 내지 8에 비하여 현저하게 높은 것을 확인할 수 있다.Looking at the results of Table 5, it can be seen that the breaking strength of Examples 1 to 3 is significantly higher than that of Comparative Examples 1 to 8.

[실험 6] <철근과의 밀착유지력 테스트 2>[Experiment 6] <Test 2 for holding force with reinforcing bar>

상기 실시예 1 내지 3 및 비교예 1 내지 8을 통하여 제조된 콘크리트 배합조성물을 중앙에 직경 3㎝의 철근이 수직으로 구비된 직경 10㎝ 및 높이 5㎝의 원통형상의 틀에 담아 양생하여 철근이 내장된 콘크리트 구조체를 제작하였다.The concrete mixture composition prepared through Examples 1 to 3 and Comparative Examples 1 to 8 was cured by placing it in a cylindrical frame having a diameter of 10 cm and a height of 5 cm with a vertical reinforcing bar having a diameter of 3 cm in the center and curing the reinforcing bar. The finished concrete structure was fabricated.

이와 같이 제작된 철근-콘크리트 구조체를 10wt% 농도의 소금물에 6개월간 담가 두고 꺼내어 이를 이용하여 콘크리트 구조체 견고하게 고정시킨채 철근에 압력을 가함으로써 철근과 콘크리트 구조체를 분리시키는 실험을 수행하였으며, 철근과 콘크리트 구조체를 분리시키는데 요구되는 파괴강도(kN/㎡)를 측정하였고, 그 결과를 하기 표 6에 나타내었다.The reinforced-concrete structure thus produced was immersed in salt water of 10 wt% concentration for 6 months and taken out, and the concrete structure was firmly fixed and pressure was applied to the reinforcing bar to separate the reinforcing bar and the concrete structure. The fracture strength (kN/m2) required to separate the concrete structure was measured, and the results are shown in Table 6 below.

구분division 파괴강도(kN/㎡)Breaking strength (kN/㎡) 실시예 1Example 1 2121 실시예 2Example 2 3333 실시예 3Example 3 4242 비교예 1Comparative Example 1 1010 비교예 2Comparative Example 2 1010 비교예 3Comparative Example 3 1111 비교예 4Comparative Example 4 1010 비교예 5Comparative Example 5 99 비교예 6Comparative Example 6 99 비교예 7Comparative Example 7 77 비교예 8Comparative Example 8 88

상기 표 6의 결과를 살펴보면, 고염환경에 장기간 노출된 경우에도 실시예 1 내지 3의 파괴강도가 비교예 1 내지 8에 비하여 현저하게 높은 것을 확인할 수 있다.Looking at the results in Table 6, it can be seen that even when exposed to a high salt environment for a long time, the breaking strength of Examples 1 to 3 is significantly higher than that of Comparative Examples 1 to 8.

[실험 7] <철근과의 밀착유지력 테스트 3>[Experiment 7] <Test 3 for adhesion retention with reinforcing bar>

상기 실시예 1 내지 3 및 비교예 1 내지 8을 통하여 제조된 콘크리트 배합조성물을 중앙에 직경 3㎝의 철근이 수직으로 구비된 직경 10㎝ 및 높이 5㎝의 원통형상의 틀에 담아 양생하여 철근이 내장된 콘크리트 구조체를 제작하였다.The concrete mixture composition prepared through Examples 1 to 3 and Comparative Examples 1 to 8 was cured by placing it in a cylindrical frame having a diameter of 10 cm and a height of 5 cm with a vertical reinforcing bar having a diameter of 3 cm in the center and curing the reinforcing bar. The finished concrete structure was fabricated.

이와 같이 제작된 철근-콘크리트 구조체를 30wt%의 농도를 갖는 황산수용액에 6개월간 담가 두고 꺼내어 이를 이용하여 콘크리트 구조체 견고하게 고정시킨채 철근에 압력을 가함으로써 철근과 콘크리트 구조체를 분리시키는 실험을 수행하였으며, 철근과 콘크리트 구조체를 분리시키는데 요구되는 파괴강도(kN/㎡)를 측정하였고, 그 결과를 하기 표 7에 나타내었다.The reinforced-concrete structure thus produced was immersed in an aqueous sulfuric acid solution having a concentration of 30 wt% for 6 months and taken out, and the concrete structure was firmly fixed and pressure was applied to the reinforcing bar to separate the reinforcing bar and the concrete structure. , The fracture strength (kN/m2) required to separate the reinforcing bar and the concrete structure was measured, and the results are shown in Table 7 below.

구분division 파괴강도(kN/㎡)Breaking strength (kN/㎡) 실시예 1Example 1 2222 실시예 2Example 2 3232 실시예 3Example 3 4141 비교예 1Comparative Example 1 88 비교예 2Comparative Example 2 88 비교예 3Comparative Example 3 77 비교예 4Comparative Example 4 77 비교예 5Comparative Example 5 88 비교예 6Comparative Example 6 77 비교예 7Comparative Example 7 55 비교예 8Comparative Example 8 44

상기 표 7의 결과를 살펴보면, 고산성환경에 장기간 노출된 경우에도 실시예 1 내지 3의 파괴강도가 비교예 1 내지 8에 비하여 현저하게 높은 것을 확인할 수 있다.Looking at the results in Table 7, it can be seen that even when exposed to a high acid environment for a long period of time, the breaking strength of Examples 1 to 3 is significantly higher than that of Comparative Examples 1 to 8.

Claims (4)

폐전주; 폐애자; 화강암; 시멘트; 및 물을 포함하며,
상기 폐전주는 제1폐전주혼합물, 제2폐전주혼합물 및 제3폐전주혼합물의 형태로 포함되며,
상기 제1폐전주혼합물은 폐전주를 분쇄하여 1 내지 5㎜의 평균입경을 갖도록 준비된 제1폐전주 분쇄물을 석회분말 및 물과 혼합하여 형성되며,
상기 제2폐전주혼합물은 폐전주를 분쇄하여 5 내지 10㎜의 평균입경을 갖도록 준비된 제2폐전주 분쇄물을 20 내지 50% 농도의 황산수용액에 침지시켜 산처리하고, 이와 같이 산처리된 제2폐전주 분쇄물을 석회분말 및 물과 혼합하여 형성되며,
상기 제3폐전주혼합물은 폐전주를 분쇄하여 10 내지 20㎜의 평균입경을 갖도록 준비된 제3폐전주 분쇄물을 20 내지 50% 농도의 황산수용액에 침지시켜 산처리하고, 이와 같이 산처리된 제3폐전주 분쇄물에 1,400 내지 1,500℃의 화염을 가한 후, 이를 석회분말 및 물과 혼합하여 형성되는 것을 특징으로 하는 고강도콘크리트 배합조성물.
Pulmonary Jeonju; Lung insulator; granite; cement; And water,
The waste electric pole is included in the form of a first waste electric pole mixture, a second waste electric pole mixture, and a third waste electric pole mixture,
The first waste electric pole mixture is formed by pulverizing the waste electric pole and mixing the first pulverized waste electric pole prepared to have an average particle diameter of 1 to 5 mm with lime powder and water,
The second waste electric pole mixture is acid-treated by immersing the second pulverized waste electric pole prepared to have an average particle diameter of 5 to 10 mm by pulverizing the waste electric pole in an aqueous sulfuric acid solution having a concentration of 20 to 50%. 2 It is formed by mixing the pulverized waste electric pole with lime powder and water,
The third waste electric pole mixture is acid-treated by immersing the third waste electric pole pulverized product prepared to have an average particle diameter of 10 to 20 mm by pulverizing the waste electric pole in an aqueous sulfuric acid solution having a concentration of 20 to 50%. 3 High-strength concrete blending composition, characterized in that after applying a flame of 1,400 to 1,500 ℃ to the pulverized waste electric pole, it is formed by mixing it with lime powder and water.
삭제delete 삭제delete 삭제delete
KR1020200078235A 2020-06-26 2020-06-26 Concrete mixing composition having high intensity KR102228174B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020200078235A KR102228174B1 (en) 2020-06-26 2020-06-26 Concrete mixing composition having high intensity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020200078235A KR102228174B1 (en) 2020-06-26 2020-06-26 Concrete mixing composition having high intensity

Publications (1)

Publication Number Publication Date
KR102228174B1 true KR102228174B1 (en) 2021-03-15

Family

ID=75134367

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020200078235A KR102228174B1 (en) 2020-06-26 2020-06-26 Concrete mixing composition having high intensity

Country Status (1)

Country Link
KR (1) KR102228174B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7454821B2 (en) 2022-07-22 2024-03-25 株式会社安部日鋼工業 Acid resistance evaluation method for concrete members

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5895633A (en) * 1981-11-30 1983-06-07 東洋エンジニアリング株式会社 Phosphatic acid-cement manufacture
KR100404495B1 (en) 2002-11-06 2003-11-05 Hanjun Dev Co Ltd High-strength concrete composition incorporated with aggregate recycled from waste utility pole
KR100938557B1 (en) * 2009-06-10 2010-01-22 (주)나노스톤 Coloring method for nature stone
KR101001978B1 (en) * 2010-07-13 2010-12-17 삼중씨엠텍(주) Mixed material of color percolation concrete having waterproof and constructing method color percolation concrete using this
KR102008742B1 (en) * 2019-01-23 2019-08-09 (주)한준에프알 Wet Concrete Secondary Products Using Recycled Aggregate Recycling Waste Electric Pole And Manufacturing Method Thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5895633A (en) * 1981-11-30 1983-06-07 東洋エンジニアリング株式会社 Phosphatic acid-cement manufacture
KR100404495B1 (en) 2002-11-06 2003-11-05 Hanjun Dev Co Ltd High-strength concrete composition incorporated with aggregate recycled from waste utility pole
KR100938557B1 (en) * 2009-06-10 2010-01-22 (주)나노스톤 Coloring method for nature stone
KR101001978B1 (en) * 2010-07-13 2010-12-17 삼중씨엠텍(주) Mixed material of color percolation concrete having waterproof and constructing method color percolation concrete using this
KR102008742B1 (en) * 2019-01-23 2019-08-09 (주)한준에프알 Wet Concrete Secondary Products Using Recycled Aggregate Recycling Waste Electric Pole And Manufacturing Method Thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7454821B2 (en) 2022-07-22 2024-03-25 株式会社安部日鋼工業 Acid resistance evaluation method for concrete members

Similar Documents

Publication Publication Date Title
KR101366003B1 (en) Method for producing concrete block using non-cement binder
US8617452B2 (en) Methods of making a construction material with a voltage
JP6521607B2 (en) High durability mortar and high durability concrete
CN111233411B (en) High-toughness and ultra-high-performance concrete doped with metakaolin and magnesium oxide and preparation method thereof
CN108101040A (en) A kind of low cost graphene oxide mortar and preparation method thereof
CN108117335A (en) A kind of graphene oxide concrete of fly ash and preparation method thereof
CN108117333A (en) A kind of high breaking strength graphene oxide mortar and preparation method thereof
CN108298903A (en) A kind of low cost graphene oxide concrete and preparation method thereof
CN112010595A (en) Preparation method of high-strength semi-recycled coarse aggregate concrete
CN107540336B (en) Application of modified sulfur in improving compressive strength, corrosion resistance and/or permeation resistance of sulfur concrete and sulfur mortar
KR102228174B1 (en) Concrete mixing composition having high intensity
CN114560661B (en) Low-carbon corrosion-resistant concrete and preparation method thereof
CN111253130A (en) High-strength heat-resistant self-repairing concrete and preparation method thereof
KR20190024336A (en) Concrete composition
AU2010224346A1 (en) Concrete composition
CN110218044A (en) A kind of non-coarse aggregate nuclear power sacrificial concrete and preparation method thereof
CN108863242A (en) Refractory concrete
JP2016088778A (en) High durability concrete
CN104876464B (en) A kind of graft-modification method of fiber reinforced flyash
KR20100028693A (en) A method for manufacturing concrete having high performance
KR20130116979A (en) Precast concrete segment for tunnel and manufacturing method of the same
CN108164212A (en) A kind of C45 graphene oxides concrete and preparation method thereof
CN106698983A (en) Steel slag and cement stable structure and preparation method thereof
JP6819740B1 (en) concrete
KR101755626B1 (en) Method of manufacturing a solidifying agent with granite sludge and eco-friendly resin

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant