KR102224855B1 - Anticancer Salmonella Bio-synthesizing and Secreting Indirubin and Anticancer Composition Comprising the Salmonella - Google Patents

Anticancer Salmonella Bio-synthesizing and Secreting Indirubin and Anticancer Composition Comprising the Salmonella Download PDF

Info

Publication number
KR102224855B1
KR102224855B1 KR1020200034639A KR20200034639A KR102224855B1 KR 102224855 B1 KR102224855 B1 KR 102224855B1 KR 1020200034639 A KR1020200034639 A KR 1020200034639A KR 20200034639 A KR20200034639 A KR 20200034639A KR 102224855 B1 KR102224855 B1 KR 102224855B1
Authority
KR
South Korea
Prior art keywords
strain
indirubin
anticancer
gene
salmonella
Prior art date
Application number
KR1020200034639A
Other languages
Korean (ko)
Inventor
이효진
전흥진
김솔비
주미나
김나영
이명원
류혜원
Original Assignee
충남대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 충남대학교산학협력단 filed Critical 충남대학교산학협력단
Priority to KR1020200034639A priority Critical patent/KR102224855B1/en
Application granted granted Critical
Publication of KR102224855B1 publication Critical patent/KR102224855B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/74Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/66Microorganisms or materials therefrom
    • A61K35/74Bacteria
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/36Adaptation or attenuation of cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P17/00Preparation of heterocyclic carbon compounds with only O, N, S, Se or Te as ring hetero atoms
    • C12P17/16Preparation of heterocyclic carbon compounds with only O, N, S, Se or Te as ring hetero atoms containing two or more hetero rings
    • C12P17/165Heterorings having nitrogen atoms as the only ring heteroatoms

Abstract

The present invention relates to a novel Salmonella strain that can be effectively used for anticancer treatment by inducing immune stimulation along with biosynthesis and secretion of indirubin having anticancer activity by being targeted to a tumor site, and an anticancer composition comprising the same. More particularly, the present invention relates to an attenuated anti-cancer Salmonella strain that is transformed with a gene construct including a flavin-containing monooxygenase (fmo) gene and a tryptophanase (tnaA) gene to produce indirubin at a cancer site, and an anti-cancer composition comprising the same.

Description

인디루빈을 생합성 분비하는 항암 살모넬라 및 이를 포함하는 항암 조성물{Anticancer Salmonella Bio-synthesizing and Secreting Indirubin and Anticancer Composition Comprising the Salmonella}TECHNICAL FIELD [Anticancer Salmonella Bio-synthesizing and Secreting Indirubin and Anticancer Composition Comprising the Salmonella]

본 발명은 종양부위에 표적화되어 항암활성을 갖는 인디루빈을 생합성 및 분비하는 것과 함께 면역 자극을 유도하여 항암 치료에 효과적으로 사용될 수 있는 신규 살모넬라 균주 및 이를 포함하는 항암 조성물에 관한 것이다. The present invention relates to a novel Salmonella strain that can be effectively used for anticancer therapy by biosynthesis and secretion of indirubin, which is targeted to the tumor site and has anticancer activity, and induces immune stimulation, and an anticancer composition comprising the same.

암은 세포의 증식 활동이 멈추지 않아 주변 조직으로 파고들어 정상세포를 파괴하는 것에 의해 결국에는 생명을 위협하는 질환이다. 노화에 의해 인체의 조절능력이 낮아짐에 따라 암에 취약해지게 되어, 고령화 사회에서 암은 2007년부터 10년째 전체 사망원인 중 부동의 1위를 차지하며 2위인 심장질환 사망률의 2배를 넘어섰다. Cancer is a life-threatening disease in the end by destroying normal cells by penetrating into surrounding tissues as cells do not stop proliferating. As the human body's ability to regulate due to aging decreases, it becomes susceptible to cancer, and in an aging society, cancer occupies the unchanged number one cause of death for 10 years since 2007, exceeding twice the mortality rate of heart disease, the second highest. .

질병의 치료에 가장 효과적인 대응 체계는 면역력을 강화하는 것이나, 암세포는 외부 침입자가 아니기 때문에 인체의 면역반응을 유발하지 않고 회피한다. 특정 바이러스 또는 박테리아는 정상세포보다 암세포에 더 많이 감염되고, 감염된 박테리아가 면역세포의 공격대상이 될 수 있다. 이에 일부러 특정 바이러스 또는 박테리아를 감염시켜 인체 면역반응을 자극함으로써 암세포에 대항할 수 있도록 하는 항암치료 방법들이 제시되었다. 시겔라(Shigella), 콜레라균(Vibrio cholera), 병원성 대장균(pathogenic E. coli)과 같은 감염성 세균들은 장관의 세포에 침투할 뿐, 면역반응을 일으키는 중요한 기관인 간과 비장에는 도달하지 못한다. 이와 대조적으로 살모넬라균은 림프절을 통하여 비장과 간에 침투하여 전신 면역반응을 자극시킬 수 있다. 구체적으로, Leschner 등(J. Mol. Med. 2010, 88, 763-773)은 CT26 종양을 갖는 마우스를 대상으로 형광을 나타내는 살모넬라균을 정맥주사로 감염시킨 후, 시간에 따른 감염 경로를 추적하였다. 그 결과 감염 직후에는 마우스의 혈액을 통해 전신이 감염된 것을 보여주었으며, 감염 20분 후에는 비장과 간에 살모넬라균이 축적되었으며, 24시간 후에는 종양 조직에만 살모넬라균이 집중적으로 축적되어 있음을 관측하였다.The most effective response system for the treatment of diseases is to strengthen immunity, but cancer cells are not external invaders, so they do not induce the body's immune response and avoid. Certain viruses or bacteria are more likely to infect cancer cells than normal cells, and infected bacteria can be targeted by immune cells. Accordingly, anticancer treatment methods have been proposed that deliberately infect specific viruses or bacteria to stimulate the body's immune response to fight cancer cells. Infectious bacteria such as Shigella, Vibrio cholera, and pathogenic E. coli only penetrate the cells of the intestine, but do not reach the liver and spleen, which are important organs that trigger an immune response. In contrast, Salmonella can infiltrate the spleen and liver through lymph nodes and stimulate systemic immune responses. Specifically, Leschner et al. (J. Mol. Med. 2010, 88, 763-773) infected mice with CT26 tumors with a fluorescent Salmonella intravenously and followed the infection route over time. . As a result, it was shown that the whole body was infected through the blood of the mouse immediately after infection, and Salmonella was accumulated in the spleen and liver after 20 minutes of infection, and it was observed that Salmonella was intensively accumulated only in the tumor tissue after 24 hours.

하지만 살모넬라균은 식중독을 유발하는 대표적인 균으로 감염에 의해 패혈증을 유발하여 생명을 위협할 수 있으므로 직접적으로 암 치료에 사용하기에는 병원성이 너무 강하다. 미국 예일대학 연구팀은 살모넬라를 유전자 조작하면 종양을 공격하는 특성은 유지하면서 독성만 제거하여 약독화할 수 있으며, 상기 약독화된 살모넬라의 주입을 통해 면역 자극을 유도하여 종양을 억제할 수 있다고 발표하였다. However, Salmonella is a representative bacteria that cause food poisoning, and it is too pathogenic to be used directly for cancer treatment because it can cause sepsis by infection and threaten life. A research team at Yale University in the United States announced that if Salmonella is genetically engineered, it can be attenuated by removing only toxicity while maintaining the characteristics of attacking tumors, and it can suppress tumors by inducing immune stimulation through injection of the attenuated Salmonella.

이후, 약독화 및 면역활성화와 함께 항암치료에 도움이 되는 물질들을 추가로 발현 또는 억제시킬 수 있는 균주들을 개발하고, 이를 항암치료에 이용하고자 하는 연구들이 이루어졌다. 등록특허 제10-0852687호는 약독화된 살모넬라 균주내에 종양괴사인자 알파단백질 벡터를 형질도입한 종양괴사인자 알파를 발현하는 살모넬라 균주 및 이를 함유하는 항암 치료용 조성물에 대해 게시하였으며, 등록특허 제10-1544602호는 인히빈 알파 shRNA를 발현하는 살모넬라 균주 및 이를 함유하는 항암제 조성물에 대해 게시하였다. Thereafter, studies were conducted to develop strains capable of additionally expressing or inhibiting substances useful for chemotherapy along with attenuation and immune activation, and to use them for chemotherapy. Registered Patent No. 10-0852687 has been published on a Salmonella strain expressing tumor necrosis factor alpha transduced with a tumor necrosis factor alpha protein vector in an attenuated Salmonella strain, and a composition for anticancer treatment containing the same. -1544602 was published on the Salmonella strain expressing inhibin alpha shRNA and an anticancer agent composition containing the same.

한편, 인디루빈은 당귀의 유효성분으로 1980년대 만성 과립성 백혈병에 효과가 있다는 결과가 보고되면서 주목을 받게 되었다. 세포활동 억제제인 부설판(busulfan)을 사용한 표준 치료방법과 유사하게, 인디루빈 처방 환자의 50% 이상이 부분적으로 또는 완전하게 관해되었으며, 독성이 낮고 부작용도 경증이었다. 이에 인디루빈과 그 유도체를 항암제로 이용하고자 하는 많은 연구들이 진행되고 있다.On the other hand, indirubin as an active ingredient of Angelica Angela drew attention as it was reported that it was effective against chronic granular leukemia in the 1980s. Similar to standard treatment with busulfan, an inhibitor of cellular activity, more than 50% of patients treated with indirubin were partially or completely remission, with low toxicity and mild side effects. Accordingly, many studies are being conducted to use indirubin and its derivatives as anticancer agents.

인디루빈은 인디고의 이성질체로 인디고의 공업적 생산과정에서 부산물로 소량 생성될 뿐으로, 공업적으로는 대량 생산이 이루어지지 않는다. 또한 화학합성은 환경에 유해하기 때문에 미생물을 이용한 생합성이 주로 이루어지고 있다. 등록특허 제10-0173046호는 P. tinctorium 균주의 배양 시 인돌을 첨가하여 배양하면 인디루빈을 생산할 수 있음을 보고하였으며, 등록특허 제10-1092515호는 모노옥시게네이즈 유전자를 내포시킨 재조합 대장균을 이용하여 트립토판을 인디루빈으로 전환시킬 수 있음을 보고하였다. 또한 등록특허 제10-1021789호는 특정 스트레인의 야생형 대장균주를 이용하여 인디칸으로부터 인디루빈을 생산할 수 있음을 보고하였다. 그러나, 상기 종래기술들에서 살모넬라는 동시에 동일 조건에서 인디루빈 생산 효능이 매우 낮음을 보고하였다.Indirubin is an isomer of indigo and is only produced in a small amount as a by-product in the industrial production process of indigo, but industrially, mass production is not achieved. In addition, since chemical synthesis is harmful to the environment, biosynthesis using microorganisms is mainly performed. Registered Patent No. 10-0173046 reported that indirubin can be produced by adding indole during cultivation of P. tinctorium strain, and Patent No. 10-1092515 discloses recombinant E. coli containing a monooxygenase gene. It has been reported that tryptophan can be converted to indirubin. In addition, Patent No. 10-1021789 reported that indirubin can be produced from indican using a specific strain of wild-type E. coli. However, in the prior art, it was reported that Salmonella had very low indirubin production efficacy under the same conditions at the same time.

등록특허 제10-0852687호Registered Patent No. 10-0852687 등록특허 제10-1544602호Registered Patent No. 10-1544602 등록특허 제10-0173046호Registered Patent No. 10-0173046 등록특허 제10-1092515호Registered Patent No. 10-1092515 등록특허 제10-1021789호Registered Patent No. 10-1021789

Leschner 등(J. Mol. Med. 2010, 88, 763-773)Leschner et al. (J. Mol. Med. 2010, 88, 763-773)

본 발명은 암에 표적화되는 특성을 갖지만, 항암 특성을 갖는 인디루빈은 생성하지 못하는 살모넬라를 형질전환시켜, 암부위에 표적화되어 안정적으로 인디루빈을 발현하며 면역유도 활성을 갖는 것에 의해 항암치료에 사용할 수 있는 신규 살모넬라 균주를 제공하는 것을 목적으로 한다.The present invention is used for anticancer treatment by transforming Salmonella, which has characteristics targeted to cancer, but does not produce indirubin, which has anticancer properties, is targeted to the cancer site, stably expresses indirubin, and has immune-inducing activity. It is an object of the present invention to provide a new Salmonella strain that can be used.

또한 본 발명은 상기 균주를 이용한 항암 조성물을 제공하는 것을 다른 목적으로 한다.Another object of the present invention is to provide an anticancer composition using the strain.

전술한 목적을 달성하기 위한 본 발명은 fmo(flavin-containing monooxygenase) 유전자와 tnaA(tryptophanase) 유전자를 포함하는 유전자 구조물로 형질전환되어 암 부위에서 인디루빈을 생산하는 항암 약독화 살모넬라 균주에 관한 것이다.The present invention for achieving the above object relates to an anticancer attenuated Salmonella strain that is transformed with a genetic construct including a flavorin-containing monooxygenase (fmo) gene and a tryptophanase (tnaA) gene to produce indirubin at a cancer site.

형질전환에 의해 인위적으로 삽입된 유전자는 박테리아의 생존에 필수적이지 않기 때문에 생체 내 증식과정에서 플라스미드가 제거되어 약독화 살모넬라 균주의 인디루빈 생성 능력이 상실될 수 있다. 이에 상기 플라스미드에 의한 인디루빈의 생성을 안정적으로 유지할 수 있도록, 상기 약독화 살모넬라 균주는 glmS 유전자가 결실되어 있고, 상기 플라스미드는 glmS 유전자를 포함하는 것이 바람직하다. 이러한 구조로 인해 플라스미드에 의해 발현되는 glmS 유전자가 살모넬라 균주의 생존에 필수적이기 때문에 생체 내에서 플라스미드가 안정적으로 유지될 수 있다.Since genes artificially inserted by transformation are not essential for the survival of bacteria, plasmids are removed during in vivo proliferation, and the attenuated Salmonella strains may lose the ability to produce indirubin. Accordingly, in order to stably maintain the production of indirubin by the plasmid, the attenuated Salmonella strain has a deletion of the glmS gene, and the plasmid preferably contains the glmS gene. Due to this structure, since the glmS gene expressed by the plasmid is essential for the survival of Salmonella strains, the plasmid can be stably maintained in vivo.

대장균은 야생형 그 자체로 또는 모노옥시게나아제 유전자의 도입 후 인디고 또는 인디루빈의 생산에 이용될 수 있음이 보고되었으나, 대장균과 진화적으로 밀접한 살모넬라는 이들의 생성이 극히 적은 것으로 알려져 있다. 하기 실시예에서도 모노옥시게나아제(fmo) 유전자만을 도입한 경우 대장균은 인디고의 생성이 확인되었으나, 살모넬라균은 인디고 또는 인디루빈의 생성이 확인되지 않았다. 그러나 fmo 유전자와 함께 tnaA 유전자를 함께 도입한 경우, 살모넬라 균주가 인디루빈을 생성함을 확인할 수 있었다.It has been reported that E. coli can be used for the production of indigo or indirubin after the introduction of the wild type itself or the monooxygenase gene, but it is known that the production of Salmonella, which is evolutionarily close to E. coli, is extremely small. In the following examples, when only the monooxygenase (fmo) gene was introduced, the production of indigo was confirmed in E. coli, but the production of indigo or indirubin was not confirmed in Salmonella. However, when the tnaA gene was introduced together with the fmo gene, it was confirmed that the Salmonella strain produced indirubin.

본 발명에 의하면 살모넬라가 체내 감염 시 약 24시간 후 종양 부위에 표적화되고 면역 유발시켜 항암 효과를 나타내는 것은 물론, 체내 종양 부위에서 인디루빈을 생성 및 분비하여 인디루빈에 의한 추가적인 항암 효과를 발휘할 수 있다. 본 발명에서 살모넬라 균주를 체내에 적용할 수 있도록 하기 위해서는 살모넬라 균주의 감염에 의한 안전성을 확보할 수 있어야 한다. 이를 위하여, 본 발명은 약독화 살모넬라 균주가 fmo 유전자와 tnaA 유전자를 포함하는 플라스미드로 형질전환 된 것을 특징으로 한다.According to the present invention, when Salmonella is infected in the body, it is targeted to the tumor site about 24 hours after and induces immunity to exhibit an anticancer effect, and indirubin is produced and secreted at the tumor site in the body to exert an additional anticancer effect by indirubin. . In the present invention, in order to be able to apply the Salmonella strain to the body, it is necessary to ensure safety due to infection of the Salmonella strain. To this end, the present invention is characterized in that the attenuated Salmonella strain is transformed with a plasmid containing the fmo gene and the tnaA gene.

본 명세서에서 "약독화"란 살아있는 병원체의 독성을 인위적으로 약하게 한 것으로, 병원체의 필수 대사에 관여하는 유전자를 변이시켜 체내에서 질병을 일으키지 못하고, 면역 체계만을 자극하여 면역성을 유도하는 것을 의미한다. 살모넬라균은 인체에 감염되었을 때 티푸스성 질환이나 식중독과 같은 심각한 영향을 미치기 때문에 인체에 적용할 수 있으려면 반드시 약독화되어야 한다. 살모넬라의 약독화는 당업계에 잘 알려져 있으며, aroA, aroC, aroD, aroE, Rpur, htrA, ompR, ompF, ompC, galE, cya, crp, cyp, phoP, phoQ, rfaY, dksA, hupA, sipC, clpB, clpP, clpX, pab, nadA, pncB, pmi, rpsL, hemA, rfc, poxA, galU, cdt, pur, ssa, guaA, guaB, fliD, flgK, flgL, flhDC, relA 및 spoT로 구성된 군으로부터 선택되는 하나 이상의 유전자의 기능상실에 의해 달성될 수 있다.In the present specification, "attenuated" refers to artificially weakening the toxicity of a living pathogen, and does not cause disease in the body by mutating genes involved in essential metabolism of pathogens, and means inducing immunity by stimulating only the immune system. Salmonella bacteria have serious effects such as typhoid disease or food poisoning when infected with humans, so they must be attenuated in order to be applicable to the human body. Salmonella attenuation is well known in the art, aroA, aroC, aroD, aroE, Rpur, htrA, ompR, ompF, ompC, galE, cya, crp, cyp, phoP, phoQ, rfaY, dksA, hupA, sipC, Selected from the group consisting of clpB, clpP, clpX, pab, nadA, pncB, pmi, rpsL, hemA, rfc, poxA, galU, cdt, pur, ssa, guaA, guaB, fliD, flgK, flgL, flhDC, relA and spoT It can be achieved by the loss of function of one or more genes.

약독화 살모넬라 균주에 fmo 유전자와 tnaA 유전자를 동시에 도입한다고 하더라고 약독화 살모넬라 균주의 종류에 따라 인디루빈 생성 효율이 상이하였다. 약독화 균주에 glmS 유전자가 결실되는 지의 여부 역시 인디루빈 생성 효율에 영향을 미쳤다. 상기 약독화 균주가 galE와 flhDC 유전자의 기능이 상실된 균주인 경우에는 특히 인디루빈의 생성 효율이 우수하였다. 특히 galE와 flhDC 유전자와 함께 glmS 유전자가 함께 결실된 약독화 살모넬라 균주를 fmo+tnaA+glmS 유전자가 포함된 플라스미드로 형질전환한 경우에는, 동일한 플라스미드를 사용하여 glmS 유전자가 결실된 대장균을 형질전환한 균주에 비해서도 인디루빈 생성 능력이 우수함을 보여주었다. Although the fmo gene and the tnaA gene were simultaneously introduced into the attenuated Salmonella strain, the indirubin production efficiency was different depending on the type of the attenuated Salmonella strain. Whether the glmS gene was deleted in the attenuated strain also affected the indirubin production efficiency. When the attenuated strain was a strain in which the functions of galE and flhDC genes were lost, the production efficiency of indirubin was particularly excellent. In particular, when the attenuated Salmonella strain in which the glmS gene was deleted together with the galE and flhDC genes was transformed with a plasmid containing the fmo+tnaA+glmS gene, the same plasmid was used to transform E. coli in which the glmS gene was deleted. It was shown that the ability to produce indirubin was excellent even compared to the strain.

이에 하기 인디루빈 생성이 빠르고 효율적이었던 실시예의 제작 균주를 fmo-tnaA-glmS/galE flhDC glmS Salmonella로 명명하였으며, 2020년 3월 20일자로 한국생명공학연구원 생물자원센터에 기탁하였다(기탁번호 KCTC18809P). Accordingly, the production strain of the example in which the following indirubin production was quick and efficient was named fmo-tnaA-glmS/galE flhDC glmS Salmonella, and was deposited with the Korea Research Institute of Bioscience and Biotechnology Biological Resource Center on March 20, 2020 (accession number KCTC18809P). .

본 발명은 또한 상기 살모넬라 균주를 유효성분으로 함유하는 항암 조성물에 관한 것이다. The present invention also relates to an anticancer composition containing the Salmonella strain as an active ingredient.

본 발명의 조성물은 항암용 약제로 이용하기 위하여, 약제학적 분야에서 공지의 방법에 의하여 제조될 수 있으며, 그 자체 또는 약학적으로 허용되는 담체(carrier), 부형제(forming agent), 희석제 등과 혼합하여 사용될 수 있다.The composition of the present invention may be prepared by a method known in the pharmaceutical field in order to be used as an anticancer drug, and mixed with itself or a pharmaceutically acceptable carrier, an excipient, a diluent, etc. Can be used.

본 발명의 조성물은 경구 또는 비경구 투여용 제제로 제형화하여 사용할 수 있다. 본 발명에 따른 유효성분의 투여량은 체내에서 활성성분의 흡수도, 제제의 형태, 환자의 연령, 성별 및 상태, 증상의 정도 등에 따라 적절히 선택될 수 있으며, 투여는 하루에 한번 투여할 수도 있고, 수회 나누어 투여할 수도 있다. 일반적인 투여량은 0.001mg/kg·일~10g/kg·일이다.The composition of the present invention can be formulated and used as a formulation for oral or parenteral administration. The dosage of the active ingredient according to the present invention may be appropriately selected depending on the degree of absorption of the active ingredient in the body, the form of the formulation, the age, sex and condition of the patient, the degree of symptoms, etc., and the administration may be administered once a day. Alternatively, it may be administered several times. Typical dosage is 0.001mg/kg·day~10g/kg·day.

이상과 같이 본 발명에 의한 살모넬라 균주에 의하면 약독화된 살모넬라 균주가 약독화되어 종양 부위에서 면역 반응을 유도하여 항암 효과를 나타냄과 동시에, 인디루빈을 생성/분비하여 인디루빈에 의한 항암 효과를 동시에 나타낼 수 있으므로 항암 치료에 보다 유용하게 사용될 수 있다. As described above, according to the Salmonella strain according to the present invention, the attenuated Salmonella strain is attenuated to induce an immune response at the tumor site to exhibit an anticancer effect, and at the same time, indirubin is produced/secreted to achieve the anticancer effect by indirubin. As it can be represented, it can be more usefully used for anticancer treatment.

도 1은 본 발명의 일 실시예에서 사용한 pBLUE1.7의 개열지도.
도 2는 본 발명의 일 실시예에서 사용한 pBLUE fmo+tnaA 플라스미드의 모식도.
도 3은 fmo+tnaA 플라스미드로 형질전환된 균주의 인디루빈 생성을 검정한 사진.
도 4는 fmo+tnaA/KST0650 균주의 인디루빈 생성을 보여주는 사진 및 분석 결과.
도 5는 본 발명의 일 실시예에서 사용한 pUC fmo+tnaA+glmS 플라스미드의 모식도.
도 6은 pUC fmo+tnaA+glmS로 형질전환된 균주의 인디루빈 생성을 검정한 사진.
도 7은 fmo+tnaA+glmS/galE flhDC glmS- 살모넬라 균주의 모식도.
도 8은 fmo+tnaA+glmS/galE flhDC glmS- 균주의 인디루빈 생성을 보여주는 사진.
1 is a cleavage map of pBLUE1.7 used in an embodiment of the present invention.
Figure 2 is a schematic diagram of the pBLUE fmo+tnaA plasmid used in an embodiment of the present invention.
Figure 3 is a photograph of assaying the production of indirubin of strains transformed with fmo+tnaA plasmid.
Figure 4 is a photograph and analysis results showing the production of indirubin fmo + tnaA / KST0650 strain.
5 is a schematic diagram of the pUC fmo+tnaA+glmS plasmid used in an example of the present invention.
Figure 6 is a photograph of testing the production of indirubin of the strain transformed with pUC fmo+tnaA+glmS.
Figure 7 is a schematic diagram of fmo+tnaA+glmS/galE flhDC glmS- Salmonella strain.
Figure 8 is a photograph showing the production of indirubin fmo+tnaA+glmS/galE flhDC glmS- strain.

이하 첨부된 실시예를 들어 본 발명을 보다 상세히 설명한다. 그러나 이러한 실시예는 본 발명의 기술적 사상의 내용과 범위를 쉽게 설명하기 위한 예시일 뿐, 이에 의해 본 발명의 기술적 범위가 한정되거나 변경되는 것은 아니다. 이러한 예시에 기초하여 본 발명의 기술적 사상의 범위 안에서 다양한 변형과 변경이 가능함은 당업자에게는 당연할 것이다.Hereinafter, the present invention will be described in more detail with reference to the accompanying examples. However, these embodiments are only examples for easily explaining the content and scope of the technical idea of the present invention, thereby not limiting or changing the technical scope of the present invention. It will be obvious to those skilled in the art that various modifications and changes are possible within the scope of the technical idea of the present invention based on these examples.

[실시예][Example]

실시예 1 : fmo 유전자를 내포시킨 재조합 균주의 인디루빈 생산 검정Example 1: Indirubin production assay of recombinant strains containing fmo gene

M. amonisulfidivorans 균의 fmo(flavin-containing monooxygenase) 유전자는 인돌을 인디고 또는 인디루빈으로 전환시키는 유전자로, 가장 효율이 좋은 부분은 fmo 유전자를 포함하는 상위 DNA 300 bp로 1.7 kb이다. 상기 1.7 kb의 fmo 유전자를 pBLUEscript SK(+) 벡터에 삽입한 플라스미드 pBLUE1.7(등록특허 제10-1092515호, 도 1)을 조선대학교 김시욱 교수님 연구실로부터 분양받아 사용하였다. The fmo (flavin-containing monooxygenase) gene of M. amonisulfidivorans is a gene that converts indole to indigo or indirubin. The most efficient part is the upper DNA containing the fmo gene, which is 300 bp, which is 1.7 kb. Plasmid pBLUE1.7 (Registration Patent No. 10-1092515, Fig. 1) in which the 1.7 kb fmo gene was inserted into the pBLUEscript SK(+) vector was distributed and used from the laboratory of Professor Kim Si-wook of Chosun University.

상기 분양받은 플라스미드를 사용하여 각종 균주를 형질전환시킨 후, 형질전환된 균주의 인디고 또는 인디루빈의 생산여부를 검정하기 위하여 LB amp 고체 배지에 도말하고, 37℃에서 24시간 배양하였다. pBLUE1.7로 형질전환된 대장균 균주 D5a와 MG1655는 청색 콜로니를 형성하여 인디고가 주로 생성됨을 확인할 수 있었으며, DH5a는 MG1655 균주에 비해 인디고 생성 속도가 빨랐다. 그러나 야생형 살모넬라인 LT2 및 14028S와 약독화 살모넬라인 aroA-, ppGpp-, KST0650은 모두 형질전환 후 배양 시 색 변화가 전혀 없어, 인디고나 인디루빈이 생성되지 않음을 보여주었다.After transforming various strains using the pre-sold plasmid, in order to test whether the transformed strain produced indigo or indirubin, it was plated on LB amp solid medium and cultured at 37°C for 24 hours. It was confirmed that E. coli strains D5a and MG1655 transformed with pBLUE1.7 formed blue colonies and mainly produced indigo, and DH5a produced indigo faster than the MG1655 strain. However, wild-type Salmonel lines LT2 and 14028S and attenuated Salmonel lines aroA-, ppGpp-, and KST0650 all showed no color change during cultivation after transformation, indicating that indigo or indirubin was not produced.

실시예 2 : fmo+tnaA 유전자를 내포시킨 재조합 균주의 제작 및 인디루빈 생산 검정Example 2: Construction of a recombinant strain containing the fmo+tnaA gene and assay for indirubin production

tnaA 유전자를 얻기 위하여 야생종 대장균인 MG1655의 염색체 DNA를 주형으로 하기 표 1의 프라이머 쌍과 PrimeSTAR Max DNA Polymerase 2X master mix((주)다카라)를 이용하여 PCR을 수행하였다. PCR 조건은 98℃ 3분과 35회의 98℃ 10초 - 55℃ 5초 - 72℃ 1분 30초 사이클 및 75℃ 3분이었다. PCR 산물을 Hindlll((주)다카라) 10U와 37℃에서 1시간 반응시킨 후 전기영동을 실시하고, 전기영동 gel로부터 Gel extraction kit(Qiagen)을 사용하여 DNA를 추출하여 1.5 kb의 tnaA insert를 제작하였다.In order to obtain the tnaA gene, PCR was performed using the chromosomal DNA of MG1655, a wild species E. coli, as a template, using the primer pair in Table 1 below and PrimeSTAR Max DNA Polymerase 2X master mix (Takara Co., Ltd.). PCR conditions were 98° C. 3 minutes and 35 cycles of 98° C. 10 seconds-55° C. 5 seconds-72° C. 1 minute 30 seconds and 75° C. 3 minutes. The PCR product was reacted with 10U of Hindlll (Takara Co., Ltd.) at 37°C for 1 hour, followed by electrophoresis, and DNA was extracted from the electrophoresis gel using a Gel extraction kit (Qiagen), and 1.5 kb of DNA was extracted. tnaA insert was prepared

Figure 112020029837342-pat00001
Figure 112020029837342-pat00001

pBLUE 1.7 플라스미드 1 ㎍을 Hindlll 10U와 37℃에서 2시간 반응시킨 후, tnaA insert 제작 시와 동일한 방법으로 전기영동하고 gel extraction을 통해 pBLUE1.7 벡터를 제작하였다. After 1 μg of pBLUE 1.7 plasmid was reacted with 10U of Hindlll at 37°C for 2 hours, electrophoresis was carried out in the same manner as in the preparation of tnaA insert, and a pBLUE1.7 vector was prepared through gel extraction.

pBLUE 위에서 준비한 tnaA insert와 pBLUE1.7 벡터를 25℃에서 30분 라이게이션((주)Invitron) 시킨 후, DH5a 컴피턴트 세포를 형질전환 시켰다. 형질전환된 DH5a 세포를 LB amp 고체 배지에 도말하고 37℃에서 배양하여, 항생제 내성을 갖는 콜로니를 선별하였다. 선별된 콜로니 중 candidate 6개를 각각 Hindlll((주)다카라) 10 U와 37℃에서 1시간 반응시킨 후 전기영동을 통해 1.5 kb band의 생성을 확인하였다. Cosmogenetech에 해당 candidate의 염기서열을 분석 의뢰하여, tanA 유전자의 삽입을 확인하고 fmo+tnaA 플라스미드로 확립하였다(도 2).After the tnaA insert prepared on pBLUE and the pBLUE1.7 vector were ligated at 25° C. for 30 minutes (Invitron, Inc.), DH5a competent cells were transformed. Transformed DH5a cells were plated on LB amp solid medium and cultured at 37°C to select colonies having antibiotic resistance. Among the selected colonies, 6 candidates were reacted with 10 U of Hindlll (Takara Co., Ltd.) for 1 hour at 37°C, and then the generation of a 1.5 kb band was confirmed through electrophoresis. By requesting Cosmogenetech to analyze the nucleotide sequence of the candidate, the insertion of the tanA gene was confirmed, and the fmo+tnaA plasmid was established (FIG. 2).

fmo+tnaA 플라스미드를 사용하여 실시예 1과 같은 방법으로 각종 균주를 형질전환시킨 후, 형질전환된 균주의 인디고 또는 인디루빈의 생산여부를 검정하였다. 형질전환된 대장균 균주 D5a와 MG1655는 청색 콜로니를 형성하여 인디고가 주로 생성됨을 확인할 수 있었다. 야생형 살모넬라인 LT2 및 14028S 균주 역시 청색 콜로니를 형성하여 인디고가 주로 생성됨을 나타내었다. 도 3은 형질전환된 약독화 살모넬라의 배양결과를 보여주는 사진으로, 1과 2는 형질전환된 KST0650 균주의 배양결과로 1은 트립토판이 첨가된 배지에서 배양한 결과이다. 3은 형질전환된 araA- 균주이며, 4는 형질전환된 ppGpp glmS- 균주이다. KST0650균주와 araA- 균주 및 ppGpp glmS- 균주는 각각 정읍 원자력연구원과 한남대 이인수 교수님, 전남대 정재호 교수님 연구실에서 분주받았다. 도 3에서, araA-와 ppGpp glmS- 균주는 형질전환에 의해 인디루빈과 함께 인디고를 생성함을 확인할 수 있으며, KST0650 균주는 인디루빈이 주로 생성되며 트립토판의 첨가에 의해 인디루빈 생성이 더욱 강화됨을 알 수 있다.After transforming various strains in the same manner as in Example 1 using fmo+tnaA plasmid, the transformed strain was tested for production of indigo or indirubin. It was confirmed that the transformed E. coli strains D5a and MG1655 formed blue colonies and mainly produced indigo. Wild-type Salmonel line LT2 and 14028S strains also formed blue colonies, indicating that indigo was mainly produced. 3 is a photograph showing the culture results of transformed attenuated Salmonella, 1 and 2 are the culture results of the transformed KST0650 strain, and 1 is the culture results in a medium to which tryptophan is added. 3 is a transformed araA- strain, and 4 is a transformed ppGpp glmS- strain. The KST0650 strain, the araA- strain, and the ppGpp glmS- strain were dispensed from the labs of Jeongeup Atomic Energy Research Institute, Professor Insoo Lee of Hannam University, and Professor Jaeho Jeong of Chonnam University, respectively. In Figure 3, it can be seen that the araA- and ppGpp glmS- strains produce indigo together with indirubin by transformation, and the KST0650 strain mainly produces indirubin, and indirubin production is further enhanced by the addition of tryptophan. Able to know.

인디고와 인디루빈의 생성을 더욱 명확하게 확인하기 위하여, 인디루빈 생성 효율이 좋은 것으로 확인된 fmo+tnaA/KST0650 균주를 액체배지 50 mL에 접종한 후, 37℃에서 150 rpm 또는 250 rpm의 조건으로 24시간 배양하였다. 배양액 500㎕를 취한 후, 원심분리하여 상층액을 제거하고, cell pellet을 DMSO에 용해시켰다. 시판 인디루빈(Sigma)을 표준물질로 사용하여 HPLC에 의해 해당 용액 중 인디루빈의 함유 여부와 농도를 계산하였다. 도 3은 펠렛의 용해 사진과 HPLC 분석 결과를 보여주는 것으로, 150 rpm에서 배양한 1에서는 14.53 mg/ml, 250 rpm에서 배양한 2에서는 37.84 mg/ml의 인디루빈이 함유되어 있음을 알 수 있다. In order to more clearly confirm the production of indigo and indirubin, fmo+tnaA/KST0650 strain, which was confirmed to have good indirubin production efficiency, was inoculated into 50 mL of a liquid medium, and then under conditions of 150 rpm or 250 rpm at 37°C. Incubated for 24 hours. After taking 500 µl of the culture medium, centrifugation was performed to remove the supernatant, and the cell pellet was dissolved in DMSO. Commercially available indirubin (Sigma) was used as a standard and the content and concentration of indirubin in the solution were calculated by HPLC. Figure 3 shows the dissolution picture and HPLC analysis results of the pellet, it can be seen that 14.53 mg/ml in 1 cultured at 150 rpm and 37.84 mg/ml indirubin in 2 cultured at 250 rpm.

이로부터 fmo+tnaA 플라스미드를 이용하여, 인디루빈이 생산되지 않는 살모넬라 균주로부터 인디루빈을 생산하도록 형질전환 할 수 있음을 확인하였다. From this, it was confirmed that the fmo+tnaA plasmid could be used to transform indirubin to produce indirubin from a Salmonella strain in which indirubin was not produced.

실시예 3 : glmS- 약독화 균주의 제작과 형질전환 및 인디루빈 생성 검정Example 3: Preparation and transformation of glmS- attenuated strain and assay for production of indirubin

항생제가 존재하지 않는 생체 내에서 플라스미드를 안정적으로 발현하기 위해서는 플라스미드 내에 glmS 유전자를 삽입하고, 균주는 glmS 유전자를 넉아웃시키는 것이 좋다. 이에 먼저 약독화 균주에서 glmS 유전자를 넉아웃시켰다.In order to stably express the plasmid in vivo in the absence of antibiotics, it is recommended to insert the glmS gene into the plasmid and knock out the glmS gene in the strain. First, the glmS gene was knocked out from the attenuated strain.

ppGpp glmS- 균주로부터 P22 형질도입(transduction)을 수행하여 다른 glmS- 약독화 균주를 제작하였다. 구체적으로, 37℃에서 16시간 진탕배양한 ppGpp glmS- 균주 0.2 mL에 2 mL의 P22 broth(0.2% glucose, 1% EX50 salts, P22 stock ~1011/mL)를 넣고 37℃에서 9시간 배양하였다. 배양액을 원심분리하여 상층액을 새로운 튜브로 옮기고 클로로포름을 처리하여 glmS- 돌연변이가 포함된 ppGpp glmS- P22 lysate를 제작하였다.Another glmS- attenuated strain was prepared by performing P22 transduction from the ppGpp glmS- strain. Specifically, 2 mL of P22 broth (0.2% glucose, 1% EX50 salts, P22 stock ~10 11 /mL) was added to 0.2 mL of ppGpp glmS- strain cultured with shaking at 37°C for 16 hours and incubated at 37°C for 9 hours. . The culture medium was centrifuged, the supernatant was transferred to a new tube, and treated with chloroform to prepare a ppGpp glmS- P22 lysate containing a glmS- mutation.

37℃에서 16시간 진탕배양한 0.1 mL 약독화 균주와 상기 ppGpp glmS- P22 lysate를 1:1의 부피비로 혼합하여 상온(~25℃)에서 1시간 반응시킨 후 PBS 용액에 100, 10-1, 10-2, 10-3의 비율로 희석하여 LB kanamycin plate에 도말하였다. kanamycine 배지에서 잘 성장한 콜로니를 선별한 후 Cosmogenetech에 염기서열 분석을 의뢰하여 glmS- 균주를 확립하였다. 0.1 mL attenuated strain cultured with shaking at 37°C for 16 hours and the ppGpp glmS-P22 lysate were mixed in a volume ratio of 1:1 and reacted for 1 hour at room temperature (~25°C), and then 10 0 , 10 -1 in PBS solution , 10 -2 and 10 -3 and plated on LB kanamycin plates. After selecting colonies that grew well in the kanamycine medium, the glmS- strain was established by requesting sequencing to Cosmogenetech.

형질도입에 사용한 약독화 균주로는 aroA- 균주와, KST050 균주 및 galE flhDC- 균주를 사용하였다. galE fhlDC- 균주를 얻기 위하여 Salmonella typhimurium LT2 △galE::tetRA,△flhDC::Tn10(특허출원 제10-2020-0001602호, KCTC18801P)를 ampicillin이 없는 액체 LB 배지에서 48시간 배양하였다. 배양액을 13000 rpm에서 30초 원심분리하여 모아진 세포를 고체배지에 도말하여 배양하였다. 배양 후 얻어진 각 콜로니를 ampicillin 고체배지(100 ㎍/㎖)와 tetracycline 고체배지(12.5 ㎍/㎖)에 접종하고 배양하여 ampicillin 배지에서는 자라지 않고 tetracycline 배지에서만 자라는 콜로니를 선별하여 galE flhDC- 균주를 준비하였다.As attenuated strains used for transduction, aroA- strain, KST050 strain, and galE flhDC- strain were used. To obtain galE fhlDC- strain, Salmonella typhimurium LT2 ΔgalE::tetRA, ΔflhDC::Tn10 (Patent Application No. 10-2020-0001602, KCTC18801P) was cultured in a liquid LB medium without ampicillin for 48 hours. The culture solution was centrifuged at 13000 rpm for 30 seconds, and the collected cells were plated on a solid medium and cultured. Each colony obtained after cultivation was inoculated in ampicillin solid medium (100 µg/ml) and tetracycline solid medium (12.5 µg/ml) and cultured to select colonies that do not grow in ampicillin medium but only in tetracycline medium to prepare galE flhDC- strains. .

상기 glmS- 약독화 균주들을 실시예 2와 동일한 방법에 의해 fmo+tnaA 플라스미드를 사용하여 형질전환한 후 인디루빈의 생산을 검정하였다. 그 결과, aroA-는 glmS의 넉아웃이 인디루빈의 생산에 큰 영향을 미치지 않은 것에 반해, 인디루빈 생산능이 가장 우수하였던 KST0650은 glmS의 넉아웃 후 인디루빈이 거의 생성되지 않았다. galE flhDC- 역시 인디루빈을 생산함을 보여주었다.The glmS- attenuated strains were transformed using the fmo+tnaA plasmid in the same manner as in Example 2, and then the production of indirubin was assayed. As a result, aroA- did not significantly affect the production of indirubin due to the knockout of glmS, whereas KST0650, which had the best indirubin production ability, hardly produced indirubin after the knockout of glmS. galE flhDC- has also been shown to produce indirubin.

실시예 4 : fmo+tnaA+glmS 유전자를 내포시킨 재조합 균주의 제작 및 인디루빈 생산 검정Example 4: Construction of a recombinant strain containing the fmo+tnaA+glmS gene and assay for indirubin production

glmS를 넉아웃시키고 fmo+tnaA 플라스미드로 형질전환시킨 균주가 생체내에서 플라스미드를 안정적으로 유지할 수 있도록 플라스미드 내 glmS 유전자를 삽입하였다.The glmS gene was inserted into the plasmid so that glmS was knocked out and the strain transformed with the fmo+tnaA plasmid could stably maintain the plasmid in vivo.

1) pUC fmo+tnaA 플라스미드의 제작1) Construction of pUC fmo+tnaA plasmid

pBLUE 벡터에 비해 카피수가 많은 pUC 벡터를 사용하여 fmo+tnaA 플라스미드를 제작하였다. 이를 위하여 실시예 2에서 pBLUE 벡터를 사용하여 제조한 fmo+tnaA 플라스미드를 HindIII 10 U, BamHI((주)다카라) 10U와 37℃에서 1시간 반응하고, 전기영동과 gel extraction을 통해 3.2 kb의 fmo+tnaA insert를 제작하였다. The fmo+tnaA plasmid was constructed using a pUC vector with a larger number of copies than the pBLUE vector. To this end, the fmo+tnaA plasmid prepared using the pBLUE vector in Example 2 was reacted with 10 U of HindIII and 10 U of BamHI (Takara, Inc.) for 1 hour at 37° C., and 3.2 kb of fmo was subjected to electrophoresis and gel extraction. +tnaA insert was produced.

pUC 플라스미드를 HindIII 10U, BamHI 10U와 37℃에서 1시간 반응하고, 전기영동과 gel extraction을 통해 2.6 kb의 pUC 벡터 DNA를 제작하고, 상기 fmo+tnaA insert를 25℃에서 30분 ligation(Invitron)시킨 후 DH5a 컴피턴트 세포를 형질전환 시켰다. 형질전환된 세포를 LB amp 고체 배지에 도말하고 37℃에서 배양하여 항생제 내성을 갖는 콜로니를 선별하였다. 선별된 콜로니의 candidate 4개를 선별하여 HindIII 10U, BamHI 10U와 37℃에서 1시간 반응시킨 후 전기영동을 통해 3.2 kb band의 생성을 확인하였다. Cosmogenetech에 해당 candidate의 염기서열을 분석 의뢰하여, fmo+tanA 유전자의 삽입을 확인하고 pUC fmo+tnaA 플라스미드로 확립하였다.The pUC plasmid was reacted with 10U of HindIII and 10U of BamHI for 1 hour at 37°C, and a 2.6 kb pUC vector DNA was prepared through electrophoresis and gel extraction, and the fmo+tnaA insert was ligation (Invitron) at 25°C for 30 minutes. Then, DH5a competent cells were transformed. The transformed cells were plated on LB amp solid medium and cultured at 37°C to select colonies having antibiotic resistance. Four candidates for the selected colonies were selected and reacted with HindIII 10U and BamHI 10U for 1 hour at 37°C, and then the generation of 3.2 kb band was confirmed through electrophoresis. By requesting Cosmogenetech to analyze the nucleotide sequence of the candidate, the insertion of the fmo+tanA gene was confirmed, and the pUC fmo+tnaA plasmid was established.

2) fmo+tnaA+glmS 플라스미드의 제작2) Construction of fmo+tnaA+glmS plasmid

1)에서 제작한 pUC fmo+tnaA 플라스미드를 aatII(다카라) 10U와 37℃에서 2시간 반응시킨 후 전기영동을 실시하고 gel extraction을 통하여 pUC fmo+tnaA aatll 벡터를 제작하였다.The pUC fmo+tnaA plasmid prepared in 1) was reacted with 10U of aatII (Takara) for 2 hours at 37°C, followed by electrophoresis, and a pUC fmo+tnaA aatll vector was prepared through gel extraction.

야생형 살모넬라 LT2의 염색체 DNA를 주형으로 하기 표 2의 프라이머 쌍과 PrimeSTAR Max DNA Polymerase 2X master mix를 이용하여 PCR을 수행하였다. PCR 조건은 98℃ 3분과 35회의 98℃ 10초 - 55℃ 5초 - 72℃ 2분 사이클 및 75℃ 3분이었다. PCR 산물을 전기영동 실시하고, 전기영동 gel로부터 Gel extraction을 통하여 glmS insert를 제작하였다.Using the chromosomal DNA of wild-type Salmonella LT2 as a template, PCR was performed using the primer pairs in Table 2 and PrimeSTAR Max DNA Polymerase 2X master mix. PCR conditions were 98° C. 3 minutes and 35 cycles of 98° C. 10 seconds-55° C. 5 seconds-72° C. 2 minutes and 75° C. 3 minutes. The PCR product was subjected to electrophoresis, and a glmS insert was prepared by gel extraction from the electrophoretic gel.

Figure 112020029837342-pat00002
Figure 112020029837342-pat00002

pUC fmo+tnaA aatll 벡터 100 ng과 glmS insert 40 ng을 T4 DNA polymerase(NEB) 0.6U과 상온(25℃)에서 2분간 반응시키고, 얼음수조에서 10분간 추가로 반응시킨 후 DH5a 컴피턴트 세포에 형질전환시켰다. 형질전환된 세포를 LB amp 고체배지에 도말하고, 항생제 내성을 갖는 37℃에서 배양하여, 항생제 내성을 갖는 콜로니를 선별하였다. 선별된 콜로니 중 candidate 6개를 Cosmogenetech에 해당 candidate의 염기서열을 분석 의뢰하여, glmS 유전자의 삽입을 확인하고 pUC fmo+tnaA+glmS 플라스미드로 확립하였다(도 5).100 ng of pUC fmo+tnaA aatll vector and 40 ng of glmS insert were reacted with 0.6 U of T4 DNA polymerase (NEB) at room temperature (25°C) for 2 minutes, and then reacted for 10 minutes in an ice water bath, and then transformed into DH5a competent cells. Converted. The transformed cells were plated on LB amp solid medium, and cultured at 37° C. having antibiotic resistance, and colonies having antibiotic resistance were selected. Among the selected colonies, 6 candidates were requested to Cosmogenetech to analyze the nucleotide sequence of the candidate, confirmed the insertion of the glmS gene, and established as pUC fmo+tnaA+glmS plasmid (FIG. 5).

3) 균주의 형질전환 및 인디루빈 생성 검정3) Transformation of strain and assay for indirubin production

2)에서 제조된 pUC fmo+tnaA+glmS 플라스미드를 사용하여, aroA glmS- 살모넬라 균주, KST0650 glmS- 살모넬라 균주, ppGpp glmS- 살모넬라 균주, galE flhDC glmS- 살모넬라 균주를 형질전환하고, LB amp 배지에 도말하여 37℃에서 36시간 배양하며 인디루빈의 생성을 검정하였다. 또한, 살모넬라에서는 통상 인디루빈이 극소량 생성되거나 검출되지 않는 것에 비해, 대장균은 인디루빈의 생성이 보고되고 있으므로, 형질전환된 살모넬라 균주의 인디루빈 생성능을 비교하기 위하여 대장균 M1655 glmS-균주를 전남대학교 정재호 교수님 연구실에서 분주받아 함께 형질전환한 후 인디루빈의 생성을 비교 검정하였다.Using the pUC fmo+tnaA+glmS plasmid prepared in 2), aroA glmS- Salmonella strain, KST0650 glmS- Salmonella strain, ppGpp glmS- Salmonella strain, galE flhDC glmS- Salmonella strain was transformed, and smeared on LB amp medium. Then, it was cultured at 37° C. for 36 hours to test the production of indirubin. In addition, in Salmonella, indirubin is normally produced or not detected in a very small amount, whereas E. coli is reported to produce indirubin. To compare the indirubin-producing ability of the transformed Salmonella strain, E. coli M1655 glmS-strain was used in Chonnam National University. After being dispensed in the professor's laboratory and transformed together, the production of indirubin was tested for comparison.

도 6은 그 결과를 보여주는 사진으로, aroA galE- 살모넬라 균주를 pBad18로 형질전환한 균주를 대조군(control)으로 하였다. 도 6에서 확인할 수 있듯이, ppGpp glmS- 균주는 형질전환에 의해 약하게 인디루빈을 생성할 수 있음을 보여주나 대부분은 인디고가 형성되었다. 대장균 균주인 M1655 glmS- 균주는 핑크색을 나타내어 인디루빈이 생성됨을 보여주었으나, 그 속도가 느리고 인디고가 혼합되어 있다. galE flhDC glmS-는 가장 빠르고 선명하게 핑크색을 나타내어 인디루빈 생성이 대장균보다도 효과적으로 이루어짐을 보여주었다. 도면에 도시되지는 않았으나, aroA glmS-와 KST0650 glmS-는 ppGpp glmS-와 유사하게 인디루빈 생성이 소량이고, 대부분은 인디고가 생성되었다.6 is a photograph showing the results, aroA galE- Salmonella strain transformed with pBad18 strain as a control (control). As can be seen in Figure 6, ppGpp glmS- strain showed that it can generate indirubin weakly by transformation, but most of the indigo was formed. The M1655 glmS- strain, an E. coli strain, showed pink color to show that indirubin was produced, but the speed was slow and indigo was mixed. galE flhDC glmS- showed the fastest and clearest pink color, showing that indirubin production was more effective than E. coli. Although not shown in the drawing, aroA glmS- and KST0650 glmS- produced a small amount of indirubin, similar to ppGpp glmS-, and mostly indigo.

이에 fmo+tnaA+glmS/galE flhDC glmS-를 최적의 균주로 확립하고, 이를 fmo-tnaA-glmS/galE flhDC glmS Salmonella로 명명하였으며, 2020년 03월 20일자로 한국생명공학연구원 생물자원센터에 기탁하였다(기탁번호 KCTC18809P). 도 7은 상기 균주의 모식도이다.Accordingly, fmo+tnaA+glmS/galE flhDC glmS- was established as the optimal strain, and it was named fmo-tnaA-glmS/galE flhDC glmS Salmonella, and deposited with the Korea Research Institute of Bioscience and Biotechnology Biological Resource Center on March 20, 2020. (Accession No. KCTC18809P). 7 is a schematic diagram of the strain.

도 8은 상기 균주의 인디루빈 생성을 보여주는 추가적인 사진으로, 1은 형질전환되지 않은 galE flhDC glmS- 균주, 2는 fmo+tnaA+glmS 플라스미드로 형질전환된 galE flhDC glmS- 균주를 고체 LB amp 배지에서 37℃, 36시간 배양한 사진이며, 3은 2의 확대 사진이다. fmo+tnaA+glmS로 형질전환되지 않은 경우에는 인디루빈이 생성되지 않으나, 형질전환에 의해 인디루빈이 형성되는 것을 보다 명확하게 확인할 수 있다. 인디루빈의 생성은 HPLC로도 추가적으로 다시 한번 확인하였다.Figure 8 is an additional photograph showing the indirubin production of the strain, 1 is an untransformed galE flhDC glmS- strain, 2 is a galE flhDC glmS- strain transformed with fmo+tnaA+glmS plasmid in a solid LB amp medium It is a photograph of incubation at 37°C for 36 hours, and 3 is an enlarged photograph of 2. In the case of not being transformed with fmo+tnaA+glmS, indirubin is not produced, but it can be more clearly confirmed that indirubin is formed by transformation. The production of indirubin was further confirmed again by HPLC.

<110> The Industry & Academic Cooperation in Chungnam National University (IAC) <120> Anticancer Salmonella Bio-synthesizing and Secreting Indirubin and Anticancer Composition Comprising the Salmonella <130> P0320-122 <160> 4 <170> KoPatentIn 3.0 <210> 1 <211> 34 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 1 cacagaagct tctgtaatta aaataaatga agga 34 <210> 2 <211> 34 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 2 ctaacaagct tatagccact ctgtagtatt aatt 34 <210> 3 <211> 46 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 3 aatggtttct tagacgcagg aaataaaact atgtgtggaa ttgttg 46 <210> 4 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 4 aaaagtgcca cctgaggtac tacatttgta cttactctac ggtaa 45 <110> The Industry & Academic Cooperation in Chungnam National University (IAC) <120> Anticancer Salmonella Bio-synthesizing and Secreting Indirubin and Anticancer Composition Comprising the Salmonella <130> P0320-122 <160> 4 <170> KoPatentIn 3.0 <210> 1 <211> 34 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 1 cacagaagct tctgtaatta aaataaatga agga 34 <210> 2 <211> 34 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 2 ctaacaagct tatagccact ctgtagtatt aatt 34 <210> 3 <211> 46 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 3 aatggtttct tagacgcagg aaataaaact atgtgtggaa ttgttg 46 <210> 4 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 4 aaaagtgcca cctgaggtac tacatttgta cttactctac ggtaa 45

Claims (7)

fmo(flavin-containing monooxygenase) 유전자와 tnaA(tryptophanase) 유전자를 포함하는 플라스미드로 형질전환되어 암 부위에서 인디루빈을 생산하는 항암 약독화 살모넬라 균주.
An anticancer attenuated Salmonella strain that is transformed with a plasmid containing fmo (flavin-containing monooxygenase) gene and tnaA (tryptophanase) gene to produce indirubin at a cancer site.
제 1 항에 있어서,
상기 약독화 살모넬라 균주는 glmS 유전자가 결실되어 있고,
상기 플라스미드는 glmS 유전자를 포함하는 것을 특징으로 하는 항암 약독화 살모넬라 균주.
The method of claim 1,
The attenuated Salmonella strain has the glmS gene deleted,
The plasmid is an anticancer attenuated Salmonella strain, characterized in that it contains the glmS gene.
제 1 항 또는 제 2 항에 있어서,
상기 약독화 초래 유전자는 aroA, aroC, aroD, aroE, Rpur, htrA, ompR, ompF, ompC, galE, cya, crp, cyp, phoP, phoQ, rfaY, dksA, hupA, sipC, clpB, clpP, clpX, pab, nadA, pncB, pmi, rpsL, hemA, rfc, poxA, galU, cdt, pur, ssa, guaA, guaB, fliD, flgK, flgL, flhDC, relA 및 spoT로 구성된 군으로부터 선택되는 하나 이상의 유전자의 기능상실을 유도하는 것을 특징으로 하는 항암 약독화 살모넬라 균주.
The method according to claim 1 or 2,
The attenuation causing genes are aroA, aroC, aroD, aroE, Rpur, htrA, ompR, ompF, ompC, galE, cya, crp, cyp, phoP, phoQ, rfaY, dksA, hupA, sipC, clpB, clpP, clpX, function of one or more genes selected from the group consisting of pab, nadA, pncB, pmi, rpsL, hemA, rfc, poxA, galU, cdt, pur, ssa, guaA, guaB, fliD, flgK, flgL, flhDC, relA and spoT Anticancer attenuated Salmonella strain, characterized in that to induce loss.
제 3 항에 있어서,
상기 약독화 살모넬라 균주는 galE 유전자와 flhDC 유전자의 기능이 상실된 것을 특징으로 하는 항암 약독화 살모넬라 균주.
The method of claim 3,
The attenuated Salmonella strain is an anticancer attenuated Salmonella strain, characterized in that the functions of the galE gene and the flhDC gene are lost.
제 4 항에 있어서,
상기 균주는 기탁번호 KCTC18809P인 것을 특징으로 하는 살모넬라 균주.
The method of claim 4,
The strain is Salmonella strain, characterized in that the accession number KCTC18809P.
제 1 항 또는 제 2 항의 살모넬라 균주를 유효성분으로 함유하는 항암 조성물.
An anticancer composition containing the Salmonella strain of claim 1 or 2 as an active ingredient.
제 6 항에 있어서,
상기 살모넬라 균주는 기탁번호 KCTC18809P인 것을 특징으로 하는 항암 조성물.
The method of claim 6,
The Salmonella strain is an anticancer composition, characterized in that the accession number KCTC18809P.
KR1020200034639A 2020-03-20 2020-03-20 Anticancer Salmonella Bio-synthesizing and Secreting Indirubin and Anticancer Composition Comprising the Salmonella KR102224855B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020200034639A KR102224855B1 (en) 2020-03-20 2020-03-20 Anticancer Salmonella Bio-synthesizing and Secreting Indirubin and Anticancer Composition Comprising the Salmonella

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020200034639A KR102224855B1 (en) 2020-03-20 2020-03-20 Anticancer Salmonella Bio-synthesizing and Secreting Indirubin and Anticancer Composition Comprising the Salmonella

Publications (1)

Publication Number Publication Date
KR102224855B1 true KR102224855B1 (en) 2021-03-08

Family

ID=75184767

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020200034639A KR102224855B1 (en) 2020-03-20 2020-03-20 Anticancer Salmonella Bio-synthesizing and Secreting Indirubin and Anticancer Composition Comprising the Salmonella

Country Status (1)

Country Link
KR (1) KR102224855B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024025315A1 (en) * 2022-07-25 2024-02-01 충남대학교 산학협력단 Recombinant expression vector for vc1 secretion, and attenuated salmonella strain transformed therewith

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR0173046B1 (en) 1995-10-23 1999-02-01 김수언 Method for producing a indirubin
KR100494764B1 (en) * 2003-04-23 2005-06-10 학교법인조선대학교 Biological methods for producing indigo and indirubin by the recombinant E. coli cells harboring a novel oxygenase
KR100852687B1 (en) 2007-01-29 2008-08-19 고려대학교 산학협력단 A bacterium salmonella harboring plasmid expressing TNF-alpha in eukaryotic cell and an antitumoral composition thereof
KR101021789B1 (en) 2010-09-28 2011-03-17 전남대학교산학협력단 The production method of natural indirubin from indican using wild type e. coli cells
KR101092515B1 (en) 2009-02-03 2011-12-13 조선대학교산학협력단 Biological methods for producing high concentrated indirubin by the recombinant E. coli cells harboring a monooxygenase
KR20120047046A (en) * 2010-11-03 2012-05-11 경성대학교 산학협력단 Recombinant microorganism containning indole oxygenase derived from corynebacterium and its using method of producing indirubin
KR101544602B1 (en) 2013-09-09 2015-08-13 고려대학교 산학협력단 A bacterium salmonella harboring siRNA against Inhibin alpha and antitumoral composition thereof

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR0173046B1 (en) 1995-10-23 1999-02-01 김수언 Method for producing a indirubin
KR100494764B1 (en) * 2003-04-23 2005-06-10 학교법인조선대학교 Biological methods for producing indigo and indirubin by the recombinant E. coli cells harboring a novel oxygenase
KR100852687B1 (en) 2007-01-29 2008-08-19 고려대학교 산학협력단 A bacterium salmonella harboring plasmid expressing TNF-alpha in eukaryotic cell and an antitumoral composition thereof
KR101092515B1 (en) 2009-02-03 2011-12-13 조선대학교산학협력단 Biological methods for producing high concentrated indirubin by the recombinant E. coli cells harboring a monooxygenase
KR101021789B1 (en) 2010-09-28 2011-03-17 전남대학교산학협력단 The production method of natural indirubin from indican using wild type e. coli cells
KR20120047046A (en) * 2010-11-03 2012-05-11 경성대학교 산학협력단 Recombinant microorganism containning indole oxygenase derived from corynebacterium and its using method of producing indirubin
KR101544602B1 (en) 2013-09-09 2015-08-13 고려대학교 산학협력단 A bacterium salmonella harboring siRNA against Inhibin alpha and antitumoral composition thereof

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Journal of Biotechnology, Volume 267, 10 February 2018, Pages 19-28. *
Leschner 등(J. Mol. Med. 2010, 88, 763-773)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024025315A1 (en) * 2022-07-25 2024-02-01 충남대학교 산학협력단 Recombinant expression vector for vc1 secretion, and attenuated salmonella strain transformed therewith

Similar Documents

Publication Publication Date Title
Swanson et al. Genetic control of the innate resistance of mice to Salmonella typhimurium: Ity gene is expressed in vivo by 24 hours after infection.
BR112016023613B1 (en) COMPOSITION, USES OF THE COMPOSITION, FOOD ADDITIVE, FOOD, ADDITIVE FOR DRINKING WATER, DRINKING WATER, DISINFECTANT, AND DETERGENT
BR112016024096B1 (en) COMPOSITION, FOOD ADDITIVE, FOOD, DRINKING WATER ADDITIVE, DRINKING WATER, DISINFECTANT AND DETERGENT
KR20210123556A (en) Anticancer Salmonella Inducing Immune Response by Control of Filamentous Growth and Anticancer Composition Comprising the Salmonella
CN107083351A (en) The Salmonella gallinarum bacterial strain of nontoxic modification and utilize its pharmaceutical composition
KR101993121B1 (en) Novel Clostridium perfringens specific bacteriophage CP3 and antibacterial composition comprising the same
Monsur et al. Effect of massive doses of bacteriophage on excretion of vibrios, duration of diarrhoea and output of stools in acute cases of cholera
KR20130087118A (en) Podoviridae bacteriophage having killing activity specific to gram negative bacteria
Wang et al. The pathogenicity of chicken pathogenic Escherichia coli is associated with the numbers and combination patterns of virulence-associated genes
KR102224855B1 (en) Anticancer Salmonella Bio-synthesizing and Secreting Indirubin and Anticancer Composition Comprising the Salmonella
BRPI1006875B1 (en) pharmaceutical composition, bacteria, and use of live bacteria
US20110002891A1 (en) Probiotic compositions and process thereof
KR101773580B1 (en) Novel Salmonella for treatment of cancer, and use thereof
KR102246740B1 (en) Novel Salmonella and Pharmaceutical Composition for Enhancing Anti-cancer Immunity Comprising thereof
CN110564700B (en) Oncolytic vaccinia virus carrying limulus lectin gene, construction method and application
CN113046384A (en) Construction method of broad-spectrum antiviral recombinant salmonella
CN106497855B (en) A kind of Salmonella enteritidis gene knockout attenuation mutant and its preparation and application
Wang et al. Construction, identification, and immunogenic assessments of an HSV-1 mutant vaccine with a UL18 deletion
KR102555172B1 (en) Gene Construct for Secreting GM-CSF and Anticancer Recombinant Microbials Transformed thereby
WO2024019355A1 (en) Anti-cancer strain expressing strep-tag, anti-cancer composition utilizing same, anti-cancer adjuvant, and imaging adjunct for tumors
CN114574450B (en) Ultraviolet-resistant Proteus mirabilis bacteriophage with broad cleavage spectrum, composition and kit thereof, and application of phage
KR20230064561A (en) Anticancer Microbials with Dual Secreting System
RU2717972C1 (en) Strain of bacteriophage pseudomonas aeruginosa n 324 (500318), intended for preparation of mono- and polyvalent treatment-and-prophylactic preparations of bacteriophages
CN102886054B (en) Preparation for inhibiting activity of PhoQ histidine kinase of bacterial signal transduction system
RU2717435C1 (en) Strain of bacteriophage pseudomonas aeruginosa n 326 (500320), intended for preparation of mono- and polyvalent treatment-and-prophylactic preparations of bacteriophages

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant