KR102217298B1 - Increasing method for growth and fatty acid contents of freshwater microalgae - Google Patents
Increasing method for growth and fatty acid contents of freshwater microalgae Download PDFInfo
- Publication number
- KR102217298B1 KR102217298B1 KR1020180155524A KR20180155524A KR102217298B1 KR 102217298 B1 KR102217298 B1 KR 102217298B1 KR 1020180155524 A KR1020180155524 A KR 1020180155524A KR 20180155524 A KR20180155524 A KR 20180155524A KR 102217298 B1 KR102217298 B1 KR 102217298B1
- Authority
- KR
- South Korea
- Prior art keywords
- microalgae
- salt
- growth
- fatty acid
- freshwater
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N1/00—Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
- C12N1/12—Unicellular algae; Culture media therefor
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N1/00—Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
- C12N1/38—Chemical stimulation of growth or activity by addition of chemical compounds which are not essential growth factors; Stimulation of growth by removal of a chemical compound
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P7/00—Preparation of oxygen-containing organic compounds
- C12P7/64—Fats; Fatty oils; Ester-type waxes; Higher fatty acids, i.e. having at least seven carbon atoms in an unbroken chain bound to a carboxyl group; Oxidised oils or fats
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Biotechnology (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Genetics & Genomics (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Microbiology (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Medicinal Chemistry (AREA)
- Biomedical Technology (AREA)
- Tropical Medicine & Parasitology (AREA)
- Virology (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Botany (AREA)
- Cell Biology (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
Abstract
본 발명은 담수성 미세조류의 생장성 및 지방산 함량 증대방법에 관한 것으로 더 상세하게는 미세조류를 염(salt) 스트레스 조건에 노출시켜 계대배양하여 염농도 배양조건에서 적응하게 하여 세포 내 지질의 함량과 생장성을 동시에 증대시킬 수 있는 담수성 미세조류의 생장성 및 지방산 함량 증대방법을 제공한다. The present invention relates to a method of increasing the growth properties and fatty acid content of freshwater microalgae. More specifically, the microalgae are subcultured by exposing them to a salt stress condition to adapt to the salt concentration culture conditions, It provides a method for increasing the growth properties and fatty acid content of freshwater microalgae that can simultaneously increase the growth properties.
Description
본 발명은 신규 미세조류 배양방법에 관한 것으로서, 더 상세하게는 담수성 미세조류의 생장성 및 지방산 함량 증대방법에 관한 것이다.The present invention relates to a novel method for culturing microalgae, and more particularly, to a method for increasing the growth properties and fatty acid content of freshwater microalgae.
미세조류(microalgae)는 클로로필(chlorophyll)과 같은 광합성 색소를 가지고 있는 광합성 미생물을 말하며, 빛 에너지를 이용하여 무기탄소인 이산화탄소를 유기탄소로 고정시키는 광합성을 통해 성장하는 마이크로 크기의 수중 미생물을 말한다. 이러한 미세조류는 식품 분야뿐만 아니라 제3의 바이오에너지 원료로 주목받고 있으나 지질(lipid)의 함량이 높으면서 생장성(growth ability)이 빠른 균주는 드문 상태이며, 유전자 조작(gene manipulation)을 통해 지질의 생산성을 향상시키고자 많은 연구들이 수행되고 있으나 아직 주목할 만한 성과를 거두고 있지 않고 있다. 따라서 고 지질(high-lipid) 함량과 동시에 생장성이 높은 미세조류 균주의 개발이 미세조류 지질 관련 산업에 중요한 이슈로 대두되고 있다. 미세조류는 높은 염농도에서 생장이 가능하나 일정수준 이상의 염농도에서는 생장이 저해받아 세포내 지질의 축적이 발생하는 것으로 보고되었다. 이를 활용한 세포내 지질 유도방법이 사용되고 있으나 이는 배양이 끝난 후에 배양액에 염을 첨가하여 지질의 함량을 증대시키는 배양으로 이러한 과정 속에서 세포내 지질의 함량은 증가하나 세포의 생장이 일어나지 않아 전체적인 생산성은 낮아지는 문제점이 있다. 또한 종래 미세조류 염농도를 이용한 적응진화균주 개발연구에서 염농도를 이용하여 적응 진화균주를 제작하였으나, 이는 광합성(photosynthesis) 기반의 미세조류 생산법이 아닌 탄소원(carbon source)을 공급하여 미세조류를 타가영양(heterotroph)주로 배양하는 방식이다(Yeesang C et al., Volume 102, Issue 3, Pages 3034-3040, 2011). Microalgae refers to a photosynthetic microorganism having a photosynthetic pigment such as chlorophyll, and refers to a micro-sized aquatic microorganism that grows through photosynthesis that fixes carbon dioxide, an inorganic carbon, to organic carbon using light energy. These microalgae are attracting attention as a third bioenergy raw material as well as in the food field, but strains with high lipid content and fast growth ability are rare, and lipids can be modified through gene manipulation. Many studies are being conducted to improve productivity, but notable results have yet been achieved. Therefore, the development of microalgal strains with high-lipid content and high viability at the same time has emerged as an important issue in microalgal lipid-related industries. It has been reported that microalgae can grow at high salt concentrations, but at salt concentrations above a certain level, growth is inhibited, resulting in intracellular lipid accumulation. The intracellular lipid induction method using this is used, but this is a culture in which salt is added to the culture medium to increase the lipid content after the culture is finished. There is a problem of lowering. In addition, in the conventional research on developing adaptive evolutionary strains using salt concentrations of microalgae, adaptive evolutionary strains were produced using salt concentrations, but this is not a photosynthesis-based microalgae production method, but by supplying a carbon source to other nutrient microalgae. (heterotroph) It is mainly cultured (Yeesang C et al., Volume 102,
본 발명은 상기와 같은 문제점을 포함하여 여러 문제점들을 해결하기 위한 것으로서, 미세조류를 염(salt) 스트레스 조건에 노출시켜 계대배양하여 염농도 배양조건에서 적응하게 하여 세포 내 지질의 함량과 생장성을 동시에 증대시킬 수 있는 담수성 미세조류의 생장성 및 지방산 함량 증대방법을 제공하는 것을 목적으로 한다. 그러나 이러한 과제는 예시적인 것으로, 이에 의해 본 발명의 범위가 한정되는 것은 아니다.The present invention is to solve a number of problems, including the above problems, by exposing microalgae to salt stress conditions and subculturing them to adapt to salt concentration culture conditions, so that the content and growth of lipids in cells are simultaneously It is an object of the present invention to provide a method for increasing the growth properties and fatty acid content of freshwater microalgae that can be increased. However, these problems are exemplary, and the scope of the present invention is not limited thereby.
본 발명의 일 관점에 따르면, 배양 대상 담수성 광합성 미세조류를 배양배지에 접종하는 미생물 접종단계; 상기 배양배지에 여러 농도 조건의 염(salt)을 처리하고 배양하는 배양단계; 상기 담수성 미세조류의 생장이 가능한 가장 높은 유효 염농도를 선정하는 단계; 및 상기 유효 염농도의 배양배지에서 상기 담수성 미세조류를 계대배양함으로써 상기 담수성 미세조류를 염에 적응시키는 염 적응단계를 포함하는, 담수성 미세조류의 생장성 및 지방산 함량 증대방법이 제공된다. According to one aspect of the present invention, a microorganism inoculation step of inoculating the freshwater photosynthetic microalgae to be cultured in a culture medium; A culture step of treating and culturing salts of various concentration conditions in the culture medium; Selecting the highest effective salt concentration for the growth of the freshwater microalgae; And a salt adaptation step of adapting the freshwater microalgae to salt by subculturing the freshwater microalgae in the culture medium having the effective salt concentration.There is provided a method for increasing the growth properties and fatty acid content of freshwater microalgae.
상기한 바와 같이 이루어진 본 발명의 일 실시예에 따르면, 미세조류를 염(NaCl)이 첨가된 배지에서 지속적으로 계대배양하여 생리적 변화를 유도함으로써 지질의 함량이 향상되고 생장성도 증대되는 미세조류 배양방법을 구현할 수 있다. 물론 이러한 효과에 의해 본 발명의 범위가 한정되는 것은 아니다.According to an embodiment of the present invention made as described above, microalgae cultivation method in which the content of lipids is improved and the growth properties are increased by inducing physiological changes by continuously subculturing microalgae in a medium to which salt (NaCl) is added. Can be implemented. Of course, the scope of the present invention is not limited by these effects.
도 1은 본 발명의 염농도 적응 진화 미세조류 균주의 개발 단계를 개략적으로 나타내고 있는 공정도이다.
도 2는 다양한 염농도 조건에서 미세조류를 배양한 후 건조중량 농도를 분석한 그래프이다.
도 3은 다양한 염농도 조건에서 미세조류를 배양한 후 미세조류 내 지질함량 및 지방산의 생산성을 분석한 그래프이다.
도 4는 염적응 진화균주를 제작하기 위해 염 농도 조건의 배지를 4일마다 32일간 계대배양(subculture)한 후 미세조류 건조중량 농도를 분석한 그래프이다.
도 5는 염적응 진화균주를 제작하기 위해 염 농도 조건의 배지를 4일마다 32일간 계대배양(subculture)한 후 미세조류 내 지방산 함량을 분석한 그래프이다.
도 6은 염처리 배지에서 배양한 미세조류의 생리적 변화를 광학, 형광 및 전자 현미경을 이용하여 관찰한 사진이다. 1 is a process diagram schematically showing the development stage of the salt concentration adaptive evolution microalgal strain of the present invention.
Figure 2 is a graph analyzing the dry weight concentration after culturing microalgae under various salt concentration conditions.
3 is a graph showing the analysis of the lipid content and the productivity of fatty acids in the microalgae after culturing microalgae under various salt concentration conditions.
4 is a graph showing the analysis of dry weight concentration of microalgae after subculture of a medium under salt concentration conditions every 4 days for 32 days in order to prepare a salt-adapted evolutionary strain.
5 is a graph showing the analysis of fatty acid content in microalgae after subculture of a medium under a salt concentration condition every 4 days for 32 days to produce a salt-adapted evolutionary strain.
6 is a photograph of physiological changes of microalgae cultured in a salt treatment medium observed using optical, fluorescence and electron microscopes.
용어의 정의:Definition of Terms:
본 문서에서 사용되는 용어 "미세조류(microalgae)"는 바다에 서식하는 식물성 플랑크톤으로, 흔히 적조를 일으키는 코클로디니움 같은 플랑크톤 역시 미세조류에 속한다. 해양 바이오에너지 연구가 주목하는 미세조류는 특히 지질, 즉 기름 성분이 풍부한 미세조류 종(種)이다. 크기는 10μm(미크론, 1m의 100만분의 1)정도, 머리카락 굵기의 10분의 1 안팎이다.The term "microalgae" as used in this document is phytoplankton living in the sea, and plankton, such as coclodinium, which often causes red tide, is also a microalgae. The microalgae of interest in marine bioenergy research are particularly lipid-rich microalgae species. The size is about 10μm (micron, 1 millionth of 1m), about 1/10th of the thickness of a hair.
본 문서에서 사용되는 용어 "광합성 미생물"는 광합성을 할 수 있는 녹조류, 홍조류 및 남조류를 의미하며, 일반적으로 클로렐라, 클라디도모나스(Chlamydomonas), 해마토코커스(Haematococous), 보트리오 코커스(Botryococcus), 세네데스무스(Scenedesmus), 스피룰리나(Spirulina) 테트라셀미스(Tetraselmis) 및 두날리엘라(Dunaliella)등을 배양한다. 상기 미세조류는 배양용기 내에서 카로테노이드, 균체, 파이코빌리프로테인, 지질, 탄수화물, 불포화지방산 및 단백질 등을 생산한다.The term "photosynthetic microorganism" used in this document refers to green algae, red algae and blue-green algae capable of photosynthesis, and generally, chlorella, cladidomonas, haematococous, botryococcus, Scenedesmus, Spirulina, Tetraselmis, and Dunaliella are cultured. The microalgae produce carotenoids, cells, phycobiliprotein, lipids, carbohydrates, unsaturated fatty acids, and proteins in the culture vessel.
발명의 상세한 설명:Detailed description of the invention:
본 발명의 일 관점에 따르면, 배양 대상 담수성 광합성 미세조류를 배양배지에 접종하는 미생물 접종단계; 상기 배양배지에 여러 농도 조건의 염(salt)을 처리하고 배양하는 배양단계; 상기 담수성 미세조류의 생장이 가능한 가장 높은 유효 염농도를 선정하는 단계; 및 상기 유효 염농도의 배양배지에서 상기 담수성 미세조류를 계대배양함으로써 상기 담수성 미세조류를 염에 적응시키는 염 적응단계를 포함하는, 담수성 미세조류의 생장성 및 지방산 함량 증대방법이 제공된다.According to one aspect of the present invention, a microorganism inoculation step of inoculating the freshwater photosynthetic microalgae to be cultured in a culture medium; A culture step of treating and culturing salts of various concentration conditions in the culture medium; Selecting the highest effective salt concentration for the growth of the freshwater microalgae; And a salt adaptation step of adapting the freshwater microalgae to salt by subculturing the freshwater microalgae in the culture medium having the effective salt concentration.There is provided a method for increasing the growth properties and fatty acid content of freshwater microalgae.
상기 증대방법에 있어서, 상기 염(salt)은 염화나트륨(Nacl) 또는 염화칼륨(KCl)일 수 있고 상기 미세조류는 클로렐라 속(Chlorella sp.), 세네데무스 속(Scenedesmus sp.), 클로스테리움 속(Closterium sp.), 유글레나 속(Euglena sp.), 헤마토코쿠스 속(Haematococcus sp.), 클라미도모나스 속(Chlamydomonas sp.), 테트라셀미스 속(Tetraselmis sp.) 또는 파라클로렐라 속(Parachlorella sp.)일 수 있다. In the augmentation method, the salt may be sodium chloride (Nacl) or potassium chloride (KCl), and the microalgae may be Chlorella sp. , Scenedesmus sp. , and Closterium. (Closterium sp.), euglena in (euglena sp.), hematoxylin nose kusu in (Haematococcus sp.), Chlamydomonas in (Chlamydomonas sp.), tetra-cell misses in (Tetraselmis sp.) or para chlorella genus (Parachlorella sp. ).
상기 증대방법에 있어서, 상기 유효 염농도는 5 내지 45 g/L일 수 있고 상기 배양배지를 1 내지 7일마다 25일 내지 40일 동안 계대배양할 수 있다. In the augmentation method, the effective salt concentration may be 5 to 45 g/L, and the culture medium may be subcultured every 1 to 7 days for 25 to 40 days.
미세조류는 일반적으로 빠른 성장성을 나타내는 종은 지질의 함량이 낮고, 높은 지질의 함량을 갖는 종은 생장성이 느린 것이 일반적이다. 이를 극복하고자 종래 미세조류 세포 내 지질 유도방법은 미세조류 배양의 초기 혹은 종말단계에서 염을 배지에 첨가하여 세포에 염스트레스 유도를 통해 세포 내 지질 함량을 증대시키는 방법이 주로 사용되었으나 상기 방법은 세포 내 지질의 함량은 증가시킬 수 있지만 세포의 생장이 일어나지 않아 전체적인 생산성은 낮아지는 문제점을 갖고 있다. 처음부터 염과 함께 미세조류를 배양하게 되면 미세조류 내 지질의 함량은 증대되나, 역시 마찬가지로 세포의 생장성이 극히 낮아진다. 이에 본 발명자들은 상기와 같은 문제점을 극복하고자 특정 기간 동안 계대배양을 통해 미세조류를 NaCl 스트레스 조건으로 단계적으로 노출시켜 생리적 변화를 유도하여 지질의 축적을 유도하는 동시에 생장성도 향상시켜 최종적으로 지질과 바이오매스의 생산성을 향상시키는 효과가 있는 본 발명의 미세조류 균주 및 그를 이용한 배양방법을 개발하였다. 본 발명자들은 먼저 미세조류의 생장 가능한 유효 염농도를 선정하고 유효한 염농도를 이용하여 지속적인 계대배양을 통해 미세조류를 적응시킨 후 미세조류의 생장성 및 지질의 향상을 확인하여 본 발명을 완성하였다(도 1). As for microalgae, it is common that a species exhibiting rapid growth has a low lipid content, and a species having a high lipid content has a slow growth property. To overcome this, the conventional method of inducing lipids in microalgae cells was mainly used to increase the intracellular lipid content by inducing salt stress to the cells by adding salt to the medium in the early or final stage of microalgal culture. Although it can increase the content of lipids, there is a problem in that overall productivity is lowered because cell growth does not occur. When microalgae are cultivated with salt from the beginning, the content of lipids in the microalgae increases, but the growth of cells is also extremely low. Therefore, in order to overcome the above problems, the present inventors induce physiological changes by stepwise exposure of microalgae to NaCl stress conditions through passage for a specific period of time to induce accumulation of lipids and improve growth. A microalgal strain of the present invention having an effect of improving the productivity of mass and a culture method using the same were developed. The present inventors first selected an effective salt concentration capable of growing microalgae and adapted the microalgae through continuous passage using the effective salt concentration, and then confirmed the improvement of the growth properties and lipids of the microalgae to complete the present invention (Fig. 1). ).
이하, 실시예를 통하여 본 발명을 더 상세히 설명한다. 그러나 본 발명은 이하에서 개시되는 실시예에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 수 있는 것으로, 이하의 실시예는 본 발명의 개시가 완전하도록 하며, 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이다. Hereinafter, the present invention will be described in more detail through examples. However, the present invention is not limited to the embodiments disclosed below, but may be implemented in various different forms, and the following embodiments make the disclosure of the present invention complete, and the scope of the invention to those of ordinary skill in the art. It is provided to fully inform you.
실시예 1: 미세조류 배양 Example 1: Microalgal culture
본 발명자들은 미세조류 세포 내 지질의 함량과 생장성을 동시에 증대시키기 위한 염농도 미세조류 적응 진화균주의 개발을 위해 먼저 미세조류가 생장이 가능한 유효 염농도(salinity)를 선정하고 배양을 수행하였다. 구체적으로 담수 녹조류인 파라클로렐라 속(Parachlorella sp.) 균주를 배양용 미세조류(광합성 미생물)로 사용하였고 BG11 배지에 염(NaCl)을 10, 20, 30 및 40 g/L의 농도로 첨가하여 염농도 배지를 제조한 후 상기 미세조류를 배양한 것을 실험군으로 하였으며 염이 첨가되지 않은 배지에서 배양한 미세조류를 대조군으로 사용하여 생장성과 지방산의 함량을 비교 분석하였다. The present inventors first selected an effective salinity at which microalgae can grow, and cultured in order to develop a salt concentration microalgae adaptive evolution strain for simultaneously increasing the lipid content and growth properties in microalgae cells. Specifically, the freshwater green algae Parachlorella sp. was used as a microalgae (photosynthetic microorganism) for cultivation, and salt (NaCl) was added to the BG11 medium at concentrations of 10, 20, 30, and 40 g/L. After preparing the medium, the microalgae cultured was used as an experimental group, and the microalgae cultured in a medium without salt was used as a control to compare and analyze the growth properties and fatty acid content.
그 결과, 30 및 40 g/L의 염 농도 배지에서는 미세조류의 생장이 거의 관찰되지 않았고 세포의 대부분이 사멸하였다. 또한 10 및 20 g/L의 염농도 배지에서 배양한 미세조류는 대조군과 비교하여 긴 정체기(lag phase)를 나타내었으나, 약 4일 이후에는 미세조류의 생장성(균체농도/배양시간)은 유사하게 나타났다(도 2). 아울러 미세조류 세포의 지방산의 함량을 분석한 결과 대조군과 비교하여 10 및 20 g/L의 염농도 배지에서 배양한 미세조류의 지질 함량이 약 3-8% 정도 증대된 것으로 나타났다. 이와 같은 결과는 미세조류가 적정 염 농도에 일정시간 동안 적응하게 되면 생장성이 회복됨을 시사하는 것이다(도 3). As a result, in the salt concentration medium of 30 and 40 g/L, little growth of microalgae was observed and most of the cells died. In addition, microalgae cultured in salt concentration medium of 10 and 20 g/L showed a longer lag phase compared to the control, but after about 4 days, the growth properties (cell concentration/culture time) of microalgae were similar. Appeared (Fig. 2). In addition, as a result of analyzing the fatty acid content of the microalgal cells, it was found that the lipid content of the microalgae cultured in the salt concentration medium of 10 and 20 g/L increased by about 3-8% compared to the control. This result suggests that when microalgae are adapted to an appropriate salt concentration for a certain period of time, the growth properties are restored (FIG. 3).
실시예 2: 적응 진화단계 실험 Example 2: adaptive evolution stage experiment
본 발명자들은 적응 진화균주를 제작하기 위해 상기 실시예 1에서 선정한 미세조류가 생장이 가능한 10 및 20 g/L 염 농도 조건의 배지를 4일마다 32일간 계대배양(subculture)하여 미세조류의 적응 진화단계 실험을 수행하였다.In order to produce an adaptive evolutionary strain, the present inventors subcultured the medium of 10 and 20 g/L salt concentration conditions in which the microalgae selected in Example 1 can grow every 4 days for 32 days to produce adaptive evolution of microalgae. A step experiment was carried out.
그 결과, 대조군과 비교하여 염처리군의 생장성은 낮게 나타났지만 지속적인 계대를 실시함에 따라 생장성은 대조군에 비해 유사하거나(10 g/L 염처리군) 초기에 비해 생장성이 약 25%(20 g/L 염처리군) 증가한 것으로 나타났다(도 4). 또한 지방산 함량도 대조군이 약 7.8% 함유하는 것과 비교하여 염처리군은 15-20%로 약 2-3배 증가한 것으로 나타났다(도 5). As a result, the growth of the salt-treated group was lower than that of the control group, but as continuous passage was conducted, the growth was similar to that of the control group (10 g/L salt-treated group), or about 25% (20 g) compared to the initial stage. /L salt treatment group) was found to increase (Fig. 4). In addition, the fatty acid content was also found to have increased by about 2-3 times to 15-20% in the salt-treated group compared to that of the control group containing about 7.8% (FIG. 5).
실시예 3: 현미경 관찰 Example 3: Microscopic observation
본 발명자들은 염처리 배지에서 배양한 미세조류의 생리적 변화를 광학, 형광 및 전자 현미경을 이용하여 관찰하였다. 광학현미경인 Zeiss LSM510 meta laser scanning confocal microscope(Carl Zeiss AG, Oberkochen, Germany)를 이용하여 미세조류를 100 ㎕ 유리판에 분주하고 커버글라스를 덮은 뒤 세포를 400-1,000X 배율로 측정하였다. 미세조류 지질만을 염색하기 위해 The Nile red (9-diethylamino-5H-benzo(a)phenoxazine-5-one)염색법을 이용하여 관찰하였다. 개략적인 방법으로 1 ㎕의 미세조류 배양액을 0.1 ㎍/mL와 혼합한 후 빛을 차단한 조건에서 5분간 반응하였고 염색된 미세조류를 상기 현미경으로 관찰하였다. 전자현미경을 이용한 관찰의 경우 미세조류 배양액을 원심분리하여 상등액을 제거하고 남은 세포만을 5% glutaraldehyde를 BG11배지와 혼합하여 4℃에서 1시간 반응하였다. 다시 세포를 고정화하기 위해 1% 산화오스뮴(OsO4)용액과 혼합한 뒤 4℃에서 1시간 동안 반응시킨 후 70 nm로 잘라 구리격자에 고정시킨 다음 Technai G2 Spirit Twin transmission electron microscope(Thermo Fisher Scientific)를 이용하여 관찰하였다.The present inventors observed physiological changes in microalgae cultured in a salt-treated medium using optical, fluorescence and electron microscopes. Using an optical microscope, Zeiss LSM510 meta laser scanning confocal microscope (Carl Zeiss AG, Oberkochen, Germany), microalgae were dispensed on a 100 µl glass plate, covered with a cover glass, and cells were measured at 400-1,000X magnification. In order to stain only microalgal lipids, the Nile red (9-diethylamino-5H-benzo(a)phenoxazine-5-one) staining method was used. As a schematic method, 1 µl of microalgal culture solution was mixed with 0.1 µg/mL, reacted for 5 minutes under light-blocking conditions, and stained microalgae were observed with the microscope. In the case of observation using an electron microscope, the microalgae culture was centrifuged to remove the supernatant, and only the remaining cells were reacted at 4°C for 1 hour by mixing 5% glutaraldehyde with BG11 medium. To immobilize the cells again, mix with 1% osmium oxide (OsO 4 ) solution, react at 4°C for 1 hour, cut into 70 nm and fix on a copper grid, Technai G2 Spirit Twin transmission electron microscope (Thermo Fisher Scientific) It was observed using.
그 결과, 대조군에 비해 염처리군의 세포의 크기가 확연히 증가한 것을 광학현미경을 통해서 관찰하였고 형광 및 전자현미경을 통해 세포내 지질 함량을 관찰한 결과 염처리군에서 뚜렷한 지질체를 확인하였다(도 6). 상기 결과는 미세조류가 생장이 가능한 유효 염농도를 처리하고 지속적인 계대배양을 통해 미세조류의 생장성 및 지질 함량이 증가하였음을 시사하는 것이다. As a result, it was observed through an optical microscope that the size of cells in the salt-treated group increased significantly compared to the control group, and as a result of observing the intracellular lipid content through fluorescence and electron microscopy, a distinct lipid body was confirmed in the salt-treated group (Fig. 6 ). The above results suggest that the growth properties and lipid content of the microalgae were increased through the treatment of the effective salt concentration at which microalgae can grow and through continuous subculture.
결론적으로, 본 발명의 미세조류를 유효 염농도 조건으로 처리하여 배양하는 배양방법을 통해 지속적으로 계대배양하여 염농도 배양조건에 적응하게 한 결과 세포 내 지질의 함량 및 생장성이 동시에 증가한 것을 확인하였으므로 미세조류 균체와 지방산의 생산성을 향상에 활용가능하다. In conclusion, the microalgae of the present invention were continuously subcultured through a culture method in which the microalgae of the present invention were treated with an effective salt concentration to adapt to the salt concentration culture conditions. As a result, it was confirmed that the lipid content and growth properties in the cell increased at the same time. It can be utilized to improve the productivity of cells and fatty acids.
본 발명은 상술한 실시예를 참고로 설명되었으나 이는 예시적인 것에 불과하며, 당해 기술분야에서 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 다른 실시예가 가능하다는 점을 이해할 것이다. 따라서 본 발명의 진정한 기술적 보호 범위는 첨부된 특허청구범위의 기술적 사상에 의하여 정해져야 할 것이다.The present invention has been described with reference to the above-described embodiments, but these are merely exemplary, and those of ordinary skill in the art will appreciate that various modifications and equivalent other embodiments are possible therefrom. Therefore, the true technical protection scope of the present invention should be determined by the technical spirit of the appended claims.
Claims (5)
10 내지 20 g/L의 염농도의 배양배지에서 상기 파라클로렐라 속(Parachlorella sp.) 미세조류를 계대배양함으로써 상기 파라클로렐라 속(Parachlorella sp.) 미세조류를 염에 적응시키는 염 적응단계를 포함하는, 파라클로렐라 속(Parachlorella sp.) 미세조류의 생장성 및 지방산 함량 증대방법.Microbial inoculation step of inoculating the culture medium of the freshwater photosynthetic microalgae Parachlorella sp. And
Including a salt adaptation step of adapting the Parachlorella sp. microalgae to salt by subculturing the Parachlorella sp. microalgae in a culture medium having a salt concentration of 10 to 20 g/L . Method for increasing the growth properties and fatty acid content of microalgae of the genus Parachlorella sp .
상기 염(salt)은 염화나트륨(Nacl) 또는 염화칼륨(KCl)인, 방법. The method of claim 1,
The salt is sodium chloride (Nacl) or potassium chloride (KCl).
상기 배양배지를 1 내지 7일마다 25일 내지 40일 동안 계대배양하는, 방법. The method of claim 1,
The method of subculturing the culture medium every 1 to 7 days for 25 to 40 days.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020180155524A KR102217298B1 (en) | 2018-12-05 | 2018-12-05 | Increasing method for growth and fatty acid contents of freshwater microalgae |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020180155524A KR102217298B1 (en) | 2018-12-05 | 2018-12-05 | Increasing method for growth and fatty acid contents of freshwater microalgae |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20200068484A KR20200068484A (en) | 2020-06-15 |
KR102217298B1 true KR102217298B1 (en) | 2021-02-17 |
Family
ID=71081497
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020180155524A KR102217298B1 (en) | 2018-12-05 | 2018-12-05 | Increasing method for growth and fatty acid contents of freshwater microalgae |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR102217298B1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR3117128A1 (en) | 2020-12-03 | 2022-06-10 | Odontella | Product comprising at least one microalga capable of being cultured in salt water |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000175680A (en) | 1998-12-17 | 2000-06-27 | Kirin Brewery Co Ltd | Chlorophyll-rich salinity-resistant chlorella |
KR101743232B1 (en) | 2013-12-11 | 2017-06-02 | 한국생명공학연구원 | Microalgae comprising increased lipid contents using salt stress and process for preparing the same |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101670703B1 (en) * | 2014-04-04 | 2016-11-02 | 명지대학교 산학협력단 | Culturing method of microalgae for increasing lipid content |
-
2018
- 2018-12-05 KR KR1020180155524A patent/KR102217298B1/en active IP Right Grant
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000175680A (en) | 1998-12-17 | 2000-06-27 | Kirin Brewery Co Ltd | Chlorophyll-rich salinity-resistant chlorella |
KR101743232B1 (en) | 2013-12-11 | 2017-06-02 | 한국생명공학연구원 | Microalgae comprising increased lipid contents using salt stress and process for preparing the same |
Non-Patent Citations (1)
Title |
---|
Journal of Microbiology, 2018, Vol. 56, No. 1, pp. 56-64 (2018.01.04.)* |
Also Published As
Publication number | Publication date |
---|---|
KR20200068484A (en) | 2020-06-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Krzemińska et al. | Influence of photoperiods on the growth rate and biomass productivity of green microalgae | |
Nowruzi et al. | Optimization of cultivation conditions to maximize extracellular investments of two Nostoc strains | |
Yu et al. | Accumulation of exopolysaccharides in liquid suspension culture of Nostoc flagelliforme cells | |
De Silva et al. | The green synthesis and characterisation of silver nanoparticles from Serratia spp Síntesis verde y caracterización de nanopartículas de plata de Serratia spp | |
KR102217298B1 (en) | Increasing method for growth and fatty acid contents of freshwater microalgae | |
Liu et al. | Interactions between selected microalgae and microscopic propagules of Ulva prolifera | |
Gani et al. | An overview of environmental factor’s effect on the growth of microalgae | |
Samkhaniyani et al. | Evaluation of effective nutritional parameters for Scenedesmus sp. microalgae culturing in a photobioreactor for biodiesel production | |
JP2010252700A (en) | New asticcacaulis excentricus strain, method for culturing microalgae by using the same, and method for producing hydrocarbon | |
Liu et al. | Screening of antibiotics to obtain axenic cell cultures of a marine microalga Chrysotila roscoffensis | |
Markina et al. | The effect of lowered salinity of sea water on the growth and photosynthetic pigment content in three strains of the microalgae Pseudo-nitzschia pungens (Grunow ex. PT Cleve) Hasle, 1993 (Bacillariophyta) | |
Akbarnejad et al. | Effect of light and nitrogen concentration on the growth and lipid content of marine diatom, Chaetoceros calcitrans | |
Nezhad et al. | Induction of polyploidy by colchicine on the green algae Dunaliella salina | |
Badar et al. | Growth evaluation of microalgae isolated from palm oil mill effluent in synthetic media | |
Anandapadmanaban et al. | Enhanced production of lipid as biofuel feedstock from the marine diatom Nitzschia sp. by optimizing cultural conditions | |
Pan et al. | Effects of salinity on the growth, physiological and biochemical components of microalga Euchlorocystis marina | |
CN108676723A (en) | One plant of marine coral source newly belongs to, new seeds algae and its isolated culture method | |
Silva et al. | Cryopreservation of Chlorella vulgaris using different cryoprotectant agents | |
RU2542481C2 (en) | Method of production of bacteriologically pure cultures of marine blue-green microalgae | |
CN105120657A (en) | Recombinant plant cell, preparation method therefor, and method for producing target protein using same | |
Charioui et al. | Effect of the medium culture on cells growth and accumulation of carotenoids in microalgae hypersaline Dunaliella sp. isolated from salt ponds of the region of Essaouira in Morocco | |
Nagasato et al. | Development of Marine Macroalgae | |
Kumar et al. | Effect of organic carbon compounds on the growth and pigment composition of microalga-Nannochloropsis salina | |
Spitzer | An analysis of diatom growth rate and the implications for the biodiesel industry | |
Zhao et al. | Karyological observations of Ulva linza chromosomes |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
E90F | Notification of reason for final refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant |