KR102216948B1 - Catalyst for low temperature using hexagonal boron nitride and its preparation method - Google Patents

Catalyst for low temperature using hexagonal boron nitride and its preparation method Download PDF

Info

Publication number
KR102216948B1
KR102216948B1 KR1020180131359A KR20180131359A KR102216948B1 KR 102216948 B1 KR102216948 B1 KR 102216948B1 KR 1020180131359 A KR1020180131359 A KR 1020180131359A KR 20180131359 A KR20180131359 A KR 20180131359A KR 102216948 B1 KR102216948 B1 KR 102216948B1
Authority
KR
South Korea
Prior art keywords
catalyst
boron nitride
hexagonal boron
catalytically active
temperature
Prior art date
Application number
KR1020180131359A
Other languages
Korean (ko)
Other versions
KR20200048829A (en
Inventor
이명진
정보라
예보라
이민우
이덕현
김홍대
Original Assignee
한국생산기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국생산기술연구원 filed Critical 한국생산기술연구원
Priority to KR1020180131359A priority Critical patent/KR102216948B1/en
Publication of KR20200048829A publication Critical patent/KR20200048829A/en
Application granted granted Critical
Publication of KR102216948B1 publication Critical patent/KR102216948B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/32Manganese, technetium or rhenium
    • B01J23/34Manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9404Removing only nitrogen compounds
    • B01D53/9409Nitrogen oxides
    • B01D53/9413Processes characterised by a specific catalyst
    • B01D53/9418Processes characterised by a specific catalyst for removing nitrogen oxides by selective catalytic reduction [SCR] using a reducing agent in a lean exhaust gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/10Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of rare earths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/24Nitrogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/02Solids
    • B01J35/10Solids characterised by their surface properties or porosity
    • B01J35/60
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2066Selective catalytic reduction [SCR]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/2073Manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/40Nitrogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/01Engine exhaust gases
    • B01D2258/012Diesel engines and lean burn gasoline engines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Toxicology (AREA)
  • Thermal Sciences (AREA)
  • Biomedical Technology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Catalysts (AREA)

Abstract

본 발명은 육방정 질화붕소를 활용한 탈질촉매 및 그 제조방법에 관한 것으로, 구체적으로는 육방정 질화붕소를 지지체로 제공함으로써 고온에서도 안정적이고 촉매 효율과 물성이 증진된 탈질촉매와 그 제조방법에 관한 것이다.
촉매활성물질 및 지지체로서 안정적인 물질인 육방정 질화붕소를 이용하여 촉매의 상변화 및 응집억제 효과를 나타내며, 촉매활성물질의 분산성 증진을 통한 표면개질로 인하여 촉매의 효율 및 물성이 우수한 효과가 있는 탈질촉매 및 그 제조방법을 제공한다.
The present invention relates to a denitrification catalyst using hexagonal boron nitride and a method for manufacturing the same, and specifically, to a denitrification catalyst that is stable at high temperatures and has improved catalytic efficiency and physical properties by providing a hexagonal boron nitride as a support and a method for manufacturing the same. About.
Using hexagonal boron nitride, which is a stable material as a catalytically active material and a support, it exhibits the effect of inhibiting the phase change and aggregation of the catalyst. It provides a denitration catalyst and a manufacturing method thereof.

Description

육방정 질화붕소를 활용한 탈질촉매 및 그 제조 방법{Catalyst for low temperature using hexagonal boron nitride and its preparation method}Denitrification catalyst using hexagonal boron nitride and its preparation method {Catalyst for low temperature using hexagonal boron nitride and its preparation method}

본 발명은 육방정 질화붕소를 활용한 탈질촉매 및 그 제조방법에 관한 것으로, 구체적으로는 육방정 질화붕소를 지지체로 제공함으로써 고온에서도 안정적이고 촉매 효율과 물성이 증진된 탈질촉매와 그 제조방법에 관한 것이다.The present invention relates to a denitrification catalyst using hexagonal boron nitride and a method for manufacturing the same, and specifically, to a denitrification catalyst that is stable at high temperatures and has improved catalytic efficiency and physical properties by providing a hexagonal boron nitride as a support and a method for manufacturing the same. About.

최근 대기환경에 대한 이목이 집중됨에 따라 고정원(발전소, 소각로) 및 이동원(자동차, 선박) 등 다양한 산업분야에서 배출되는 가스상 오염물질에 대한 각종 규제(EURO6, TierⅢ, 미세먼지 특별대책 등)가 강화되고 있다. 이에 따라, 규제의 만족을 위한 다양한 기술이 연구되고 있는 추세이다. As attention has recently been focused on the atmospheric environment, various regulations (EURO6, Tier III, special measures for fine dust, etc.) on gaseous pollutants emitted from various industrial fields such as fixed sources (power plants, incinerators) and mobile sources (cars, ships) It is being strengthened. Accordingly, various technologies for satisfying regulations are being studied.

일반적으로 잘 알려진 대기오염 물질 중 하나인 질소산화물(NOx)은 그 자체로도 인체에 매우 유해하지만, 미세먼지, 스모그, 산성비의 생성을 유발하는 주 원인 물질이다. 질소산화물을 제거하는 방법은 여러 기술이 존재하지만 효율적인 방면에서 가장 우수한 SCR (Selective Catalytic Reduction), 선택적 촉매 환원법이 대표적으로 사용되고 있다. Nitrogen oxide (NO x ), one of the most well-known air pollutants, is very harmful to the human body by itself, but it is the main cause of the generation of fine dust, smog, and acid rain. There are several techniques for removing nitrogen oxides, but the most efficient SCR (Selective Catalytic Reduction) and selective catalytic reduction are typically used.

SCR기술은 질소산화물(NOx)을 환원제인 NH3, Urea를 사용하여 인체에 무해한 물질인 질소와 수증기로 바꾸는 기술이다. 대한민국 등록특허 '10-1798713'은 질소산화물 제거용 SCR 촉매 및 그의 제조방법에 대하여 기재하며, 지속적인 수요 증가와 강화되는 환경규제에 맞추어 질소산화물 제거 성능이 우수하고 편의성을 가지는 SCR촉매가 필요하다고 말하고 있다. 하지만 현재 각종 오염원에서 적용되는 SCR촉매는 TiO2 지지체를 기반으로 V2O5-WO3를 촉매활성물질로 사용하고 있으며, 350~380℃의 고온영역에서 활용되므로 열역학적, 경제적인 측면에서 효율성이 저하된다.SCR technology is a technology that converts nitrogen oxides (NO x ) into nitrogen and water vapor that are harmless to the human body by using NH 3 and Urea as reducing agents. Korean Patent Registration '10-1798713' describes an SCR catalyst for removing nitrogen oxides and its manufacturing method, and says that an SCR catalyst having excellent nitrogen oxide removal performance and convenience is needed in accordance with the continuous increase in demand and strengthening environmental regulations. have. However, the SCR catalyst currently applied to various pollutants uses V 2 O 5 -WO 3 as a catalytically active material based on TiO 2 support, and is used in a high temperature range of 350 to 380°C, so it is efficient in terms of thermodynamics and economy. Is lowered.

따라서 저온(300℃ 이하) 영역에서 활용 가능한 고효율의 SCR촉매의 개발 연구가 이루어지고 있으며, 일반적인 촉매 활성 물질로는 V2O5, MoO3 및 WO3 등이 있으며, 저온영역에서는 MnOx, CeO2, Co3O4 등이 있다. 그러나 활성 성분들의 함량이 증가함에 따라 표면에 쉽게 응집되고 상변화가 발생하는 문제점이 있다.Therefore, research is being conducted on the development of highly efficient SCR catalysts that can be used in the low temperature (below 300℃) region, and common catalytically active materials include V 2 O 5 , MoO 3 and WO 3 , and MnO x , CeO in the low temperature region. 2 and Co 3 O 4 . However, as the content of the active ingredients increases, there is a problem in that the surface is easily aggregated and a phase change occurs.

KR 10-1798713)KR 10-1798713)

Recent Trends in Hexagonal Boron Nitride, 2016.07, DOI 10.3938)Recent Trends in Hexagonal Boron Nitride, 2016.07, DOI 10.3938)

상기 문제점을 해결하기 위하여, 본 발명은 열적, 화학적 안정성이 우수한 육방정 질화붕소(hexagonal Boron Nitride, h-BN)를 포함하여 상변화 및 응집억제와 동시에 촉매활성물질의 분산성 증진을 통한 표면개질로 효율 및 물성이 우수한 탈질촉매를 제공하는 것을 목적으로 한다.In order to solve the above problem, the present invention includes a hexagonal boron nitride (h-BN) having excellent thermal and chemical stability, including phase change and agglomeration inhibition, and at the same time, surface modification by improving the dispersibility of the catalytically active material. It aims to provide a denitration catalyst having excellent furnace efficiency and properties.

또한, 본 발명은 육방정 질화붕소를 포함하며, 상기와 같은 우수성을 지닌 선택적 촉매 환원법(Selective Catalytic Reduction, SCR) 촉매를 제공하는 것을 목적으로 한다. In addition, an object of the present invention is to provide a selective catalytic reduction (SCR) catalyst comprising hexagonal boron nitride and having the above-described superiority.

또한, 본 발명은 상기 우수한 효과를 지닌 육방정 질화붕소를 포함하는 저온용 탈질촉매의 제조방법을 제공하는 것을 목적으로 한다. In addition, an object of the present invention is to provide a method for producing a low-temperature denitration catalyst containing hexagonal boron nitride having the above excellent effects.

상기 목적을 해결하기 위하여 본 발명은,In order to solve the above object, the present invention,

촉매활성물질; 및 Catalytically active material; And

상기 촉매활성물질의 지지체인 육방정 질화붕소(hexagonal Boron Nitride, h-BN);를 포함하는 것을 특징으로 하는, 탈질촉매를 제공한다.It provides a denitration catalyst comprising; hexagonal boron nitride (h-BN), which is a support for the catalytically active material.

상기 촉매활성물질은 MnO, MnO2, Mn2O3, Mn3O4, CeO2, Co3O4, ZrO2, V2O5, 및 WO3 중 어느 하나 이상을 포함하며, 100℃ - 300℃의 온도에서 활성화될 수 있다.The catalytically active material includes any one or more of MnO, MnO 2 , Mn 2 O 3 , Mn 3 O 4 , CeO 2 , Co 3 O 4 , ZrO 2, V 2 O 5 , and WO 3 , and 100°C- It can be activated at a temperature of 300°C.

또한, 상기 육방정 질화붕소는 다공성(porous) 표면을 가지며, 두께가 80- 100 nm이다.In addition, the hexagonal boron nitride has a porous surface and a thickness of 80-100 nm.

상기 다른 목적을 해결하기 위하며 본 발명은,In order to solve the above other object, the present invention,

촉매활성물질; 및 Catalytically active material; And

상기 촉매활성물질의 지지체인 육방정 질화붕소;를 포함하는 것을 특징으로 하는, 선택적 촉매 환원법(Selective Catalytic Reduction, SCR) 촉매를 제공한다.It provides a selective catalytic reduction (SCR) catalyst comprising; hexagonal boron nitride, which is a support for the catalytically active material.

상기 상기 육방정 질화붕소는 다공성(porous) 표면을 가지며, 두께가 80- 100 nm이다.The hexagonal boron nitride has a porous surface and a thickness of 80-100 nm.

또한, 상기 촉매활성물질은 100℃ - 300℃의 온도에서 활성화될 수 있다.In addition, the catalytically active material may be activated at a temperature of 100°C-300°C.

상기 또 다른 목적을 해결하기 위하여 본 발명은,In order to solve the another object, the present invention,

촉매활성물질와 육방정 질화붕소의 교반 단계;Stirring the catalytically active material and hexagonal boron nitride;

sol-gel 방법을 통한 상기 혼합물의 촉매 합성 단계; 및catalytic synthesis of the mixture through a sol-gel method; And

상기 촉매의 육방정 질화붕소에 다공성(porous) 표면을 유도하기 위한 소결 단계;를 포함하는 것을 특징으로 하는, 탈질촉매 제조방법을 제공한다.It provides a method for producing a denitration catalyst comprising a; sintering step for inducing a porous surface to the hexagonal boron nitride of the catalyst.

상기 촉매활성물질은 MnO, MnO2, Mn2O3, Mn3O4, CeO2, Co3O4, ZrO2, V2O5, 및 WO3 중 어느 하나 이상을 포함한다.The catalytically active material includes any one or more of MnO, MnO 2 , Mn 2 O 3 , Mn 3 O 4 , CeO 2 , Co 3 O 4 , ZrO 2, V 2 O 5 , and WO 3 .

또한, 상기 촉매는 SCR촉매이며, 100℃ - 300℃의 온도에서 활성화될 수 있다.In addition, the catalyst is an SCR catalyst, and can be activated at a temperature of 100°C-300°C.

본 발명은 촉매활성물질과 지지체로서 안정적인 물질인 육방정 질화붕소를 이용한 저온용 탈질촉매 및 그 제조방법을 제공함으로써 촉매의 상변화 및 응집억제 효과를 나타내며, 촉매활성물질의 분산성 증진을 통한 표면개질로 인하여 촉매의 효율 및 물성이 우수한 효과가 있다.The present invention provides a catalytically active material and a low-temperature denitration catalyst using hexagonal boron nitride, which is a stable material as a support, and a method of manufacturing the same, thereby showing the effect of inhibiting the phase change and aggregation of the catalyst, and improving the dispersibility of the catalytically active material. Due to the reforming, the efficiency and physical properties of the catalyst are excellent.

도 1은 본 발명의 일 실시예 및 일 비교예에 따른 촉매 합성 과정을 나타낸 것이다.
도 2는 본 발명의 일 실시예에 따른 다공성 h-BN 촉매 및 비다공성 h-BN 촉매의 탈질효율을 나타낸 그래프이다.
도 3은 본 발명의 일 실시예에 따른 중량비 및 BN의 두께 조건이 다른 다공성 h-BN 촉매들의 탈질효율을 나타낸 그래프이다.
1 shows a catalyst synthesis process according to an Example and a Comparative Example of the present invention.
2 is a graph showing the denitration efficiency of a porous h-BN catalyst and a non-porous h-BN catalyst according to an embodiment of the present invention.
3 is a graph showing the denitration efficiency of porous h-BN catalysts having different weight ratios and BN thickness conditions according to an embodiment of the present invention.

이하 본 발명에 대하여 보다 상세히 설명한다.Hereinafter, the present invention will be described in more detail.

본 발명의 일측면에 따르면, 촉매활성물질; 및 상기 촉매활성물질의 지지체인 육방정 질화붕소(hexagonal Boron Nitride, h-BN);를 포함하는 것을 특징으로 하는, 탈질촉매를 제공한다.According to one aspect of the present invention, a catalytically active material; And hexagonal boron nitride (h-BN), which is a support for the catalytically active material, and provides a denitration catalyst.

본 발명에서 촉매활성물질은 MnO, MnO2, Mn2O3, Mn3O4, CeO2, Co3O4, ZrO2, V2O5, 및 WO3 중 어느 하나 이상을 포함한다. 바람직하게는 MnO, MnO2, Mn2O3, Mn3O4, CeO2, Co3O4, 및 ZrO2 중 어느 하나 이상을 포함하며, 더 바람직하게는 MnO, MnO2, Mn2O3, Mn3O4, CeO2, Co3O4 중 어느 하나 이상을 포함한다. In the present invention, the catalytically active material includes at least one of MnO, MnO 2 , Mn 2 O 3 , Mn 3 O 4 , CeO 2 , Co 3 O 4 , ZrO 2, V 2 O 5 , and WO 3 . Preferably it includes any one or more of MnO, MnO 2 , Mn 2 O 3 , Mn 3 O 4 , CeO 2 , Co 3 O 4 , and ZrO 2 , and more preferably MnO, MnO 2 , Mn 2 O 3 , Mn 3 O 4 , CeO 2 , And It includes any one or more of Co 3 O 4 .

촉매활성물질은 100℃ - 300℃의 온도에서 활성화될 수 있다. 바람직하게는 150℃ - 300℃의 온도에서 활성화될 수 있으며, 더 바람직하게는 200℃ - 300℃의 온도에서 활성화될 수 있다.The catalytically active material may be activated at a temperature of 100°C-300°C. Preferably it may be activated at a temperature of 150 ℃-300 ℃, more preferably it may be activated at a temperature of 200 ℃-300 ℃.

또한, 육방정 질화붕소는 다공성(porous) 표면을 가지며, 두께가 80 - 100 nm이다. 더 상세하게는 공기(Air) 분위기에 열처리 과정을 거쳐 다공성 표면이 유도된 육방정 질화붕소이다.In addition, hexagonal boron nitride has a porous surface and has a thickness of 80-100 nm. More specifically, it is hexagonal boron nitride in which a porous surface is induced through a heat treatment process in an air atmosphere.

촉매는 크게 촉매활성을 나타내는 촉매활성물질과 촉매활성을 향상시키거나 촉매의 수명을 연장시키는 조촉매 그리고, 이러한 촉매활성물질과 조촉매를 지지해주고 높은 표면적을 제공하여 반응면적을 높이는 역할을 하는 담체 즉, 지지체로 구성되어 있다.Catalysts are catalytically active substances that exhibit catalytic activity and cocatalysts that improve catalytic activity or extend the life of the catalyst, and support that supports these catalytically active substances and cocatalysts and provides a high surface area to increase the reaction area. That is, it is composed of a support.

촉매의 이용에 있어 매우 중요한 역할을 하는 담체가 갖추어야 할 조건은 그 적용 특성상 표면적과 접촉 면적이 넓어야 하며, 재료의 열용량과 열팽창계수가 낮아야한다. 또한, 사용온도, 강도, 산화저항성이 높아야 하며, 담체와 촉매의 코팅성 및 호환성이 좋아야 한다. The conditions that a carrier, which plays a very important role in the use of a catalyst, must have a wide surface area and a wide contact area, and a low heat capacity and a low coefficient of thermal expansion of the material, due to its application characteristics. In addition, the use temperature, strength, and oxidation resistance should be high, and the coating properties and compatibility of the carrier and catalyst should be good.

담체는 구성 재료에 따라 크게 금속계와 세라믹스계로 나눌 수 있다. 담체는 화학반응과 촉매활성물질과의 상호작용에 따라 실리카, 알루미나 담체와 같이 비교적 높은 표면적을 제공하나 촉매활성은 갖지 않으며 지지체의 역할만을 수행하는 불활성 지체와 실리카-알루미나 담체나 제올라이트 담체와 같이 촉매활성을 어느 정도 지니고 있는 활성 지지체 그리고, 이산화티탄, Nb2O5와 같이 촉매활성물질과 강한 상호작용을 하는 촉매활성물질 상호작용 지지체로 구분할 수 있다.Carriers can be broadly divided into metal-based and ceramic-based depending on the material of the composition. The carrier provides a relatively high surface area such as silica and alumina carriers depending on the chemical reaction and interaction with the catalytically active material, but does not have catalytic activity and is an inert carrier that performs only the role of a support, and a catalyst such as a silica-alumina carrier or zeolite carrier It can be classified into an active support having some activity and a catalytically active material interaction support that has a strong interaction with the catalytically active material such as titanium dioxide and Nb 2 O 5 .

질화붕소(Boron Nitride)는 다양한 구조(hexagonal, cubic, and wurtzite)를 가지는 세라믹스계 재료로, 높은 열적 안정성, 전기 절연성 등의 여러 특성을 가지고 있다. 그 외에 정밀 가공도 가능하기 때문에 가열상태에서 사용하는 진공기기, 실험기기의 절연재로 불가결한 존재이다. 또한 전기 절연성과 고열 전도성인 특징이 있기 때문에 트랜지스터, IC의 기판, 밀봉 히터의 절연재로 사용된다.Boron Nitride is a ceramic material having a variety of structures (hexagonal, cubic, and wurtzite), and has various properties such as high thermal stability and electrical insulation. Other than that, precision processing is possible, so it is indispensable as an insulating material for vacuum equipment and experimental equipment used in a heated state. In addition, it is used as an insulating material for transistors, IC substrates, and sealing heaters because of its characteristics of electrical insulation and high thermal conductivity.

그 중 2D material로 판상형태인 hexagonal구조의 육방정 질화붕소(hexagonal Boron Nitride, h-BN)는 2970℃의 높은 녹는점을 가지며, 공기 중에서도 1000℃까지 자체 특성을 유지하는 안정한 물질로서 최근 각종 분야에서 연구가 진행되고 있다. h-BN은 강한 공유결합으로 붕소와 질소가 결합되어 있어 표면에 불포화결합을 가지고 있지 않고, 원자수준에서 평평한 구조를 가지고 있다. 또한 그래핀과 유사하게 투명하고 유연하면서 견고한 우수한 기계적 물성을 가지고 있고 절연특성을 가지고 있으면서도 우수한 열 전도성을 가지며, 열적 또는 화학적 안정성을 가지고 있다. Among them, hexagonal boron nitride (h-BN) having a hexagonal structure in a plate shape as a 2D material has a high melting point of 2970℃ and is a stable material that maintains its properties up to 1000℃ in air. Research is ongoing. h-BN is a strong covalent bond where boron and nitrogen are bonded, so it does not have an unsaturated bond on the surface, and has a flat structure at the atomic level. In addition, similar to graphene, it has excellent mechanical properties that are transparent, flexible, and sturdy, and has excellent thermal conductivity while having insulating properties, and has thermal or chemical stability.

다공성 물질은 수많은 기공을 가지고 있어 흡착력이 우수하다는 특징이 있으며, 이러한 이유로 단위 질량 당 높은 표면적과 부피를 가진다. 다공성 소재는 다양한 활성물질 및 촉매 등의 담지를 용이하게 하며, 기공을 나노미터 수준으로 조절하고 나노구조 또한 제어할 수 있다면 우수한 특성의 나노 흡착 및 분리, 센서, 촉매, 광학 소재, 에너지 소재 등으로의 응용이 가능하다. 일반적으로 나노 다공성 물질은 그 기공의 크기에 따라 마이크로포러스(microporous, 2 nm 이하), 메조포러스(mesoporous, 2~50 nm) 및 매크로포러스(macroporous, 50 nm 이상)로 분류된다. 다공성 소재는 높은 표면적을 가지고 있어 최소한의 양만을 사용하면서 높은 분산도를 가지는 촉매를 만들 수 있다. 또한, 나노미터 크기의 입자를 균일하게 기공 내부 또는 벽에 담지시킴으로써 향상된 활성과 안정성을 얻을 수 있다. Porous materials are characterized by excellent adsorption power because they have numerous pores, and for this reason, they have a high surface area and volume per unit mass. Porous materials facilitate loading of various active materials and catalysts, and if the pores can be controlled at the nanometer level and nanostructures can also be controlled, it can be used for nano adsorption and separation, sensors, catalysts, optical materials, energy materials The application of is possible. In general, nanoporous materials are classified into microporous (2 nm or less), mesoporous (2-50 nm), and macroporous (50 nm or more) depending on the size of the pores. The porous material has a high surface area, so it is possible to make a catalyst with a high degree of dispersion while using only a minimum amount. In addition, improved activity and stability may be obtained by uniformly supporting nanometer-sized particles in the pores or on the walls.

본 발명의 다른 측면에 따르면, 촉매활성물질; 및 상기 촉매활성물질의 지지체인 육방정 질화붕소;를 포함하는 것을 특징으로 하는, 선택적 촉매 환원법(Selective Catalytic Reduction, SCR) 촉매를 제공한다.According to another aspect of the present invention, a catalytically active material; And it provides a selective catalytic reduction (Selective Catalytic Reduction, SCR) catalyst comprising; and hexagonal boron nitride, which is a support for the catalytically active material.

촉매활성물질은 100℃ - 300℃의 온도에서 활성화될 수 있다. 바람직하게는 150℃ - 300℃의 온도에서 활성화될 수 있으며, 더 바람직하게는 200℃ - 300℃의 온도에서 활성화될 수 있다.The catalytically active material may be activated at a temperature of 100°C-300°C. Preferably it may be activated at a temperature of 150 ℃-300 ℃, more preferably it may be activated at a temperature of 200 ℃-300 ℃.

또한, 육방정 질화붕소는 다공성(porous) 표면을 가지며, 두께가 80 - 100 nm이다. 더 상세하게는 공기(Air) 분위기에 열처리 과정을 거쳐 다공성 표면이 유도된 육방정 질화붕소이다.In addition, hexagonal boron nitride has a porous surface and has a thickness of 80-100 nm. More specifically, it is hexagonal boron nitride in which a porous surface is induced through a heat treatment process in an air atmosphere.

선택적 촉매 환원법(Selective Catalytic Reduction, SCR)은 배기가스를 SCR 촉매에 접촉시켜 정화하는 것으로서, SCR촉매의 도움을 받아 배기가스 내의 질소산화물(NOx)를 인체에 무해한 질소와 물로 전환한 후 배출시킨다. 이때, 암모니아(NH3)나 요소수(Urea)가 환원제로 사용되며 환원제가 고온으로 가열된 촉매에 분사되어 배기가스 중의 질소산화물만을 선택적으로 환원시킨다.Selective Catalytic Reduction (SCR) is to purify exhaust gas by contacting the SCR catalyst, and with the help of the SCR catalyst, nitrogen oxides (NOx) in the exhaust gas are converted into nitrogen and water that are harmless to the human body and then discharged. At this time, ammonia (NH 3 ) or urea water (Urea) is used as a reducing agent, and the reducing agent is injected to the catalyst heated to a high temperature to selectively reduce only nitrogen oxides in the exhaust gas.

SCR 촉매의 종류는 금속산화물계, Zeolite계, 알칼리토 금속계, 희토류계 촉매 등이 있지만, sulfate화 된 TiO2를 담체로 한 WO3, V2O5, MoO3 등의 촉매활성물질이 조합된 벌집모양의 모노리스(Monolithic honeycomb) 압출촉매가 상용화되어 있다. 그러나 이러한 벌집모양의 모노리스 촉매는 담체로 사용되는 TiO2와 촉매 활성물질인 WO3와 V2O5 등의 활용으로 가격이 비싸고, 타 담체재료에 비해 성형성이 불량하여 촉매의 생산 비용이 높다.SCR catalysts include metal oxide, zeolite, alkaline earth metal, and rare earth catalysts, but catalytically active substances such as WO 3 , V 2 O 5 and MoO 3 using sulfated TiO 2 as a carrier are combined. A honeycomb-shaped monolithic honeycomb extrusion catalyst is commercially available. However, these honeycomb-shaped monolithic catalysts are expensive due to the use of TiO 2 used as a carrier and WO 3 and V 2 O 5 as catalytic active materials, and the production cost of the catalyst is high due to poor moldability compared to other carrier materials. .

육방정 질화붕소는 다공성(porous) 표면을 가지며, 두께가 80 - 100 nm이다. 더 상세하게는 공기(Air) 분위기에 열처리 과정을 거쳐 다공성 표면이 유도된 육방정 질화붕소이다. 2D material로 판상형태인 hexagonal구조의 육방정 질화붕소(hexagonal Boron Nitride, h-BN)는 2970℃의 높은 녹는점을 가지며, 공기 중에서도 1000℃까지 자체 특성을 유지하는 안정한 물질로서 최근 각종 분야에서 연구가 진행되고 있다. h-BN은 강한 공유결합으로 붕소와 질소가 결합되어 있어 표면에 불포화결합을 가지고 있지 않고, 원자수준에서 평평한 구조를 가지고 있다. 또한 그래핀과 유사하게 투명하고 유연하면서 견고한 우수한 기계적 물성을 가지고 있고 절연특성을 가지고 있으면서도 우수한 열 전도성을 가지며, 열적 또는 화학적 안정성을 가지고 있다. Hexagonal boron nitride has a porous surface and is 80-100 nm thick. More specifically, it is hexagonal boron nitride in which a porous surface is induced through a heat treatment process in an air atmosphere. Hexagonal Boron Nitride (h-BN), which has a hexagonal structure in a plate shape as a 2D material, has a high melting point of 2970℃ and is a stable material that maintains its properties up to 1000℃ in air. It is going on. h-BN is a strong covalent bond where boron and nitrogen are bonded, so it does not have an unsaturated bond on the surface, and has a flat structure at the atomic level. In addition, similar to graphene, it has excellent mechanical properties that are transparent, flexible, and sturdy, and has excellent thermal conductivity while having insulating properties, and has thermal or chemical stability.

본 발명의 또 다른 측면에 따르면, 촉매활성물질과 육방정 질화붕소의 교반 단계; sol-gel 방법을 통한 상기 혼합물의 촉매 합성 단계; 및 상기 촉매의 육방정 질화붕소에 다공성(porous) 표면을 유도하기 위한 소결 단계;를 포함하는 것을 특징으로 하는, 탈질촉매 제조방법을 제공한다.According to another aspect of the present invention, the step of stirring the catalytically active material and hexagonal boron nitride; catalytic synthesis of the mixture through a sol-gel method; And a sintering step for inducing a porous surface on the hexagonal boron nitride of the catalyst. It provides a method for producing a denitration catalyst.

촉매활성물질은 MnO, MnO2, Mn2O3, Mn3O4, CeO2, Co3O4, ZrO2, V2O5, 및 WO3 중 어느 하나 이상을 포함한다. 바람직하게는 MnO, MnO2, Mn2O3, Mn3O4, CeO2, Co3O4, 및 ZrO2 중 어느 하나 이상을 포함하며, 더 바람직하게는 MnO, MnO2, Mn2O3, Mn3O4, CeO2, Co3O4 중 어느 하나 이상을 포함한다. The catalytically active material includes one or more of MnO, MnO 2 , Mn 2 O 3 , Mn 3 O 4 , CeO 2 , Co 3 O 4 , ZrO 2, V 2 O 5 , and WO 3 . Preferably it includes any one or more of MnO, MnO 2 , Mn 2 O 3 , Mn 3 O 4 , CeO 2 , Co 3 O 4 , and ZrO 2 , and more preferably MnO, MnO 2 , Mn 2 O 3 , Mn 3 O 4 , CeO 2 , And It includes any one or more of Co 3 O 4 .

촉매는 SCR촉매이며, 100℃ - 300℃의 온도에서 활성화될 수 있다. 바람직하게는 150℃ - 300℃의 온도에서 활성화될 수 있으며, 더 바람직하게는 200℃ - 300℃의 온도에서 활성화될 수 있다.The catalyst is an SCR catalyst and can be activated at a temperature of 100°C-300°C. Preferably it may be activated at a temperature of 150 ℃-300 ℃, more preferably it may be activated at a temperature of 200 ℃-300 ℃.

졸-겔(sol-gel) 방법은 일반적으로 용액에 녹아든 금속 단량체가 물과 반응하여, 가수분해 후 축합반응이 일어난다. sol은 액체상에 고체가 콜로이드 상태로 있는 것이고, gel은 반고체와 같이 점탄성특성을 갖는 것을 말한다. sol-gel processing의 장점은 저온합성이 가능하고, 각종형상 및 미세구조 조절이 가능하며, 균질성 향상, 환경 친화적인 생산성 향상이 가능하고, -OH기가 생성되는 원료는 모두 재료로 쓸 수 있으며, 유기-무기 혼성화합물을 용이하게 만들 수 있다. 졸-겔 법의 장점은 종래 법으로는 얻을 수 없는 화학조성의 것을 얻을 수 있고, 원자의 오더로 균질한 고체를 얻을 수 있으며, 고순도의 것을 얻을 수 있다는 것이다. In the sol-gel method, a metal monomer dissolved in a solution generally reacts with water, and a condensation reaction occurs after hydrolysis. sol means that a solid is in a colloidal state in a liquid phase, and a gel has a viscoelastic property like a semi-solid. The advantage of sol-gel processing is that low-temperature synthesis is possible, various shapes and microstructures can be adjusted, homogeneity can be improved, environment-friendly productivity can be improved, and all raw materials generating -OH groups can be used as materials, and organic -Can easily make inorganic hybrid compounds. The advantage of the sol-gel method is that it is possible to obtain a chemical composition that cannot be obtained by a conventional method, a homogeneous solid can be obtained in atomic order, and a high purity substance can be obtained.

졸-젤법에 의하여 만들어지는 나노 물질은 크게 제로젤(xerogel)과 에어로젤(aerogel)로 나누어진다. 제로젤은 졸에서 젤로 변하고 건조, 소성 과정을 거치는 동안 상대적으로 높은 밀도를 가진 큰 입자로 바뀌게 되므로 일반소재로 사용된다. 그러나 에어로젤은 그 이름처럼 대부분 기공으로 이루어져 있으므로 매우 가볍고 따라서 촉매를 비롯한 기능성 소재로 활용된다. 일반적으로 에어로졸은 졸-젤 반응에 의하여 제조되며 만들어진 젤은 초임계로 건조되어 젤의 원래 구조가 수축되지 않고 유지된 상태로 존재한다. 이러한 특유의 기공 구조를 가지고 있으므로 에어로졸은 매우 우수한 여러 물성을 지니고 있고 이것을 효과적으로 활용하면 아주 다양한 분야에 응용될 수 있다. 최근에는 에어로졸이 큰 표면적과 기공 부피를 가진다는 특성과 원자단계에서 고체 물성의 제어가 가능한 졸-젤 공정으로 합성된다는 점이 새롭게 인식되어 촉매 제조 분야에서의 본격적인 활용을 위한 연구가 활발히 시작되고 있다. Nanomaterials produced by the sol-gel method are largely divided into xerogel and aerogel. Zerogel is used as a general material because it changes from sol to gel and changes into large particles with relatively high density during drying and firing. However, as the name suggests, airgel is mostly made up of pores, so it is very light and is therefore used as a functional material including catalysts. In general, an aerosol is prepared by a sol-gel reaction, and the resulting gel is supercritically dried so that the original structure of the gel is maintained without shrinking. Since it has such a peculiar pore structure, aerosols have very good various physical properties, and if they are effectively utilized, they can be applied in a wide variety of fields. Recently, it has been newly recognized that aerosols have a large surface area and pore volume and that they are synthesized by a sol-gel process capable of controlling solid properties at the atomic stage, and thus, research for full-scale application in the field of catalyst manufacturing is actively being started.

에어로졸의 일반적인 특징으로 젤의 기본 구조가 유지되므로 표면적과 기공부피가 매우 크다는 점을 들 수 있다. 특히 흡착 단계와 표면 반응 단계를 거치게 되는 촉매 화학반응은 촉매의 표면에서 일어나기 때문에 표면적이 넓다는 것은 반응이 일어날 수 있는 촉매 표면의 활성부위 수가 많다는 의미이므로 고표면적의 특징을 가진 에어로졸은 촉매로써 아주 유용한 물질이 될 수 있다. 또한 대부분의 촉매는 산화물 표면에 금속이나 기타 산화물들이 분산되어 있는 형태인데 지지체의 표면적이 증가할수록 지지체위에 단분자층으로 분산될 수 있는 금속이나 산화물의 양이 늘어나 촉매의 활성부위가 증가하게 되므로 에어로졸은 지지체로서도 유용하다. 이러한 특성을 가진 에어로졸은 특유의 강한 기공구조로 인하여 열처리식 소결에 의한 표면적의 감소속도도 비교적 느린 특성을 가지고 있다. A general characteristic of aerosols is that the basic structure of the gel is maintained, so the surface area and pore volume are very large. In particular, since the catalytic chemical reaction that goes through the adsorption step and the surface reaction step occurs on the surface of the catalyst, the large surface area means that the number of active sites on the surface of the catalyst where the reaction can occur is large. It can be a useful material. In addition, most catalysts are in the form of dispersing metals or other oxides on the oxide surface. As the surface area of the support increases, the amount of metal or oxide that can be dispersed as a monolayer on the support increases, increasing the active site of the catalyst. It is also useful as Aerosols having such characteristics have a relatively slow rate of reduction in surface area due to heat treatment-type sintering due to their unique strong pore structure.

본 발명에서의 육방정 질화붕소는 촉매활성물질의 지지체로서 50 - 90 wt% 포함될 수 있으며, 바람직하게는 70 - 85 wt% 포함될 수 있다. 지지체인 육방정 질화붕소는 50 wt% 미만으로 포함되면 지지체로서의 역할을 다하기 어려우며, 50 내지 90 wt% 범위의 함량으로 포함될 시 촉매활성물질의 중량비가 낮더라도 효과적인 탈질효율을 낼 수 있다.Hexagonal boron nitride in the present invention may be included in 50-90 wt%, preferably 70-85 wt% as a support for the catalytically active material. If the support, hexagonal boron nitride, is included in less than 50 wt%, it is difficult to fulfill its role as a support, and when included in an amount in the range of 50 to 90 wt%, effective denitrification efficiency can be achieved even if the weight ratio of the catalytically active material is low.

이하 하기 실시예에 의하여 본 발명을 더욱 상세하게 설명하고자 한다. 단 하기 실시예는 본 발명을 예시하기 위한 것으로 본 발명의 범위가 실시예에 의해 한정되는 것은 아니다. 본 발명의 개시가 완전하도록 하며, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 가에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이다. Hereinafter, the present invention will be described in more detail by the following examples. However, the following examples are intended to illustrate the present invention, and the scope of the present invention is not limited by the examples. The disclosure of the present invention is provided to be complete, and to fully inform the scope of the invention to those of ordinary skill in the art to which the present invention pertains.

<실시예><Example>

실시예 1. 다공성 육방정 질화붕소(porous h-BN)를 포함하는 촉매 제조Example 1. Preparation of a catalyst containing porous hexagonal boron nitride (porous h-BN)

촉매활성물질의 전구체인 Mn(NO3)2·4H2O, Ce(NO3)2·6H2O를 ethanol에 용해시켜 solution1을 제조하였으며, h-BN powder를 ethanol에 용해시켜 solution2를 제조하였다. 각 solution의 분산 및 용해를 위해 15분간 ultrasonic 후 30분 동안 교반하였으며, (Mn-Ce)을 h-BN위에 담지하기 위해 solution1을 solution2에 부어 6시간 동안 교반하여 solution3를 제조하였다. solution3의 ethanol을 증발시키기 위해서 6시간 동안 80℃의 온도를 유지하였다.Solution1 was prepared by dissolving Mn(NO 3 ) 2 ·4H 2 O, Ce(NO 3 ) 2 ·6H 2 O, which are precursors of catalytically active materials, in ethanol, and solution2 was prepared by dissolving h-BN powder in ethanol. . For dispersion and dissolution of each solution, the solution was stirred for 15 minutes after ultrasonication for 30 minutes, and solution1 was poured into solution2 and stirred for 6 hours in order to support (Mn-Ce) on h-BN, thereby preparing solution3. In order to evaporate the ethanol of solution3, the temperature was maintained at 80℃ for 6 hours.

이후 sol-gel method로 촉매를 합성하였으며, 250℃에서 열처리하고 air 분위기에서 소결하여 porous 표면이 유도된 h-BN을 가진 촉매를 제조하였다. After that, the catalyst was synthesized by the sol-gel method, heat-treated at 250°C, and sintered in an air atmosphere to prepare a catalyst having h-BN with a porous surface induced.

상기 촉매 제조 과정은 도 1에 도시하였다.The process of preparing the catalyst is shown in FIG. 1.

실시예 2. porous h-BN 촉매의 탈질효율 평가Example 2. Evaluation of denitrification efficiency of porous h-BN catalyst

평가 장비는 Fixed bed를 사용하였으며, 분석 장비는 CLD (Chemi-luminescent detection analyzer)를 활용하였다. 합성된 촉매 0.1ml를 3/8인치의 반응기에 장착한 후, 혼합 gas가 샘플을 지나지 않는 상태에서 MFC(유량조절계)를 이용하여 NO(300ppm), NH3(360ppm) 및 O2(5vol%)로 gas 농도를 조절하였다. 총 유량을 500sccm으로 유지하기 위해서 N2를 balanced gas로 사용하였으며, gas 농도가 안정화 되면 반응기로 gas가 지나가도록 하여(reactor pass) 150℃ - 300℃ 까지 50℃의 간격으로 온도를 상승시키면서 합성된 촉매의 탈질효율을 평가하였다.A fixed bed was used as the evaluation equipment, and a chemi-luminescent detection analyzer (CLD) was used as the analysis equipment. After installing 0.1 ml of the synthesized catalyst in a 3/8-inch reactor, NO (300 ppm), NH 3 (360 ppm) and O 2 (5 vol%) using MFC (flow control system) while the mixed gas does not pass through the sample. ) To adjust the gas concentration. In order to maintain the total flow rate at 500 sccm, N 2 was used as a balanced gas, and when the gas concentration stabilized, the gas passed to the reactor (reactor pass), and the resultant was synthesized by increasing the temperature at intervals of 50℃ from 150℃ to 300℃. The denitration efficiency of the catalyst was evaluated.

실시예 3. 촉매 구성 성분의 중량비에 따른 porous h-BN 촉매의 탈질효율 평가Example 3. Evaluation of denitrification efficiency of porous h-BN catalyst according to weight ratio of catalyst components

실시예 2와 동일한 방법으로 촉매 구성 성분의 중량비에 따른 porous h-BN 촉매의 탈질효율 평가하였다. 촉매활성성분인 Mn, Ce 및 지지체인 h-BN의 중량비(wt%)는 하기 표 1에 나타내었다. 하기 표 1에서 BN은 실시예 1에 따라 제조된 h-BN을 의미하며, BNNS (h-Boron Nitride Nano Sheet)는 여러 장이 겹쳐져 두께가 두꺼운 판상구조의 BN의 탈질효율을 증진하기 위하여 박리하는 과정을 거쳐 제조된 얇은 두께의 BN을 의미한다.In the same manner as in Example 2, the denitration efficiency of the porous h-BN catalyst was evaluated according to the weight ratio of the catalyst components. The weight ratio (wt%) of the catalytically active components Mn and Ce and the support h-BN are shown in Table 1 below. In Table 1, BN refers to h-BN prepared according to Example 1, and BNNS (h-Boron Nitride Nano Sheet) is a process of peeling to improve the denitrification efficiency of BN having a thick plate-like structure by overlapping several sheets. It means a thin BN manufactured through

BNNS는 BN을 Tip sonicator를 통해 5시간 동안 초음파를 주어 두께를 얇게 제조하여 만들 수 있다. 그 두께는 10 - 40 nm이며, tip 직경은 7mm를 사용하였다.BNNS can be made by making BN thinner by giving ultrasonic waves for 5 hours through a tip sonicator. The thickness is 10-40 nm, and the tip diameter is 7 mm.

MnMn CeCe BNBN BNNSBNNS

wt%


wt%
3030 1515 -- --
3030 1515 5555 -- 2020 1010 7070 -- 2020 1010 -- 7070 1010 55 -- 8585

비교예 1. 비다공성 육방정 질화붕소(non-porous h-BN)를 포함하는 촉매 제조Comparative Example 1. Preparation of a catalyst containing non-porous hexagonal boron nitride (non-porous h-BN)

촉매활성물질의 전구체인 Mn(NO3)2·4H2O, Ce(NO3)2·6H2O를 ethanol에 용해시켜 solution1을 제조하였으며, h-BN powder를 ethanol에 용해시켜 solution2를 제조하였다. 각 solution의 분산 및 용해를 위해 15분간 ultrasonic 후 30분 동안 교반하였으며, (Mn-Ce)을 h-BN위에 담지하기 위해 solution1을 solution2에 부어 6시간 동안 교반하여 solution3를 제조하였다. solution3의 ethanol을 증발시키기 위해서 6시간 동안 80℃의 온도를 유지하였다.Solution1 was prepared by dissolving Mn(NO 3 ) 2 ·4H 2 O, Ce(NO 3 ) 2 ·6H 2 O, which are precursors of catalytically active materials, in ethanol, and solution2 was prepared by dissolving h-BN powder in ethanol. . For dispersion and dissolution of each solution, the solution was stirred for 15 minutes after ultrasonication for 30 minutes, and solution1 was poured into solution2 and stirred for 6 hours in order to support (Mn-Ce) on h-BN, thereby preparing solution3. In order to evaporate the ethanol of solution3, the temperature was maintained at 80℃ for 6 hours.

이후 sol-gel method로 촉매를 합성하였으며, 250℃에서 열처리하고 Ar 분위기에서 소결하여 non-porous 표면이 유도된 h-BN을 가진 촉매를 제조하였다.After that, the catalyst was synthesized by the sol-gel method, heat-treated at 250° C. and sintered in an Ar atmosphere to prepare a catalyst having h-BN with a non-porous surface induced.

비교예 2. non-porous h-BN 촉매의 탈질효율 평가Comparative Example 2. Evaluation of denitrification efficiency of non-porous h-BN catalyst

평가 장비는 Fixed bed를 사용하였으며, 분석 장비는 CLD (Chemi-luminescent detection analyzer)를 활용하였다. 합성된 촉매 0.1ml를 3/8인치의 반응기에 장착한 후, 혼합 gas가 샘플을 지나지 않는 상태에서 MFC(유량조절계)를 이용하여 NO(300ppm), NH3(360ppm) 및 O2(5vol%)로 gas 농도를 조절하였다. 총 유량을 500 sccm으로 유지하기 위해서 N2를 balanced gas로 사용하였으며, gas 농도가 안정화 되면 반응기로 gas가 지나가도록 하여(reactor pass) 150℃ - 300℃ 까지 50℃의 간격으로 온도를 상승시키면서 합성된 촉매의 탈질효율을 평가하였다.A fixed bed was used as the evaluation equipment, and a chemi-luminescent detection analyzer (CLD) was used as the analysis equipment. After installing 0.1 ml of the synthesized catalyst in a 3/8-inch reactor, NO (300 ppm), NH 3 (360 ppm) and O 2 (5 vol%) using MFC (flow control system) while the mixed gas does not pass through the sample. ) To adjust the gas concentration. In order to maintain the total flow rate at 500 sccm, N 2 was used as a balanced gas, and when the gas concentration was stabilized, the gas was passed to the reactor (reactor pass), and the temperature was increased from 150℃ to 300℃ at 50℃ intervals. The denitration efficiency of the resulting catalyst was evaluated.

<평가 및 결과><Evaluation and results>

결과 1. porous h-BN 및 non-porous h-BN 촉매의 탈질효율 평가Results 1. Evaluation of denitrification efficiency of porous h-BN and non-porous h-BN catalysts

실시예 및 비교예에 따라 제조한 porous h-BN 및 non-porous h-BN을 지지체로 이용한 촉매의 탈질효율을 평가하였으며, 결과는 하기 표 2 및 도 2에 도시하였다. The denitration efficiency of the catalyst using porous h-BN and non-porous h-BN prepared according to Examples and Comparative Examples as a support was evaluated, and the results are shown in Table 2 and FIG. 2 below.

하기 표의 '(Mn+Ce)/porous-BN'는 촉매활성물질인 Mn 및 Ce를 porous h-BN을 지지체로 하여 담지한 촉매를 의미하는 기재이다. 명세서 상 하기의 기재에서 '/'는 지지체에 활성물질을 담지하였다는 의미로서 사용된다.'(Mn+Ce)/porous-BN' in the following table is a description that refers to a catalyst supported by Mn and Ce, which are catalytically active materials, using porous h-BN as a support. In the following description in the specification,'/' is used to mean that the active material is supported on the support.

촉매활성물질로만 이루어진 Mn-Ce 촉매와 non-porous h-BN을 지지체로 하여 Mn-Ce를 담지한 촉매는 각 온도에서 45 내지 56 %의 NOx 제거 활성을 나타내었으나, porous h-BN을 지지체로 하여 Mn-Ce를 담지한 촉매는 각 온도에서 77 - 93 %의 높은 NOx 제거 활성을 나타내었다.The Mn-Ce catalyst composed of only catalytically active material and the catalyst supporting Mn-Ce with non-porous h-BN as a support showed 45 to 56% NOx removal activity at each temperature, but porous h-BN was used as a support. Thus, the Mn-Ce-supported catalyst showed a high NOx removal activity of 77-93% at each temperature.

따라서, 다공성의 표면을 가진 h-BN을 지지체로 사용하였을 때, 탈질효율이 가장 우수한 것을 확인할 수 있었다.Therefore, when h-BN having a porous surface was used as a support, it was confirmed that the denitration efficiency was the best.

NOx removal efficiency (%)NOx removal efficiency (%) Temperature (℃)Temperature (℃) 150150 200200 250250 300300 (Mn+Ce)(Mn+Ce) 4747 6060 6262 5555 (Mn+Ce)/porous-BN(Mn+Ce)/porous-BN 7777 9393 9090 7878 (Mn+Ce)/non-porous-BN(Mn+Ce)/non-porous-BN 4545 6161 6363 5656

결과 2. 촉매 구성 성분의 중량비 및 h-BN의 두께에 따른 porous h-BN 촉매의 탈질효율 평가Results 2. Evaluation of denitrification efficiency of porous h-BN catalyst according to the weight ratio of catalyst components and thickness of h-BN

BN(h-BN) 및 BNNS(h-BN Nano Sheet)을 지지체로 이용하며, 촉매활성물질 및 지지체의 중량비를 달리한 촉매들을 실시예에 따라 제조한 후, 탈질효율을 평가하였다. 결과는 하기 표 3 및 도 3에 도시하였다. BN (h-BN) and BNNS (h-BN Nano Sheet) were used as a support, and catalysts having different weight ratios of the catalytically active material and the support were prepared according to Examples, and then the denitration efficiency was evaluated. The results are shown in Table 3 and FIG. 3 below.

Mn-Ce의 중량비는 동일하며, BN의 사용유무에 따른 NOx 제거 활성을 확인한 결과, BN이 함유된 촉매에서 약 20 내지 35 % 높은 탈질효율을 나타내었다.The weight ratio of Mn-Ce is the same, and as a result of confirming the NOx removal activity according to the use of BN or not, about 20 to 35% high denitrification efficiency in the catalyst containing BN was shown.

또한, 동일한 Mn-Ce의 중량비 조건에서 BN을 지지체로 이용한 촉매와 BNNS를 지지체로 이용하여 합성한 촉매의 NOx 제거 활성을 확인한 결과, BNNS가 함유된 촉매에서 3 내지 20 % 높은 탈질효율을 나타내었다. In addition, as a result of confirming the NOx removal activity of the catalyst using BN as a support and the catalyst synthesized using BNNS as a support under the same Mn-Ce weight ratio condition, the catalyst containing BNNS showed a high denitration efficiency of 3 to 20%. .

또한, BNNS를 지지체로 사용한 촉매와 촉매활성물질만으로 합성된 촉매의 탈질효율을 비교하였을 때, BNNS가 함유된 촉매에서 촉매활성물질만으로 합성된 촉매에 비해 Mn-Ce의 중량비가 3배 낮음에도 불구하고 비슷한 탈질효율을 나타내었다.In addition, when comparing the denitrification efficiency of a catalyst using BNNS as a support and a catalyst synthesized with only catalytically active material, the weight ratio of Mn-Ce is three times lower than that of a catalyst synthesized with only catalytically active material in the catalyst containing BNNS. And showed similar denitrification efficiency.

상기 결과를 종합해보면, BN 또는 BNNS를 함유한 촉매에서 그렇지 않은 촉매보다 더 높은 탈질효율을 확인할 수 있었으며, BN과 BNNS를 비교하였을 때 BNNS를 함유한 촉매에서 더 높은 탈질효율을 확인할 수 있었다. BN 또는 BNNS를 함유하여 제조된 촉매는 촉매활성물질의 중량비가 상대적으로 낮더라도 우수한 탈질효율을 나타내는 것을 확인할 수 있었다. Taken together, the above results show that the catalyst containing BN or BNNS has a higher denitrification efficiency than that of the catalyst that does not, and when comparing BN and BNNS, a higher denitration efficiency was confirmed in the catalyst containing BNNS. It was confirmed that the catalyst prepared by containing BN or BNNS exhibited excellent denitrification efficiency even if the weight ratio of the catalytically active material was relatively low.

NOx removal efficiency (%)NOx removal efficiency (%) Temperature (℃)Temperature (℃) 150150 200200 250250 300300 (Mn30+Ce15)(Mn30+Ce15) 4747 6060 6262 5555 (Mn30+Ce15)/BN(Mn30+Ce15)/BN 7777 9393 9090 7878 (Mn20+Ce10)/BN(Mn20+Ce10)/BN 6161 8080 8383 7575 (Mn20+Ce10)/BNNS(Mn20+Ce10)/BNNS 8181 9090 8686 7272 (Mn10+Ce5)/BNNS(Mn10+Ce5)/BNNS 5050 6464 7070 5757

Claims (10)

육방정 질화붕소를 초음파를 가하여 두께를 10 내지 40 nm로 형성한 육방정 질화붕소 나노시트(BNNS) 및 촉매활성물질 MnO2와 CeO2를 준비하는 제1단계;
상기 육방정 질화붕소 나노시트 70 내지 85 중량% 및 상기 촉매활성물질 MnO2 및 CeO2 15 내지 30 중량%를 혼합하여 혼합물을 형성하는 제2단계;
상기 혼합물에서 용매를 증발시키고 졸-겔(sol-gel) 방법을 통하여 촉매를 합성하는 제3단계; 및
상기 합성된 촉매를 공기 분위기의 250℃에서 열처리하고 소결하는 제4단계;를 포함하는 저온용 탈질촉매의 제조방법.
A first step of preparing hexagonal boron nitride nanosheets (BNNS) having a thickness of 10 to 40 nm by applying ultrasonic waves to hexagonal boron nitride and catalytically active materials MnO 2 and CeO 2 ;
A second step of forming a mixture by mixing 70 to 85% by weight of the hexagonal boron nitride nanosheets and 15 to 30% by weight of the catalytically active materials MnO 2 and CeO 2 ;
A third step of evaporating the solvent from the mixture and synthesizing the catalyst through a sol-gel method; And
A method of manufacturing a low-temperature denitration catalyst comprising a fourth step of heat-treating and sintering the synthesized catalyst at 250°C in an air atmosphere.
제1항에 있어서,
상기 MnO2와CeO2의 함량비가 2:1인 것을 특징으로 하는 저온용 탈질촉매 제조방법.
The method of claim 1,
The method for producing a denitrification catalyst for low temperature, characterized in that the content ratio of the MnO 2 and CeO 2 is 2:1.
제1항에 있어서,
상기 촉매는 150℃ 내지 300℃의 온도에서 NOx 제거 활성을 나타내는 것을 특징으로 하는 저온용 탈질촉매 제조방법.
The method of claim 1,
The catalyst is characterized in that the NOx removal activity at a temperature of 150 ℃ to 300 ℃ low-temperature denitrification catalyst manufacturing method.
삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete
KR1020180131359A 2018-10-30 2018-10-30 Catalyst for low temperature using hexagonal boron nitride and its preparation method KR102216948B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020180131359A KR102216948B1 (en) 2018-10-30 2018-10-30 Catalyst for low temperature using hexagonal boron nitride and its preparation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020180131359A KR102216948B1 (en) 2018-10-30 2018-10-30 Catalyst for low temperature using hexagonal boron nitride and its preparation method

Publications (2)

Publication Number Publication Date
KR20200048829A KR20200048829A (en) 2020-05-08
KR102216948B1 true KR102216948B1 (en) 2021-02-18

Family

ID=70677733

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020180131359A KR102216948B1 (en) 2018-10-30 2018-10-30 Catalyst for low temperature using hexagonal boron nitride and its preparation method

Country Status (1)

Country Link
KR (1) KR102216948B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230133559A (en) 2022-03-11 2023-09-19 한국생산기술연구원 SCR catalyst using single-step hexagonal boron nitride with improved thermal stability and method for synthesizing the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102465459B1 (en) 2020-12-08 2022-11-10 한국생산기술연구원 Method for the preparation of a Vanadium based cystalline SCR catalyst and cystalline SCR catalyst using the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002018288A (en) 2000-06-21 2002-01-22 Hekichin Kagi Kaihatsu Kofun Yugenkoshi Noble metal catalyst-supporting boron nitride and method for manufacturing the same
CN106881141A (en) 2017-04-19 2017-06-23 福州大学 Cobalt/hexagonal boron nitride complex nucleus shell structural nano catalyst and its preparation and application
CN106975506A (en) 2017-03-14 2017-07-25 上海大学 Boron nitride composite mesopore oxide nickel-base catalyst and preparation method thereof
CN106475129B (en) * 2016-09-24 2019-04-16 上海大学 Using hexagonal boron nitride as the preparation method of the composite oxides denitrating catalyst of carrier

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101798713B1 (en) 2015-07-15 2017-11-16 현대중공업 주식회사 SCR Catalyst for Nitrogen Oxide Removal and Manufacturing method thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002018288A (en) 2000-06-21 2002-01-22 Hekichin Kagi Kaihatsu Kofun Yugenkoshi Noble metal catalyst-supporting boron nitride and method for manufacturing the same
CN106475129B (en) * 2016-09-24 2019-04-16 上海大学 Using hexagonal boron nitride as the preparation method of the composite oxides denitrating catalyst of carrier
CN106975506A (en) 2017-03-14 2017-07-25 上海大学 Boron nitride composite mesopore oxide nickel-base catalyst and preparation method thereof
CN106881141A (en) 2017-04-19 2017-06-23 福州大学 Cobalt/hexagonal boron nitride complex nucleus shell structural nano catalyst and its preparation and application

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230133559A (en) 2022-03-11 2023-09-19 한국생산기술연구원 SCR catalyst using single-step hexagonal boron nitride with improved thermal stability and method for synthesizing the same

Also Published As

Publication number Publication date
KR20200048829A (en) 2020-05-08

Similar Documents

Publication Publication Date Title
EP2315732B1 (en) Method for making porous acicular mullite bodies
KR102320340B1 (en) Low temperature DeNOx catalyst containing hierarchically structured porous TiO2 catalyst support and method for preparing the same
JPH02502444A (en) Catalyst and its manufacturing method
TW200400083A (en) Catalyst carriers
KR102216948B1 (en) Catalyst for low temperature using hexagonal boron nitride and its preparation method
KR100589513B1 (en) Composition, catalytic module element, and catalytic module for selective catalytic reduction of nitrogen oxides in a gaseous medium containing oxigen
JP5459322B2 (en) Redox material for thermochemical water splitting and hydrogen production method
KR102033967B1 (en) Low Temperature SCR Catalyst Added Carbon Supported Active Catalystic Materials and Preparation Method Thereof
CN107511160B (en) MOX/g-C3N4@SiO2Preparation method and application of catalyst
KR20150094875A (en) Catalyst carrier for purification of exhausted gas, method for preparing the same, and catalyst for purification of exhausted gas
CN108295865B (en) Integral honeycomb low-temperature SCR denitration catalyst and preparation method thereof
Chen et al. Recent developments on catalytic membrane for gas cleaning
JPH02502445A (en) Catalyst and its manufacturing method
JP2009119423A (en) Active b-c-n material and method of manufacturing the same
US20060099421A1 (en) High specific surface area composite alumina powder with thermal resistance and method for producing the same
WO2023033528A1 (en) Method for preparing catalyst for ammonia decomposition using cation-anion double hydrolysis
CN113694920B (en) Cordierite-based SCR catalyst and preparation method and application thereof
JP2008155132A (en) Manufacturing method of denitration catalyst
JP2007244975A (en) Automobile exhaust gas treatment catalyst and method for manufacturing the same
CN111185217A (en) Solid phase method preparation method and application of chromium-based carbon nitride catalyst
CN111995380B (en) Preparation method of silica-alumina mesoporous ceramic
CN115463668B (en) Preparation method of catalyst and catalyst obtained by preparation method
JP3314301B2 (en) Method for producing palladium (Pd) three-way catalyst
KR102569570B1 (en) Oxidation catalyst including oxygen storage composition and manufacturing method thereof
Tanaka et al. Microporous structure of alumina prepared by a salt catalytic sol-gel process

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
X091 Application refused [patent]
AMND Amendment
X701 Decision to grant (after re-examination)