KR102216789B1 - 시스테인 감지용 형광 프로브 화합물 및 이의 용도 - Google Patents

시스테인 감지용 형광 프로브 화합물 및 이의 용도 Download PDF

Info

Publication number
KR102216789B1
KR102216789B1 KR1020200008152A KR20200008152A KR102216789B1 KR 102216789 B1 KR102216789 B1 KR 102216789B1 KR 1020200008152 A KR1020200008152 A KR 1020200008152A KR 20200008152 A KR20200008152 A KR 20200008152A KR 102216789 B1 KR102216789 B1 KR 102216789B1
Authority
KR
South Korea
Prior art keywords
cysteine
cysp
fluorescent probe
fluorescence
compound
Prior art date
Application number
KR1020200008152A
Other languages
English (en)
Inventor
김도경
김나희
Original Assignee
경희대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 경희대학교 산학협력단 filed Critical 경희대학교 산학협력단
Priority to KR1020200008152A priority Critical patent/KR102216789B1/ko
Application granted granted Critical
Publication of KR102216789B1 publication Critical patent/KR102216789B1/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/58Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving labelled substances
    • G01N33/582Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving labelled substances with fluorescent label
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • G01N33/6803General methods of protein analysis not limited to specific proteins or families of proteins
    • G01N33/6806Determination of free amino acids
    • G01N33/6812Assays for specific amino acids
    • G01N33/6815Assays for specific amino acids containing sulfur, e.g. cysteine, cystine, methionine, homocysteine
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • G01N2021/6439Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes" with indicators, stains, dyes, tags, labels, marks

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • Urology & Nephrology (AREA)
  • Hematology (AREA)
  • Biomedical Technology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Cell Biology (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Biophysics (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Optics & Photonics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

본 발명은 시스테인 감지용 형광 프로브 화합물 및 이의 용도에 관한 것으로, 상기 형광 프로브 화합물은 다른 티올 그룹에 간섭을 받지 않고 선택적으로 시스테인을 감지할 수 있다. 특히 시스테인 감지는 티올기가 native chemical ligation (NCL) 구조에 결합반응을 이용하여 수행되는 것으로 상기 형광 프로브 화합물은 구조가 단순하고 빠른 대량 합성이 가능하다. 또한, 작은 유기 분자로서 시스테인과 결합할 때 형광 신호를 발할 수 있어, 기존의 시스테인을 감지하기 위한 복잡한 구조를 갖는 형광 프로브들의 문제점과 다른 티올 그룹간의 간섭에 의한 문제점들을 극복하였을 뿐만 아니라 높은 감도, 빠른 반응 속도, 높은 선택성, 생체 적합성, 황화수소 생성, 광범위한 적용성을 가지는 장점을 가짐으로써, 선택적 영상화 및 감지에 효율적으로 활용될 수 있다.

Description

시스테인 감지용 형광 프로브 화합물 및 이의 용도{Fluorescent probe composition for the detection of cysteine and use thereof}
본 발명은 시스테인 감지용 형광 프로브 화합물 및 이의 용도에 관한 것이다.
티올(thiol) 작용기를 포함하고 있는 시스테인(Cys), 글루타티온(GSH), 호모시스테인(Hcy) 등의 바이오티올(biothiol)은 생물학적인 시스템에 매우 중요한 역할을 수행하고 있으며, 이로 인해 다양한 질환들과 밀접한 관계를 가지고 있다. 특히 시스테인은 단백질 형성, 항산화 물질 생성, 금속이온 결합, 그리고 철-황 클러스터 형성에 필수적인 아미노산(amino acid)으로 여겨지고 있다. 시스테인을 감지하는 다양한 분석방법이 보고되어 있으며, 특히 형광 기반 분자 감지 시스템은 간단한 작동법과 높은 생체 적합성, 기초연구에서의 폭넓은 활용방안 등의 장점으로 큰 주목을 받고 있다 [Chen X. et al., Chem Soc Rev. 2010, 39, 2120-35; Lee YH et al., Chem Commun. 2015, 51, 14401-4; Pawlukojc A et al., Spectrochim Acta A. 2005, 61, 2474-81; Jeelani G et al., mBio. 2014, 5, e01995-14].
이러한, 시스테인 감지 특성의 형광 프로브는 현재까지 다수 보고되어 왔지만, 기존 시스템의 가장 큰 단점은 다른 바이오티올(biothiol)의 간섭이 있다는 것이다 [Chen X. et al., Chem Soc Rev. 2010, 39, 2120-35; Niu L-Y. et al., Chem Soc Rev. 2015, 44, 6143-60; Vendrell M et al., Chem Rev. 2012, 112, 4391-420]. 또한, 기존 시스템은 느린 신호 제공 시간, 낮은 민감성 등의 문제점도 보여왔다 [Zhang Y et al., Anal Chem. 2019, 91, 8591-4 ].
이에, 본 발명자들은 이러한 문제점을 해결하기 위하여 오쏘-페닐 벤조티오에이트 (O-phenyl benzothioate)의 네이티브 케미칼 라이게이션 (native chemical ligation; NCL)을 기반으로 시스테인을 선택적으로 감지할 수 있는 새로운 형광 분자 프로브 화합물을 개발하였다. NCL은 시스테인의 잔기인 N-말단과, C-말단인 α-티올에스터를 결합시키는 합성 도구로, 발명된 형광 프로브 화합물 구조 내 카르보닐 설파이드(COS) 구조는 시스테인과 반응하여 부가물로 페놀 (PhOH)과, 황화수소(hydrogen sulfide, H2S)가 방출되는 것을 특징으로 한다. 개발된 시스테인 감지 형광 분자 프로브는 높은 감도, 빠른 반응 속도, 높은 선택성, 생체 적합성 (낮은 세포 독성), 황화수소 생성, 그리고 광범위한 활용 가능성을 확인함으로써, 본 발명을 완성하였다.
본 발명의 목적은 오쏘-페닐 벤조티오에이트(O-phenyl benzothioate)의 네이티브 케미칼라이게이션 기반 화합물을 이용하여 시스테인을 선택적으로 감지하기 위한 형광 프로브 화합물 및 이를 이용한 세포 또는 조직의 영상화 방법을 제공하는 것이다.
그러나 본 발명이 이루고자 하는 기술적 과제는 이상에서 언급한 과제에 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.
본 발명은 하기 화학식 1의 화합물로 표시되는 시스테인 감지용 형광 프로브 화합물을 제공한다.
[화학식 1]
Figure 112020007191105-pat00001
본 발명의 일 구현예에 있어서, 상기 형광 프로브 화합물은 시스테인과 반응하여 형광 켜짐 현상을 나타내는 것을 특징으로 한다.
본 발명의 일 구현예에 있어서, 상기 형광 프로브 화합물은 시스테인과 반응하여 황화수소를 생성하는 것을 특징으로 한다.
또한, 본 발명은 시스테인이 포함된 시료에 상기 형광 프로브 화합물을 첨가하여 발생하는 형광을 측정하는 시스테인 감지 방법을 제공한다.
또한, 본 발명은 상기 형광 프로브 화합물을 세포 또는 조직에 처리하여 시스테인 또는 황화수소의 형광을 측정하는 세포 또는 조직의 영상화(imaging) 방법을 제공한다.
본 발명의 일 구현예에 있어서, 상기 형광은 공초점 레이저 스캐닝 현미경을 이용하여 측정하는 것을 특징으로 하는 세포 또는 조직의 영상화 방법을 제공한다.
본 발명의 일 구현예에 있어서, 상기 세포 또는 조직은 분리된 세포 또는 조직인 것을 특징으로 하는 세포 또는 조직의 영상화 방법을 제공한다.
본 발명의 일 구현예에 있어서, 상기 세포 또는 조직은 암 세포 또는 암 조직인 것을 특징으로 하는 세포 또는 조직의 영상화 방법을 제공한다.
본 발명의 일 구현예에 있어서, 상기 암은 자궁 경부암인 것을 특징으로 하는 세포 또는 조직의 영상화 방법을 제공한다.
본 발명의 형광 프로브 화합물은 다른 티올 그룹에 간섭을 받지 않고 선택적으로 시스테인을 감지할 수 있다. 특히 시스테인 감지는 티올기가 네이티브 케미컬 라이게이션(native chemical ligation; NCL) 구조에 결합반응을 이용하여 수행되는 것으로 상기 형광 프로브 화합물은 구조가 단순하고 빠른 대량 합성이 가능하다.
또한, 작은 유기 분자로서 시스테인과 결합할 때 형광 신호를 발할 수 있어, 기존의 시스테인을 감지하기 위한 복잡한 구조를 갖는 형광 프로브들의 문제점과 다른 티올 그룹간의 간섭에 의한 문제점들을 극복하였을 뿐만 아니라 높은 감도, 빠른 반응 속도, 높은 선택성, 생체 적합성, 황화수소 생성, 광범위한 적용성을 가지는 장점을 가짐으로써, 선택적 영상화 및 감지에 효율적으로 활용될 수 있다.
도 1은 본 발명에 따른 CysP-1의 흡수 및 형광 그래프를 수용액(pH 7.4 PBS buffer, 20% DMSO) 조건하에서 각각 나타낸 것이다.
도 2는 본 발명에 따른 CysP-1의 시스테인 반응 시 2-(6-(N,N-디메틸아미노)나프탈렌-2-일)-4,5-디하이드로티아졸-4-카르복실산의 생성을 형광 변화를 통해 확인한 결과를 나타낸 것이다.
도 3은 본 발명에 따른 CysP-1의 시스테인에 대한 반응 메커니즘을 확인하기 위하여, 고분해능 질량 분석(high resolution mass spectroscopy, HRMS)로 CysP-1과 2-(6-(N,N-디메틸아미노)나프탈렌-2-일)-4,5-디하이드로티아졸-4-카르복실산을 각각 측정한 결과를 나타낸 것이다.
도 4는 본 발명에 따른 CysP-1의 시스테인에 대한 메커니즘을 확인하기 위하여, 액상-크로마토그래피-질량분석(Liquid chromatography-mass spectrometry; LC-MS, Agilent HP 1260 system)을 이용한 측정 결과를 나타낸 것이다.
도 5는 시스테인 존재 하에 본 발명에 따른 CysP-1의 시간에 따른 형광 변화 특성을 확인한 결과를 나타낸 것이다.
도 6은 본 발명에 따른 CysP-1의 시스테인 농도에 따른 형광의 특성을 확인한 결과를 나타낸 것이다.
도 7은 본 발명에 따른 CysP-1의 시스테인에 대한 선택성을 형광 변화를 통해 확인한 결과를 나타낸 것이다.
도 8은 본 발명에 따른 CysP-1의 산성도(pH)에 따른 시스테인 감응 능력을 확인한 결과를 나타낸 것이다.
도 9는 본 발명에 따른 CysP-1과 시스테인 화학 반응시 발생하는 부가 생성물을 흡광 및 형광 분석을 통해 확인한 결과를 나타낸 것이다.
도 10은 시스테인, 본 발명에 따른 CysP-1, SF7-AM의 반응 혼합물에 2-(6-(N,N-디메틸아미노)나프탈렌-2-일)-4,5-디하이드로티아졸-4-카르복실산의 최고 흡수 값인 394 nm 파장의 광을 조사하여 형광을 관찰한 결과이다.
도 11은 본 발명에 따른 CysP-1, SF7-AM의 반응 혼합물에 SF7-AM의 최고 흡수 값인 495 nm 파장의 광을 조사하여 형광을 관찰한 결과이다.
도 12는 본 발명에 따른 CysP-1을 HeLa 세포(사람 자궁암 세포)에 적용하여 세포 내 시스테인을 선택적으로 형광 영상화한 현미경 관찰 결과이다.
도 13은 본 발명에 따른 CysP-1의 세포독성을 MTT kit(MTT cell proliferation assay kit, Thermo Fisher, US)을 사용하여 HeLa 세포에서 확인한 결과를 나타낸 것이다.
본 발명은 하기 화학식 1의 화합물로 표시되는 시스테인 감지용 형광 프로브 화합물을 제공한다.
[화학식 1]
Figure 112020007191105-pat00002
본 발명의 상기 형광 프로브 화합물은 시스테인과 반응하여 형광 켜짐 현상을 나타내는 것을 특징으로 한다.
본 발명의 일 실시예에서, 본 발명에서 개발된 상기 화학식 1의 화합물에 시스테인을 처리 할 경우 형광 파장 477 nm에서 38 배 증가된 형광 켜짐 현상을 나타냄을 확인하였으며(실시예 3), 본 발명에서 개발된 상기 화학식 1의 시스테인 검출 메커니즘을 규명하였다(실시예 4).
또한, 본 발명의 상기 형광 프로브 화합물은 시스테인과 반응하여 황화수소를 생성할 수 있다.
본 발명의 일 실시예에서, 본 발명에서 개발된 상기 화학식 1의 화합물은 시스테인과의 화학 반응에 따라 부가 생성물로 황화수소가 나옴을 검증하였다(실시예 9).
또한, 본 발명은 시스테인이 포함된 시료에 상기 형광 프로브 화합물을 첨가하여 발생하는 형광을 측정하는 시스테인 감지 방법을 제공한다.
또한, 본 발명은 상기 형광 프로브 화합물을 세포 또는 조직에 처리하여 시스테인 또는 황화수소의 형광을 측정하는 세포 또는 조직의 영상화(imaging) 방법을 제공한다. 이에 제한되는 것은 아니나, 상기 세포 또는 조직은 동물로부터 분리된 세포 또는 조직일 수 있다. 또한 상기 세포 또는 조직은 암 세포 또는 암 조직일 수 있으며, 상기 암은 자궁 경부암일 수 있다.
본 발명의 일 실시예에서, 본 발명에서 개발된 상기 형광 프로브 화합물을 이용하여 형광 특성 확인 등을 수행 하였으며, 이를 통해 본 발명의 화학식 1의 화합물이 시스테인을 포함하는 시료에 대하여 선택적으로 형광 켜짐 현상(fluorescence turn-on)을 나타냄을 확인하였다(실시예 7).
본 발명의 일 실시예에서, 본 발명에서 개발된 상기 형광 프로브 화합물을 이용하여 세포 투과성 및 세포 내 시스테인과 선택적으로 감응 여부를 확인하여 세포 또는 조직의 형광 영상화에 활용이 가능함을 확인하였다(실시예 10).
따라서, 본 발명에 따른 화학식 1의 화합물은 시스테인을 선택적으로 검출할 수 있는 형광 프로브 화합물로 활용될 수 있으며, 시스테인을 포함하는 세포 또는 조직의 영상화 방법에 유용하게 이용될 수 있다.
이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시한다. 그러나 하기의 실시예는 본 발명을 보다 쉽게 이해하기 위하여 제공되는 것일 뿐, 하기 실시예에 의해 본 발명의 내용이 한정되는 것은 아니다.
실시예 1. 오쏘-페닐-6-(디메틸아미노)나프탈렌-2-카보티오에이트(ortho-phenyl-6-(dimehylamino)naphthalene-2-carbothioate)의 합성 및 구조 분석
본 발명자들은 시스테인 감지용 형광 프로브를 개발하기 위하여, 하기 도식 1에 따라 오쏘-페닐-6-(다이메틸아미노)나프탈렌-2-카보티오에이트(하기 도식 1에서 CysP-1)을 합성하였다.
[도식 1]
Figure 112020007191105-pat00003
(1) 6-(N,N-다이메틸아미노)-2-나프토산(6-(N,N-dimethylamino)-2-naphthoic acid)(상기 도식 1에서 화합물 1)의 합성
구체적으로 둥근 플라스크에 합성 출발 물질인 소듐 사이아노보로하이드라이드(sodium cyanoborohydride, 588 mg, 9.34 mmol), 6-아미노-2-나프토산(6-amino-2-naphthoic acid)(500 mg, 2.67 mmol), 포름알데하이드 (formaldehyde, 37%, 4.0 mL)를 메탄올(Methanol; MeOH, 7.0 mL)에 넣고, 회전막대(stirring bar)를 함께 넣어주었다. 이후 아르곤 풍선을 꽂아 주었으며 0 ℃에서 10 분 동안 교반하였다. 10 분 후에는 혼합물을 25 ℃에서 2 시간 동안 교반하였다. 용제는 진공상태에서 제거하고, 남은 잔여물을 1 N 염화수소(aq)로 산성화하였다. 이 후, 수용액층을 에틸 아세테이트(EtOAc)로 추출하였다. 모아진 유기층을 염수로 세척하고 황산 마그네슘으로 건조시켜 6-(N,N-다이메틸아미노)-2-나프토산을 수득하였다. 생성물을 추가 정제 없이 다음 반응에 사용 하였다.
1H NMR (400 MHz, DMSOd6): δ 3.05 (s, 6H), 6.95 (d, J=4.0 Hz 1H), 7.26 (dd, J=4.0 Hz, 1H), 7.67 (d, J=12.0 Hz, 1H), 7.79 (dd, J=4.0 Hz, 1H), 7.88 (d, J=12.0 Hz, 1H), 8.37 (s, 1H), 12.62 (s, 1H).
13C NMR (400 MHz, DMSOd6): δ 40.4, 105.2, 116.9, 123.6, 125.1, 126.0, 126.2, 130.6, 130.9, 137.5, 150.4, 168.2.
HRMS (m/z): [M+H]+ calcd. for C13H14NO2, 216.1019; found, 216.1020.
이때, 상기 화합물 1을 6-(N,N-다이메틸아미노)-2-나프토산이라 명명하였다.
(2) 페닐 6-(N,N-디메틸아미노)-2-나프토에이트(Phenyl 6-(N,N-dimethylamino)-2-naphtoate)(상기 도식 1에서 화합물 2)의 합성
구체적으로 둥근 플라스크에 회전막대(stirring bar)를 넣고, 디클로로메탄(Dichloromethane; DCM, 2.0 mL)에 상기 화합물 1(215 mg, 1.0 mmol)의 현탁액, 옥살릴클로라이드(Oxalyl chloride, 103 μL, 1.2 mmol), 그리고 N,N-디메틸포름아미드(N,N-Dimethylformamide; DMF) 한 방울을 0 ℃에서 실린지로 주입하였다. 0 ℃에서 30 분 동안 교반 후, 반응물을 25 ℃에서 1 시간 동안 두었다. 모든 휘발성 성분을 진공에서 제거하고, 잔류물을 진공에서 3 시간 이상 건조시켰다. 건조된 혼합물을 디클로로메탄(2.0 mL)에 용해시켰다. 이어서, 페놀(Phenol; PhOH, 95 mg, 1.0 mmol), N,N-디메틸-4-아미노피리딘(N,N-Dimethy-4-aminopyridine; DMAP, 13 mg, 0.1 mmol) 및 트리메틸아민(trimethylamine, 419 μL, 3.0 mmol)을 생성된 혼합물에 넣었으며 0 ℃에서 첨가하였다. 혼합물은 실온에서 밤새 교반하였다. 이어서 혼합물을 포화 중탄산 나트륨(NaHCO3 (aq))으로 반응을 멈추었고, 디클로로메탄(DCM)으로 추출하였다. 유기층을 염수로 세척하고, 건조시키고, 흡기기를 이용하여 농축하였다. 미정제 잔류물을 실리카겔을 이용한 관 크로마토그래피(직경 6 cm, 높이 15 cm)방법을 이용하여 분리(전개액: 10% EtOAc(에틸 아세테이트)/n-Hexane(노말-헥산))하여 상기 도식 1에서의 화합물 2(125 mg, 43%)를 얻었다.
1H NMR (400 MHz, DMSOd6): δ 3.09 (s, 6H), 7.00 (d, J=4.0 Hz, 1H), 7.31 (t, J=4.0 Hz, 4H), 7.48 (t, J=8.0 Hz, 2H), 7.77 (d, J=8.0 Hz, 1H), 7.93 (dd, J=4.0 Hz, 1H), 7.98 (d, J=12.0 Hz, 1H), 8.61 (s, 1H).
13C NMR (400 MHz, DMSOd6): δ 105.1, 117.1, 121.4, 122.5, 125, 125.8, 126.2, 126.6, 130.0, 131.0, 131.9, 138.0, 150.8, 151.3, 165.4.
HRMS (m/z): [M+H]+ calcd. for C19H18NO2, 292.1332; found, 292.1334.
이때, 상기 화합물 2를 페닐 6-(N,N-디메틸아미노)-2-나프토에이트라 명명하였다.
(3) 오쏘-페닐-6-(N,N 디메틸아미노)나프탈렌-2-카보티오에이트(ortho-phenyl-6-(dimehylamino)naphthalene-2-carbothioate)(상기 도식 1에서 CysP-1)의 합성
구체적으로 둥근 플라스크에 화합물 2(60 mg, 0.206 mmol)와 로손 시약(Lawesson's reagent, 117 mg, 0.288 mmol)의 혼합물을 p-자일렌(p-xylene, 0.3 mL)에 용해시키고, 회전막대(stirring bar)를 함께 넣어주었다. 혼합물을 아르곤 대기 하에서 140 ℃에서 24 시간 동안 교반하였다. 유기층을 염수로 세척하고, 건조시키고, 흡기기를 이용하여 농축하였다. 미정제 잔류물은 실리카겔을 이용한 관 크로마토그래피(직경 6 cm, 높이 15 cm)방법을 이용해 분리(전개 액: 5% EtOAc(에틸 아세테이트)/n-Hexane(노말-헥산))하여 CysP-1(10 mg, 16 %)을 얻었다.
1H NMR (400 MHz, CDCl3): δ 3.13 (s, 6H), 6.67 (d, J=4.0 Hz, 1H), 7.16 (m, 3H), 7.32 (t, J=8.0 Hz, 1H), 7.48 (t, J=8.0 Hz, 2H), 7.60 (d, J=8.0 Hz, 1H), 7.83 (d, J=8.0 Hz, 1H), 8.31 (dd, J=4.0 Hz, 1H), 8.78 (d, J=4.0 Hz, 1H).
13C NMR (400 MHz, CDCl3): δ 40.4, 77.2, 105.2, 116.2, 122.4, 124.9, 125.6, 126.1, 126.6, 129.5, 130.6, 131.3, 131.4, 138.0, 150.5, 155.1, 210.6.
HRMS (m/z): [M+H]+ calcd. for C19H18NOS, 308.1104; found, 308.1106.
이때, 본 발명에서 개발된 상기 오쏘-페닐 6-(N,N 디메틸아미노)나프탈렌-2-카보티오에이트 화합물을 CysP-1이라 명명하였다.
(4) 2-(6-(N,N-디메틸아미노)나프탈렌-2-일)-4,5-디하이드로티아졸-4-카르복실산 (2-(6-(N,N-dimethylamino)naphthalene-2-yl)-4,5-dihydrothazole-4-carboxylic acid) (상기 도식 1에서 화합물 4)의 합성
구체적으로 둥근 플라스크에 L-시스테인(L-cysteine, 40 mg, 325 μmol), CysP-1 (5.0 mg, 16.0 μmol)을 160mL의 1:4 THF(테트라하이드로퓨란)/PBS(포스페이트-완충 식염수, 10 mM, pH 7.4) (v/v) 용액에 첨가 하였으며, 회전막대(stirring bar)를 넣어주었다. 혼합물을 실온에서 2 시간 동안 교반하였다. 이어서, 동결 건조를 이용해 용매를 제거하였다. 잔류 물은 0.1 N HCl(aq)에 용해시키고 EtOAc(에틸 아세테이트)로 추출하였다. 모아진 유기 층을 황산마그네슘(MgSO4)에서 건조시키고, 여과하고, 농축시켜 화합물 4(3.6 mg, 75 %)를 수득하였다.
1H NMR (400 MHz, MeOD): δ 3.08 (s, 6H), 5.10 (t, J=8.0 Hz, 1H), 6.95 (d, J=4.0 Hz, 1H), 7.23 (dd, J=4.0 Hz, 1H), 7.62 (d, J=8.0 Hz, 1H), 7.76 (d, J=8.0 Hz, 1H), 7.85 (d, J=8.0 Hz, 1H), 8.11 (s, 1H).
13C NMR (400 MHz, MeOD): δ 40.8, 48.9, 49.3, 100.3, 106.8, 117.8, 126.2, 127.1, 127.2, 130.5, 130.9, 138.3, 151.4.
HRMS (m/z): [M+H]+ calcd. for C16H17N2O2S, 301.1005; found, 301.1006.
이때, 상기 2-(6-(N,N-디메틸아미노)나프탈렌-2-일)-4,5-디하이드로티아졸-4-카르복실산을 화합물 4라 명명하였다.
실시예 2. CysP-1의 흡수 및 형광 특성 확인
본 발명자들은 다양한 용매 조건하에서 본 발명에 따른 프로브 화합물인 CysP-1의 흡수 및 형광 변화를 측정하였으며, 그 결과를 도 1에 나타내었다.
수용액(pH 7.4 PBS buffer, 20% DMSO)에서 CysP-1(10 μM), CysP-1(10 μM)+시스테인(500 μM)의 흡수 및 형광 그래프를 측정하였다. 흡수 스펙트럼(UV/Vis absorption spectra) 분석을 위해서는 UV/Vis 분광광도계(UV/Vis spectrophotometer, Agilent Technologies Cary 8454, US)를 사용하였고, 형광 스펙트럼(fluorescence spectra) 분석을 위해서는 형광광도계(spectro-fluorophotometer, SHIMADZU CORP. RF-6000, Japan)을 사용하였다. 이때 각 기기에 CysP-1을 넣어주는 셀(cell)은 1 cm 두께의 표준 석영셀(standard quartz cell, interanl volume= 0.1 cm, Hellma Analytics, Jena, Germany)을 이용하였다.
도 1은 수용액(pH 7.4 PBS buffer, 20% DMSO) 조건하에서 CysP-1의 흡수 및 형광 그래프를 각각 나타낸 것으로, 수용액(pH 7.4 PBS buffer, 20% DMSO) 조건하에서 흡수 스펙트럼(도 1의 (a))은 335 nm에서 최고 흡수 값을 가졌으며, 형광 스펙트럼(도 1의 (b))에서 약한 형광을 보인다. 하지만 시스테인을 처리 할 경우 형광 파장 477 nm에서 38 배 증가된 형광 켜짐 현상을 보인다.
실시예 3. CysP-1의 시스테인(Cys) 반응에 따른 화합물 4 생성 확인
본 발명자들은 CysP-1의 시스테인 반응 시 화합물 4의 생성을 형광 변화를 통해 확인하였으며, 그 결과를 도 2에 나타내었다.
본 발명자들은 수용액(pH 7.4 PBS buffer, 20% DMSO)에서 CysP-1(10 μM), CysP-1(10 μM)+시스테인(500 μM) 및 화합물 4(10 μM)의 흡수 및 형광 그래프를 측정하였다. 흡수 스펙트럼(UV/Vis absorption spectra) 분석을 위해서는 UV/Vis 분광광도계(UV/Vis spectrophotometer, Agilent Technologies Cary 8454, US)를 사용하였고, 형광 스펙트럼(fluorescence spectra) 분석을 위해서는 형광광도계 (spectro-fluorophotometer, SHIMADZU CORP. RF-6000, Japan)을 사용하였다. 이때 각 기기에 CysP-1을 넣어주는 셀(cell)은 1 cm 두께의 표준 석영셀(standard quartz cell, interanl volume= 0.1 cm, Hellma Analytics, Jena, Germany)을 이용하였다.
그 결과, 도 2의 (a)에 나타난 바와 같이, 흡광 그래프를 통해 CysP-1+시스테인과 화합물 4의 흡광값이 일치함을 확인하였으며, 도 2의 (b)에 나타난 바와 같이, 형광 그래프를 통해 CysP-1+시스테인과 화합물 4의 형광 파장대가 겹치는 것을 확인하였다.
이를 통해 CysP-1+시스테인 반응 시에 화합물 4가 형성됨을 확인하였다.
실시예 4. HRMS, LC-MS를 이용한 CysP-1의 시스테인 반응 메커니즘 검증
본 발명자들은 CysP-1의 시스테인에 대한 반응 메커니즘을 확인하기 위하여, 고분해능 질량 분석(high resolution mass spectroscopy, HRMS)으로 측정하였으며, 그 결과를 도 3에 나타내었다.
도 3에 나타난 바와 같이, 고분해능 질량 분석에서, CysP-1에 해당하는 값인 308.1(계산된 질량: 307.10)은 시스테인과 반응하였을 때 301.1(계산된 질량: 300.09) 값으로 변하며, 이는 화합물 4가 생성되었음을 나타낸다.
또한, 본 발명자들은 CysP-1의 시스테인에 대한 메커니즘을 확인하기 위하여, 액상-크로마토그래피-질량분석(Liquid chromatography-mass spectrometry; LC-MS, Agilent HP 1260 system)를 이용하여 값을 측정 하였으며, 그 결과를 도 4에 나타내었다. CysP-1은 이동상을 흘려준 10 분 이후 특정 값이 관찰되는 반면, CysP-1이 시스테인과 반응 후의 부산물인 화합물 4는 1 시간 이후 특정 값이 나옴을 확인 할 수 있었다. 즉 CysP-1과 시스테인을 반응시킨 후 생성되는 화합물 4는 카르복실 작용기(-COOH)를 포함하고 있기에 이동상을 흘려 주었을 때, 신호 값이 CysP-1에 비하여 상대적으로 늦게 관찰된다.
위 두 분석을 통해, CysP-1의 시스테인에 대한 반응 및 반응 후 물질의 구조를 확인 할 수 있었으며, 상기 실시예 3의 결과와 비교하여 CysP-1은 시스테인에 대해 화학반응에 의해 화합물 4가 생성됨을 작용 메커니즘으로 규명하였다.
실시예 5. 시간에 따른 CysP-1의 시스테인 감응 능력 확인
본 발명자들은 시스테인 존재 하에 CysP-1의 시간에 따른 형광 변화 특성을 확인하였으며, 그 결과를 도 5에 나타내었다.
실험에 사용된 용매로는 수용액(pH 7.4 PBS buffer, 20% DMSO)을 사용하였으며, CysP-1의 농도는 10 μM, 시스테인은 CysP-1의 500 μM로 고정한 뒤 실험하였다.
구체적으로, 도 5에 나타난 바와 같이, CysP-1은 약한 형광 세기 값을 보이는 반면, 시스테인 첨가 후 10 분 이내에 급격한 형광 증가가 관찰 되었다.
이를 통해, CysP-1의 시스테인에 대한 빠른 감지 특성을 확인하였다.
실시예 6. 시스테인 농도에 따른 CysP-1의 감응 능력 확인
본 발명자들은 CysP-1의 시스테인 농도에 따른 형광의 특성을 확인하였으며, 그 결과를 도 6에 나타내었다.
실험에 사용된 용매로는 수용액(pH 7.4 PBS buffer, 20% DMSO)을 사용하였으며, 37 ℃에서 1 시간 배양 조건을 사용하였다. 도 6에서 최고 형광파장인 477 nm에서 플라팅(plotting)을 하였으며, 농도에 비례하여 형광이 증가됨을 확인하였다. 매우 낮은 농도에서의 시스테인 감지 특성을 확인한 실험에서는, CysP-1을 0.1 μM로 고정한 후 시스테인을 0.0005-0.005 μM 처리해주었다. 이 실험에서 CysP-1은 시스테인 0.0005 μM=0.06 ppb까지 형광 증가를 보였다.
이를 통해, CysP-1은 시스테인에 높은 민감도를 가짐을 확인하였다.
실시예 7. CysP-1의 시스테인 결합 선택성 확인
본 발명자들은 CysP-1의 시스테인에 대한 선택성을 형광 변화를 통해 확인하였으며, 그 결과를 도 7에 나타내었다.
구체적으로, CysP-1이 시스테인에 대한 선택적 감응 여부를 확인하기 위하여 형광 변화 여부를 확인하였다. 실험에 사용된 용매로는 수용액(pH 7.4 PBS buffer, 20% DMSO)을 사용하였고, CysP-1의 시스테인은 TCI (Tokyo chemical industry Co., Ltd)사의 제품을 사용하였으며, 각 메탈이온은 Sigma aldrich, TCI, Alfa 사에서 제공한 제품을 사용하였다. 교반(Incubation)은 37 ℃에서 1 시간 동안 진행되었다. CysP-1은 10 mM로 DMSO 용액에 녹여 사용되었으며, 최종 사용되는 용매 조건에서 DMSO의 양이 각 용기별 동일하도록 통제되었다 (1% 미만).
도 7의 그래프는 CysP-1(노란색선)에 시스테인이 포함된 수용액(pH 7.4 PBS buffer, 20% DMSO)을 추가했을 때(보라색선)의 형광 변화를 보여주고 있다. CysP-1의 농도는 10 μM로 고정하였다. 모든 형광세기는 37 ℃에서 1 시간 교반 후 형광 분광광도계(spectro-fluorophotometer)로 측정한 결과 값이다.
도 7의 그래프는 CysP-1가 포함된 수용액(pH 7.4 PBS buffer, 20% DMSO)에 다양한 아미노산(amino acid), 금속이온(metal ion), 황화수소(H2S)를 처리한 후 형광 세기를 나타낸 그래프이다. 각 실험에 사용한 CysP-1의 농도는 10 μM, 각 아미노산, 금속이온, 황화수소는 500 μM이 처리되었고, 결과는 37 ℃에서 1 시간 교반 후 형광광도계(spectro-fluorophotometer)로 측정한 형광 세기 값이다. 도 7 그래프에 보여진 가로축에 표시한 금속이온 및 생체분자의 종류는 다음과 같다.
(A) CysP-1;
(B) CysP-1 with L-cysteine;
(C) CysP-1 with L-homocysteine;
(D) CysP-1 with L-Glutathione;
(E) CysP-1 with L-Lysine;
(F) CysP-1 with Lysozyme 1 μg/mL;
(G) CysP-1 with Lysozyme 10 μg/mL;
(H) CysP-1 with Lysozyme 100 μg/mL;
(I) CysP-1 with MgCl2 Hg(NO3)2;
(J) CysP-1 with KCl;
(K) CysP-1 with CaCl2;
(L) CysP-1 with (C2H5)3PAuCl;
(M) CysP-1 with AuCl3;
(N) CysP-1 with FeCl2;
(O) CysP-1 with FeCl3;
(P) CysP-1 with CuCl2;
(Q) CysP-1 with sodium sulfide (H2S source);
그 결과, 도 7에서 보는 바와 같이, CysP-1은 약한 형광 세기 값을 보였으나, 시스테인이 존재하는 B에서는 강한 형광 세기 값을 보였다. CysP-1는 시스테인을 제외한 아미노산, 금속, 황화수소 조건 내에서는 형광 켜짐 현상이 관찰되지 않으며,
이를 통해 CysP-1의 시스테인에 대한 선택성을 확인하였다.
실시예 8. pH에 CysP-1의 시스테인 감응 능력 확인
본 발명자들은 산성도(pH)에 따른 CysP-1의 시스테인 감응 능력을 확인하였으며, 그 결과를 도 8에 나타내었다. pH의 종류로는 pH 3, pH 4, pH 5, pH 6, pH 7, pH 7.4, pH 8, pH 9, pH 10을 사용하였으며, CysP-1의 농도는 10 μM, 시스테인은 500 μM로 고정한 뒤 실험하였다.
실험 결과, CysP-1은 시스테인의 형광 감지를 위한 최적의 pH범위로 생리적 pH를 포함한 pH 7 이상에서 형광 켜짐 특성을 보였다. 도 8은 각 pH별 CysP-1에 대한 시스테인 첨가 전 후의 형광 세기 변화를 나타낸 것이며, 형광 세기는 형광 그래프로부터 도출되었다.
이를 통해, 이는 CysP-1가 생물학적 시료에서 시스테인 검출에 적용 가능함을 확인하였다.
실시예 9. CysP-1과 시스테인의 화학 반응에 따른 부가 생성물 확인
본 발명자들은 CysP-1과 시스테인 화학 반응시 발생하는 부가 생성물을 흡광 및 형광 분석을 통해 확인하였으며, 그 결과를 도 9에 나타내었다. 기술된 반응 메커니즘에 따라, CysP-1은 시스테인과 반응하여 부산물인 황화수소(hydrogen sulfide; H2S)를 생성한다. 황화수소의 생성 여부를 확인하기 위해, 황화수소에 감응하는 형광 프로브인 SF7-AM을 사용하였다.
도 9에는 SF7-AM의 작용 메커니즘을 나타내었다. SF7-AM은 황화수소와 화학 반응하여, 녹색 파장 영역대의 방출을 보이며 495 nm 및 520 nm에서 각각 최대 흡수 및 방출을 가진다.
도 10 및 11은 시스테인 존재하에서 CysP-1과 SF7-AM을 처리한 후 형광 그래프를 나타낸 것이다. 도 10은 시스테인, CysP-1, SF7-AM의 반응 혼합물에 화합물 4의 최고 흡수 값인 394 nm 파장의 광을 조사하여 형광을 관찰한 결과이며, 화합물 4의 생성으로 인한 형광 증가가 유도됨을 뜻한다. 도 11은 CysP-1, SF7-AM의 반응 혼합물에 SF7-AM의 최고 흡수 값인 495 nm 파장의 광을 조사하여 형광을 관찰한 결과이며, SF7-AM의 황화수소 반응 후 생성물질에서 형광 신호가 유도됨을 뜻한다.
이를 통해, CysP-1과 시스테인의 화학 반응에 따라 부가 생성물로 황화수소가 나옴을 검증하였다.
실시예 10. CysP-1을 이용한 세포 내 시스테인 영상화 연구
본 발명가들은 CysP-1을 HeLa 세포(사람 자궁암 세포)에 적용하여 세포 내 시스테인의 형광 영상화 연구를 수행하였으며, 그 결과를 도 12에 나타내었다.
구체적으로, HeLa 세포는 한국 세포주 은행(Korea Cell Line Bank)에서 구매 하였다. 세포를 10 % 태아 소 혈청(fetal bovine serum, Hyclone) 및 1% 페니실린 - 스트렙토 마이신(penicillin streptomycin, Hyclone)을 추가한 Eagle's 배지(cell culture media, Hyclone, US)에서 배양했다. 배양은 37 ℃, 5% CO2를 함유한 배양기에서 배양했다. 약 2 Х 105 세포를 공초점 접시(confocal dish, SPL 생명 과학, Ref. of Korea) 유리 바닥에 처리 후 24 시간 배양했다.
[CysP-1]: 공 초점 접시에 세포가 80% 차지하면 세포에 CysP-1(30 μM)을 처리한 후 2시간 동안 37 ℃, 5% CO2에서 배양한다.
[시스테인+CysP-1]: 공초점 접시에 세포가 80% 차지하면 세포에 CysP-1(30 μM)과 시스테인(30 μM)을 처리한 후 2시간 동안 37 ℃, 5% CO2에서 배양한다.
[시스테인+CysP-1+SF7-AM]: 공 초점 접시에 세포가 80% 차지하면 세포에 CysP-1(30 μM), 시스테인(30 μM), SF7-AM(30 μM) 을 처리한 후 2시간 동안 37 ℃, 5% CO2에서 배양한다.
[NEM+CysP-1+SF7-AM]: 공 초점 접시에 세포가 80% 차지하면 세포에 CysP-1(30 μM), SF7-AM(30 μM), NEM(30 μM)을 처리한 후 2시간 동안 37 ℃, 5% CO2에서 배양한다.
NEM(N-ethylmaleimide) 시약은 세포 내 바이오티올을 제거해주는 목적으로 사용되었으며, NEM이 처리된 세포는 내부에 매우 낮은 바이오티올을 포함한다. 이후 세포막을 선택적으로 표지하는 셀 마스크 레드(Cell Mask red) 시약을 0.1 μg/mL 농도로 처리하여 1시간과 6시간 동안 각각 배양하였다. 세포막 염색을 통해 CysP-1이 세포 내 시스테인만을 감지하는지 여부를 검증하였다. 배양 후, 일광자 형광현미경(confocal fluorescence microscopy, Leica microscope TCS SP5)으로 세포를 관찰하였다. 또한 황화수소를 감지하는 SF7-AM(30 μM) 형광 이미지를 공초점 레이저 스캐닝 현미경(CLSM, Carl-Zeiss LSM 700 Exciter, 독일)으로 시각화 하였다.
여기 파장 및 방출 채널; 파란색(405 nm, 410-500 nm), 녹색(488 nm, 498-640 nm) 및 빨간색(640 nm, 645-700 nm)에서 관찰하였다.
본 실험을 통해, CysP-1은 높은 세포 투과성으로 세포 내 시스테인과 선택적으로 감응하여 세포 형광 영상화 활용이 가능하며, 또한 부가물로서 황화수소가 생성됨을 확인하였다.
실시예 11. CysP-1의 세포독성 확인
본 발명자들은 CysP-1의 세포독성을 MTT kit(MTT cell proliferation assay kit, Thermo Fisher, US)을 사용하여 HeLa 세포에서 확인하였으며, 그 결과를 도 13에 나타내었다.
구체적으로, HeLa 세포를 96-웰 플레이트(96-well plate)에 100,000 cells/well 밀도로, 5% 이산화탄소(CO2) 조건의 37 ℃ 공기 중에서 24 시간 배양되었다. CysP-1를 수용액(산도 7.4, phosphate-buffered saline; PBS)에 녹인 뒤 1-100 μM 농도로 세포에 처리하고 다시 24 시간 동안 배양하였다. 이후, 10 μL의 MTT 용액을 처리하고 4 시간 동안 추가로 세포를 배양하였다. 이후, microplate reader (Multiskan EX, Thermo Eletron)에서 550 nm 파장을 이용하여 흡수를 관찰함으로써 세포 독성 여부를 확인하였다. MTT kit 기반 세포 독성 검사는 제조사에서 제공하는 프로토콜을 따라 진행되었다.
그 결과, 도 13에서와 같이, CysP-1는 1-100 μM 농도에 대해 90% 이상의 세포생존율을 보였으며, 이를 통해 CysP-1의 낮은 세포독성을 확인하였다.
상기 진술한 본 발명의 설명은 예시를 위한 것이며, 본 발명이 속하는 기술분야의 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 쉽게 변형이 가능하다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시 예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다.

Claims (9)

  1. 하기 화학식 1의 화합물로 표시되는 시스테인 감지용 형광 프로브 화합물:
    [화학식 1]
    Figure 112020007191105-pat00004
  2. 제 1 항에 있어서,
    상기 형광 프로브 화합물은 시스테인과 반응하여 형광 켜짐 현상을 나타내는 것을 특징으로 하는, 형광 프로브 화합물.
  3. 제 1 항에 있어서,
    상기 형광 프로브 화합물은 시스테인과 반응하여 황화수소를 생성하는 것을 특징으로 하는, 형광 프로브 화합물.
  4. 시스테인이 포함된 시료에 제 1 항의 형광 프로브 화합물을 첨가하여, 발생하는 형광을 측정하는 시스테인 검출 방법.
  5. 제 1 항의 형광 프로브 화합물을 세포 또는 조직에 처리하여 시스테인 또는 황화수소의 형광을 측정하는 세포 또는 조직의 영상화(imaging) 방법.
  6. 제 5 항에 있어서,
    상기 형광은 공초점 레이저 스캐닝 현미경을 이용하여 측정하는 것을 특징으로 하는, 세포 또는 조직의 영상화 방법.
  7. 제 5 항에 있어서,
    상기 세포 또는 조직은 분리된 세포 또는 조직인 것을 특징으로 하는, 세포 또는 조직의 영상화 방법.
  8. 제 5 항에 있어서,
    상기 세포 또는 조직은 암 세포 또는 암 조직인 것을 특징으로 하는, 세포 또는 조직의 영상화 방법.
  9. 제 8 항에 있어서,
    상기 암은 자궁 경부암인 것을 특징으로 하는, 세포 또는 조직의 영상화 방법.
KR1020200008152A 2020-01-21 2020-01-21 시스테인 감지용 형광 프로브 화합물 및 이의 용도 KR102216789B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020200008152A KR102216789B1 (ko) 2020-01-21 2020-01-21 시스테인 감지용 형광 프로브 화합물 및 이의 용도

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020200008152A KR102216789B1 (ko) 2020-01-21 2020-01-21 시스테인 감지용 형광 프로브 화합물 및 이의 용도

Publications (1)

Publication Number Publication Date
KR102216789B1 true KR102216789B1 (ko) 2021-02-16

Family

ID=74687026

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020200008152A KR102216789B1 (ko) 2020-01-21 2020-01-21 시스테인 감지용 형광 프로브 화합물 및 이의 용도

Country Status (1)

Country Link
KR (1) KR102216789B1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115728281A (zh) * 2022-12-09 2023-03-03 山西大学 一种用于l-色氨酸检测的荧光探针及其制备
KR20230140054A (ko) 2022-03-29 2023-10-06 경희대학교 산학협력단 신규 형광 프로브를 이용한 혈장 내 호모시스테인 검출 방법 및 교모세포종 진단 방법

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150090673A (ko) * 2014-01-29 2015-08-06 한국과학기술원 플루오레세인을 기반으로 한 시스테인/호모시스테인에 선택적으로 반응하는 화합물 및 형광 프로브
KR20160116179A (ko) * 2015-03-26 2016-10-07 이화여자대학교 산학협력단 시스테인 또는 호모시스테인을 선택적으로 감지하기 위한 니트로벤조티아디아졸 구조 기반의 프로브
KR20170118597A (ko) * 2016-04-15 2017-10-25 고려대학교 산학협력단 시스테인 검출용 이광자 형광 프로브 화합물
KR20170120374A (ko) * 2016-04-21 2017-10-31 한국외국어대학교 연구산학협력단 옥사졸리디노인돌을 이용한 시스테인 검출용 프로브 및 검출 방법.

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150090673A (ko) * 2014-01-29 2015-08-06 한국과학기술원 플루오레세인을 기반으로 한 시스테인/호모시스테인에 선택적으로 반응하는 화합물 및 형광 프로브
KR20160116179A (ko) * 2015-03-26 2016-10-07 이화여자대학교 산학협력단 시스테인 또는 호모시스테인을 선택적으로 감지하기 위한 니트로벤조티아디아졸 구조 기반의 프로브
KR20170118597A (ko) * 2016-04-15 2017-10-25 고려대학교 산학협력단 시스테인 검출용 이광자 형광 프로브 화합물
KR20170120374A (ko) * 2016-04-21 2017-10-31 한국외국어대학교 연구산학협력단 옥사졸리디노인돌을 이용한 시스테인 검출용 프로브 및 검출 방법.

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230140054A (ko) 2022-03-29 2023-10-06 경희대학교 산학협력단 신규 형광 프로브를 이용한 혈장 내 호모시스테인 검출 방법 및 교모세포종 진단 방법
CN115728281A (zh) * 2022-12-09 2023-03-03 山西大学 一种用于l-色氨酸检测的荧光探针及其制备

Similar Documents

Publication Publication Date Title
Chen et al. A novel fluorophore based on the coupling of AIE and ESIPT mechanisms and its application in biothiol imaging
Zhang et al. A novel near-infrared fluorescent probe for highly selective detection of cysteine and its application in living cells
Liu et al. Construction of NIR and ratiometric fluorescent probe for Hg 2+ based on a rhodamine-inspired dye platform
Wang et al. A cyanine-based colorimetric and fluorescence probe for detection of hydrogen sulfide in vivo
Wang et al. A novel pyrazoline-based selective fluorescent probe for detecting reduced glutathione and its application in living cells and serum
KR102216789B1 (ko) 시스테인 감지용 형광 프로브 화합물 및 이의 용도
CN107056769A (zh) 一种l‑半胱氨酸荧光探针及其制备方法
Wang et al. A reaction-based and highly selective fluorescent probe for hydrogen sulfide
Zhu et al. A novel colorimetric and ratiometric fluorescent probe for cysteine based on conjugate addition-cyclization-elimination strategy with a large Stokes shift and bioimaging in living cells
Lu et al. A two-separated-emission fluorescent probe for simultaneous discrimination of Cys/Hcy and GSH upon excitation of two different wavelengths
Bhardwaj et al. Fluorescent organic nanoparticles (FONs) of rhodamine-appended dipodal derivative: highly sensitive fluorescent sensor for the detection of Hg 2+ in aqueous media
CN111807993B (zh) 一种用于特异性检测肼的近红外荧光化合物及制备方法
Song et al. Investigation of thiolysis of NBD amines for the development of H 2 S probes and evaluating the stability of NBD dyes
Shu et al. Synthesis and evaluation of a novel fluorescent chemosensor for glutathione based on a rhodamine B and N-[4-(carbonyl) phenyl] maleimide conjugate and its application in living cell imaging
CN107602502A (zh) 一种用于生物硫醇检测的esipt型荧光探针及应用
EP3798221A1 (en) Fluorescent probe and preparation method and use thereof
Roubinet et al. Photoactivatable rhodamine spiroamides and diazoketones decorated with “Universal Hydrophilizer” or hydroxyl groups
WO2018003686A1 (ja) 酵素特異的な細胞内滞留性赤色蛍光プローブ。
Zhu et al. A novel and effective benzo [d] thiazole-based fluorescent probe with dual recognition factors for highly sensitive and selective imaging of cysteine in vitro and in vivo
Yan et al. A rhodamine based fluorescent probe for Hg2+ and its application to cellular imaging
Zhang et al. Red emissive fluorescent probe for the rapid detection of selenocysteine
Zhou et al. Molecular imaging of biothiols and in vitro diagnostics based on an organic chromophore bearing a terbium hybrid probe
CN110498786B (zh) 一种检测半胱氨酸/同型半胱氨酸和谷胱甘肽的新型比值型荧光探针
CN110092773B (zh) 一种氧杂蒽类衍生物及其制备方法和应用
Wang Molecular engineering of an efficient iminocoumarin-based probe for practical sensing applications

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant