KR102206266B1 - Functional resin composition using biomass resources - Google Patents

Functional resin composition using biomass resources Download PDF

Info

Publication number
KR102206266B1
KR102206266B1 KR1020180138493A KR20180138493A KR102206266B1 KR 102206266 B1 KR102206266 B1 KR 102206266B1 KR 1020180138493 A KR1020180138493 A KR 1020180138493A KR 20180138493 A KR20180138493 A KR 20180138493A KR 102206266 B1 KR102206266 B1 KR 102206266B1
Authority
KR
South Korea
Prior art keywords
acid
biomass
derived
resin composition
functional resin
Prior art date
Application number
KR1020180138493A
Other languages
Korean (ko)
Other versions
KR20200054781A (en
Inventor
임헌영
최승률
조윤
Original Assignee
주식회사 안코바이오플라스틱스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 안코바이오플라스틱스 filed Critical 주식회사 안코바이오플라스틱스
Priority to KR1020180138493A priority Critical patent/KR102206266B1/en
Priority to PCT/KR2019/005832 priority patent/WO2020101131A1/en
Priority to EP19884429.2A priority patent/EP3880733A4/en
Priority to US17/309,258 priority patent/US11795268B2/en
Priority to CN201980082357.XA priority patent/CN113272356B/en
Publication of KR20200054781A publication Critical patent/KR20200054781A/en
Application granted granted Critical
Publication of KR102206266B1 publication Critical patent/KR102206266B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/12Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/16Dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/66Polyesters containing oxygen in the form of ether groups
    • C08G63/668Polyesters containing oxygen in the form of ether groups derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/672Dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/12Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/16Dicarboxylic acids and dihydroxy compounds
    • C08G63/18Dicarboxylic acids and dihydroxy compounds the acids or hydroxy compounds containing carbocyclic rings
    • C08G63/181Acids containing aromatic rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/12Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/16Dicarboxylic acids and dihydroxy compounds
    • C08G63/18Dicarboxylic acids and dihydroxy compounds the acids or hydroxy compounds containing carbocyclic rings
    • C08G63/181Acids containing aromatic rings
    • C08G63/183Terephthalic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/12Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/16Dicarboxylic acids and dihydroxy compounds
    • C08G63/20Polyesters having been prepared in the presence of compounds having one reactive group or more than two reactive groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/60Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from the reaction of a mixture of hydroxy carboxylic acids, polycarboxylic acids and polyhydroxy compounds

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Polyesters Or Polycarbonates (AREA)

Abstract

본 발명은 바이오매스 유래 성분을 이용한 기능성 수지 조성물에 관한 것으로, 더욱 상세하게는 바이오매스 유래 성분, 방향족 디카르복실산, 알코올 혼합물, 사슬연장제 및 다관능 화합물로 이루어지며, 상기 바이오매스 유래 성분은 바이오매스 유래 숙신산 단독 또는 바이오매스 유래 숙신산과 화석원료 유래 지방족 디카르복실산의 혼합물로 이루어진다.
상기의 성분으로 이루어지는 기능성 수지 조성물은 가공성형성, 인열강도, 인장강도 및 내가수분해성이 우수하여 경시변화가 억제되는 효과를 나타낸다.
The present invention relates to a functional resin composition using a biomass-derived component, and more specifically, a biomass-derived component, an aromatic dicarboxylic acid, an alcohol mixture, a chain extender and a polyfunctional compound, and the biomass-derived component Is composed of biomass-derived succinic acid alone or a mixture of biomass-derived succinic acid and fossil-derived aliphatic dicarboxylic acid.
The functional resin composition composed of the above components exhibits excellent processability, tear strength, tensile strength, and hydrolysis resistance, and thus exhibits an effect of suppressing changes over time.

Description

바이오매스 유래 성분을 이용한 기능성 수지 조성물{FUNCTIONAL RESIN COMPOSITION USING BIOMASS RESOURCES}Functional resin composition using biomass-derived ingredients {FUNCTIONAL RESIN COMPOSITION USING BIOMASS RESOURCES}

본 발명은 바이오매스 유래 성분을 이용한 기능성 수지 조성물에 관한 것으로, 더욱 상세하게는 가공성형성, 인열강도, 인장강도 및 내가수분해성이 우수하여 경시변화가 억제되는 효과를 나타내는 바이오매스 유래 성분을 이용한 기능성 수지 조성물에 관한 것이다.The present invention relates to a functional resin composition using a biomass-derived component, and more particularly, a biomass-derived component that exhibits an effect of suppressing changes over time due to excellent process formability, tear strength, tensile strength and hydrolysis resistance. It relates to a functional resin composition.

합성수지는 다양한 방법으로 대량 생산이 가능할 뿐 아니라 경량성, 내구성, 가격경쟁력, 내약품성 및 기계적 성질이 우수하여 식품, 약품, 농업용 포장재, 공업용 포장재 뿐 아니라 현대생활에 있어서 인간의 생활에 있어 광범위하게 사용되고 있다.Synthetic resins can be mass-produced in a variety of ways, and have excellent light weight, durability, price competitiveness, chemical resistance and mechanical properties, and are widely used in human life in modern life as well as food, pharmaceuticals, agricultural packaging, and industrial packaging. have.

하지만, 이러한 합성수지 소재는 사용 후 매립이나 소각 등의 과정을 통해 폐기처분되는데, 매립의 경우 합성수지 소재가 땅속에서 분해되는데 매우 오랜 시간이 소요되며, 소각의 경우는 다이옥신 등과 같은 유해가스를 발생시키는 문제점이 있었다.However, these synthetic resin materials are disposed of through a process such as landfill or incineration after use.In the case of landfill, it takes a very long time for the synthetic resin material to decompose in the ground, and in the case of incineration, harmful gases such as dioxin are generated. There was this.

합성수지로 인한 환경오염은 현재 세계적으로 상당히 우려할 수준에 도달해 있으며, 이러한 문제점을 해결하기 위한 수단의 하나로 생분해성 수지의 개발이 활발히 이루어지고 있다.Environmental pollution caused by synthetic resins is currently reaching a level of concern worldwide, and biodegradable resins are being actively developed as one of the means to solve these problems.

생분해성 수지는 토양 또는 수중의 미생물에 의해 물과 이산화탄소로 최종 분해되는 수지로 현재까지 개발된 생분해성 수지는 젖산 또는 락타이드를 화학적 촉매 또는 효소의 존재 하에 개환 반응시켜 합성한 폴리락트산(PLA), 입실론 카프로락톤 모노머로부터 출발하여 화학적으로 합성한 폴리카프로락톤 및 디올-디카르복실산 계열의 지방족 폴리에스테르, 기타 미생물의 체내 합성으로 제조되는 폴리하이드록시부틸레이트(PHB) 등이 있으며, 이 중 가장 대표적인 물질은 폴리락트산(PLA)과 디올과 디카르복실산의 중합으로 얻어지는 지방족(또는 지방족/방향족) 폴리에스테르다.Biodegradable resin is a resin that is finally decomposed into water and carbon dioxide by microorganisms in soil or water. The biodegradable resin developed so far is polylactic acid (PLA) synthesized by ring-opening reaction of lactic acid or lactide in the presence of a chemical catalyst or enzyme. , Polycaprolactone and diol-dicarboxylic acid-based aliphatic polyesters synthesized chemically starting from epsilon caprolactone monomers, and polyhydroxybutyrate (PHB) prepared by in vivo synthesis of other microorganisms, among which The most representative material is an aliphatic (or aliphatic/aromatic) polyester obtained by polymerization of polylactic acid (PLA) and diols and dicarboxylic acids.

그 중 폴리락트산의 경우 바이오매스 자원으로 유래된 가장 친환경적인 제품이나 낮은 내열온도, 강한 취성 등의 물성적인 한계와 늦은 생분해 속도로 인해 그 사용용도가 제한적이다.Among them, polylactic acid is the most environmentally friendly product derived from biomass resources, but its use is limited due to its physical properties such as low heat resistance, strong brittleness, and a slow biodegradation rate.

한편, 이와는 달리 디올과 디카르복실산로부터 제조되어지는 지방족(또는 지방족/방향족) 폴리에스테르의 경우 폴리에틸렌과 폴리프로필렌 등과 유사한 특성을 나타내기 때문에, 합성수지의 대체자원으로 기대되고 있다.On the other hand, unlike this, the aliphatic (or aliphatic/aromatic) polyester produced from diol and dicarboxylic acid exhibits similar properties to polyethylene and polypropylene, and is therefore expected as an alternative resource for synthetic resins.

그러나, 상기한 바이오매스 유래 원료를 이용한 생분해성 폴리에스테르 수지들은 바이오매스 유래 원료에 포함된 불순물로 인해 반응의 완결도가 떨어져 화석원료 유래 폴리에스테르에 비해 가수분해가 쉽게 일어나기 때문에, 내구성이 저하되는 문제점이 있었다.However, the biodegradable polyester resins using the biomass-derived raw materials have a lower degree of completion of the reaction due to impurities contained in the biomass-derived raw materials and are more easily hydrolyzed than the fossil-derived polyesters, resulting in reduced durability. There was a problem.

한국특허등록 제10-0722516호(2007.05.21.)Korean Patent Registration No. 10-0722516 (2007.05.21.) 한국특허공개 제10-2013-0118221호(2013.10.29.)Korean Patent Publication No. 10-2013-0118221 (2013.10.29.) 한국특허등록 제10-1276100호(2013.06.12.)Korean Patent Registration No. 10-1276100 (2013.06.12.)

본 발명의 목적은 가공성형성, 인열강도, 인장강도 및 내가수분해성이 우수하여 경시변화가 억제되는 효과를 나타내는 바이오매스 유래 성분을 이용한 기능성 수지 조성물을 제공하는 것이다.It is an object of the present invention to provide a functional resin composition using a biomass-derived component that exhibits an effect of suppressing changes over time due to excellent process formability, tear strength, tensile strength and hydrolysis resistance.

본 발명의 목적은 바이오매스 유래 성분, 알코올 혼합물, 사슬연장제 및 다관능 화합물로 이루어지며, 상기 바이오매스 유래 성분은 바이오매스 유래 숙신산 단독 또는 바이오매스 유래 숙신산과 화석원료 유래 지방족 디카르복실산의 혼합물로 이루어지는 것을 특징으로 하는 바이오매스 유래 성분을 이용한 기능성 수지 조성물을 제공함에 의해 달성된다.An object of the present invention is composed of a biomass-derived component, an alcohol mixture, a chain extender, and a multifunctional compound, and the biomass-derived component comprises biomass-derived succinic acid alone or biomass-derived succinic acid and fossil-derived aliphatic dicarboxylic acid. It is achieved by providing a functional resin composition using a biomass-derived component, characterized in that it consists of a mixture.

본 발명의 바람직한 특징에 따르면, 상기 화석원료 유래 지방족 디카르복실산은 옥살산, 말로닉산, 숙신산, 글루타르산, 아디프산, 피멜릭산, 수베릭산, 아젤릭산, 세바식산 및 그것들의 무수물로 이루어진 그룹에서 선택된 하나 이상으로 이루어지는 것으로 한다.According to a preferred feature of the present invention, the aliphatic dicarboxylic acid derived from fossil raw materials is from the group consisting of oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelic acid, sebacic acid, and anhydrides thereof. It shall consist of one or more selected.

본 발명의 더 바람직한 특징에 따르면, 상기 알코올 혼합물은 바이오매스 유래 1,4-부탄디올 및 화석원료 유래 지방족 디올로 이루어진 그룹에서 선택된 하나 이상으로 이루어지는 것으로 한다.According to a more preferred feature of the present invention, the alcohol mixture is composed of at least one selected from the group consisting of biomass-derived 1,4-butanediol and fossil-derived aliphatic diols.

본 발명의 더욱 바람직한 특징에 따르면, 상기 화석원료 유래 지방족 디올은 에틸렌글리콜, 1,3-프로판디올, 네오펜틸글리콜, 프로필렌글리콜, 1,2-부탄디올, 1,4-부탄디올 및 1,6-헥산디올로 이루어진 그룹에서 선택된 하나 이상으로 이루어지는 것으로 한다.According to a more preferred feature of the present invention, the fossil-derived aliphatic diol is ethylene glycol, 1,3-propanediol, neopentyl glycol, propylene glycol, 1,2-butanediol, 1,4-butanediol, and 1,6-hexane. It consists of at least one selected from the group consisting of diols.

본 발명의 더욱 더 바람직한 특징에 따르면, 상기 사슬연장제는 이소시아네이트 화합물 또는 카르보디이미드 화합물로 이루어지는 것으로 한다.According to a further preferred feature of the present invention, the chain extender is made of an isocyanate compound or a carbodiimide compound.

본 발명의 더욱 더 바람직한 특징에 따르면, 상기 다관능 화합물은 아래 [화학식 1]과 같이 4,4-비스(4-히드록시페닐)발레릭산과 폴리에틸렌글리콜의 에스테르화 반응을 통해 제조되는 것으로 한다.According to an even more preferred feature of the present invention, the polyfunctional compound is to be prepared through an esterification reaction of 4,4-bis(4-hydroxyphenyl)valeric acid and polyethylene glycol as shown in [Chemical Formula 1] below.

[화학식 1][Formula 1]

Figure 112018112296701-pat00001
Figure 112018112296701-pat00001

여기서, n은 8 내지 10의 정수이다.Here, n is an integer of 8 to 10.

본 발명의 더욱 더 바람직한 특징에 따르면, 상기 다관능 화합물은 아래 [화학식 2]와 같이 DL-말릭산과 1,4-시클로헥산디메탄올을 질소분위기 하에서 에스테르화 반응을 통해 제조되는 것으로 한다.According to a further preferred feature of the present invention, the polyfunctional compound is prepared by esterification of DL-malic acid and 1,4-cyclohexanedimethanol in a nitrogen atmosphere as shown in [Chemical Formula 2] below.

[화학식 2][Formula 2]

Figure 112020019070700-pat00010
Figure 112020019070700-pat00010

여기서, X는 3 내지 5의 정수이다.Here, X is an integer of 3 to 5.

본 발명의 더욱 더 바람직한 특징에 따르면, 상기 바이오매스 유래 성분을 이용한 기능성 수지 조성물은 방향족 디카르복실산을 더 포함할 수 있다. 상기 방향족 디카르복실산은 디메틸테레프탈레이트, 테레프탈산, 이소프탈산 및 나프토산으로 이루어진 그룹에서 선택된 하나 이상으로 이루어지는 것으로 한다.According to an even more preferred feature of the present invention, the functional resin composition using the biomass-derived component may further include an aromatic dicarboxylic acid. The aromatic dicarboxylic acid is composed of at least one selected from the group consisting of dimethyl terephthalate, terephthalic acid, isophthalic acid, and naphthoic acid.

본 발명에 따른 바이오매스 유래 성분을 이용한 기능성 수지 조성물은 가공성형성, 인열강도, 인장강도 및 내가수분해성이 우수하여 경시변화가 억제되는 기능성 수지를 제공하는 탁월한 효과를 나타낸다.The functional resin composition using the biomass-derived component according to the present invention has excellent processability, tear strength, tensile strength, and hydrolysis resistance, and thus exhibits an excellent effect of providing a functional resin that suppresses changes over time.

이하에는, 본 발명의 바람직한 실시예와 각 성분의 물성을 상세하게 설명하되, 이는 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 발명을 용이하게 실시할 수 있을 정도로 상세하게 설명하기 위한 것이지, 이로 인해 본 발명의 기술적인 사상 및 범주가 한정되는 것을 의미하지는 않는다.Hereinafter, a preferred embodiment of the present invention and the physical properties of each component will be described in detail, but this is for explaining in detail enough that one of ordinary skill in the art can easily implement the invention, This does not mean that the technical spirit and scope of the present invention are limited.

본 발명에 따른 바이오매스 유래 성분을 이용한 기능성 수지 조성물은 바이오매스 유래 성분, 알코올 혼합물, 사슬연장제 및 다관능 화합물로 이루어진다.The functional resin composition using the biomass-derived component according to the present invention comprises a biomass-derived component, an alcohol mixture, a chain extender, and a multifunctional compound.

또한, 본 발명에 따른 바이오매스 유래 성분을 이용한 기능성 수지 조성물은 상기의 바이오매스 유래 성분, 알코올 혼합물, 사슬연장제 및 다관능 화합물 이외에 방향족 디카르복실산을 추가로 포함하여 이루어진다.In addition, the functional resin composition using the biomass-derived component according to the present invention further comprises an aromatic dicarboxylic acid in addition to the biomass-derived component, an alcohol mixture, a chain extender, and a polyfunctional compound.

상기 바이오매스 유래 성분은 바이오매스 유래 숙신산 단독 또는 바이오매스 유래 숙신산과 화석원료 유래 지방족 디카르복실산의 혼합물로 이루어지는데, 상기 화석원료 유래 지방족 디카르복실산 혼합물은 옥살산, 말로닉산, 숙신산, 글루타르산, 아디프산, 피멜릭산, 수베릭산, 아젤릭산, 세바식산 및 그것들의 무수물로 이루어진 그룹에서 선택된 하나 이상으로 이루어지는 것이 바람직하다.The biomass-derived component is composed of biomass-derived succinic acid alone or a mixture of biomass-derived succinic acid and fossil-derived aliphatic dicarboxylic acid, and the fossil-derived aliphatic dicarboxylic acid mixture is oxalic acid, malonic acid, succinic acid, and glue. It is preferably composed of at least one selected from the group consisting of taric acid, adipic acid, pimelic acid, suberic acid, azelic acid, sebacic acid, and anhydrides thereof.

본 발명에서 사용되는 필수성분인 바이오매스 유래 숙신산은 기존 화석자원 유래 원료로부터 제조되는 지방족 및 방향족 코폴리에스테르의 친환경성 강화를 위하여 사용하는 것으로, 식물이 광합성 작용을 통해 얻어지는 전분, 셀룰로오스 등의 물질로부터 발효, 추출, 정제 등을 통해 얻어지게 된다. 본 발명에서는 상기와 같은 식물자원으로부터 기원한 상용화된 제품을 특별한 후 처리 없이 사용할 수 있다.Biomass-derived succinic acid, an essential component used in the present invention, is used to enhance the eco-friendliness of aliphatic and aromatic copolyesters produced from conventional fossil resources, and substances such as starch and cellulose obtained through photosynthesis by plants It is obtained through fermentation, extraction, purification, etc. In the present invention, commercialized products originating from plant resources as described above can be used without special post-treatment.

또한, 상기 화석원료 유래 지방족 디카르복실산은 탄소수가 0 내지 8인 것이 바람직하며, 옥살산, 말로닉산, 숙신산, 글루타르산, 아디프산, 피멜릭산, 수베릭산, 아젤릭산, 세바식산 및 그것들의 무수물로 이루어진 그룹에서 선택된 하나 이상으로 이루어지는 것이 더욱 바람직하다.In addition, the aliphatic dicarboxylic acid derived from the fossil material preferably has 0 to 8 carbon atoms, and oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelic acid, sebacic acid and anhydrides thereof More preferably, it is made of at least one selected from the group consisting of.

상기 알코올 혼합물은 바이오매스 유래 1,4-부탄디올 및 화석원료 유래 지방족 디올로 이루어진 그룹에서 선택된 하나 이상으로 이루어지는데, 상기 화석원료 유래 지방족 디올은 에틸렌글리콜, 1,3-프로판디올, 네오펜틸글리콜, 프로필렌글리콜, 1,2-부탄디올, 1,4-부탄디올 및 1,6-헥산디올로 이루어진 그룹에서 선택된 하나 이상으로 이루어지는 것이 바람직하다.The alcohol mixture is composed of at least one selected from the group consisting of biomass-derived 1,4-butanediol and fossil-derived aliphatic diol, and the fossil-derived aliphatic diol is ethylene glycol, 1,3-propanediol, neopentyl glycol, It is preferably composed of at least one selected from the group consisting of propylene glycol, 1,2-butanediol, 1,4-butanediol, and 1,6-hexanediol.

상기 사슬연장제는 이소시아네이트 화합물 또는 카르보디이미드 화합물로 이루어지는데, 상기 이소시아네이트 화합물은 1,6-헥사메틸렌디이소시아네이트, 이소포론디이소시아네이트, 4,4-디페닐메탄디이소시아네이트 및 2,2-디페닐메탄디이소시아네이트로 이루어진 그룹에서 선택된 하나로 이루어지는 것이 바람직하며,The chain extender is made of an isocyanate compound or a carbodiimide compound, and the isocyanate compound is 1,6-hexamethylene diisocyanate, isophorone diisocyanate, 4,4-diphenylmethane diisocyanate, and 2,2-diphenyl It is preferable to consist of one selected from the group consisting of methane diisocyanate,

상기 카르보디이미드 화합물은 1,3-디사이클로헥실카르보디이미드, Nisshinbo社에서 판매하는 HMV-8CA, HMV-10B, Raschig사의 STABILIZER 9000, STABILIZER 7000, 비스-(2,6-디이소프로필-페닐린-2,4-카르보디이미드) 및 폴리-(1,3,5-트리이소프로필-페닐리-2,4-카르보디이미드)로 이루어진 그룹에서 선택된 하나로 이루어지는 것이 바람직하다.The carbodiimide compound is 1,3-dicyclohexylcarbodiimide, HMV-8CA, HMV-10B sold by Nisshinbo, STABILIZER 9000 from Raschig, STABILIZER 7000, bis-(2,6-diisopropyl-phenyl) Lin-2,4-carbodiimide) and poly-(1,3,5-triisopropyl-phenylly-2,4-carbodiimide) is preferably composed of one selected from the group consisting of.

상기 추가로 포함될 수 있는 성분인 방향족 디카르복실산은 디메틸테레프탈레이트, 테레프탈산, 이소프탈산 및 나프토산으로 이루어진 그룹에서 선택된 하나 이상으로 이루어지는 것이 바람직하다.The aromatic dicarboxylic acid, which is a component that may be further included, is preferably composed of at least one selected from the group consisting of dimethyl terephthalate, terephthalic acid, isophthalic acid and naphthoic acid.

상기 다관능 화합물은 아래 [화학식 1]과 같이 4,4-비스(4-히드록시페닐)발레릭산과 폴리에틸렌글리콜의 에스테르화 반응을 통해 제조되거나,The polyfunctional compound is prepared through an esterification reaction of 4,4-bis(4-hydroxyphenyl)valeric acid and polyethylene glycol as shown in [Chemical Formula 1] below, or

[화학식 1][Formula 1]

Figure 112018112296701-pat00003
Figure 112018112296701-pat00003

(여기서 n은 8 내지 10의 정수이다.)(Where n is an integer from 8 to 10.)

아래 [화학식 2]와 같이 DL-말릭산과 1,4-시클로헥산디메탄올을 질소분위기 하에서 에스테르화 반응을 통해 제조되는 것을 사용하는 것이 바람직하다.As shown in [Chemical Formula 2] below, it is preferable to use DL-malic acid and 1,4-cyclohexanedimethanol prepared through an esterification reaction in a nitrogen atmosphere.

[화학식 2][Formula 2]

Figure 112020019070700-pat00011
Figure 112020019070700-pat00011

(여기서, X는 3 내지 5의 정수이다.)(Where, X is an integer of 3 to 5.)

상기 화학식 1과 같이 4,4-비스(4-히드록시페닐)발레릭산과 폴리에틸렌글리콜의 에스테르화 반응을 통해 제조된 다관능 화합물은 촉매의 존재 하에 4.4-비스(4-히드록시페닐)발레릭산과 평균분자량 400인 폴리에틸렌글리콜을 210℃에서 2시간 동안 에스테르화 반응을 진행시켜 제조되는데, 상기 화학식 1과 같은 구조를 갖는 다관능 화합물의 생성과정을 아래 반응식 1에 나타내었다.The polyfunctional compound prepared through the esterification reaction of 4,4-bis(4-hydroxyphenyl)valeric acid and polyethylene glycol as shown in Chemical Formula 1 is 4.4-bis(4-hydroxyphenyl)valeric acid in the presence of a catalyst. An acid and polyethylene glycol having an average molecular weight of 400 are prepared by performing an esterification reaction at 210° C. for 2 hours, and the process of generating a polyfunctional compound having the structure as in Formula 1 is shown in Scheme 1 below.

[반응식 1][Scheme 1]

Figure 112018112296701-pat00005
Figure 112018112296701-pat00005

(여기서 n은 8 내지 10의 정수이다.)(Where n is an integer from 8 to 10.)

상기 반응식 1과 같은 과정을 통해 제조되는 화학식 1의 구조를 갖는 다관능 화합물은 생성물인 지방족 및 방향족 코폴리에스테르 합성 시 지방족 디카르복실산과 지방족 디올 간의 에스테르화 반응 단계에 투입되어 함유된 불순물로 인해 반응성이 떨어지는 바이오매스 유래 숙신산과 지방족 디올간의 에스테르화 반응성을 향상시켜 반응속도 및 분자량 상승을 원활하게 하여 생산성과 우수한 기계적 물성을 가지게 할 뿐 아니라 합성되는 고분자 사슬구조를 미세하게 연결해 줌으로써 내가수분해성 향상되어 내구성이 우수한 수지 조성물을 제공하는 역할을 한다.The polyfunctional compound having the structure of Formula 1 prepared through the same process as in Reaction Scheme 1 is introduced into the esterification step between the aliphatic dicarboxylic acid and the aliphatic diol when synthesizing the product aliphatic and aromatic copolyesters. By improving the esterification reactivity between succinic acid and aliphatic diol derived from inferior biomass, the reaction rate and molecular weight increase smoothly, resulting in productivity and excellent mechanical properties, as well as improving hydrolysis resistance by finely connecting the synthesized polymer chain structure. It serves to provide a resin composition having excellent durability.

또한, 상기 화학식 1의 구조를 갖는 다관능 화합물은 반응조제로 사용되어 상기 바이오매스 유래 숙신산에 포함된 불순물로 인해 길어지는 반응시간, 약한 기계적물성 및 빠른 경시변화의 문제를 해결할 수 있다.In addition, the polyfunctional compound having the structure of Formula 1 can be used as a reaction aid to solve the problems of long reaction time, weak mechanical properties, and rapid change over time due to impurities contained in the biomass-derived succinic acid.

상기의 화학식 1의 구조를 갖는 다관능 화합물이 사용되어 제조된 수지 조성물은 수평균분자량이 40,000 내지 100,000, 분자량분포가 2.0 내지 3.8, 용융흐름지수가 190℃, 2,160㎏ 조건하에서 1g/10min 내지 20g/10min, 융점 95℃ 내지 170℃인 특징을 나타낸다.The resin composition prepared by using the polyfunctional compound having the structure of Formula 1 above has a number average molecular weight of 40,000 to 100,000, a molecular weight distribution of 2.0 to 3.8, a melt flow index of 190°C, and 1g/10min to 20g under the conditions of 2,160kg It exhibits a characteristic of /10min and a melting point of 95°C to 170°C.

또한, 상기 화학식 2와 같은 구조를 갖는 다관능 화합물은 수지 조성물의 반응속도향상 및 분자량을 향상시키기 때문에, 기계적 물성과 저장 안정성이 우수한 수지 조성물을 제공한다.In addition, since the polyfunctional compound having the structure as in Formula 2 improves the reaction rate and molecular weight of the resin composition, it provides a resin composition having excellent mechanical properties and storage stability.

상기의 화학식 2의 구조를 갖는 다관능 화합물이 사용되어 제조된 수지 조성물은 수평균분자량이 40,000 내지 100,000, 분자량분포가 2.0 내지 3.8, 용융흐름지수가 190℃, 2,160㎏ 조건하에서 1g/10min 내지 20g/10min, 융점 95℃ 내지 170℃인 특징을 나타낸다.The resin composition prepared by using the polyfunctional compound having the structure of Formula 2 above has a number average molecular weight of 40,000 to 100,000, a molecular weight distribution of 2.0 to 3.8, a melt flow index of 190°C, and 1g/10min to 20g under the conditions of 2,160kg It exhibits a characteristic of /10min and a melting point of 95°C to 170°C.

특히, 폴리에스테르 제조에 통상적으로 사용되는 분지제인 글리세롤, 시트르산 등과 같은 다관능 단량체는 반응의 제어가 어려워 균일한 수지 조성물을 얻기 어렵고 수지의 겔화로 인한 불량발생률이 높지만 상기의 화학식 2와 같은 구조를 나타내는 다관능 화합물은 관능기들의 반응활성에 차이가 있고 긴 사슬을 가지고 있어 반응에 있어서 입체장애로 인해 다관능 단량체에 비해 사용조건이 까다롭지 않고 사용가능 범위 또한 넓은 편이다. 또한, 긴 사슬의 다관능 화합물은 지방족 코폴리에스테르 또는 지방족/방향족 코폴리에스테르 합성 시 에스테르화 반응 초기 단계에 투입되어 고분자 사슬간의 결합을 촉진시켜 반응물의 분자량을 빠르게 높여줄 뿐 아니라 생성되는 수지 조성물의 분자주쇄에 곁가지를 생성시켜 분자량분포를 넓게 하여 얻어지는 수지 조성물의 가공성을 향상시키는 역할을 한다.In particular, polyfunctional monomers such as glycerol and citric acid, which are branching agents commonly used in polyester production, have difficulty in controlling the reaction, making it difficult to obtain a uniform resin composition, and a high defect rate due to gelation of the resin, but has a structure like the above formula (2). The polyfunctional compound shown has a difference in the reaction activity of the functional groups and has a long chain, so the conditions for use are not difficult compared to the polyfunctional monomer due to steric hindrance in the reaction, and the usable range is also wide. In addition, the long-chain polyfunctional compound is introduced at the initial stage of the esterification reaction when synthesizing an aliphatic copolyester or aliphatic/aromatic copolyester to accelerate the bonding between the polymer chains to quickly increase the molecular weight of the reactant, as well as the resulting resin composition. It plays a role in improving the processability of the obtained resin composition by widening the molecular weight distribution by creating a side branch in the molecular main chain of

또한, 제조되는 수지 조성물의 고분자 구조 내에 곁가지 형성 및 고리구조를 갖게 함으로써 최종 얻어지는 수지조성물의 인열강도 및 신장률 향상과 생분해성을 향상시키는 역할을 한다.In addition, it serves to improve the tear strength and elongation rate and biodegradability of the final resin composition by forming a side branch and having a ring structure in the polymer structure of the resin composition to be produced.

이하에서는, 본 발명에 따른 바이오매스 유래 성분을 이용한 기능성 수지 조성물의 제조방법 및 그 제조방법을 통해 제조된 수지 조성물의 물성을 실시예를 들어 설명하기로 한다.Hereinafter, a method for preparing a functional resin composition using a biomass-derived component according to the present invention and physical properties of the resin composition prepared through the method will be described with reference to examples.

<제조예 1><Production Example 1>

1L의 둥근바닥 플라스크를 질소로 치환하고 4.4-비스(4-히드록시페닐)발레릭산 286.33g, 평균분자량 400의 폴리에틸렌글리콜 440g과 촉매로 모노부틸틴옥사이드 0.01g을 투입한 후 210℃에서 2 시간 동안 에스테르화 반응을 진행시켜 반응의 부산물인 물을 충분히 유출시켜 아래 화학식 1의 구조를 갖는 다관능 화합물을 제조하였다.A 1L round-bottom flask was replaced with nitrogen, 4.4-bis(4-hydroxyphenyl)valeric acid 286.33g, polyethylene glycol 440g with an average molecular weight of 400, and monobutyltin oxide 0.01g as a catalyst were added at 210℃ for 2 hours. During the esterification reaction, water, which is a by-product of the reaction, was sufficiently discharged to prepare a polyfunctional compound having the structure of Formula 1 below.

[화학식 1][Formula 1]

Figure 112018112296701-pat00006
Figure 112018112296701-pat00006

(여기서 n은 8 내지 10의 정수이다.)(Where n is an integer from 8 to 10.)

<제조예 2><Production Example 2>

1L의 둥근바닥 플라스크를 질소로 치환하고 DL-말릭산 134.09g, 1,4-시클로헥산디메탄올 173.05g과 촉매로 티타늄이소프로폭사이드 0.1g을 투입한 후, 210℃에서 120분 동안 에스테르화 반응을 진행시켜 투입되는 DL-말릭산 1몰에 대하여 반응의 부산물인 물의 이론적 발생량 2몰을 충분히 유출시켜 아래 화학식 2의 구조를 갖는 다관능 화합물을 제조하였다.A 1 L round bottom flask was replaced with nitrogen, and 134.09 g of DL-malic acid, 173.05 g of 1,4-cyclohexanedimethanol and 0.1 g of titanium isopropoxide as a catalyst were added thereto, followed by esterification at 210° C. for 120 minutes. A polyfunctional compound having the structure of the following formula (2) was prepared by sufficiently distilling 2 moles of the theoretical amount of water, which is a by-product of the reaction, with respect to 1 mole of DL-malic acid introduced by the reaction.

[화학식 2][Formula 2]

Figure 112020019070700-pat00012
Figure 112020019070700-pat00012

(여기서, X는 3 내지 5의 정수이다.)(Where, X is an integer of 3 to 5.)

<실시예 1><Example 1>

100L 반응기를 질소로 치환하고 디메틸테레프탈레이트 19.42kg과 1,4-부탄디올 23.43kg을 반응기에 투입하여 반응온도를 200℃로 고정시키고 두 시간 동안 에스테르화 반응을 진행시켜 메탄올을 유출 시켰다. 이 때 촉매로서 테트라부틸티타네이트를 10g, 안정제로 트리메틸포스페이트 10g를 첨가하였다. 이론량의 메탄올이 유출된 후 바이오매스 자원 유래 숙신산 (네덜란드, Reverdia사의 biosuccinium) 22.44kg과 상기 제조예 1을 통해 제조된 다관능 화합물 15g을 투입한 후 반응온도를 200℃로 고정시키고 물을 유출시켰다. 이 때 촉매로서 디부틸틴옥사이드 10g, 테트라부틸티타네이트 10g, 안정제로 트리메틸포스페이트 20g을 첨가하였다. 이론 량의 물이 유출된 후 계속해서 온도를 상승시키고 촉매로 삼산화 안티몬 10g을 첨가한 후 243℃의 온도와 1.5torr의 감압 하에서 130분간 축중합 반응을 실시하고, 축중합반응을 통해 얻어진 반응물 10kg에 1,6-헥사메틸렌디이소시아네이트 50g을 혼합하고 직경이 58mm인 이축압출기로 125℃ 온도에서 사슬연장반응을 실시하여 바이오매스 유래 성분을 이용한 기능성 수지 조성물을 제조하였다.A 100 L reactor was replaced with nitrogen, and 19.42 kg of dimethyl terephthalate and 23.43 kg of 1,4-butanediol were added to the reactor, and the reaction temperature was fixed at 200° C., and the esterification was carried out for two hours to drain methanol. At this time, 10 g of tetrabutyl titanate was added as a catalyst, and 10 g of trimethyl phosphate was added as a stabilizer. After the theoretical amount of methanol was spilled, 22.44 kg of succinic acid derived from biomass resources (the Netherlands, Reverdia's biosuccinium) and 15 g of the multifunctional compound prepared in Preparation Example 1 were added, and the reaction temperature was fixed at 200°C and water was drained. Made it. At this time, 10 g of dibutyl tin oxide, 10 g of tetrabutyl titanate, and 20 g of trimethyl phosphate were added as a stabilizer. After the theoretical amount of water flowed out, the temperature was continuously raised, 10 g of antimony trioxide was added as a catalyst, and condensation polymerization was carried out for 130 minutes under a reduced pressure of 1.5 torr at a temperature of 243°C, and 10 kg of the reactant obtained through the condensation polymerization reaction 50 g of 1,6-hexamethylene diisocyanate was mixed and a chain extension reaction was carried out at 125°C with a twin screw extruder having a diameter of 58 mm to prepare a functional resin composition using a biomass-derived component.

<실시예 2><Example 2>

상기 실시예 1과 동일하게 진행하되, 상기 제조예 2를 통해 제조된 다관능 화합물을 사용하여 바이오매스 유래 성분을 이용한 기능성 수지 조성물을 제조하였다.Proceed in the same manner as in Example 1, but a functional resin composition using a biomass-derived component was prepared by using the multifunctional compound prepared through Preparation Example 2.

<실시예 3><Example 3>

100L 반응기를 질소로 치환하고 디메틸테레프탈레이트 18.64kg과 1,4-부탄디올 23.43kg을 반응기에 투입하여 반응온도를 200℃ 로 고정시키고 두 시간 동안 에스테르화 반응을 진행시켜 메탄올을 유출 시켰다. 이 때 촉매로서 테트라부틸티타네이트를 10g, 안정제로 트리메틸포스페이트 10g를 첨가하였다. 이론량의 메탄올이 유출된 후 바이오매스 자원 유래 숙신산 (네덜란드, Reverdia사의 biosuccinium) 12.28kg과 상기 제조예 1을 통해 제조된 다관능 화합물 10g을 투입 한 후 반응온도를 200℃ 로 고정시키고 물을 유출시켰다. 이 때 촉매로서 디부틸틴옥사이드 10g, 테트라부틸티타네이트 10g, 안정제로 트리메틸포스페이트 20g을 첨가하였다. 이론량의 물이 유출된 후 계속해서 온도를 상승시키고 촉매로 삼산화안티몬 10g을 첨가한 후 243℃의 온도와 1.5torr의 감압 하에서 162분간 축중합 반응을 실시하고, 축중합반응을 통해 얻어진 반응물 10kg에 비스-(2,6-디이소프로필-페닐린-2,4-카르보디이미드) 25g을 혼합하고 직경이 58mm인 이축압출기로 120℃ 온도에서 사슬연장반응을 실시하여 바이오매스 유래 성분을 이용한 기능성 수지 조성물을 제조하였다.A 100 L reactor was replaced with nitrogen, and 18.64 kg of dimethyl terephthalate and 23.43 kg of 1,4-butanediol were added to the reactor, and the reaction temperature was fixed at 200° C., and the esterification was carried out for two hours to discharge methanol. At this time, 10 g of tetrabutyl titanate was added as a catalyst, and 10 g of trimethyl phosphate was added as a stabilizer. After the theoretical amount of methanol was spilled, 12.28 kg of succinic acid derived from biomass resources (the Netherlands, Reverdia's biosuccinium) and 10 g of the multifunctional compound prepared in Preparation Example 1 were added, and the reaction temperature was fixed at 200°C and water was drained. Made it. At this time, 10 g of dibutyl tin oxide, 10 g of tetrabutyl titanate, and 20 g of trimethyl phosphate were added as a stabilizer. After the theoretical amount of water flowed out, the temperature was continuously increased, 10 g of antimony trioxide was added as a catalyst, and a condensation polymerization reaction was carried out for 162 minutes under a reduced pressure of 1.5 torr at a temperature of 243°C, and 10 kg of the reaction product obtained through the condensation polymerization reaction Ebis-(2,6-diisopropyl-phenylline-2,4-carbodiimide) 25g was mixed and chain extension reaction was carried out at 120℃ with a twin screw extruder with a diameter of 58mm. A functional resin composition was prepared.

<실시예 4><Example 4>

상기 실시예 3과 동일하게 진행하되, 상기 제조예 2를 통해 제조된 다관능 화합물을 사용하여 바이오매스 유래 성분을 이용한 기능성 수지 조성물을 제조하였다.Proceed in the same manner as in Example 3, but a functional resin composition using a biomass-derived component was prepared by using the multifunctional compound prepared through Preparation Example 2.

<실시예 5><Example 5>

100L 반응기를 질소로 치환하고 바이오매스 자원 유래 숙신산 (네덜란드, Reverdia사의 biosuccinium) 23.62kg과 바이오매스 자원 유래 1,4-부탄디올(미국, Myriant Bio-BDO) 23.43kg을 반응기에 투입하고 상기 제조예 1을 통해 제조된 다관능 화합물 18g을 투입한 후 반응온도를 200℃로 고정시키고 물을 유출시켰다. 이 때 촉매로서 디부틸틴옥사이드 5g, 테트라부틸티타네이트 15g, 안정제로 트리메틸포스페이트 15g을 첨가하였다. 이론량의 물이 유출된 후 계속해서 온도를 상승시키고 촉매로 삼산화안티몬 15g을 첨가한 후 243℃의 온도와 1.5torr의 감압 하에서 170분간 축중합 반응을 실시하고, 축중합반응을 통해 얻어진 반응물 10kg에 1,6-헥사메틸렌디이소시아네이트 45g을 혼합하고 직경이 58mm인 이축압출기로 120℃ 온도에서 사슬연장반응을 실시하여 바이오매스 유래 성분을 이용한 기능성 수지 조성물을 제조하였다.A 100 L reactor was replaced with nitrogen, and 23.62 kg of succinic acid derived from biomass resources (the Netherlands, Reverdia's biosuccinium) and 23.43 kg of 1,4-butanediol derived from biomass resources (Myriant Bio-BDO, USA) were added to the reactor, and the above Preparation Example 1 After adding 18 g of the polyfunctional compound prepared through the method, the reaction temperature was fixed at 200° C. and water was discharged. At this time, as a catalyst, 5 g of dibutyl tin oxide, 15 g of tetrabutyl titanate, and 15 g of trimethyl phosphate were added as a stabilizer. After the theoretical amount of water flowed out, the temperature was continuously increased, 15 g of antimony trioxide was added as a catalyst, and condensation polymerization was carried out for 170 minutes under a reduced pressure of 1.5 torr at a temperature of 243°C, and 10 kg of the reaction product obtained through the condensation polymerization reaction Mixing 45 g of 1,6-hexamethylene diisocyanate and performing a chain extension reaction at a temperature of 120° C. with a twin screw extruder having a diameter of 58 mm to prepare a functional resin composition using a biomass-derived component.

<실시예 6><Example 6>

상기 실시예 5와 동일하게 진행하되, 상기 제조예 2를 통해 제조된 다관능 화합물을 사용하여 바이오매스 유래 성분을 이용한 기능성 수지 조성물을 제조하였다.Proceed in the same manner as in Example 5, but a functional resin composition using a biomass-derived component was prepared using the multifunctional compound prepared through Preparation Example 2.

<실시예 7><Example 7>

100L 반응기를 질소로 치환하고 디메틸테레프탈레이트 23.3kg과 바이오매스 자원 유래 1,4-부탄디올(미국, Myriant Bio-BDO) 22.53kg을 반응기에 투입하여 반응온도를 200℃로 고정시키고 두 시간 동안 에스테르화 반응을 진행시켜 메탄올을 유출 시켰다. 이 때 촉매로서 테트라부틸티타네이트를 12g, 안정제로 트리메틸포스페이트 10g를 첨가하였다. 이론량의 메탄올의 양이 유출된 후 바이오매스 자원 유래 숙신산 (네덜란드, Reverdia사의 biosuccinium) 9.45kg, 상기 제조예 1을 통해 제조된 다관능 화합물 20g을 투입한 후 반응온도를 200℃로 고정시키고 물을 유출시켰다. 이 때 촉매로서 디부틸틴옥사이드 12g, 테트라부틸티타네이트 8g, 안정제로 트리메틸포스페이트 15g을 첨가하였다. 이론량의 물이 유출된 후 계속해서 온도를 상승시키고 촉매로 삼산화안티몬 15g을 첨가한 후 243℃의 온도와 1.5torr의 감압 하에서 147분간 축중합 반응을 실시하고, 축중합반응을 통해 얻어진 반응물 10kg에 카르보디이미드 화합물(Raschig사의 STABILIZER 9000) 25g를 혼합하고 직경이 58mm인 이축압출기로 120℃ 온도에서 사슬연장반응을 실시하여 바이오매스 유래 성분을 이용한 기능성 수지 조성물을 제조하였다.A 100 L reactor was replaced with nitrogen, and 23.3 kg of dimethyl terephthalate and 22.53 kg of 1,4-butanediol derived from biomass resources (Myriant Bio-BDO, USA) were added to the reactor to fix the reaction temperature at 200°C and esterified for two hours. The reaction proceeded and methanol was discharged. At this time, 12 g of tetrabutyl titanate and 10 g of trimethyl phosphate were added as a stabilizer. After the theoretical amount of methanol was spilled, 9.45 kg of succinic acid derived from biomass resources (the Netherlands, Reverdia's biosuccinium), and 20 g of the multifunctional compound prepared in Preparation Example 1 were added, and the reaction temperature was fixed at 200°C and water Spilled. At this time, as a catalyst, 12 g of dibutyl tin oxide, 8 g of tetrabutyl titanate, and 15 g of trimethyl phosphate were added as a stabilizer. After the theoretical amount of water flowed out, the temperature was continuously increased, 15 g of antimony trioxide was added as a catalyst, and a condensation polymerization reaction was conducted for 147 minutes under a reduced pressure of 1.5 torr at a temperature of 243°C, and 10 kg of the reaction product obtained through the condensation polymerization reaction 25 g of a carbodiimide compound (Raschig's STABILIZER 9000) was mixed and a chain extension reaction was carried out at 120° C. with a 58 mm diameter twin screw extruder to prepare a functional resin composition using a biomass-derived component.

<실시예 8><Example 8>

상기 실시예 7과 동일하게 진행하되, 상기 제조예 2를 통해 제조된 다관능 화합물을 사용하여 바이오매스 유래 성분을 이용한 기능성 수지 조성물을 제조하였다.Proceeding in the same manner as in Example 7, but a functional resin composition using a biomass-derived component was prepared by using the multifunctional compound prepared through Preparation Example 2.

<실시예 9><Example 9>

100L 반응기를 질소로 치환하고 디메틸테레프탈레이트 18.64kg과 1,4-부탄디올 23.43kg을 반응기에 투입하여 반응온도를 200℃ 로 고정시키고 두 시간 동안 에스테르화 반응을 진행시켜 메탄올을 유출 시켰다. 이 때 촉매로서 테트라부틸티타네이트를 10g, 안정제로 트리메틸포스페이트 10g를 첨가하였다. 이론량의 메탄올이 유출된 후 바이오매스 자원 유래 숙신산 (네덜란드, Reverdia사의 biosuccinium) 11.05kg, 아디프산(독일, BASF사) 1.52kg, 상기 제조예 1을 통해 제조된 다관능 화합물 10g을 투입 한 후 반응온도를 200℃ 로 고정시키고 물을 유출시켰다. 이 때 촉매로서 디부틸틴옥사이드 10g, 테트라부틸티타네이트 10g, 안정제로 트리메틸포스페이트 20g을 첨가하였다. 이론량의 물이 유출된 후 계속해서 온도를 상승시키고 촉매로 삼산화안티몬 10g을 첨가한 후 243℃의 온도와 1.5torr의 감압 하에서 162분간 축중합 반응을 실시하고, 축중합반응을 통해 얻어진 반응물 10kg에 비스-(2,6-디이소프로필-페닐린-2,4-카르보디이미드) 25g을 혼합하고 직경이 58mm인 이축압출기로 120℃ 온도에서 사슬연장반응을 실시하여 바이오매스 유래 성분을 이용한 기능성 수지 조성물을 제조하였다.A 100 L reactor was replaced with nitrogen, and 18.64 kg of dimethyl terephthalate and 23.43 kg of 1,4-butanediol were added to the reactor, and the reaction temperature was fixed at 200° C., and the esterification was carried out for two hours to discharge methanol. At this time, 10 g of tetrabutyl titanate was added as a catalyst, and 10 g of trimethyl phosphate was added as a stabilizer. After the theoretical amount of methanol was leaked, 11.05 kg of succinic acid derived from biomass resources (the Netherlands, Reverdia's biosuccinium), 1.52 kg of adipic acid (Germany, BASF), and 10 g of the multifunctional compound prepared through Preparation Example 1 were added. After the reaction temperature was fixed to 200 ℃ and water was discharged. At this time, 10 g of dibutyl tin oxide, 10 g of tetrabutyl titanate, and 20 g of trimethyl phosphate were added as a stabilizer. After the theoretical amount of water flowed out, the temperature was continuously increased, 10 g of antimony trioxide was added as a catalyst, and a condensation polymerization reaction was carried out for 162 minutes under a reduced pressure of 1.5 torr at a temperature of 243°C, and 10 kg of the reaction product obtained through the condensation polymerization reaction Ebis-(2,6-diisopropyl-phenylline-2,4-carbodiimide) 25g was mixed and chain extension reaction was carried out at 120℃ with a twin screw extruder with a diameter of 58mm. A functional resin composition was prepared.

<실시예 10><Example 10>

상기 실시예 9와 동일하게 진행하되, 상기 제조예 2를 통해 제조된 다관능 화합물을 사용하여 바이오매스 유래 성분을 이용한 기능성 수지 조성물을 제조하였다.Proceeding in the same manner as in Example 9, a functional resin composition using a biomass-derived component was prepared using the multifunctional compound prepared through Preparation Example 2.

<비교예 1><Comparative Example 1>

100L 반응기를 질소로 치환하고 디메틸테레프탈레이트 18.64kg과 1,4-부탄디올 23.43kg을 반응기에 투입하여 반응온도를 200℃ 로 고정시키고 두 시간 동안 에스테르화 반응을 진행시켜 메탄올을 유출 시켰다. 이 때 촉매로서 테트라부틸티타네이트를 10g, 안정제로 트리메틸포스페이트 10g를 첨가하였다. 이론량의 메탄올이 유출된 후 바이오매스 자원 유래 숙신산 (네덜란드, Reverdia사의 biosuccinium) 12.28kg을 투입한 후 반응온도를 200℃ 로 고정시키고 물을 유출시켰다. 이 때 촉매로서 디부틸틴옥사이드 10g, 테트라부틸티타네이트 10g, 안정제로 트리메틸포스페이트 20g을 첨가하였다. 이론량의 물이 유출된 후 계속해서 온도를 상승시키고 촉매로 삼산화안티몬 10g을 첨가한 후 243℃의 온도와 1.5torr의 감압 하에서 320분간 축중합 반응을 실시하여 수지 조성물을 제조하였다.A 100 L reactor was replaced with nitrogen, and 18.64 kg of dimethyl terephthalate and 23.43 kg of 1,4-butanediol were added to the reactor, and the reaction temperature was fixed at 200° C., and the esterification was carried out for two hours to discharge methanol. At this time, 10 g of tetrabutyl titanate as a catalyst and 10 g of trimethyl phosphate as a stabilizer were added. After the theoretical amount of methanol was spilled, 12.28 kg of succinic acid derived from biomass resources (Reverdia's biosuccinium, The Netherlands) was added, and the reaction temperature was fixed at 200°C and water was discharged. At this time, as a catalyst, 10 g of dibutyl tin oxide, 10 g of tetrabutyl titanate, and 20 g of trimethyl phosphate were added as a stabilizer. After the theoretical amount of water flowed out, the temperature was continuously increased, 10 g of antimony trioxide was added as a catalyst, and a condensation polymerization reaction was performed for 320 minutes under a reduced pressure of 1.5 torr and a temperature of 243° C. to prepare a resin composition.

<비교예 2><Comparative Example 2>

100L 반응기를 질소로 치환하고 디메틸테레프탈레이트 19.42kg과 1,4-부탄디올 23.43kg을 반응기에 투입하여 반응온도를 200℃ 로 고정시키고 두 시간 동안 에스테르화 반응을 진행시켜 메탄올을 유출 시켰다. 이 때 촉매로서 테트라 부틸티타네이트를 10g, 안정제로 트리메틸포스페이트 10g를 첨가하였다. 이론량의 메탄올이 유출된 후 숙신산 22.44kg을 투입한 후 반응온도를 200℃ 로 고정시키고 물을 유출시켰다. 이 때 촉매로서 디부틸틴옥사이드 10g, 테트라부틸티타네이트 10g, 안정제로 트리메틸포스페이트 20g을 첨가하였다. 이론 량의 물이 유출된 후 계속해서 온도를 상승시키고 촉매로 삼산화안티몬 10g을 첨가한 후 243℃의 온도와 1.5torr의 감압 하에서 200분간 축중합 반응을 실시하여 수지 조성물을 제조하였다.A 100 L reactor was replaced with nitrogen, and 19.42 kg of dimethyl terephthalate and 23.43 kg of 1,4-butanediol were added to the reactor, the reaction temperature was fixed at 200° C., and the esterification was carried out for two hours to drain methanol. At this time, 10 g of tetrabutyl titanate was added as a catalyst, and 10 g of trimethyl phosphate was added as a stabilizer. After the theoretical amount of methanol was drained, 22.44 kg of succinic acid was added, and the reaction temperature was fixed at 200°C and water was drained. At this time, 10 g of dibutyl tin oxide, 10 g of tetrabutyl titanate, and 20 g of trimethyl phosphate were added as a stabilizer. After the theoretical amount of water flowed out, the temperature was continuously increased, 10 g of antimony trioxide was added as a catalyst, and a condensation polymerization reaction was performed for 200 minutes under a reduced pressure of 1.5 torr and a temperature of 243°C to prepare a resin composition.

<비교예 3><Comparative Example 3>

100L 반응기를 질소로 치환하고 디메틸테레프탈레이트 18.64kg과 1,4-부탄디올 23.43kg을 반응기에 투입하여 반응온도를 200℃ 로 고정시키고 두 시간 동안 에스테르화 반응을 진행시켜 메탄올을 유출 시켰다. 이 때 촉매로서 테트라부틸티타네이트를 10g, 안정제로 트리메틸포스페이트 10g를 첨가하였다. 이론량의 메탄올이 유출된 후 숙신산 12.28kg을 투입한 후 반응온도를 200℃ 로 고정시키고 물을 유출시켰다. 이 때 촉매로서 디부틸틴옥사이드 10g, 테트라부틸티타네이트 10g, 안정제로 트리메틸포스페이트 20g을 첨가하였다. 이론량의 물이 유출된 후 계속해서 온도를 상승시키고 촉매로 삼산화안티몬 10g을 첨가한 후 243℃의 온도와 1.5torr의 감압 하에서 192분간 축중합 반응을 실시하여 수지 조성물을 제조하였다.A 100 L reactor was replaced with nitrogen, and 18.64 kg of dimethyl terephthalate and 23.43 kg of 1,4-butanediol were added to the reactor, and the reaction temperature was fixed at 200° C., and the esterification was carried out for two hours to discharge methanol. At this time, 10 g of tetrabutyl titanate as a catalyst and 10 g of trimethyl phosphate as a stabilizer were added. After the theoretical amount of methanol was drained, 12.28 kg of succinic acid was added, and the reaction temperature was fixed at 200°C and water was drained. At this time, as a catalyst, 10 g of dibutyl tin oxide, 10 g of tetrabutyl titanate, and 20 g of trimethyl phosphate were added as a stabilizer. After the theoretical amount of water flowed out, the temperature was continuously increased, 10 g of antimony trioxide was added as a catalyst, and a condensation polymerization reaction was performed for 192 minutes under a reduced pressure of 1.5 torr and a temperature of 243°C to prepare a resin composition.

<비교예 4><Comparative Example 4>

100L 반응기를 질소로 치환하고 디메틸테레프탈레이트 18.64kg과 1,4-부탄디올23.43kg을 반응기에 투입하여 반응온도를 200℃ 로 고정시키고 두 시간 동안 에스테르화 반응을 진행시켜 메탄올을 유출 시켰다. 이 때 촉매로서 테트라부틸티타네이트를 10g, 안정제로 트리메틸포스페이트 10g를 첨가하였다. 이론량의 메탄올의 양이 유출된 후 아디프산 (독일, BASF사) 15.2kg을 투입한 후 반응온도를 200℃ 로 고정시키고 물을 유출시켰다. 이 때 촉매로서 디부틸틴옥사이드 5g, 테트라부틸티타네이트 15g, 안정제로 트리메틸포스페이트 15g을 첨가하였다. 이론 량의 물이 유출된 후 계속해서 온도를 상승시키고 촉매로 삼산화안티몬 15g을 첨가한 후 243℃의 온도와 1.5torr의 감압 하에서 220분간 축중합 반응을 실시하여 수지 조성물을 제조하였다.A 100 L reactor was replaced with nitrogen, and 18.64 kg of dimethyl terephthalate and 23.43 kg of 1,4-butanediol were added to the reactor, the reaction temperature was fixed at 200° C., and the esterification was carried out for two hours to drain methanol. At this time, 10 g of tetrabutyl titanate was added as a catalyst, and 10 g of trimethyl phosphate was added as a stabilizer. After the theoretical amount of methanol was drained, 15.2 kg of adipic acid (Germany, BASF) was added, and the reaction temperature was fixed at 200° C. and water was drained. At this time, as a catalyst, 5 g of dibutyl tin oxide, 15 g of tetrabutyl titanate, and 15 g of trimethyl phosphate were added as a stabilizer. After the theoretical amount of water flowed out, the temperature was continuously increased, 15 g of antimony trioxide was added as a catalyst, and a condensation polymerization reaction was performed for 220 minutes under a reduced pressure of 1.5 torr and a temperature of 243°C to prepare a resin composition.

<비교예 5><Comparative Example 5>

100L 반응기를 질소로 치환하고 디메틸테레프탈레이트 23.3kg과 1,4-부탄디올) 22.53kg을 반응기에 투입하여 반응온도를 200℃ 로 고정시키고 두 시간 동안 에스테르화 반응을 진행시켜 메탄올을 유출 시킨다. 이 때 촉매로서 테트라부틸티타네이트를 12g, 안정제로 트리메틸포스페이트 10g를 첨가하였다. 이론량의 메탄올의 양이 유출된 후 아디프산 (독일, BASF사) 11.69kg을 투입한 후 반응온도를 200℃ 로 고정시키고 물을 유출시켰다. 이 때 촉매로서 디부틸틴옥사이드 12g, 테트라부틸티타네이트 8g, 안정제로 트리메틸포스페이트 15g을 첨가하였다. 이론량의 물이 유출된 후 계속해서 온도를 상승시키고 촉매로 삼산화안티몬 15g을 첨가한 후 243℃의 온도와 1.5torr의 감압 하에서 196분간 축중합 반응을 실시하여 수지 조성물을 제조하였다.A 100L reactor was replaced with nitrogen, and 23.3 kg of dimethyl terephthalate and 22.53 kg of 1,4-butanediol) were added to the reactor, the reaction temperature was fixed at 200° C., and the esterification was carried out for two hours to drain methanol. At this time, 12 g of tetrabutyl titanate and 10 g of trimethyl phosphate were added as a stabilizer. After the theoretical amount of methanol was drained, 11.69 kg of adipic acid (Germany, BASF) was added, and the reaction temperature was fixed at 200° C. and water was drained. At this time, as a catalyst, 12 g of dibutyl tin oxide, 8 g of tetrabutyl titanate, and 15 g of trimethyl phosphate were added as a stabilizer. After the theoretical amount of water flowed out, the temperature was continuously increased, 15 g of antimony trioxide was added as a catalyst, and a condensation polymerization reaction was performed for 196 minutes under a reduced pressure of 1.5 torr at a temperature of 243°C to prepare a resin composition.

상기 실시예 1 내지 8 및 비교예 1 내지 5를 통해 제조된 수지 조성물의 인장강도, 신장률 및 생분해도를 측정하여 아래 표 1에 나타내었다.The tensile strength, elongation, and biodegradability of the resin compositions prepared through Examples 1 to 8 and Comparative Examples 1 to 5 were measured and shown in Table 1 below.

(단, 핫 프레스를 이용하여 두께가 100㎛인 필름샘플을 제작하고, 만능재료시험기를 사용하되, ASTM D638 규격에 준하는 시편을 준비하여 인장강도와 신장률을 측정하였고, 생분해도는 상기의 방법으로 제작된 필름을 가로, 세로 각각 10cm 폭으로 잘라 시편을 준비한 후 토양 지표로부터 30cm깊이로 매립 후 12개월 후에 회수하여 무게감소법을 이용하여 측정하였다.)(However, a film sample having a thickness of 100 μm was prepared using a hot press, and a specimen conforming to the ASTM D638 standard was prepared, but the universal testing machine was used to measure the tensile strength and elongation, and the biodegradability was determined by the above method. The prepared film was cut into widths of 10 cm each, and a specimen was prepared, buried to a depth of 30 cm from the soil surface, and collected 12 months later and measured using a weight reduction method.)

구분division 인장강도(kgf/㎠)Tensile strength (kgf/㎠) 신장률(%)Elongation(%) 생분해도(%)Biodegradability (%) 실시예 1Example 1 398398 200200 79.979.9 실시예 2Example 2 401401 250250 78.878.8 실시예 3Example 3 351351 675675 76.976.9 실시예 4Example 4 356356 650650 75.375.3 실시예 5Example 5 412412 150150 76.476.4 실시예 6Example 6 420420 150150 76.376.3 실시예 7Example 7 374374 450450 56.356.3 실시예 8Example 8 381381 475475 55.155.1 실시예 9Example 9 361361 475475 68.468.4 실시예 10Example 10 368368 500500 70.170.1 비교예 1Comparative Example 1 168168 7575 93.193.1 비교예 2Comparative Example 2 378378 125125 82.782.7 비교예 3Comparative Example 3 322322 575575 80.580.5 비교예 4Comparative Example 4 309309 450450 80.280.2 비교예 5Comparative Example 5 367367 400400 57.357.3

위에 표 1에 나타낸 것처럼, 본 발명의 실시예 1 내지 10을 통해 제조된 수지 조성물은 비교예 1 내지 5를 통해 제조된 수지 조성물과 생분해도는 대등한 물성을 나타내면서 인장강도나 신장률과 같은 기계적 물성은 월등하게 향상되는 것을 알 수 있다.As shown in Table 1 above, the resin composition prepared through Examples 1 to 10 of the present invention exhibits comparable physical properties to the resin composition prepared through Comparative Examples 1 to 5 and mechanical properties such as tensile strength and elongation Can be seen to improve significantly.

또한, 상기 실시예 1 내지 10 및 비교예 1 내지 5를 통해 제조된 수지 조성물의 수평균분자량, 분자량분포, 융점 및 용융흐름지수를 측정하여 아래 표 2에 나타내었다.In addition, the number average molecular weight, molecular weight distribution, melting point and melt flow index of the resin compositions prepared through Examples 1 to 10 and Comparative Examples 1 to 5 were measured and shown in Table 2 below.

(단, 수평균 분자량 및 분자량 분포는 폴리스티렌으로 충진된 컬럼이 장착된 장비를 이용해 35℃의 온도에서 겔투과크로마토그래피 분석법을 이용하여 측정하였으며, 이 때 전개용매는 클로로포름, 샘플의 농도는 5mg/mL, 용매의 흐름속도는 1.0mL/분의 속도로 실시하였다.(However, the number average molecular weight and molecular weight distribution were measured using a gel permeation chromatography analysis method at a temperature of 35°C using an equipment equipped with a column filled with polystyrene. In this case, the developing solvent was chloroform and the concentration of the sample was 5 mg/ mL, the flow rate of the solvent was carried out at a rate of 1.0 mL/min.

또한, 융점은 시차주사열량계를 사용하여 질소 분위기 하에서 분당 승온속도 10℃로 20℃에서 200℃까지 측정하였으며, 용융흐름지수는 ASTM D1238의 규격에 준하여 190℃, 2,160g의 조건에서 실시하였다.)In addition, the melting point was measured from 20°C to 200°C at a heating rate of 10°C per minute in a nitrogen atmosphere using a differential scanning calorimeter, and the melt flow index was performed at 190°C and 2,160g according to the standard of ASTM D1238.)

구분division 수평균분자량Number average molecular weight 분자량분포Molecular weight distribution 융점(℃)Melting point(℃) 용융흐름지수(g/10분)Melt flow index (g/10min) 실시예 1Example 1 58,40058,400 3.293.29 113113 3.23.2 실시예 2Example 2 68,20068,200 3.373.37 112112 2.62.6 실시예 3Example 3 53,20053,200 3.613.61 126.7126.7 3.63.6 실시예 4Example 4 85,90085,900 3.533.53 128128 1.81.8 실시예 5Example 5 83,32083,320 3.313.31 113113 2.12.1 실시예 6Example 6 89,70089,700 3.423.42 114114 1.41.4 실시예 7Example 7 59,99859,998 2.922.92 169169 3.13.1 실시예 8Example 8 58,41258,412 2.552.55 171171 3.33.3 실시예 9Example 9 56,30056,300 3.213.21 118118 3.23.2 실시예 10Example 10 58,28058,280 3.333.33 118.2118.2 3.43.4 비교예 1Comparative Example 1 28,34528,345 3.023.02 118118 4.14.1 비교예 2Comparative Example 2 53,11253,112 2.472.47 108.2108.2 2.52.5 비교예 3Comparative Example 3 48,03248,032 2.522.52 118118 5.35.3 비교예 4Comparative Example 4 53,31253,312 2.642.64 126126 3.83.8 비교예 5Comparative Example 5 57,22857,228 2.422.42 166166 3.53.5

위에 표 2에 나타낸 것처럼, 본 발명의 실시예 1 내지 10을 통해 제조된 수지 조성물은 비교예 1 내지 5를 통해 제조된 수지 조성물에 비해 수평균분자량이 월등하게 향상된 것을 알 수 있다.As shown in Table 2 above, it can be seen that the resin compositions prepared through Examples 1 to 10 of the present invention have a remarkably improved number average molecular weight compared to the resin compositions prepared through Comparative Examples 1 to 5.

따라서, 본 발명에 따른 바이오매스 유래 성분을 이용한 기능성 수지 조성물은 가공성형성, 인열강도, 인장강도 및 내가수분해성이 우수하여 경시변화가 억제되는 기능성 수지를 제공한다.Accordingly, the functional resin composition using the biomass-derived component according to the present invention provides a functional resin that is excellent in processability, tear strength, tensile strength, and hydrolysis resistance, thereby suppressing changes over time.

Claims (9)

바이오매스 유래 숙신산 단독 또는 바이오매스 유래 숙신산과 화석원료 유래 지방족 디카르복실산의 혼합물, 알코올 혼합물, 사슬연장제 및 다관능 화합물로 이루어지며,
상기 다관능 화합물은 아래 [화학식 1]과 같이 4,4-비스(4-히드록시페닐)발레릭산과 폴리에틸렌글리콜의 에스테르화 반응을 통해 제조되는 것을 특징으로 하는 바이오매스 유래 성분을 이용한 기능성 수지 조성물.
[화학식 1]
Figure 112020096396391-pat00013

(여기서 n은 8 내지 10이다.)
It consists of biomass-derived succinic acid alone or a mixture of biomass-derived succinic acid and fossil-derived aliphatic dicarboxylic acid, an alcohol mixture, a chain extender and a polyfunctional compound,
The polyfunctional compound is a functional resin composition using a biomass-derived component, characterized in that it is prepared through an esterification reaction of 4,4-bis(4-hydroxyphenyl)valeric acid and polyethylene glycol as shown in [Chemical Formula 1] below. .
[Formula 1]
Figure 112020096396391-pat00013

(Where n is 8 to 10.)
청구항 1에 있어서,
상기 조성물은 방향족 디카르복실산을 추가로 더 포함하는 것을 특징으로 하는 바이오매스 유래 성분을 이용한 기능성 수지 조성물.
The method according to claim 1,
The composition is a functional resin composition using a biomass-derived component, characterized in that it further comprises an aromatic dicarboxylic acid.
청구항 1 또는 2에 있어서,
상기 화석원료 유래 지방족 디카르복실산은 옥살산, 말로닉산, 숙신산, 글루타르산, 아디프산, 피멜릭산, 수베릭산, 아젤릭산, 세바식산 및 그것들의 무수물로 이루어진 그룹에서 선택된 하나 이상으로 이루어지는 것을 특징으로 하는 바이오매스 유래 성분을 이용한 기능성 수지 조성물.
The method according to claim 1 or 2,
The fossil-derived aliphatic dicarboxylic acid is characterized in that it consists of at least one selected from the group consisting of oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelic acid, sebacic acid, and anhydrides thereof. Functional resin composition using a biomass-derived component.
청구항 2에 있어서,
상기 방향족 디카르복실산은 디메틸테레프탈레이트, 테레프탈산, 이소프탈산 및 나프토산으로 이루어진 그룹에서 선택된 하나 이상으로 이루어지는 것을 특징으로 하는 바이오매스 유래 성분을 이용한 기능성 수지 조성물.
The method according to claim 2,
The aromatic dicarboxylic acid is a functional resin composition using a biomass-derived component, characterized in that consisting of one or more selected from the group consisting of dimethyl terephthalate, terephthalic acid, isophthalic acid and naphthoic acid.
청구항 1 또는 2에 있어서,
상기 알코올 혼합물은 바이오매스 유래 1,4-부탄디올 및 화석원료 유래 지방족 디올로 이루어진 그룹에서 선택된 하나 이상으로 이루어지는 것을 특징으로 하는 바이오매스 유래 성분을 이용한 기능성 수지 조성물.
The method according to claim 1 or 2,
The alcohol mixture is a functional resin composition using a biomass-derived component, characterized in that consisting of at least one selected from the group consisting of biomass-derived 1,4-butanediol and fossil-derived aliphatic diols.
청구항 5에 있어서,
상기 화석원료 유래 지방족 디올은 에틸렌글리콜, 1,3-프로판디올, 네오펜틸글리콜, 프로필렌글리콜, 1,2-부탄디올, 1,4-부탄디올 및 1,6-헥산디올로 이루어진 그룹에서 선택된 하나 이상으로 이루어지는 것을 특징으로 하는 바이오매스 유래 성분을 이용한 기능성 수지 조성물.
The method of claim 5,
The aliphatic diol derived from the fossil material is at least one selected from the group consisting of ethylene glycol, 1,3-propanediol, neopentyl glycol, propylene glycol, 1,2-butanediol, 1,4-butanediol and 1,6-hexanediol. Functional resin composition using a biomass-derived component, characterized in that consisting of.
청구항 1 또는 2에 있어서,
상기 사슬연장제는 이소시아네이트 화합물 또는 카르보디이미드 화합물로 이루어지는 것을 특징으로 하는 바이오매스 유래 성분을 이용한 기능성 수지 조성물.
The method according to claim 1 or 2,
The chain extender is a functional resin composition using a biomass-derived component, characterized in that consisting of an isocyanate compound or a carbodiimide compound.
삭제delete 삭제delete
KR1020180138493A 2018-11-12 2018-11-12 Functional resin composition using biomass resources KR102206266B1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020180138493A KR102206266B1 (en) 2018-11-12 2018-11-12 Functional resin composition using biomass resources
PCT/KR2019/005832 WO2020101131A1 (en) 2018-11-12 2019-05-15 Functional resin composition comprising biomass-derived component
EP19884429.2A EP3880733A4 (en) 2018-11-12 2019-05-15 Functional resin composition comprising biomass-derived component
US17/309,258 US11795268B2 (en) 2018-11-12 2019-05-15 Functional resin composition comprising biomass-derived component
CN201980082357.XA CN113272356B (en) 2018-11-12 2019-05-15 Functional resin composition comprising biomass-derived component

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020180138493A KR102206266B1 (en) 2018-11-12 2018-11-12 Functional resin composition using biomass resources

Publications (2)

Publication Number Publication Date
KR20200054781A KR20200054781A (en) 2020-05-20
KR102206266B1 true KR102206266B1 (en) 2021-01-22

Family

ID=70731492

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020180138493A KR102206266B1 (en) 2018-11-12 2018-11-12 Functional resin composition using biomass resources

Country Status (5)

Country Link
US (1) US11795268B2 (en)
EP (1) EP3880733A4 (en)
KR (1) KR102206266B1 (en)
CN (1) CN113272356B (en)
WO (1) WO2020101131A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102436243B1 (en) * 2020-10-20 2022-08-26 주식회사 안코바이오플라스틱스 Biodegradable resin composition from natural materials having improved mechanical property and formability and method for manufacturing the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008094888A (en) 2006-10-06 2008-04-24 Mitsubishi Chemicals Corp Method for producing polyester
US20180171071A1 (en) * 2005-04-22 2018-06-21 Mitsubishi Chemical Corporation Biomass-resource-derived polyester and production process thereof

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL211105A (en) * 1955-10-03
US4314049A (en) * 1980-03-14 1982-02-02 Kao Soap Co., Ltd. Polyester resin composition
US4594291A (en) * 1984-07-17 1986-06-10 The Dow Chemical Company Curable, partially advanced epoxy resins
KR20050106147A (en) * 2004-05-04 2005-11-09 주식회사 코오롱 Copolyester resin for extrusion blow molding
KR100722516B1 (en) 2005-11-17 2007-05-28 경광현 Biodegradable and water dispersive aliphatic/aromatic copolyester resin and preparation thereof and biodegradable water-dispersed coating composition containing the same
JP5572909B2 (en) * 2006-10-06 2014-08-20 三菱化学株式会社 Biomass resource-derived polyester injection molded body and method for producing the same
JP5504551B2 (en) * 2006-10-06 2014-05-28 三菱化学株式会社 Biomass resource-derived polyester sheet and method for producing the same
IT1400121B1 (en) 2010-05-24 2013-05-17 Novamont Spa ALIPHATIC-AROMATIC COPOLIESTERE AND ITS BLENDS.
KR101276100B1 (en) 2011-02-22 2013-06-18 주식회사 휴비스 Biodegradable Copolyester Resin made from Biomass Resources
KR101372581B1 (en) * 2011-06-03 2014-03-13 주식회사 케이에스케미칼 Hydrolysis resistant and biodegradable aliphatic/aromatic copolyester resin composition
JP2014133900A (en) * 2014-04-23 2014-07-24 Mitsubishi Chemicals Corp Biomass resource-derived polyester made injection molded body
EP3337844A1 (en) * 2015-08-20 2018-06-27 3M Innovative Properties Company Functionalized polyester polymers and film articles
FR3055336B1 (en) * 2016-08-29 2020-07-24 Icci Sea RECYCLABLE, BIODEGRADABLE AND / OR COMPOSTABLE PLASTIC COMPOSITION SUITABLE FOR FOOD CONTACT, RIGID DERIVATIVE ARTICLES, CORRESPONDING METHODS AND USES
WO2020226199A1 (en) * 2019-05-07 2020-11-12 Tlc Korea Co., Ltd. Biodegradable resin composition having excellent weather resistance and storage stability and production method thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180171071A1 (en) * 2005-04-22 2018-06-21 Mitsubishi Chemical Corporation Biomass-resource-derived polyester and production process thereof
JP2008094888A (en) 2006-10-06 2008-04-24 Mitsubishi Chemicals Corp Method for producing polyester

Also Published As

Publication number Publication date
US11795268B2 (en) 2023-10-24
WO2020101131A1 (en) 2020-05-22
KR20200054781A (en) 2020-05-20
EP3880733A4 (en) 2022-08-17
CN113272356B (en) 2023-03-24
CN113272356A (en) 2021-08-17
US20220002480A1 (en) 2022-01-06
EP3880733A1 (en) 2021-09-22

Similar Documents

Publication Publication Date Title
Barletta et al. Poly (butylene succinate)(PBS): Materials, processing, and industrial applications
KR101989045B1 (en) Biodegradable resin composition having excellent weather resistance and storage stability and the method of manufacturing the same
KR102103095B1 (en) Aliphatic-aromatic copolyesters and their mixtures
Kim et al. Sustainable terpolyester of high Tg based on bio heterocyclic monomer of dimethyl furan-2, 5-dicarboxylate and isosorbide
KR101626997B1 (en) Aliphatic-aromatic biodegradable polyester
Sousa et al. Plastics from renewable sources as green and sustainable alternatives
US20010004665A1 (en) Copolyester resin composition and a process of preparation thereof
KR100701622B1 (en) Biodegradable aliphatic/aromatic copolyester polymer and preparation thereof
JP7159213B2 (en) polyester copolymer
Weinland et al. Evaluating the commercial application potential of polyesters with 1, 4: 3, 6-dianhydrohexitols (isosorbide, isomannide and isoidide) by reviewing the synthetic challenges in step growth polymerization
KR20120134937A (en) Hydrolysis resistant and biodegradable aliphatic/aromatic copolyester resin composition
Nasr et al. The impact of diethyl furan-2, 5-dicarboxylate as an aromatic biobased monomer toward lipase-catalyzed synthesis of semiaromatic copolyesters
KR102063626B1 (en) Biodegradable copolyester resin manufactured by esterification and condensation polymerization of aliphatic/aromatic dicarboxylic acid and glycol
KR101200824B1 (en) Hydrolysis resistant and biodegradable aliphatic/aromatic copolyester resin composition
KR20130008820A (en) Biodegradable aliphatic/aromatic copolyester resin composition with high transparency
KR102206266B1 (en) Functional resin composition using biomass resources
US20220243005A1 (en) Biodegradable resin composition having improved mechanical property, formability, and weatherproof and method for manufacturing the same
EP2752438A2 (en) Production method for a biodegradable polyester copolymer resin
KR20140026677A (en) Method of preparation for biodegradable co-polyester resin
CN110914334A (en) Polyester copolymer
KR102210711B1 (en) Biodegradable copolymer polyester resin comprising anhydrosugar alcohol and anhydrosugar alcohol-alkylene glycol and method for preparing the same
KR101514786B1 (en) Polyester resin including component from biomass and preparation method of the same
KR102436243B1 (en) Biodegradable resin composition from natural materials having improved mechanical property and formability and method for manufacturing the same
KR102589197B1 (en) Biodegradable polyester copolymer comprising anhydrosugar alcohol based polycarbonate diol and preparation method thereof, and molded article comprising the same
KR102589193B1 (en) Biodegradable polyester copolymer comprising anhydrosugar alcohol and anhydrosugar alcohol based polycarbonate diol and preparation method thereof, and molded article comprising the same

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant