KR102203694B1 - 뉴럴 네트워크들에 트레이닝 데이터를 제공하기 위한 이미지 분석 알고리즘들을 사용하는 장치 및 방법 - Google Patents

뉴럴 네트워크들에 트레이닝 데이터를 제공하기 위한 이미지 분석 알고리즘들을 사용하는 장치 및 방법 Download PDF

Info

Publication number
KR102203694B1
KR102203694B1 KR1020170126009A KR20170126009A KR102203694B1 KR 102203694 B1 KR102203694 B1 KR 102203694B1 KR 1020170126009 A KR1020170126009 A KR 1020170126009A KR 20170126009 A KR20170126009 A KR 20170126009A KR 102203694 B1 KR102203694 B1 KR 102203694B1
Authority
KR
South Korea
Prior art keywords
digital
image
images
training
relevance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
KR1020170126009A
Other languages
English (en)
Korean (ko)
Other versions
KR20180037593A (ko
Inventor
니클라스 다니엘쏜
씽 다니엘쏜 판
Original Assignee
엑시스 에이비
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엑시스 에이비 filed Critical 엑시스 에이비
Publication of KR20180037593A publication Critical patent/KR20180037593A/ko
Application granted granted Critical
Publication of KR102203694B1 publication Critical patent/KR102203694B1/ko
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • G06N3/084Backpropagation, e.g. using gradient descent
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/24Classification techniques
    • G06F18/241Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches
    • G06F18/2413Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches based on distances to training or reference patterns
    • G06F18/24133Distances to prototypes
    • G06F18/24137Distances to cluster centroïds
    • G06F18/2414Smoothing the distance, e.g. radial basis function networks [RBFN]
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/045Combinations of networks
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/0464Convolutional networks [CNN, ConvNet]
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • G06N3/09Supervised learning
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T1/00General purpose image data processing
    • G06T1/20Processor architectures; Processor configuration, e.g. pipelining
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/40Extraction of image or video features
    • G06V10/46Descriptors for shape, contour or point-related descriptors, e.g. scale invariant feature transform [SIFT] or bags of words [BoW]; Salient regional features
    • G06V10/462Salient features, e.g. scale invariant feature transforms [SIFT]
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/70Arrangements for image or video recognition or understanding using pattern recognition or machine learning
    • G06V10/82Arrangements for image or video recognition or understanding using pattern recognition or machine learning using neural networks
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V30/00Character recognition; Recognising digital ink; Document-oriented image-based pattern recognition
    • G06V30/10Character recognition
    • G06V30/19Recognition using electronic means
    • G06V30/191Design or setup of recognition systems or techniques; Extraction of features in feature space; Clustering techniques; Blind source separation
    • G06V30/19173Classification techniques
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10016Video; Image sequence
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20081Training; Learning
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20084Artificial neural networks [ANN]

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Evolutionary Computation (AREA)
  • Artificial Intelligence (AREA)
  • General Health & Medical Sciences (AREA)
  • Data Mining & Analysis (AREA)
  • Health & Medical Sciences (AREA)
  • Computing Systems (AREA)
  • Software Systems (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • Mathematical Physics (AREA)
  • Computational Linguistics (AREA)
  • Biomedical Technology (AREA)
  • Multimedia (AREA)
  • Databases & Information Systems (AREA)
  • Medical Informatics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Evolutionary Biology (AREA)
  • Quality & Reliability (AREA)
  • Image Analysis (AREA)
  • Information Retrieval, Db Structures And Fs Structures Therefor (AREA)
KR1020170126009A 2016-10-04 2017-09-28 뉴럴 네트워크들에 트레이닝 데이터를 제공하기 위한 이미지 분석 알고리즘들을 사용하는 장치 및 방법 Active KR102203694B1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP16192142.4A EP3306528B1 (en) 2016-10-04 2016-10-04 Using image analysis algorithms for providing traning data to neural networks
EP16192142.4 2016-10-04

Publications (2)

Publication Number Publication Date
KR20180037593A KR20180037593A (ko) 2018-04-12
KR102203694B1 true KR102203694B1 (ko) 2021-01-15

Family

ID=57083180

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020170126009A Active KR102203694B1 (ko) 2016-10-04 2017-09-28 뉴럴 네트워크들에 트레이닝 데이터를 제공하기 위한 이미지 분석 알고리즘들을 사용하는 장치 및 방법

Country Status (6)

Country Link
US (1) US10496903B2 (enExample)
EP (1) EP3306528B1 (enExample)
JP (1) JP6842395B2 (enExample)
KR (1) KR102203694B1 (enExample)
CN (1) CN107895359B (enExample)
TW (1) TWI735669B (enExample)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023085457A1 (ko) * 2021-11-11 2023-05-19 한국전자기술연구원 효율적인 딥러닝 학습을 위한 메모리 구조 및 제어 방법

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6624125B2 (ja) * 2017-03-13 2019-12-25 コニカミノルタ株式会社 画像検査装置、画像形成システム及び画像圧縮方法
WO2019171121A1 (en) * 2018-03-05 2019-09-12 Omron Corporation Method, device, system and program for setting lighting condition and storage medium
DE102019208257A1 (de) * 2018-07-03 2020-01-09 Heidelberger Druckmaschinen Ag Druckqualitätsanalyse mit neuronalen Netzen
CN109271847B (zh) 2018-08-01 2023-04-07 创新先进技术有限公司 无人结算场景中异常检测方法、装置及设备
KR102194303B1 (ko) 2018-10-08 2020-12-22 단국대학교 산학협력단 3d 데이터 프로세싱에 이용되는 ai 트레이닝을 위한 데이터 셋 확장 생성과 전처리를 위한 장치 및 방법
EP3667557B1 (en) * 2018-12-13 2021-06-16 Axis AB Method and device for tracking an object
TWI701565B (zh) * 2018-12-19 2020-08-11 財團法人工業技術研究院 資料標記系統及資料標記方法
US11853812B2 (en) * 2018-12-20 2023-12-26 Here Global B.V. Single component data processing system and method utilizing a trained neural network
US10762393B2 (en) * 2019-01-31 2020-09-01 StradVision, Inc. Learning method and learning device for learning automatic labeling device capable of auto-labeling image of base vehicle using images of nearby vehicles, and testing method and testing device using the same
US10540572B1 (en) * 2019-01-31 2020-01-21 StradVision, Inc. Method for auto-labeling training images for use in deep learning network to analyze images with high precision, and auto-labeling device using the same
CA3130875A1 (en) * 2019-02-22 2020-08-27 Stratuscent Inc. Systems and methods for learning across multiple chemical sensing units using a mutual latent representation
EP3970110A1 (en) * 2019-05-17 2022-03-23 Barco n.v. Method and system for training generative adversarial networks with heterogeneous data
DE102019207575A1 (de) * 2019-05-23 2020-11-26 Volkswagen Aktiengesellschaft Verfahren zum Beurteilen einer funktionsspezifischen Robustheit eines Neuronalen Netzes
DE102019208733A1 (de) * 2019-06-14 2020-12-17 neurocat GmbH Verfahren und Generator zum Erzeugen von gestörten Eingangsdaten für ein neuronales Netz
KR102339181B1 (ko) * 2020-03-09 2021-12-13 에스케이 주식회사 Machine Learning을 이용한 데이터 연관성 자동 탐색 방법 및 시스템
TWI809266B (zh) * 2020-04-21 2023-07-21 中華電信股份有限公司 電梯事件偵測模型之產生與更新方法
EP3905659B1 (en) * 2020-04-28 2022-06-01 Axis AB Statistics-based electronics image stabilization
WO2021230675A1 (ko) * 2020-05-13 2021-11-18 (주)사맛디 딥러닝 기반 대상체 감성 인식 방법 및 장치
US11295430B2 (en) 2020-05-20 2022-04-05 Bank Of America Corporation Image analysis architecture employing logical operations
US11379697B2 (en) 2020-05-20 2022-07-05 Bank Of America Corporation Field programmable gate array architecture for image analysis
CN111767985B (zh) * 2020-06-19 2022-07-22 深圳市商汤科技有限公司 一种神经网络的训练方法、视频识别方法及装置
KR102213291B1 (ko) * 2020-07-30 2021-02-04 배도연 웹사이트 제작 시스템
US12185100B2 (en) * 2020-08-18 2024-12-31 Qualcomm Incorporated Encoding a data set using a neural network for uplink communication
US12423858B2 (en) * 2021-03-12 2025-09-23 Acronis International Gmbh Systems and methods for determining environment dimensions based on landmark detection
KR20240082865A (ko) * 2022-12-02 2024-06-11 삼성전자주식회사 표준 공간을 통해 영상을 처리하는 전자 장치 및 이의 제어 방법

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6757602B2 (en) * 1997-02-06 2004-06-29 Automotive Technologies International, Inc. System for determining the occupancy state of a seat in a vehicle and controlling a component based thereon
JP3524250B2 (ja) * 1995-11-27 2004-05-10 キヤノン株式会社 デジタル画像処理プロセッサ
US7444030B2 (en) * 2004-11-12 2008-10-28 Micron Technology, Inc. Image encoding with dynamic buffer-capacity-level-based compression adjustment
US7840502B2 (en) * 2007-06-13 2010-11-23 Microsoft Corporation Classification of images as advertisement images or non-advertisement images of web pages
JP5193931B2 (ja) * 2009-04-20 2013-05-08 富士フイルム株式会社 画像処理装置、画像処理方法およびプログラム
US9208405B2 (en) * 2010-08-06 2015-12-08 Sony Corporation Systems and methods for digital image analysis
EP2499964B1 (en) * 2011-03-18 2015-04-15 SensoMotoric Instruments Gesellschaft für innovative Sensorik mbH Optical measuring device and system
EP2557789B1 (en) * 2011-08-09 2017-09-27 Dolby Laboratories Licensing Corporation Guided image up-sampling in video coding
US9043850B2 (en) * 2013-06-17 2015-05-26 Spotify Ab System and method for switching between media streams while providing a seamless user experience
US8965112B1 (en) * 2013-12-09 2015-02-24 Google Inc. Sequence transcription with deep neural networks
CN104103033B (zh) * 2014-08-05 2017-06-06 广州国米科技有限公司 图像实时处理方法
EP3021583B1 (en) 2014-11-14 2019-10-23 Axis AB Method of identifying relevant areas in digital images, method of encoding digital images, and encoder system
EP3029937B1 (en) * 2014-12-03 2016-11-16 Axis AB Method and encoder for video encoding of a sequence of frames
CN104679863B (zh) 2015-02-28 2018-05-04 武汉烽火众智数字技术有限责任公司 一种基于深度学习的以图搜图方法和系统
CN105260734A (zh) * 2015-10-10 2016-01-20 燕山大学 一种具有自建模功能的商品油表面激光标码识别方法
CN105430394A (zh) 2015-11-23 2016-03-23 小米科技有限责任公司 视频数据压缩处理方法、装置和设备
CN105551036B (zh) * 2015-12-10 2019-10-08 中国科学院深圳先进技术研究院 一种深度学习网络的训练方法和装置

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
Deep learning for saliency predicion in natural video, 2016.
Finding action tubes, IEEE, 2015.
Predicting eye fixations using convolutional neural networks, IEEE, 2015
Saliency detection by multi-context deep learning, IEEE, 2015.

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023085457A1 (ko) * 2021-11-11 2023-05-19 한국전자기술연구원 효율적인 딥러닝 학습을 위한 메모리 구조 및 제어 방법

Also Published As

Publication number Publication date
TWI735669B (zh) 2021-08-11
JP2018101406A (ja) 2018-06-28
EP3306528B1 (en) 2019-12-25
US10496903B2 (en) 2019-12-03
KR20180037593A (ko) 2018-04-12
CN107895359B (zh) 2023-06-09
JP6842395B2 (ja) 2021-03-17
EP3306528A1 (en) 2018-04-11
US20180096232A1 (en) 2018-04-05
TW201814596A (zh) 2018-04-16
CN107895359A (zh) 2018-04-10

Similar Documents

Publication Publication Date Title
KR102203694B1 (ko) 뉴럴 네트워크들에 트레이닝 데이터를 제공하기 위한 이미지 분석 알고리즘들을 사용하는 장치 및 방법
CN111432207B (zh) 基于显著目标检测和显著性指导的感知高清视频编码方法
US11297319B2 (en) Method for encoding images and corresponding terminals
US11477468B2 (en) Method and device for compressing image and neural network using hidden variable
KR101528895B1 (ko) 관심 특성 색 모델 변수의 적응성 추정을 위한 방법 및 장치
KR20190127909A (ko) 심층 신경망을 통한 시각 품질 유지 양자화 파라미터 예측
Zhang et al. A new rate control scheme for video coding based on region of interest
JP6664819B2 (ja) デジタル画像のブロックのマスクベースの処理のためのシステムおよび方法
Giannopoulos et al. Convolutional neural networks for video quality assessment
CN119031147B (zh) 基于可学习任务感知机制的视频编解码加速方法及系统
WO2007097586A1 (en) Portable apparatuses having devices for tracking object's head, and methods of tracking object's head in portable apparatus
KR102177247B1 (ko) 조작 이미지 판별 장치 및 방법
CN112215334A (zh) 一种面向事件相机的神经网络模型压缩方法
Lyudvichenko et al. A semiautomatic saliency model and its application to video compression
JP2005174353A (ja) オブジェクト検出
CN110996101A (zh) 一种视频编码的方法和装置
US20190392311A1 (en) Method for quantizing a histogram of an image, method for training a neural network and neural network training system
US10897619B2 (en) Complexity control of video codec
CN119277083A (zh) 视频编码的参数处理方法和装置、存储介质及电子设备
Matsubara Towards Split Computing: Supervised Compression for Resource-Constrained Edge Computing Systems
JP2016082395A (ja) 符号化装置、符号化方法及びプログラム
Dhaouadi et al. Enhancing Split ViT Inference Through Sparsity-Driven Compression
Beye et al. SwitchingNet: Edge-Assisted Model Switching for Accurate Video Recognition Over Best-Effort Networks
Benjak Low latency video coding in first-person view drone piloting system
KR100464004B1 (ko) 관심영역별 가중치를 이용한 영상의 양자화장치

Legal Events

Date Code Title Description
PA0109 Patent application

Patent event code: PA01091R01D

Comment text: Patent Application

Patent event date: 20170928

PG1501 Laying open of application
A201 Request for examination
A302 Request for accelerated examination
PA0201 Request for examination

Patent event code: PA02012R01D

Patent event date: 20200417

Comment text: Request for Examination of Application

Patent event code: PA02011R01I

Patent event date: 20170928

Comment text: Patent Application

PA0302 Request for accelerated examination

Patent event date: 20200417

Patent event code: PA03022R01D

Comment text: Request for Accelerated Examination

Patent event date: 20170928

Patent event code: PA03021R01I

Comment text: Patent Application

E902 Notification of reason for refusal
PE0902 Notice of grounds for rejection

Comment text: Notification of reason for refusal

Patent event date: 20200812

Patent event code: PE09021S01D

E701 Decision to grant or registration of patent right
PE0701 Decision of registration

Patent event code: PE07011S01D

Comment text: Decision to Grant Registration

Patent event date: 20201210

GRNT Written decision to grant
PR0701 Registration of establishment

Comment text: Registration of Establishment

Patent event date: 20210111

Patent event code: PR07011E01D

PR1002 Payment of registration fee

Payment date: 20210112

End annual number: 3

Start annual number: 1

PG1601 Publication of registration
PR1001 Payment of annual fee

Payment date: 20231227

Start annual number: 4

End annual number: 4

PR1001 Payment of annual fee

Payment date: 20241224

Start annual number: 5

End annual number: 5