KR102203209B1 - Method for granulation of plant powder containing antioxidant materials using Cryogenic Micro Grinding Technology - Google Patents

Method for granulation of plant powder containing antioxidant materials using Cryogenic Micro Grinding Technology Download PDF

Info

Publication number
KR102203209B1
KR102203209B1 KR1020180124224A KR20180124224A KR102203209B1 KR 102203209 B1 KR102203209 B1 KR 102203209B1 KR 1020180124224 A KR1020180124224 A KR 1020180124224A KR 20180124224 A KR20180124224 A KR 20180124224A KR 102203209 B1 KR102203209 B1 KR 102203209B1
Authority
KR
South Korea
Prior art keywords
cmgt
antioxidant
fine powder
turmeric
granules
Prior art date
Application number
KR1020180124224A
Other languages
Korean (ko)
Other versions
KR20200043641A (en
Inventor
이은정
이일남
정호준
Original Assignee
한국맥널티 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국맥널티 주식회사 filed Critical 한국맥널티 주식회사
Priority to KR1020180124224A priority Critical patent/KR102203209B1/en
Publication of KR20200043641A publication Critical patent/KR20200043641A/en
Application granted granted Critical
Publication of KR102203209B1 publication Critical patent/KR102203209B1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23PSHAPING OR WORKING OF FOODSTUFFS, NOT FULLY COVERED BY A SINGLE OTHER SUBCLASS
    • A23P10/00Shaping or working of foodstuffs characterised by the products
    • A23P10/20Agglomerating; Granulating; Tabletting
    • A23P10/22Agglomeration or granulation with pulverisation of solid particles, e.g. in a free-falling curtain
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/10Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2002/00Food compositions, function of food ingredients or processes for food or foodstuffs
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2200/00Function of food ingredients
    • A23V2200/30Foods, ingredients or supplements having a functional effect on health
    • A23V2200/302Foods, ingredients or supplements having a functional effect on health having a modulating effect on age
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2300/00Processes
    • A23V2300/10Drying, dehydrating
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2300/00Processes
    • A23V2300/31Mechanical treatment

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Polymers & Plastics (AREA)
  • Mycology (AREA)
  • Health & Medical Sciences (AREA)
  • Nutrition Science (AREA)
  • Medicines Containing Plant Substances (AREA)
  • Preparation Of Fruits And Vegetables (AREA)
  • Coloring Foods And Improving Nutritive Qualities (AREA)

Abstract

본 발명은 극저온 초미세 분쇄법(Cryogenic Micro Grinding Technology: CMGT)을 이용하여 항산화 활성을 갖는 식물를 분쇄하여 분말화 및 과립화 하였을 때 원물이 갖는 항산화 활성을 유지하고 체내 흡수율을 향상시키는 방법에 관한 것이다. 본 발명에 따르면 항산화 기능을 갖는 식물을 -196 내지 -70℃의 극저온에서 10 내지 50㎛의 초미세 크기로 분쇄하는 과정을 거치면서 영양성분의 파괴를 최소화 함으로써 성분을 최대한 유지하고 체내 흡수율이 향상되는 효과가 있다. 또한, 저온 과립화 하는 과정을 통하여 열에 약한 항산화 식물의 유효 성분을 유지하면서 과립화하고 이를 통해 분산성을 높이고 가공 상품으로서의 이용가능성을 향상시킬 수 있다. The present invention relates to a method of maintaining the antioxidant activity of the original substance and improving the absorption rate in the body when a plant having antioxidant activity is pulverized and powdered and granulated by using a cryogenic micro-grinding technology (CMGT). . According to the present invention, by minimizing the destruction of nutrients while pulverizing plants with antioxidant functions into ultra-fine sizes of 10 to 50 μm at cryogenic temperatures of -196 to -70°C, the components are maintained as much as possible and absorption rate in the body is improved. Has the effect of being. In addition, it is possible to granulate while maintaining the active ingredients of antioxidant plants that are weak to heat through the low-temperature granulation process, thereby increasing dispersibility and improving the usability as processed products.

Description

극저온 초미세 분쇄를 이용한 항산화 식물 분말의 과립화 방법 {Method for granulation of plant powder containing antioxidant materials using Cryogenic Micro Grinding Technology}Method for granulation of plant powder containing antioxidant materials using Cryogenic Micro Grinding Technology

본 발명은 극저온 초미세 분쇄법(Cryogenic Micro Grinding Technology: CMGT)을 이용하여 항산화 활성을 갖는 식물을 분쇄하여 분말화 및 과립화 하였을 때 원물이 갖는 항산화 활성을 유지하고 체내 흡수율을 향상시키는 방법에 관한 것이다.The present invention relates to a method of maintaining the antioxidant activity of the original substance and improving the absorption rate in the body when a plant having antioxidant activity is pulverized, powdered and granulated by using a cryogenic micro-grinding technology (CMGT). will be.

UN 미래보고서는 2050년 전 세계 인구는 90 억명에 도달하므로 식량 부족 현상이 가중될 것으로 예측하였고 FAO는 식량 부족으로 기아와 영양 실조가 지속되거나 증가될 것으로 전망하고 있다. 식량의 양과 질의 감소는 식량의 안보 뿐만 아니라 영양의 균형적인 공급에도 영향을 미친다. 한편, 영양적인 식품 소재를 섭취했을 때 소화 흡수력이 떨어지고 체내의 이용률이 적어 짐에 따라 생체 내에서 흡수력이 높은 식품개발 기술이 요구되고 있으며 이를 위해서 극저온 초미세 분쇄 기술에 대한 관심이 증가하고 있다.The UN Future Report predicts that the world's population will reach 9 billion by 2050, which will intensify the food shortage, and FAO predicts that food shortages will continue or increase hunger and malnutrition. The decrease in the quantity and quality of food affects not only food security but also a balanced supply of nutrition. On the other hand, when ingesting nutritious food materials, as the digestion and absorption capacity decreases and the utilization rate in the body decreases, food development technology with high absorption capacity in vivo is required, and for this purpose, interest in cryogenic ultra-fine grinding technology is increasing.

극저온 초미세 분쇄 기술은 후추, 고수, 커민, 호로파 등과 같은 향신료의 휘발성분이나 지방산 oil 함량의 보존 등에 연구되어 왔다(Singh & Goswami, 1999; Murthy & Suvendu, 2008;Bhupendra & Goswami, 2016; Sharma et al., 2016). 동결 분쇄 기술은 영하 196℃ 액체질소를 사용하여 분쇄 시 발생하는 열을 차단하여 열에 의한 식품의 풍미 저하와 영양성분의 손실을 막을 수 있는 기술이다(Ishito et al., 2002;Rohit et al., 2013; Saxena et al., 2015). 동결분쇄 기술은 열에 민감한 성분을 보호하고 물질을 균일하게 분쇄하여 향미를 고르게 유지시킬 수 있고 액체질소를 이용하여 저온에서 분쇄하기 때문에 단백질 등의 열 변성을 방지하고 지질의 산화를 방지하는 효과가 있다(Krejеovаa et al., 2008; Bhupendra & Goswami, 2016). 또한 추출액 또는 농축액으로 제조하면 가용성 성분만 섭취할 수 있으나 극저온 초미세 분쇄기술은 원물을 섭취할 수 있는 초미세분말로 제조하므로 고유의 영양 그대로를 섭취할 수 있는 기술이다.Cryogenic ultra-fine grinding technology has been studied for the preservation of volatile components or fatty oil content of spices such as pepper, coriander, cumin, fenugreek, etc.(Singh & Goswami, 1999; Murthy & Suvendu, 2008; Bhupendra & Goswami, 2016; Sharma et al., 2016). Freeze-crushing technology is a technology that blocks heat generated during pulverization using liquid nitrogen at -196°C to prevent loss of flavor and nutrients in food due to heat (Ishito et al., 2002; Rohit et al., 2013; Saxena et al., 2015). Freeze crushing technology protects heat-sensitive ingredients and pulverizes substances evenly to maintain flavor evenly.Since it is pulverized at low temperature using liquid nitrogen, it has the effect of preventing thermal denaturation of proteins, etc., and preventing oxidation of lipids. (Krejеovаa et al., 2008; Bhupendra & Goswami, 2016). In addition, if it is prepared as an extract or a concentrate, only soluble ingredients can be ingested, but the cryogenic ultra-fine grinding technology is a technology that allows you to consume the original nutrition as it is, as it is manufactured into ultra-fine powder that can consume the raw material.

한편, 최근 기능성 식품과 생체조절 가능한 고기능성 농작물에 대한 관심에 높아짐에 따라 다양한 가공 기술을 적용하여 보리싹, 울금, 황칠, 상황버섯 등의 기능 연구가 되고 있다. Meanwhile, as interest in functional foods and high-functional crops that can be regulated in vivo has increased, functional studies such as barley sprout, turmeric, hwangchil, and mushroom mushrooms are being conducted by applying various processing techniques.

이에 본 발명자들은 항산화 기능을 갖는 식물을 극저온 초미세 분쇄 기술을 이용하여 원물이 갖는 항산화 기능을 유지하면서 초미세 분말이 되도록 분쇄하여 투과도, 생체 내 이용율을 높이는 발명을 완성하게 되었다. 나아가, 극저온 초미세 분쇄 후 저온 건조시킨 분말과 건조 과정을 거치지 않아 수분을 포함하는 극저온 초미세 분쇄 분말을 혼합 및 저온 과립화 하여 항산화 기능을 갖는 초미세 분쇄 과립을 제조하는 방법을 완성하게 되었다. Accordingly, the present inventors have completed the invention of increasing the permeability and bioavailability by pulverizing a plant having an antioxidant function into an ultra-fine powder while maintaining the antioxidant function of the original material using a cryogenic ultra-fine pulverization technology. Furthermore, a method of producing ultra-fine pulverized granules having an antioxidant function was completed by mixing and low-temperature granulation of the ultra-low-temperature ultra-fine pulverized powder and the cryogenic ultra-fine pulverized powder containing moisture without going through the drying process after cryogenic ultra-fine grinding.

본 발명의 목적은 (a) 울금, 생강 및 아로니아로 구성된 항산화 식물을 준비하는 단계; (b) 상기 울금, 생강 및 아로니아로 구성된 군에서 선택되는 항산화 식물을 -196℃ 내지 -70℃ 에서 동결하여 평균입도 10 내지 50㎛의 크기로 분쇄하고, 상기 분쇄물을 -30 내지 -10℃에서 건조하여 제 1 미세분말을 제조하는 단계; (c) 상기 (a) 단계에서 준비한 울금, 생강 및 아로니아로 구성된 군에서 선택되는 항산화 식물을 -196℃ 내지 -70℃ 에서 동결하여 평균입도 10 내지 50㎛의 크기로 분쇄하여 제 2 미세분말을 제조하는 단계; (d) 상기 제 1 미세분말과 제 2 미세분말을 혼합하는 단계; 및 (e) 상기 혼합물을 25 내지 35℃에서 과립화하는 단계를 포함하는 항산화 식물 과립을 제조하는 방법을 제공하는 데 있다. The object of the present invention is (a) preparing an antioxidant plant consisting of turmeric, ginger and aronia; (b) the antioxidant plant selected from the group consisting of turmeric, ginger and aronia was frozen at -196°C to -70°C and pulverized to an average particle size of 10 to 50µm, and the pulverized product was -30 to -10 Drying at °C to prepare a first fine powder; (c) Second fine powder by freezing the antioxidant plant selected from the group consisting of turmeric, ginger and aronia prepared in step (a) at -196°C to -70°C and pulverizing to a size having an average particle size of 10 to 50 μm Manufacturing a; (d) mixing the first fine powder and the second fine powder; And (e) to provide a method for producing antioxidant plant granules comprising the step of granulating the mixture at 25 to 35 ℃.

상기 목적을 달성하기 위하여, (a) 울금, 생강 및 아로니아로 구성된 항산화 식물을 준비하는 단계; (b) 상기 울금, 생강 및 아로니아로 구성된 군에서 선택되는 항산화 식물을 -196℃ 내지 -70℃ 에서 동결하여 평균입도 10 내지 50㎛의 크기로 분쇄하고, 상기 분쇄물을 -30 내지 -10℃에서 건조하여 제 1 미세분말을 제조하는 단계; (c) 상기 (a) 단계에서 준비한 울금, 생강 및 아로니아로 구성된 군에서 선택되는 항산화 식물을 -196℃ 내지 -70℃ 에서 동결하여 평균입도 10 내지 50㎛의 크기로 분쇄하여 제 2 미세분말을 제조하는 단계; (d) 상기 제 1 미세분말과 제 2 미세분말을 혼합하는 단계; 및 (e) 상기 혼합물을 25 내지 35℃에서 과립화하는 단계를 포함하는, 항산화 식물 과립을 제조하는 방법을 제공한다. In order to achieve the above object, (a) preparing an antioxidant plant consisting of turmeric, ginger and aronia; (b) the antioxidant plant selected from the group consisting of turmeric, ginger and aronia was frozen at -196°C to -70°C and pulverized to an average particle size of 10 to 50µm, and the pulverized product was -30 to -10 Drying at °C to prepare a first fine powder; (c) Second fine powder by freezing the antioxidant plant selected from the group consisting of turmeric, ginger and aronia prepared in step (a) at -196°C to -70°C and pulverizing to a size having an average particle size of 10 to 50 μm Manufacturing a; (d) mixing the first fine powder and the second fine powder; And (e) it provides a method for producing antioxidant plant granules comprising the step of granulating the mixture at 25 to 35 ℃.

또한, (a) 울금, 생강 및 아로니아로 구성된 항산화 식물을 준비하는 단계; (b) 상기 울금, 생강 및 아로니아로 구성된 군에서 선택되는 항산화 식물을 -196℃ 내지 -70℃ 에서 동결하여 평균입도 10 내지 50㎛의 크기로 분쇄하는 단계; (c) 상기 분쇄물을 -30 내지 -10℃에서 건조하는 단계를 포함하는 항산화 식물 분말을 제조하는 방법을 제공한다. In addition, (a) preparing an antioxidant plant consisting of turmeric, ginger and aronia; (b) freezing the antioxidant plant selected from the group consisting of turmeric, ginger and aronia at -196°C to -70°C and pulverizing it to a size having an average particle size of 10 to 50 μm; (c) It provides a method of producing an antioxidant plant powder comprising the step of drying the pulverized product at -30 to -10 ℃.

본 발명에 있어서, 상기 항산화 식물 과립과 분말은 원물의 폴리페놀 함량을 유지하고, 항산화 활성을 갖는 것을 특징으로 할 수 있다. In the present invention, the antioxidant plant granules and powder may be characterized in that they maintain the polyphenol content of the raw material and have antioxidant activity.

또한, 상기 항산화 식물 과립과 분말은 체내 흡수율이 증가하는 것을 특징으로 할 수 있다. In addition, the antioxidant plant granules and powders may be characterized in that the absorption rate in the body increases.

본 발명에 따른 항산화 식물 과립은, 제 1 미세분말은 80 내지 98 중량%이고 제 2 미세분말은 2 내지 20 중량%이고, 제 1 미세분말과 제 2 미세분말의 혼합물은 5 내지 20중량%의 수분을 포함하는 것을 특징으로 할 수 있다. 항산화 식물 과립화를 위한 제 1 미세분말과 제 2 미세분말의 혼합은 무중력 상태에서 기류방식으로 혼합하는 것을 특징으로 할 수 있다. In the antioxidant plant granules according to the present invention, the first fine powder is 80 to 98% by weight, the second fine powder is 2 to 20% by weight, and the mixture of the first fine powder and the second fine powder is 5 to 20% by weight. It may be characterized by containing moisture. The mixing of the first fine powder and the second fine powder for granulating antioxidant plants may be characterized in that they are mixed in an airflow manner in a zero gravity state.

본 발명에서 “극저온 초미세 분쇄법(Cryogenic Micro Grinding Technology: CMGT)”은 액체질소를 투입하여 -196℃ 내지 -80℃의 극저온에서 항산화 식물을 딱딱하게 냉동시킨 상태에서 곧바로 미세 분말로 분쇄시키는 기술이다. 일반적으로 원물을 건조시키지 않고 분쇄하게 되면 원물 내에 그대로 함유되어 있는 수분 때문에 사실상 분쇄가 이루어 질 수 없고, 건조 단계를 거치더라도 완전 건조 상태가 아닌 이상 남아있는 수분으로 인해 겔 상태와 같이 짓이겨진 분쇄물이 얻어지게 된다. 한편, 극저온 초미세 분쇄법은 수분을 그대로 함유하고 있는 원물을 액체질소에 침지하여 극저온으로 동결하고 액체질소를 공급하여 극저온 상태를 유지하면서 원물을 동결 분쇄하는 것으로, 원물의 형태를 딱딱하게 냉동상태에서 분쇄함으로써 수분을 함유하고 있는 것 이어도 완전한 분말화가 가능하고 마이크로 단위 초미세 분말을 얻을 수 있는 것을 특징으로 한다. In the present invention, the "Cryogenic Micro Grinding Technology (CMGT)" is a technology that directly pulverizes the antioxidant plants into fine powders in the state of hardly freezing the antioxidant plants at cryogenic temperatures of -196°C to -80°C by adding liquid nitrogen to be. In general, if the raw material is pulverized without drying, it cannot be pulverized because of the moisture contained in the raw material. Even after the drying step, the crushed product is crushed like a gel due to the remaining moisture unless it is completely dried. Is obtained. On the other hand, the cryogenic ultra-fine pulverization method is to freeze and crush the raw material while maintaining the cryogenic state by supplying liquid nitrogen by immersing the raw material containing moisture in liquid nitrogen and freezing it. It is characterized in that by pulverizing at, complete powdering is possible even if it contains moisture, and ultrafine powder in micro units can be obtained.

본 발명에서, 영양성분의 투과도를 확인하기 위하여 사용되는 PAMPA(Parallel Artificial Membrane Permeability Assay, 인공지질막 투과 분석)는 생체 내에서 수동적인 세포 간 투과성 평가를 위한 신속한 in vitro 모델로 96 well 미량정량판 기반의 기술을 말한다. In the present invention, PAMPA (Parallel Artificial Membrane Permeability Assay), which is used to check the permeability of nutrients, is a rapid in vitro model for passive intercellular permeability evaluation in vivo. Speak of technology.

본 발명에서 "CMGT-혼합"은 -196℃ 내지 -70℃에서 입자크기 10 내지 50㎛으로 극저온 초미세 분쇄한 후 10 내지 30℃에서 저온 건조하여 얻어지는 미세분말(제 1 미세분말)과 -196℃ 내지 -70℃에서 입자크기 10 내지 50㎛으로 극저온 초미세 분쇄하여 얻어지는 수분을 포함하는 미세분말(제 2 미세분말)을 혼합한 것을 말한다. 제 1 미세분말 80 내지 98 중량%와 제 2 미세분말 2 내지 20 중량%를 혼합하고, 혼합 미세분말의 수분함량은 5 내지 20%가 되도록 할 수 있다. 제 1 미세분말과 제 2 미세분말에 대하여 제시된 비율도 혼합을 하고 분체 정립을 통하여 혼합물에 대하여 1차 분산을 진행 시킨다. 이 때, 제 2 미세분말은 수분을 포함한 뭉쳐진 형태의 입자이므로 무중력 상태에서 기류식 혼합 방식으로 입자를 분산시키면서 제 1 미세분말과 혼합 교류시키게 된다. 이 때, 원물의 특성에 따라 자체 응집력이 없는 경우는 수분율 이외에 결합제가 필요하므로 기류 혼합시에 기본 부형제를 첨가하여 분산된 원물의 응집도를 높일 수 있고, 기본 부형제의 사용량은 1 내지 90%까지 가능하나 항산화 식물의 이용이 주 목적이므로 1 내지 70% 이내로 사용이 바람직하고, 더 바람직하게는 1내지 30%이내로 사용하는 것이 바람직하다. 응집력 보강을 위한 기본 부형제는 dextrin류(덱스트린, 말토덱스트린, 난소화성말토덱스트린, 이소말톨덱스트린 등)와 결정셀룰로오즈, 치커리식이섬유분말, 유당, 올리고당분말류(프락토올리고당, 이소말토올리고당 등) 등을 사용할 수 있다. In the present invention, "CMGT-mixed" refers to a fine powder (first fine powder) obtained by ultra-low temperature pulverization at a particle size of 10 to 50 μm at -196°C to -70°C and then drying at a low temperature at 10 to 30°C and -196 It refers to a mixture of fine powder (second fine powder) containing moisture obtained by ultra-low temperature pulverization at a particle size of 10 to 50 μm at ℃ to -70 ℃. 80 to 98% by weight of the first fine powder and 2 to 20% by weight of the second fine powder may be mixed, and the moisture content of the mixed fine powder may be 5 to 20%. The suggested ratios for the first and second fine powders are also mixed, and the first dispersion is performed on the mixture through powder sizing. At this time, since the second fine powder is a clustered type of particles containing moisture, the particles are dispersed in an airflow mixing method in a zero gravity state and mixed and exchanged with the first fine powder. At this time, if there is no self-cohesive force according to the characteristics of the raw material, a binder is required in addition to the moisture content, so when mixing with airflow, a basic excipient can be added to increase the degree of cohesion of the dispersed raw material, and the amount of basic excipient used can be up to 1 to 90% Since the use of one antioxidant plant is the main purpose, it is preferably used within 1 to 70%, more preferably within 1 to 30%. The basic excipients for reinforcing cohesion are dextrins (dextrin, maltodextrin, indigestible maltodextrin, isomaltoldextrin, etc.), crystalline cellulose, chicory dietary fiber powder, lactose, oligosaccharide powders (fructooligosaccharide, isomaltooligosaccharide, etc.), etc. You can use

본 발명에서 "CMGT-과립"은 제 1 미세분말과 수분을 포함하는 제 2 미세분말을 혼합한 뒤, 25 내지 35℃에서 저온 과립화 과정을 거쳐 형성된다. 한편, 일반적인 FBG 과립 공정은 45 내지 60℃의 온도 조건이 요구되고 최저 온도 조건도 40 내지 45℃가 요구되는 점에서 일반 과립 공정은 항산화 식물에 함유된 항산화 성분이 파괴될 우려가 있다. In the present invention, "CMGT-granules" are formed by mixing the first fine powder and the second fine powder containing moisture, and then performing a low-temperature granulation process at 25 to 35°C. On the other hand, the general FBG granulation process requires a temperature condition of 45 to 60 °C and the lowest temperature condition is also 40 to 45 °C is required, so that the general granulation process may destroy the antioxidant components contained in the antioxidant plants.

하지만, 본 발명에 따른 과립화 공정은 수분을 함유하는 제 2 미세분말을 혼합함으로써, 수분 함량의 증가로 과립 작업 시의 수분 투입 시간을 줄일 수 있어 전체적인 과립 작업 시간이 단축되고 이에 따라 열에 취약한 항산화 성분을 보호할 수 있고, 내용물의 내부 온도가 내려감에 따라 과립 작업의 시작 온도 자체가 낮게 되어 과립을 위해 초기 가열하여 내용물의 온도를 올려도 저온에서 과립화할 수 있다. 또한, 고온 과립화하는 경우에는 필요 수분량이 적고 저온 과립화하는 경우에는 상대적으로 많은 수분 함량과 적정 온도가 요구되는데, 본 발명에 따르면 짧은 시간에 적정 수분함량에 도달하게 하여 과립 생성도를 앞당기게 되는 효과가 있다. However, in the granulation process according to the present invention, by mixing the second fine powder containing moisture, the moisture input time during granulation can be reduced due to an increase in the moisture content, so that the overall granulation operation time is shortened, and thus, antioxidants vulnerable to heat. Ingredients can be protected, and as the internal temperature of the contents decreases, the starting temperature of the granulation operation itself becomes low, so even if the temperature of the contents is increased by initial heating for granulation, granulation can be performed at low temperature. In addition, in the case of high-temperature granulation, the required amount of moisture is small, and in the case of low-temperature granulation, a relatively large moisture content and an appropriate temperature are required.According to the present invention, the degree of granulation is accelerated by reaching an appropriate moisture content in a short time. Has the effect of being.

본 발명의 도 7에 나타난 바와 같이, CMGT 1 분쇄 후 건조 과정을 거쳐 생성되는 미세분말을 "제 1 미세분말"이라 하고 CMGT 2 분쇄 후 건조 과정을 거치지 않아 수분을 포함하고 있는 상태의 미세분말을 "제 2 미세분말"이라고 하였다. As shown in FIG. 7 of the present invention, the fine powder generated through the drying process after CMGT 1 pulverization is referred to as "first fine powder", and the fine powder in a state that contains moisture without going through the drying process after CMGT 2 pulverization It was called "second fine powder".

본 발명에서 "과립"이란 미세한 분말 상태의 건조식품을 알맞은 습도 중에 두면 흡습하며 분말성분이 점착성을 가지게 되어 분말은 응집하여 30~150배의 큰 입자를 형성하는데, 이것을 재건조한 과립화된 상태를 말한다. 과립화에 의해서 형태는 다공질 구조가 되어 습윤성이 좋아지고, 동시에 수중에서의 분산, 침강 속도가 증대한다. 과립화 하게 되면 과립화 하지 않은 분말에 비하여 분산성이 높아지고 가공 상품으로의 이용성이 우수하게 된다. In the present invention, the term "granule" is a fine powdery dry food that absorbs moisture when placed in a suitable humidity, and the powder component becomes sticky, and the powder agglomerates to form 30 to 150 times larger particles. Say. By granulation, the shape becomes a porous structure, which improves wettability, and at the same time increases the rate of dispersion and sedimentation in water. When granulated, the dispersibility is higher than that of the non-granulated powder and the usability as a processed product is excellent.

본 발명에서, 울금은 생강과의 식물인 울금(Curcuma longa Radix), 온울금(C. aromatica), 광서아출(C. kwangsiensis), 봉아출(C. zedoaria)을 포함한다. 보통 강황과 많이 비교되는데, 강황은 뿌리줄기인 반면 울금은 덩이뿌리를 사용해 건조한 것이다. 중국 남부와 인도, 오키나와를 비롯한 동남아시아 지역에서 자생하거나 재배되며 우리나라의 중남부지역에서도 재배된다. 울금의 지표성분인 커큐민(curcumin)은 인도산 울금에 주로 포함되어 있는 알칼로이드의 일종이다. 커큐미노이드의 일종이기도 하다. 커큐미노이드는 울금의 노란 색깔을 내는 것으로 알려져 있다.In the present invention, turmeric is a plant of the ginger family Turmeric ( Curcuma longa Radix ), Onulgeum ( C. aromatica ), Guangseo Achul ( C. kwangsiensis ), Bong Achul ( C. zedoaria ). Compared to normal turmeric a lot, turmeric is a rootstock, whereas turmeric is dried using tubers. It grows or grows in Southeast Asia, including southern China, India, and Okinawa, and is also cultivated in the central and southern regions of Korea. Curcumin, an indicator component of turmeric, is a type of alkaloid mainly contained in turmeric produced in India. It is also a type of curcuminoid. Curcuminoids are known to give off the yellow color of turmeric.

본 발명에서, 생강의 지표성분인 6-진저롤(6-gingerol)은 생강의 매운맛 성분 중의 하나로, 체내 지질 저하 효과, 항균효과 종양억제, DNA 손상억제 효과 등의 역할을 한다. 또한 편두통을 경감하고 임신 또는 멀미로 인한 구토를 줄이는 역할도 있다. In the present invention, 6-gingerol, an index component of ginger, is one of the spicy ingredients of ginger, and plays a role in reducing lipids in the body, inhibiting antibacterial effects, suppressing tumors, and inhibiting DNA damage. It also helps reduce migraines and reduces vomiting caused by pregnancy or motion sickness.

본 발명에서, 아로니아의 지표성분인 안토시아닌(anthocyanin)은 꽃이나 과실 등에 주로 포함되어 있는 색소를 말하는 것으로 수소 이온 농도에 따라 빨간색, 보라색, 파란색 등을 띄는 물질이다. 안토시아닌은 항산화효과를 갖는 것으로 알려져 있다. In the present invention, anthocyanin, an indicator component of aronia, refers to a pigment mainly included in flowers or fruits, and is a substance that exhibits red, purple, blue, etc. depending on the concentration of hydrogen ions. Anthocyanins are known to have antioxidant effects.

본 발명에서는 항산화 성능을 갖는 식물로 울금, 생강, 아로니아를 활용하여 CMGT 분쇄, 혼합 및 과립화 실험을 수행하였으나, CMGT 분쇄 조건과 제 1 미세분말 및 제 2 미세분말의 혼합 비율, 과립화를 위한 온도 조건 등의 본 발명에 따른 특징을 포함하면 울금, 생강, 아로니아가 아닌 다른 항산화 식물이라도 본 발명에 따른 효과를 동일하게 얻을 수 있을 것이다. 항산화 식물로는 보리싹, 밀싹, 상엽, 황칠, 가시오가피, 기타 베리류, 상황버섯, 차가버섯 등이 있다. In the present invention, CMGT grinding, mixing, and granulation experiments were performed using turmeric, ginger, and aronia as plants having antioxidant properties, but the CMGT grinding conditions, the mixing ratio of the first fine powder and the second fine powder, and granulation were determined. Including the features according to the present invention such as temperature conditions for turmeric, ginger, aronia and other antioxidant plants will be able to obtain the same effect according to the present invention. Antioxidant plants include barley sprouts, wheat sprouts, upper leaves, hwangchil, gooseberries, other berries, phylum mushrooms, and chaga mushrooms.

본 발명에 따르면 항산화 기능을 갖는 식물을 -196 내지 -70℃의 극저온에서 10 내지 50㎛의 초미세 크기로 분쇄하는 과정을 거치면서 영양성분의 파괴를 최소화 함으로써 성분을 최대한 유지하고 체내 흡수율이 향상되는 효과가 있다. 또한, 저온 과립화 하는 과정을 통하여 열에 약한 항산화 식물의 유효 성분을 유지하면서 과립화하고 이를 통해 분산성을 높이고 가공 상품으로서의 이용가능성을 향상시킬 수 있다. According to the present invention, by minimizing the destruction of nutrients while pulverizing plants with antioxidant functions into ultra-fine sizes of 10 to 50 μm at cryogenic temperatures of -196 to -70°C, the components are maintained as much as possible and absorption rate in the body is improved. Has the effect of being. In addition, it is possible to granulate while maintaining the active ingredients of antioxidant plants that are weak to heat through the low-temperature granulation process, thereby increasing dispersibility and improving the usability as processed products.

또한, 본 발명에 따른 항산화식물의 분말 혹은 과립은 건강기능식품의 기능강화 목적으로 사용 가능하고, 환자식, 노인식, 유아식, 영양식, 우주식, 다이어트식, 항산화 보충식으로 상품화될 수 있다. 항산화 공급을 필요로 하는 목적에 따라 본 발명에 따른 분말 혹은 과립을 2~90% 함유하고, 분말, 그래뉼화된 과립제품, 환제, 바 형태, 유동식 형태의 제품, 경질캅셀, 연질캅셀, 정제 등의 형태의 제품으로 활용될 수 있다. In addition, the powder or granules of the antioxidant plant according to the present invention can be used for the purpose of enhancing the function of health functional foods, and can be commercialized as patient food, elderly food, baby food, nutritional food, space food, diet food, and antioxidant supplement food. Depending on the purpose of supplying antioxidants, 2 to 90% of the powder or granules according to the present invention are contained, and powders, granulated granular products, pills, bars, liquid products, hard capsules, soft capsules, tablets, etc. It can be used as a type of product.

도 1은 울금의 CMGT-혼합의 입도 및 CMGT-과립의 붕해입도 분석 결과이다.
도 2는 아로니아의 CMGT-혼합의 입도 및 CMGT-과립의 붕해입도 분석 결과이다.
도 3은 생강의 CMGT-혼합의 입도 및 CMGT-과립의 붕해입도 분석 결과이다.
도 4는 총 폴리페놀 함량을 확인하기 위해 사용한 갈산 표준곡선이다.
도 5는 ABTS 라디칼 소거 효능을 확인하기 위해 사용한 Trolox 표준곡선이다.
도 6은 울금의 일반분쇄물과 CMGT 분쇄물의 ABTS 라디칼 소거능을 확인한 결과이다.
도 7은 생강의 일반분쇄물과 CMGT 분쇄물의 ABTS 라디칼 소거능을 확인한 결과이다.
도 8은 아로니아의 일반분쇄물과 CMGT 분쇄물의 ABTS 라디칼 소거능을 확인한 결과이다.
도 9는 생강의 일반분쇄물과 CMGT 분쇄물의 UV 크로마토그램을 나타낸 것이다.
도 10은 CMGT-과립화하는 과정을 나타낸 것이다.
도 11은 CMGT-과립의 FBG 적용 분산지수를 나타낸 것이다.
1 is a result of analysis of the particle size of CMGT-mixed turmeric and the disintegration particle size of CMGT-granules.
Figure 2 is a result of analysis of the particle size of CMGT-mixed and the disintegration particle size of CMGT-granules of Aronia.
3 is a result of analysis of the particle size of CMGT-mixed ginger and the disintegration particle size of CMGT-granules.
4 is a gallic acid standard curve used to confirm the total polyphenol content.
5 is a Trolox standard curve used to confirm the ABTS radical scavenging efficacy.
6 is a result of confirming the ABTS radical scavenging ability of the general pulverized product of turmeric and the CMGT pulverized.
7 is a result of confirming the ABTS radical scavenging ability of a general pulverized product of ginger and a pulverized CMGT.
8 is a result of confirming the ABTS radical scavenging ability of the general pulverized product of Aronia and the pulverized CMGT.
9 shows the UV chromatogram of the general pulverized product of ginger and the pulverized CMGT.
Figure 10 shows the CMGT-granulation process.
11 shows the dispersion index of CMGT-granules applied to FBG.

이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 보다 구체적으로 설명하기 위한 것으로서, 본 발명의 요지에 따라 본 발명의 범위가 이들 실시예에 의해 제한되지 않는다는 것은 당 업계에서 통상의 지식을 가진 자에게 있어서 자명할 것이다.Hereinafter, the present invention will be described in more detail through examples. These examples are only for describing the present invention in more detail, and it will be apparent to those of ordinary skill in the art that the scope of the present invention is not limited by these examples according to the gist of the present invention. .

재료의 준비Preparation of ingredients

본 실험에 사용되는 재료로 울금, 생강 및 아로니아를 준비하였다. 상기 식물을 일반 건조, 분쇄한 일반 분쇄물과 동결건조하여 극저온 초미세분쇄(CMGT:Cryogenic micro grinding technology)한 CMGT 분쇄물을 시료로 사용하였다. Turmeric, ginger and aronia were prepared as materials used in this experiment. The plants were dried and pulverized, and the lyophilized and lyophilized CMGT pulverized product obtained by cryogenic micro grinding technology (CMGT) was used as samples.

울금의 지표성분은 커큐민(curcumin), 생강의 지표성분은 6-진저롤(6-gingerol), 아로니아의 지표성분은 안토시아닌(anthocyanin)으로 설정하였다. 울금, 생강, 아로니아에 대해서 총 폴리페놀 함량, 항산화능을 측정하였고 모든 시료에 대해서 PAMPA(Parallel Artificial Membrane Permeability Assay, 인공지질 막 투과 분석)를 이용하여 세포막 투과성을 측정하였다. The indicator component of turmeric was curcumin, the indicator component of ginger was 6-gingerol, and the indicator component of aronia was anthocyanin. Total polyphenol content and antioxidant activity were measured for turmeric, ginger, and aronia, and cell membrane permeability was measured for all samples by using PAMPA (Parallel Artificial Membrane Permeability Assay).

폴리페놀(Polyphenol) 함량 측정법Method for measuring polyphenol content

추출물의 폴리페놀 함량은 Folin-Denis의 방법으로 측정하였다. 추출 시료용액 1ml에 50% Folin-Ciocalteu’s phenol reagent 0.5ml를 가하여 실온에서 3 분간 반응시켰다. 반응용액에 Na2CO3 포화용액 1ml과 7.5ml 증류수를 차례로 혼합하여 30 분간 방치시킨 뒤 760nm에서 흡광도를 측정하였다. 총 폴리페놀 함량은 갈산(gallic acid)을 표준물질로 이용하여 작성한 검량선(y = 6.4072x + 0.0326)에 따라 함량을 구하였다. 측정단위는 GAE(Gallic acid equivalent)/g을 사용하였다. The polyphenol content of the extract was measured by the method of Folin-Denis. 0.5 ml of 50% Folin-Ciocalteu's phenol reagent was added to 1 ml of the extracted sample solution, and reacted at room temperature for 3 minutes. In the reaction solution, 1 ml of a saturated Na 2 CO 3 solution and 7.5 ml of distilled water were sequentially mixed, allowed to stand for 30 minutes, and the absorbance was measured at 760 nm. The total polyphenol content was calculated according to the calibration curve (y = 6.4072x + 0.0326) prepared using gallic acid as a standard material. The measurement unit was GAE (Gallic acid equivalent)/g.

ABTS radical scavenging assay 법ABTS radical scavenging assay method

2,2′-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) radical cation (ABTS+ㆍ) 제거능은 Antioxidant Assay Kit (CS0790, SigmaAldrich,USA)를 이용하여 측정하였다. 표준물질은 trolox (6-hydroxy-2,5,7,8-tetra-methylchroman-2-carboxylic acid)를 사용하여 검량선(y=-2.2078x + 0.6508)을 작성하여 결과를 얻었다. Assay buffer에 희석된 10㎕ trolox 용액에, 20㎕ myoglobin working solution(100-fold with 1x assay buffer)과 150㎕ ABTS substrate working solution을 혼화했다. 이후 실온에서 5분간 인큐베이션한 후 100㎕ stop solution을 혼합하여 734nm에서 micro plate reader (SpectraMax M2e, Molecular Devices, USA)로 측정하였다. 소거 활성은 trolox standard curve에서 trolox equivalents(trolox equivalent antioxidant capacity, TEAC)로 나타내었다. 1x assay buffer는 증류수로 10x assay buffer(A3605, Sigma-Aldrich, USA)를 10배 희석하였고 ABTS substrate working solution은 ABTS tablet 1개, phosphate-citrate buffer tablet 1개와 증류수 100ml을 혼화하였다. The ability to remove 2,2′-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) radical cation (ABTS+ㆍ) was measured using an Antioxidant Assay Kit (CS0790, SigmaAldrich, USA). As a standard, a calibration curve (y=-2.2078x + 0.6508) was prepared using trolox (6-hydroxy-2,5,7,8-tetra-methylchroman-2-carboxylic acid) and the results were obtained. In the 10 μl trolox solution diluted in the assay buffer, 20 μl myoglobin working solution (100-fold with 1x assay buffer) and 150 μl ABTS substrate working solution were mixed. After incubation at room temperature for 5 minutes, 100 μl stop solution was mixed and measured at 734 nm with a micro plate reader (SpectraMax M2e, Molecular Devices, USA). The scavenging activity was expressed as trolox equivalents (trolox equivalent antioxidant capacity, TEAC) in the trolox standard curve. As 1x assay buffer, 10x assay buffer (A3605, Sigma-Aldrich, USA) was diluted 10-fold with distilled water, and ABTS substrate working solution was mixed with 1 ABTS tablet, 1 phosphate-citrate buffer tablet and 100 ml of distilled water.

인공지질막 투과 분석(Parallel artificial membrane permeability assay)Parallel artificial membrane permeability assay

투과율 분석은 Pampa Evolution Instrument(Pion Inc. USA)를 사용하여 실시하였다. 각 시료를 추출하여 stock solution으로 하였고 Stock plate에 stock solution 100㎕씩 분주하였다. Prisma HT buffer (110151, Pion Inc., MA, USA)를 40배 희석하여 pH 7.4로 제조한 Prisma Buffer를 준비하였다. Deep well plate에 Prisma buffer 1000ul를 넣은 후 Stock plate의 sample 200ul를 따서 deep well plate로 옮긴 후 피펫으로 4~6번 섞어주었다. GIT assay를 위해 Deep well plate로부터 sample solution 180㎕를 Donor plate로 옮겼다. GIT-0 lipid(1ml/vial)을 완전히 녹인 후 Acceptor plate의 뚜껑을 제거하고 5㎕의 lipid를 멤브레인에 직접 적셨다. Acceptor plate는 200㎕의 ASB 용액 (Acceptor Sink Buffer, Pion Inc, Billerica, USA)을 각 well에 투입하였다. 버블이 생기지 않도록 주의하면서 acceptor plate bottom row부터 donor plate 에 올려 sandwich plate를 만들고 나면 acceptor plate 위에 뚜껑을 덮었다. 40 ABL (Aqueous Boundary Layer Thickness)의 조건으로 Gut-Box™ (Pion Inc., Billerica, USA)에서 1시간동안 배양하였다. 배양 후 acceptor plate와 donor plate에 남아 있는 시료는 각각 2ml e-tube에 담아 LC/MS (Shimadzu UPLC-MS) 기기로 분석하였다. Column은 Phenomenex Luna 1.6u C18(2) 100A 150 x 2.10 mm을 사용하였으며 Intection volume 3㎕, Flow rate 0.3 mL/min로 설정하였다. Detection UV는 PDA detector를 사용하였고 Mobile phase는 Water(0.1% of formic acid in water)-Acetonitrile Gradient elution를 사용하였다. Transmittance analysis was performed using a Pampa Evolution Instrument (Pion Inc. USA). Each sample was extracted and used as a stock solution, and 100 μl of stock solution was dispensed into a stock plate. Prisma HT buffer (110151, Pion Inc., MA, USA) was diluted 40 times to prepare Prisma Buffer prepared at pH 7.4. After 1000ul of prisma buffer was added to the deep well plate, 200ul of sample from the stock plate was taken and transferred to a deep well plate, and then mixed 4-6 times with a pipette. For the GIT assay, 180 µl of the sample solution was transferred from the deep well plate to the donor plate. After completely dissolving GIT-0 lipid (1ml/vial), the lid of the Acceptor plate was removed, and 5µl of lipid was directly wetted into the membrane. As for the acceptor plate, 200 µl of ASB solution (Acceptor Sink Buffer, Pion Inc, Billerica, USA) was added to each well. Taking care not to create a bubble, put it on the donor plate from the bottom row of the acceptor plate to make a sandwich plate, and then put the lid on the acceptor plate. It was incubated for 1 hour in Gut-Box™ (Pion Inc., Billerica, USA) under the condition of 40 ABL (Aqueous Boundary Layer Thickness). After incubation, the samples remaining on the acceptor plate and the donor plate were placed in 2ml e-tubes, respectively, and analyzed by LC/MS (Shimadzu UPLC-MS). Phenomenex Luna 1.6u C18(2) 100A 150 x 2.10 mm was used as the column, and the Intection volume was set to 3 µl and a flow rate of 0.3 mL/min. A PDA detector was used for the detection UV and Water (0.1% of formic acid in water)-Acetonitrile Gradient elution was used for the mobile phase.

울금, 생강 및 아로니아의 CMGT 분말화 CMGT powdering of turmeric, ginger and aronia

울금, 생강 및 아로니아를 구입하여 흐르는 물에 깨끗이 씻어서 준비하였다. 준비한 울금, 생강 및 아로니아를 액체질소에 침지하여 -190℃로 동결하고 액체질소를 분쇄하면서 공급하여 -190℃를 유지하면서 극저온 초미세 분쇄하였다. 이 때, 분쇄된 울금, 생강 및 아로니아의 입자 크기는 10-50㎛이고 입자온도는 -120 내지 -20℃로 측정되었다. Turmeric, ginger and aronia were purchased and washed thoroughly under running water to prepare. The prepared turmeric, ginger and aronia were immersed in liquid nitrogen, frozen at -190°C, and supplied while pulverizing liquid nitrogen, and ultra-low temperature pulverization was performed while maintaining -190°C. At this time, the pulverized turmeric, ginger and aronia had a particle size of 10-50 μm and a particle temperature of -120 to -20°C.

한편, 본 발명에 따른 극저온 초미세 분쇄와 비교하기 위하여 울금, 생강 및 아로니아를 일반분쇄 방법으로 분쇄하였다. 일반 분쇄는 건조한 원료를 분쇄기(DHM-7000CW, Daesung Artlon, Paju,Korea)로 9분동안 분쇄하여 80mesh 망을 통과한 것을 시료로 사용하였다. On the other hand, turmeric, ginger, and aronia were pulverized by a general pulverization method in order to compare with the cryogenic ultra-fine pulverization according to the present invention. For general pulverization, dry raw materials were pulverized for 9 minutes with a pulverizer (DHM-7000CW, Daesung Artlon, Paju, Korea) and passed through an 80 mesh network as a sample.

CMGT-혼합 입도 및 CMGT-과립의 붕해 입도 비교 Comparison of CMGT-mixed particle size and disintegrated particle size of CMGT-granules

습식 입도분석기를 통해 각 시료(CMGT-혼합 및 CMGT-과립)의 입자의 크기를 분석하였고 3회 반복 측정하여 입도분포 10%, 90% 값과 평균 입자직경 및 중간 값을 측정하여 그 결과를 아래 표에 나타내었다. The particle size of each sample (CMGT-mixed and CMGT-granule) was analyzed through a wet particle size analyzer, and the particle size distribution 10% and 90% values, and the average particle diameter and median values were measured by repeating measurements three times. It is shown in the table.

제 1 미세분말과 제 2 미세분말의 혼합(CMGT-혼합)의 평균 입도가 울금 17.7㎛, 아로니아 14.7㎛, 생강 19.9㎛인 원물의 시료를 이용하여 저온에서(25 내지 35℃) FBG(fluid bed granulation) 공정을 진행하여 CMGT-과립을 제조하였다.FBG (fluid) at low temperature (25 to 35°C) using a sample of raw material having an average particle size of turmeric 17.7 μm, aronia 14.7 μm, and ginger 19.9 μm of mixing (CMGT-mixed) of the first fine powder and the second fine powder bed granulation) process was carried out to prepare CMGT-granules.

이에 따라 제조된 각 시료의 CMGT-과립물이 다시 몸속으로 섭취되었을 경우에 체내에서 이용되는 입도의 크기를 알아보고자 붕해 입도를 확인하였다. 붕해입도는 울금 16.3㎛, 아로니아 16.6㎛, 생강 20.6㎛의 입도를 나타내었다.When the CMGT-granules of each sample thus prepared were ingested into the body again, the disintegration particle size was checked to determine the size of the particle size used in the body. The disintegration particle size was 16.3 μm of turmeric, 16.6 μm of aronia, and 20.6 μm of ginger.

시료의 입도분석기 측정 결과Sample particle size analyzer measurement result 시료sample 입자 직경(㎛)Particle diameter (㎛) MeanMean MedianMedian d10d10 d90d90 울금
CMGT
Turmeric
CMGT
혼합mix 17.765±0.93817.765±0.938 18.759±0.64618.759±0.646 6.164±1.0716.164±1.071 47.161±1.53047.161±1.530
과립Granules 16.366±0.22516.366±0.225 17.865±0.00917.865±0.009 5.215±0.0335.215±0.033 43.512±0.21343.512±0.213 아로니아
CMGT
Aaronia
CMGT
혼합mix 14.703±0.48614.703±0.486 15.985±0.47015.985±0.470 5.287±0.1195.287±0.119 34.238±1.70934.238±1.709
과립Granules 16.677±0.36316.677±0.363 18.364±0.35418.364±0.354 5.312±0.1405.312±0.140 43.012±0.66743.012±0.667 생강
CMGT
ginger
CMGT
혼합mix 19.961±0.46519.961±0.465 19.899±0.27119.899±0.271 5.864±0.0805.864±0.080 69.826±3.71269.826±3.712
과립Granules 20.670±0.11920.670±0.119 20.460±0.11220.460±0.112 7.194±0.1107.194±0.110 63.003±0.76163.003±0.761

울금의 CMGT-혼합의 3회 반복 평균입도는 17.765㎛이고, CMGT-과립(FBG)의 3회 반복 평균 붕해입도는 16.696㎛으로 CMGT-과립의 평균 입도가 CMGT-혼합의 평균입도 보다 1.069㎛ 작게 확인되었다. 입도분포 10%와 90%에서 CMGT-혼합은 6.164㎛와 47.161㎛의 입도분포를 나타냈으며, CMGT-과립은 5.408㎛와 45.817㎛의 입도 분포를 나타내었다. 이를 통해, 울금의 CMGT-혼합과 CMGT-과립의 전체적인 입도는 큰 차이가 나지 않음을 알 수 있었다. The average particle size of CMGT-mixed turmeric was 17.765㎛, and the average disintegrating particle size of CMGT-granules (FBG) was 16.696㎛, and the average particle size of CMGT-granules was 1.069㎛ smaller than that of CMGT-mixed. Confirmed. At 10% and 90% of particle size distribution, CMGT-mixed showed a particle size distribution of 6.164㎛ and 47.161㎛, and CMGT-granule showed a particle size distribution of 5.408㎛ and 45.817㎛. Through this, it was found that there was no significant difference between the CMGT-mixed and CMGT-granules of turmeric.

아로니아의 CMGT-혼합의 3회 반복 평균입도는 14.703㎛이고, CMGT-과립의 3회 반복 평균 붕해입도는 14.440㎛으로 CMGT-과립의 평균입도와 CMGT- 혼합의 평균입도는 두드러지는 차이를 나타내지 않았다. The average particle size of Aaronia's CMGT-mixed 3 times was 14.703㎛, and the average disintegrating particle size of CMGT-granules was 14.440㎛. The average particle size of CMGT-granules and the average particle size of CMGT-mixed were not significantly different. Did.

생강의 CMGT-혼합의 3회 반복 평균입도는 19.961㎛이고, CMGT-과립의 3회 반복 평균 붕해입도는 21.437㎛으로 CMGT-과립의 평균입도가 CMGT-혼합의 평균입도보다 1.476㎛ 작았다. 입도분포 10%와 90%에서 CMGT-혼합은 5.864㎛와 69.826㎛의 입도분포를 나타냈으며, CMGT-과립은 6.104㎛와 76.473 ㎛의 입도 분포를 나타내었다. 이를 통해, 생강의 CMGT-혼합과 CMGT-과립의 전체적인 입도는 큰 차이가 나지 않음을 알 수 있었다.The average particle size of CMGT-mixed ginger was 19.961㎛, and the average disintegration particle size of CMGT-granules was 21.437㎛, and the average particle size of CMGT-granules was 1.476㎛ smaller than that of CMGT-mixed. At 10% and 90% of particle size distribution, CMGT-mixed showed a particle size distribution of 5.864㎛ and 69.826㎛, and CMGT-granule showed a particle size distribution of 6.104㎛ and 76.473㎛. Through this, it was found that there was no significant difference between the CMGT-mixed and CMGT-granules of ginger.

이로부터, 극저온 초미세 분쇄 방법인 CMGT 기술의 장점을 살리면서 FBG화 기술을 통해 분산성을 더 좋게 할 수 있고, 몸속에 섭취한 후에 붕해 되어 다시 초미세 입자로 작용하는 것을 알 수 있었다. From this, it was found that while taking advantage of the CMGT technology, which is a cryogenic ultrafine grinding method, the dispersibility can be improved through the FBG technology, and after ingestion in the body, it disintegrates and acts as ultrafine particles again.

CMGT-혼합 및 CMGT-과립의 색도 비교Comparison of chromaticity of CMGT-mixed and CMGT-granules

시료의 색도는 색도계(ColorQuest XE, HunterLab, USA)를 사용하여 명도L(lightness), 적색도 a(redness), 황색 도b(yellowness)의 색도를 조사하였으며, 이 때 사용된 표준 백판(White plate)의 L값은 96.60, a값은 0.24, b값은 1.97 이다. 색도계(Colorimeter)를 통해 각 시료의 색도 분석의 결과는 표 2와 같다. The chromaticity of the sample was investigated using a colorimeter (ColorQuest XE, HunterLab, USA) for the brightness L (lightness), redness a (redness), and yellowness b (yellowness), and the standard white plate used at this time. )'S L value is 96.60, a value is 0.24, and b value is 1.97. Table 2 shows the results of chromaticity analysis of each sample through a colorimeter.

시료의 색도계 측정 결과Sample colorimeter measurement result 시료sample 색도계 데이터Colorimeter data LL aa bb 울금
CMGT
Turmeric
CMGT
혼합mix 71.27±0.00671.27±0.006 7.01±0.0207.01±0.020 67.80±0.09867.80±0.098
과립Granules 70.78±0.03270.78±0.032 7.30±0.0407.30±0.040 68.29±0.42468.29±0.424 아로니아
CMGT
Aaronia
CMGT
혼합mix 36.12±0.11536.12±0.115 19.91±0.06219.91±0.062 6.15±0.1446.15±0.144
과립Granules 34.52±0.08434.52±0.084 20.03±0.09120.03±0.091 6.08±0.2886.08±0.288 생강
CMGT
ginger
CMGT
혼합mix 78.58±0.03578.58±0.035 -0.50±0.036-0.50±0.036 26.45±0.10826.45±0.108
과립Granules 78.31±0.03178.31±0.031 -0.24±0.042-0.24±0.042 27.46±0.10427.46±0.104

항산화 성분이 주로 색소성분인 것을 고려할 때, CMGT-혼합 및 CMGT-과립에 따른 색도의 변화를 통하여 관능적으로 항산화성분의 변화를 예측 할 수 있다. 색도 분석 결과, FBG 과정을 거친 후 명도가 약간 감소하는 경향을 나타냈지만 CMGT-혼합과 CMGT-과립의 색차가 크지 않은 것을 확인하였다. 이로부터, FBG 공정이 열에 의한 변색이 크지 않으며 색소 성분의 보존성이 우수하다는 것을 확인할 수 있었다. Considering that the antioxidant component is mainly a pigment component, the change of the antioxidant component can be predicted sensoryly through the change in chromaticity according to CMGT-mixing and CMGT-granules. As a result of chromaticity analysis, there was a tendency that the brightness slightly decreased after passing through the FBG process, but it was confirmed that the color difference between CMGT-mixed and CMGT-granules was not large. From this, it was confirmed that the FBG process did not exhibit large discoloration due to heat and was excellent in preservability of the dye component.

한편, 일반분쇄 보다 극저온 초미세 분쇄를 하게 되면 명도가 증가하여 밝아지는 경향이 있음을 확인하였다. 이는 상온에서 분쇄가 진행될 경우 발생하는 열로 인해 시료의 색상이 변색되어 명도가 감소할 가능성이 있음을 의미하고, 극저온 초미세 분쇄를 진행하였을 때 시료 본래의 색상이 유지되며 입자가 세밀해짐으로 인해 색도계로 측정하였을 때 일반 분쇄물에 비하여 명도가 높게 나타나는 것으로 추정하였다. On the other hand, it was confirmed that when ultra-fine pulverization at cryogenic temperatures was performed rather than normal pulverization, the brightness increased and tended to become brighter. This means that there is a possibility that the color of the sample may change due to heat generated when pulverization is performed at room temperature, resulting in a decrease in brightness.When ultra-fine pulverization at cryogenic temperatures is carried out, the original color of the sample is maintained and the colorimeter is fined. It was estimated that the brightness was higher than that of the general pulverized material when measured by.

일반분말 및 CMGT 분말의 효과 비교Comparison of effect of general powder and CMGT powder

총 폴리페놀 함량 변화Change in total polyphenol content

일반적으로 폴리페놀 화합물은 혈압 예방, 통풍 및 미백 효과 기능이 있는 것으로 알려져 있다. 폴리페놀의 생리활성 작용으로 가장 주목 받는 것 중의 하나는 항산화 작용으로 유리기에 수소 원자를 공여하여 생체 내에서 산화 스트레스에 의해서 과잉으로 생성된 활성산소 등의 자유라디칼의 생성을 억제시켜 항산화 작용을 발휘하는 것으로 알려져 있다. 사용한 갈산 표준곡선은 도 4과 같다. 검량선은 양호한 직선성 (R2=0.9954)을 나타내었다. In general, polyphenol compounds are known to have blood pressure prevention, gout and whitening effects. One of the most noticeable things for the physiological activity of polyphenols is that they donate hydrogen atoms to free radicals as their antioxidant activity, thereby inhibiting the production of free radicals such as free radicals, which are excessively generated by oxidative stress in the living body, thereby exhibiting antioxidant activity. It is known to do. The used gallic acid standard curve is shown in FIG. 4. The calibration curve showed good linearity (R2=0.9954).

울금, 생강 및 아로니아의 일반분쇄한 분말과 CMGT 분말 시료에 대하여 총 폴리페놀 함량을 측정하기 위하여 각 시료의 농도를 상기 검량선의 측정범위 안에 들어가도록 희석하여 흡광도를 측정하였고, 그 결과는 도 4과 같다. 울금, 생강 및 아로니아의 CMGT 분말 시료가 일반분쇄 분말 시료에 비해 유의적으로 높은 총 폴리페놀 함량을 보였다. 울금의 CMGT 분말의 경우 총 폴리페놀 함량이 0.104mg/g으로 울금 일반 분쇄물의 총 폴리페놀 함량 0.077에 비해 1.35배 높았다. 생강 CMGT 분말의 경우 총 폴리페놀 함량이 0.143으로 생강 일반 분쇄물의 총 폴리페놀 함량 0.101에 비해 1.4배 높았다. 아로니아 CMGT 분말의 경우 총 폴리페놀 함량이 0.779로 아로니아 일반 분쇄물의 총 폴리페놀 함량 0.669에 비해 1.16배 높았다. 이로부터, 울금, 생강 및 아로니아를 CMGT 분말화 기술이 일반분쇄 기술에 비해 시료의 폴리페놀 성분 유지에 유리한 가공방법임을 확인하였다. In order to measure the total polyphenol content of the general pulverized powder of turmeric, ginger and aronia and CMGT powder samples, the concentration of each sample was diluted to fall within the measurement range of the calibration curve, and the absorbance was measured. Same as CMGT powder samples of turmeric, ginger, and aronia showed significantly higher total polyphenol content than those of normal ground powder samples. In the case of CMGT powder of turmeric, the total polyphenol content was 0.104mg/g, which was 1.35 times higher than that of the general pulverized turmeric product of 0.077. Ginger CMGT powder had a total polyphenol content of 0.143, which was 1.4 times higher than that of general ginger powder of 0.101. In the case of Aaronia CMGT powder, the total polyphenol content was 0.779, which was 1.16 times higher than the total polyphenol content of Aaronia general pulverized product, 0.669. From this, it was confirmed that the CMGT powdering technique for turmeric, ginger and aronia was an advantageous processing method for maintaining the polyphenol component of the sample compared to the general grinding technique.

각 시료의 총 폴리페놀 함량Total polyphenol content in each sample 총 폴리페놀 함량
(mg·GAE/g)
Total polyphenol content
(mg·GAE/g)
일반Normal CMGT 분말CMGT powder
울금Turmeric 0.077±0.00080.077±0.0008 0.104±0.00160.104±0.0016 생강ginger 0.101±0.00020.101±0.0002 0.143±0.00080.143±0.0008 아로니아Aaronia 0.669±0.00450.669±0.0045 0.779±0.00120.779±0.0012

ABTS radical scavenging 활성 변화ABTS radical scavenging activity change

폴리페놀 화합물들은 구조적인 특성상 생체 내 생성되는 활성산소를 제거하는 천연 항산화물로서 많이 연구되고 있다. 울금, 생강 및 아로니아의 항산화 활성 효능 평가를 위하여 ABTS 라디칼 소거 효능을 측정하여 그 상관관계를 확인하였고, 사용한 Trolox standard curve는 도 5와 같다. 검량선은 양호한 직선성 (R2=0.996)을 나타내었다. Polyphenol compounds have been studied a lot as natural antioxidants that remove active oxygen generated in the body due to their structural characteristics. In order to evaluate the antioxidant activity of turmeric, ginger, and aronia, ABTS radical scavenging efficacy was measured and the correlation thereof was confirmed, and the used Trolox standard curve is shown in FIG. 5. The calibration curve showed good linearity (R2=0.996).

울금, 생강 및 아로니아의 일반분쇄한 분말과 CMGT 분말 시료에 대하여 ABTS 라디칼 소거능을 측정하기 위하여 각 시료를 검량선의 측정범위 안에 들어가도록 3가지의 농도로 희석하여 측정하였고, 그 결과는 표 4와 같다. 그 결과, 총 폴리페놀 함량의 결과와 같은 경향으로 울금, 생강 및 아로니아의 CMGT 분말 시료가 항산화 활성이 유의적으로 높게 측정된 것을 확인하였고, 이는 DPPH 라디칼 소거능과 같은 결과를 확인하였다. 이로부터, CMGT 분말화 기술이 일반건조 및 일반분쇄 기술에 비해 시료의 항산화능 유지에 유리한 가공 방법임을 알 수 있었다. In order to measure the ABTS radical scavenging ability for the general pulverized powder of turmeric, ginger and aronia and CMGT powder samples, each sample was diluted in three concentrations so as to fall within the measurement range of the calibration curve. same. As a result, it was confirmed that the CMGT powder samples of turmeric, ginger, and aronia were measured significantly higher in antioxidant activity in the same trend as the result of the total polyphenol content, which confirmed the same result as DPPH radical scavenging activity. From this, it can be seen that the CMGT powdering technology is an advantageous processing method for maintaining the antioxidant capacity of the sample compared to the general drying and general grinding technology.

각 시료의 ABTS 라디칼 소거능ABTS radical scavenging ability of each sample Trolox(mg/ml)Trolox (mg/ml) 일반Normal CMGT 분말CMGT powder 울금Turmeric 1.63±0.0411.63±0.041 2.17±0.0272.17±0.027 생강ginger 2.38±0.1622.38±0.162 3.00±0.1523.00±0.152 아로니아Aaronia 32.69±1.88032.69±1.880 36.45±0.25036.45±0.250

인공지질막 투과 분석Artificial lipid membrane permeation analysis

본 실험의 연구 목표는 인공 지질막인 PAMPA (Parallel Artificial Membrane Permeability Assay) 시스템을 이용하여 지표물질의 막 투과율을 확인하는 것이다. 인공지질막 PAMPA 시스템은 수동적으로 세포막을 투과하는 물질의 투과율을 보기 위한 in vitro 모델이다. 즉, PAMPA 시스템을 이용해서는 확산을 하는 경우의 물질의 투과율만을 측정이 가능하다. 분자량이 큰 물질이 막을 통과할 때 수용성 물질의 경우 지용성 물질에 비해서 투과율이 현저히 떨어진다. 이러한 물질의 특성으로 인해 지표물질간 투과성을 확인할 수 있었다. 투과율 측정 결과는 표 5과 같다. The goal of this experiment is to check the membrane permeability of an indicator material using the PAMPA (Parallel Artificial Membrane Permeability Assay) system, an artificial lipid membrane. The artificial lipid membrane PAMPA system is an in vitro model for viewing the permeability of substances that passively penetrate cell membranes. That is, it is possible to measure only the transmittance of a material in the case of diffusion using the PAMPA system. When a material having a high molecular weight passes through the membrane, the transmittance of the water-soluble material is significantly lower than that of the oil-soluble material. Due to the properties of these materials, it was possible to confirm the permeability between the indicator materials. The transmittance measurement results are shown in Table 5.

울금 CMGT의 투과율이 일반 분쇄물의 투과율보다 약 16% 높은 것으로 확인되었으며 아로니아 CMGT의 투과율이 일반 분쇄물의 투과율보다 약 30% 높은 것으로 확인되었다. 생강의 경우 일반 분쇄물과 CMGT의 투과율은 비슷한 양상이었지만 투과된 농도는 CMGT가 더 높았으며 그 결과는 표 6와 같다. The transmittance of turmeric CMGT was found to be about 16% higher than that of the general pulverized material, and the transmittance of Aaronia CMGT was found to be about 30% higher than that of the general pulverized material. In the case of ginger, the transmittance of the general pulverized product and CMGT was similar, but the permeated concentration was higher in CMGT, and the results are shown in Table 6.

각 시료의 투과율 비교Comparison of transmittance of each sample 투과율(%)Transmittance (%) 일반Normal CMGT 분말CMGT powder 울금Turmeric 21.9121.91 37.4437.44 생강ginger 36.2836.28 35.4735.47 아로니아Aaronia 28.3728.37 59.2759.27

생강의 투과율 비교Ginger transmittance comparison 생강
6-gingerol
ginger
6-gingerol
일반Normal CMGT 분말CMGT powder
HTHT AcceptorAcceptor HTHT AcceptorAcceptor Peak areaPeak area 192.591192.591 69.8869.88 324.963324.963 115.273115.273 %% 100100 36.2836.28 100100 35.4735.47

이때 gut box에 들어가기 전 시료인 추출물+HT를 100%로 기준하여 실험 후 donor, acceptor 의 비율을 측정하였다. 투과율은 acceptor에서 확인된 peak area값을 추출물+HT의 peak area 값으로 나눈 %값으로 정의하였다. At this time, the ratio of donor and acceptor was measured after the experiment based on 100% of extract + HT as a sample before entering the gut box. The transmittance was defined as a% value obtained by dividing the peak area value identified by the acceptor by the peak area value of the extract + HT.

Figure 112018102653561-pat00001
Figure 112018102653561-pat00001

생강 추출물에서의 6-gingerol 농도를 HT 시료의 peak area로 확인하였을 때 CMGT의 peak area는 324.963 일반분쇄는 192.591로 CMGT에서 약 1.7배 높게 검출되었다. 또한, 투과되는 지표성분 6-gingerol의 농도는 CMGT가 115.273, 일반분쇄물이 69.88로 약 1.6배 높게 검출 되었다. When the 6-gingerol concentration in the ginger extract was confirmed as the peak area of the HT sample, the peak area of CMGT was 324.963, and the normal pulverization was 192.591, which was about 1.7 times higher in CMGT. In addition, the concentration of permeable index component 6-gingerol was detected 1.6 times higher in CMGT and 69.88 in general pulverized material.

CMGT-혼합 및 CMGT-과립의 제조CMGT-mixing and preparation of CMGT-granules

CMGT-혼합과 CMGT-과립의 경우에 항산화 성분 파괴가 없이 잘 유지되고 있는지 확인하였다. 수분율과 분산성을 확인하여 본 발명에 따른 제 1 미세분말과 제 2 혼합 비율을 특정하였다. CMGT 2 이후의 수분을 포함하는 상태의 아로니아, 생강, 울금 함량(제 2 미세분말)을 2 내지 30 중량%로 설정하여 혼합도에 따른 분산도를 확인하였다. 이 때, 2 중량% 미만의 경우에는 분산지수는 높을 수 있지만 전체적인 내용물의 보유 수분함량은 크게 영양을 주지 못함으로 FBG가동시의 운영시간 단축 효과가 발생하지 않음을 확인하였고, 이에 따라 제 2 미세분말의 (wet)함량을 2% 이상으로 설정하였다. 또한, 25 중량% 이상을 투입한 경우에는 내용물의 보유 수분함량이 증가함으로 전체적으로 내용물 온도를 낮추는 효과는 있으나, 과립형성에 필요한 수분이상으로 수분량이 많아지므로 오히려 분산도가 떨어지는 것을 관능적으로 확인할 수 있었다. 이로부터, 제 1 미세분말과 제 2 미세분말의 혼합물의 전체 수분량은 5 내지 20 중량%으로 산정하게 되었다. 이를 적용한 제 1 미세분말 및 제 2 미세분말의 함량비율은 표 7에 나타내었다. In the case of CMGT-mixed and CMGT-granules, it was confirmed that they were well maintained without destruction of antioxidant components. The moisture content and dispersibility were checked, and the first fine powder and the second mixing ratio according to the present invention were specified. The content of aronia, ginger, and turmeric (second fine powder) in a state containing moisture after CMGT 2 was set to 2 to 30% by weight, and the degree of dispersion according to the degree of mixing was confirmed. At this time, if the amount is less than 2% by weight, the dispersion index may be high, but it was confirmed that the effect of shortening the operating time during the operation of FBG does not occur because the water content retained in the overall contents does not provide much nutrition. The (wet) content of the powder was set to 2% or more. In addition, when 25% by weight or more is added, the content has the effect of lowering the overall temperature by increasing the retained moisture content of the content. . From this, the total moisture content of the mixture of the first fine powder and the second fine powder was calculated as 5 to 20% by weight. The content ratio of the first fine powder and the second fine powder to which this was applied is shown in Table 7.

구분division 혼합비율(CMGT1+CMGT2)Mixing ratio (CMGT1+CMGT2) 2%2% 5%5% 10%10% 15%15% 20%20% 25%25% 30%30% 아로니아Aaronia CMGT2CMGT2 2.002.00 5.005.00 8.008.00 15.0015.00 21.0021.00 28.0028.00 35.0035.00 CMGT1CMGT1 98.0098.00 95.0095.00 92.0092.00 85.0085.00 79.0079.00 72.0072.00 65.0065.00 생강ginger CMGT2CMGT2 2.002.00 4.504.50 8.008.00 13.0013.00 19.0019.00 25.0025.00 30.0030.00 CMGT1CMGT1 98.0098.00 95.5095.50 92.0092.00 87.0087.00 81.0081.00 75.0075.00 70.0070.00 울금Turmeric CMGT2CMGT2 2.002.00 3.003.00 7.007.00 13.0013.00 20.0020.00 26.0026.00 32.0032.00 CMGT1CMGT1 98.0098.00 97.0097.00 93.0093.00 87.0087.00 80.0080.00 74.0074.00 68.0068.00

총 폴리페놀 함량 및 ABTS radical scavenging 활성 변화Changes in total polyphenol content and ABTS radical scavenging activity

제 1 미세분말과 제 2 미세분말을 혼합한 CMGT-혼합 및 과립화한 CMGT-과립의 총 폴리페놀 함량의 변화, 항산화 활성, 투과율을 확인해보았다. 그 결과, CMGT-과립이 CMGT-혼합과 비교하여 전체적으로 약간 낮게 나타났으나, 황산화 활성에 대한 유지도를 살펴보면 울금, 생강, 아로니아의 항산화 활성에는 유의적 차이가 없음이 확인되었다. 이는 폴리페놀이 FBG 과정에 의해 다른 물질로 치환되었거나 혹은 FBG 과정 중에 생성된 항산화 활성 물질에 의해 시료의 총 항산화 활성 물질이 유지되었기 때문인 것으로 예측되었다. 이로부터, FBG 공정은 시료의 항산화능을 유지 시키면서 과립화 할 수 있는 기술임을 알 수 있었다.Changes in total polyphenol content, antioxidant activity, and transmittance of CMGT-mixed and granulated CMGT-granules obtained by mixing the first fine powder and the second fine powder were examined. As a result, CMGT-granules were slightly lower overall than that of CMGT-mixed, but when looking at the maintenance of sulfation activity, it was confirmed that there was no significant difference in the antioxidant activity of turmeric, ginger, and aronia. This was predicted to be due to the fact that polyphenols were substituted with other substances by the FBG process or the total antioxidant active substances in the sample were maintained by the antioxidant active substances generated during the FBG process. From this, it can be seen that the FBG process is a technology capable of granulating while maintaining the antioxidant activity of the sample.

CMGT-혼합과 CMGT-과립의 총 폴리페놀 함량 변화Changes in total polyphenol content of CMGT-mixed and CMGT-granules 총 폴리페놀 함량
(mg·GAE/g)
Total polyphenol content
(mg·GAE/g)
혼합mix 과립Granules
울금Turmeric 0.096±0.00090.096±0.0009 0.094±0.00140.094±0.0014 생강ginger 0.124±0.00130.124±0.0013 0.116±0.00040.116±0.0004 아로니아Aaronia 0.284±0.00150.284±0.0015 0.241±0.00110.241±0.0011

CMGT-혼합과 CMGT-과립의 ABTS 라디칼 소거능 활성 변화Changes in ABTS radical scavenging activity of CMGT-mixed and CMGT-granules Trolox(mg/ml)Trolox (mg/ml) 혼합mix 과립Granules 울금Turmeric 1.90±0.0491.90±0.049 1.93±0.0711.93±0.071 생강ginger 2.49±0.1362.49±0.136 2.71±0.1062.71±0.106 아로니아Aaronia 1.43±0.0601.43±0.060 1.29±0.0331.29±0.033

인공지질막 투과 분석Artificial lipid membrane permeation analysis

CMGT-혼합과 CMGT-과립의 인공지질막 투과율을 비교하였을 때는 CMGT-과립의 투과율이 CMGT-혼합에 비해 거의 유사하거나 오히려 높은 투과율을 보였다. CMGT-FBG의 가공기술 조건이 울금, 생강, 아로니아의 영양성분의 생체 내 흡수율에 미치는 영향을 확인했을 때, 우선 CMGT 가공 기술로 기본 투과율을 상승시킨 뒤에(CMGT 분쇄가 일반분쇄 가공에 비하여 투과율을 높이는데 유리한 방법) 또한 본 특허의 FBG 공정기술로 인하여 과립을 형성하였을 때 지표성분이 파괴되지 않으며 추출 효율과 투과율을 유지시킬 수 있는 기술임을 확인하였다. When comparing the permeability of the CMGT-mixed and the CMGT-granules to the artificial lipid membrane, the transmittance of the CMGT-granules was almost similar or higher than that of the CMGT-mixed. When the effect of CMGT-FBG processing technology conditions on the absorption rate of nutrients of turmeric, ginger and aronia in vivo was confirmed, first, the basic transmittance was increased with the CMGT processing technology (CMGT grinding has a transmittance compared to general grinding processing). In addition, it was confirmed that the index component is not destroyed when granules are formed due to the FBG process technology of this patent and can maintain extraction efficiency and transmittance.

CMGT-혼합과 CMGT-과립의 투과율 비교 Comparison of transmittance of CMGT-mixed and CMGT-granules 울금Turmeric 혼합mix 과립Granules PAMPA 투과율(%)PAMPA transmittance (%) 7.60%7.60% 8.30%8.30% 생강ginger 혼합mix 과립Granules PAMPA 투과율(%)PAMPA transmittance (%) 16.00%16.00% 16.60%16.60% 아로니아Aaronia 혼합mix 과립Granules PAMPA 투과율(%)PAMPA transmittance (%) 9.00%9.00% 11.30%11.30%

CMGT-과립의 분산도CMGT-granular dispersion

CMGT-과립의 분산도를 수치로 개량화 하기 위하여 덱스트린 기준의 분산도를 10으로 산정하고, 분산도가 거의 없는 것을 1로 산정한 후에 점수화 하였다. 제 2 미세분말(원물)의 함량을 2 내지 30 중량%로 혼합 적용하였고 제 1 미세분말 및 제 2 미세분말 혼합물의 수분량을 5 내지 20 중량%수준으로 산정하여 세분화한 후에 제 2 미세분말의 함량에 따른 분산도를 계량화하였다. 원물 함량에 따른 분산도 자체는 원물 함량이 2 내지 4%인 것의 분산도가 높지만, FBG 환경에서 전체 혼합물의 작업성을 고려하여 분산도를 점수화 하게 되면 원물 함량 5 내지 15중량%인 것의 분산 작업성이 더 우수한 것을 발견할 수 있었다. 이로부터, 분산도와 적정 수분율을 전체적으로 고려할 때 유효 원물의 함량은 2 내지 20 중량% 인 것을 알 수 있었고, 더욱 바람직하게는 7 내지 15 중량%의 함량인 것을 알 수 있었다. In order to improve the dispersion degree of CMGT-granules numerically, the degree of dispersion of the dextrin standard was calculated as 10, and those with little dispersion degree were calculated as 1 and scored. The content of the second fine powder (raw material) was mixed and applied at 2 to 30% by weight, and the moisture content of the first fine powder and the second fine powder mixture was calculated at a level of 5 to 20% by weight, and the content of the second fine powder was refined. The degree of dispersion according to the was quantified. The degree of dispersion according to the raw material content itself is high dispersion of the raw material content of 2 to 4%, but if the dispersion degree is scored in consideration of the workability of the whole mixture in the FBG environment, the dispersion work of the raw material content of 5 to 15% by weight I could find that the castle was better. From this, it was found that the content of the effective raw material was 2 to 20% by weight, and more preferably, it was found that the content of the effective raw material was 7 to 15% by weight when considering the dispersion degree and the appropriate moisture content as a whole.

구분division 원물함량
CMGT2(wet)
Raw material content
CMGT2(wet)
2%2% 7%7% 10%10% 15%15% 20%20% 25%25% 30%30%
FBG적용
분산
점수
FBG application
Dispersion
score
아로니아Aaronia 44 55 66 55 33 22 1One
생강ginger 55 77 77 77 44 33 1One 울금Turmeric 55 77 77 66 44 33 1One

Claims (12)

(a) 울금, 생강 및 아로니아로 구성된 항산화 식물을 준비하는 단계;
(b) 상기 울금, 생강 및 아로니아로 구성된 군에서 선택되는 항산화 식물을 -196℃ 내지 -70℃ 에서 동결하여 평균입도 10㎛ 내지 50㎛의 크기로 분쇄하고, 상기 분쇄물을 10℃ 내지 30℃에서 건조하여 제 1 미세분말을 제조하는 단계;
(c) 상기 (a) 단계에서 준비한 울금, 생강 및 아로니아로 구성된 군에서 선택되는 항산화 식물을 -196℃ 내지 -70℃ 에서 동결하여 평균입도 10㎛ 내지 50㎛의 크기로 분쇄하여 수분을 포함하는 것을 특징으로 하는 제 2 미세분말을 제조하는 단계;
(d) 상기 제 1 미세분말과 제 2 미세분말을 무중력 상태에서 기류방식으로 혼합하는 단계; 및
(e) 상기 혼합물을 25℃ 내지 35℃에서 과립화하는 단계를 포함하는, 항산화 식물 과립을 제조하는 방법에 있어서,
상기 제 1 미세분말은 85 내지 93 중량%이고 제 2 미세분말은 7 내지 15 중량%인 것을 특징으로 하고,
상기 제 1 미세분말과 제 2 미세분말의 혼합물은 5 내지 20 중량%의 수분을 포함하는 것을 특징으로 하는 항산화 식물 과립을 제조하는 방법.
(a) preparing an antioxidant plant consisting of turmeric, ginger and aronia;
(b) the antioxidant plant selected from the group consisting of turmeric, ginger and aronia was frozen at -196°C to -70°C and pulverized to a size having an average particle size of 10 μm to 50 μm, and the pulverized product was 10°C to 30 Drying at °C to prepare a first fine powder;
(c) The antioxidant plant selected from the group consisting of turmeric, ginger and aronia prepared in step (a) is frozen at -196°C to -70°C and pulverized to a size having an average particle size of 10 μm to 50 μm to contain moisture. Producing a second fine powder, characterized in that;
(d) mixing the first fine powder and the second fine powder in an airflow manner in a zero gravity state; And
In the method for producing antioxidant plant granules comprising the step of (e) granulating the mixture at 25 ℃ to 35 ℃,
The first fine powder is characterized in that 85 to 93% by weight and the second fine powder is 7 to 15% by weight,
The method for producing antioxidant plant granules, characterized in that the mixture of the first fine powder and the second fine powder contains 5 to 20% by weight of moisture.
제 1항에 있어서,
상기 항산화 식물 과립은 원물의 폴리페놀 함량을 유지하는 것을 특징으로 하는 항산화 식물 과립을 제조하는 방법.
The method of claim 1,
The antioxidant plant granules method for producing antioxidant plant granules, characterized in that maintaining the polyphenol content of the raw material.
제 1항에 있어서,
상기 항산화 식물 과립은 항산화 활성을 갖는 것을 특징으로 하는 항산화 식물 과립을 제조하는 방법.
The method of claim 1,
The method for producing antioxidant plant granules, characterized in that the antioxidant plant granules have antioxidant activity.
제 1항에 있어서,
상기 항산화 식물 과립은 체내 흡수율이 증가하는 것을 특징으로 하는 항산화 식물 과립을 제조하는 방법.
The method of claim 1,
The antioxidant plant granule is a method of producing an antioxidant plant granules, characterized in that the absorption rate in the body increases.
삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete
KR1020180124224A 2018-10-18 2018-10-18 Method for granulation of plant powder containing antioxidant materials using Cryogenic Micro Grinding Technology KR102203209B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020180124224A KR102203209B1 (en) 2018-10-18 2018-10-18 Method for granulation of plant powder containing antioxidant materials using Cryogenic Micro Grinding Technology

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020180124224A KR102203209B1 (en) 2018-10-18 2018-10-18 Method for granulation of plant powder containing antioxidant materials using Cryogenic Micro Grinding Technology

Publications (2)

Publication Number Publication Date
KR20200043641A KR20200043641A (en) 2020-04-28
KR102203209B1 true KR102203209B1 (en) 2021-01-14

Family

ID=70456095

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020180124224A KR102203209B1 (en) 2018-10-18 2018-10-18 Method for granulation of plant powder containing antioxidant materials using Cryogenic Micro Grinding Technology

Country Status (1)

Country Link
KR (1) KR102203209B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102499346B1 (en) 2022-01-24 2023-02-14 (주)제이비 바이오 Natural complex fermented liquid and solid fermented ultrafine powder using it to increase active ingredients and improve absorption in the body

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010051251A (en) * 2008-08-28 2010-03-11 Marudai Food Co Ltd Food containing frozen crushed spice
KR101576093B1 (en) * 2015-06-09 2015-12-21 (주)다정 Manufacturing method of functional nanoparticle for maximizing absorption rate in the body and the nanoparticle made by the method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070088874A (en) * 2006-02-27 2007-08-30 이창열 A new method for processing bio active whole raw soybean particles

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010051251A (en) * 2008-08-28 2010-03-11 Marudai Food Co Ltd Food containing frozen crushed spice
KR101576093B1 (en) * 2015-06-09 2015-12-21 (주)다정 Manufacturing method of functional nanoparticle for maximizing absorption rate in the body and the nanoparticle made by the method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
S. N. Saxena et al., ‘Cryogenic grinding for better aroma retention and improved quality of Indian spices and herbs: Review’, J Food Process Eng. (2018) 41*

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102499346B1 (en) 2022-01-24 2023-02-14 (주)제이비 바이오 Natural complex fermented liquid and solid fermented ultrafine powder using it to increase active ingredients and improve absorption in the body

Also Published As

Publication number Publication date
KR20200043641A (en) 2020-04-28

Similar Documents

Publication Publication Date Title
Correia et al. Wild blueberry polyphenol-protein food ingredients produced by three drying methods: Comparative physico-chemical properties, phytochemical content, and stability during storage
Castagnini et al. Vacuum impregnation and air drying temperature effect on individual anthocyanins and antiradical capacity of blueberry juice included into an apple matrix
Khazaei et al. Application of maltodextrin and gum Arabic in microencapsulation of saffron petal's anthocyanins and evaluating their storage stability and color
Nambiar et al. Microencapsulation of tender coconut water by spray drying: effect of Moringa oleifera gum, maltodextrin concentrations, and inlet temperature on powder qualities
da Silva Carvalho et al. Physical properties and morphology of spray dried microparticles containing anthocyanins of jussara (Euterpe edulis Martius) extract
Yan et al. Comparison of total phenolic contents and antioxidant activities of turmeric leaf, pandan leaf and torch ginger flower
Singh et al. Comparative analysis of total phenolics, flavonoid content and antioxidant profile of different date varieties (Phoenix dactylifera L.) from Sultanate of Oman.
Gralec et al. Aronia melanocarpa berries: Phenolics composition and antioxidant properties changes during fruit development and ripening
Mar et al. Bioactive compounds-rich powders: Influence of different carriers and drying techniques on the chemical stability of the Hibiscus acetosella extract
Suhag et al. Evaluation of different carrier agents with respect to physico‐chemical, functional and morphological characteristics of spray dried nutritionally rich honey powder
Nabil et al. Impact of particle size on functional, physicochemical properties and antioxidant activity of cladode powder (Opuntia ficus-indica)
Pereira et al. Spray drying of juçara pulp aiming to obtain a “pure” powdered pulp without using carrier agents
Zannou et al. Optimization of drying temperature for the assessment of functional and physical characteristics of autumn olive berries
Frühbauerová et al. Bioaccessibility of phenolics from carob (Ceratonia siliqua L.) pod powder prepared by cryogenic and vibratory grinding
Pacheco et al. Development of dried functional foods: Stabilization of orange pulp powder by addition of biopolymers
Uscanga et al. Impact of freeze‐drying shelf temperature on the bioactive compounds, physical properties and sensory evaluation of a product based on orange juice
Helvacıoğlu et al. Comparatively investigation of grape molasses produced by conventional and industrial techniques
Olas et al. Selected food colourants with antiplatelet activity as promising compounds for the prophylaxis and treatment of thrombosis
Araújo et al. Encapsulation of phenolic and antioxidant compounds from spent coffee grounds using spray‐drying and freeze‐drying and characterization of dried powders
KR102203209B1 (en) Method for granulation of plant powder containing antioxidant materials using Cryogenic Micro Grinding Technology
Barroso et al. In vitro antioxidant properties of golden grass (Syngonanthus nitens) by electron paramagnetic resonance
KR20130121385A (en) A granule improved stock stability of anthocyanin pigment from mulberry, blueberry and s. chinensis baillon extracts and manufacturing method of the same
Dirim et al. Enhancement of the functional properties of home-made style turkish noodles (erişte) with the addition of fresh mints
Febrianta et al. Freeze-drying microencapsulation of turmeric (Curcuma longa l.) using an amorphous matrix of maltodextrin, modified cassava flour and skim milk
Fernandes et al. Antioxidant activity of spray-dried extracts of Psidium guajava leaves

Legal Events

Date Code Title Description
AMND Amendment
N231 Notification of change of applicant
E601 Decision to refuse application
X091 Application refused [patent]
AMND Amendment
X701 Decision to grant (after re-examination)