KR102194867B1 - Defense suppression function of OsWRKY55 gene, or promoter region recognized by the effector of Xanthomonas oryzae pv. oryzae and uses thereof - Google Patents

Defense suppression function of OsWRKY55 gene, or promoter region recognized by the effector of Xanthomonas oryzae pv. oryzae and uses thereof Download PDF

Info

Publication number
KR102194867B1
KR102194867B1 KR1020190073091A KR20190073091A KR102194867B1 KR 102194867 B1 KR102194867 B1 KR 102194867B1 KR 1020190073091 A KR1020190073091 A KR 1020190073091A KR 20190073091 A KR20190073091 A KR 20190073091A KR 102194867 B1 KR102194867 B1 KR 102194867B1
Authority
KR
South Korea
Prior art keywords
oswrky55
ala
leu
gly
arg
Prior art date
Application number
KR1020190073091A
Other languages
Korean (ko)
Inventor
황덕주
임종희
안일평
박상렬
Original Assignee
대한민국
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 대한민국 filed Critical 대한민국
Priority to KR1020190073091A priority Critical patent/KR102194867B1/en
Application granted granted Critical
Publication of KR102194867B1 publication Critical patent/KR102194867B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8271Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
    • C12N15/8279Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for biotic stress resistance, pathogen resistance, disease resistance
    • C12N15/8281Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for biotic stress resistance, pathogen resistance, disease resistance for bacterial resistance
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8216Methods for controlling, regulating or enhancing expression of transgenes in plant cells
    • C12N15/8218Antisense, co-suppression, viral induced gene silencing [VIGS], post-transcriptional induced gene silencing [PTGS]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/14Type of nucleic acid interfering N.A.

Landscapes

  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Microbiology (AREA)
  • Physics & Mathematics (AREA)
  • Plant Pathology (AREA)
  • Biophysics (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Cell Biology (AREA)
  • Virology (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)

Abstract

The present invention relates to a disease defense suppression gene OsWRKY55, a promoter combined with effector of Xanthomonas oryzae pv. oryzae, and uses thereof. According to the present invention, mutations in an RNAi base sequence for a gene and an OsWRKY55 promoter recognition site of LJ4 are induced, such that a mutant of an OsWRKY55 promoter fragment is used, thereby being usefully used as base technology capable of developing rice blight resistant crops and reducing damage caused by rice blight.

Description

병 방어 억제 유전자 OsWRKY55, 벼 흰잎마름병균 이펙터 결합 프로모터 및 이의 용도{Defense suppression function of OsWRKY55 gene, or promoter region recognized by the effector of Xanthomonas oryzae pv. oryzae and uses thereof}Defense suppression function of OsWRKY55 gene, or promoter region recognized by the effector of Xanthomonas oryzae pv. oryzae and uses thereof}

병 방어 억제 유전자 OsWRKY55, 벼 흰잎마름병균 이펙터 결합 프로모터 및 이의 용도에 관한 것이다.It relates to disease defense inhibitory gene OsWRKY55, rice white leaf blight effector binding promoter, and use thereof.

식물은 병 방어 억제 유전자를 내재적으로 가지고 있다. 병원균의 침입이 없을 때는 생식, 생장 등에 모든 에너지를 사용할 수 있도록 병 방어 억제 유전자를 발현시켜 면역반응을 억제하게 되어 광합성으로 얻은 에너지로 식물이 정상적으로 자랄 수 있고 씨앗을 맺게 된다. Plants inherently have genes that inhibit disease defense. When there is no invasion of pathogens, the immune response is suppressed by expressing the disease defense suppression gene so that all energy can be used for reproduction and growth, and the plant can grow normally and bear seeds with the energy obtained through photosynthesis.

하지만, 식물은 생장하는 동안 끊임없이 병원균이나 해충 등의 침입을 받게 된다. 이 때 숙주식물에 내재적으로 존재하는 병 방어 억제 유전자들을 병원균이 인식하게 되어 병원균의 증식을 돕게 된다. However, while plants are growing, they are constantly invaded by pathogens or pests. At this time, pathogens recognize genes that inhibit disease defense inherent in the host plant, thereby helping the pathogen to grow.

한편, 식물은 병원균이나 해충의 공격이 있으면 정교한 면역시스템을 활성화시켜 방어하게 된다. 병원균의 침입을 받는 경우 자체적으로 병 방어(저항) 유전자들을 발현하거나 또 다른 병 유발 유전자의 발현을 억제하여 병에 대한 저항성을 얻게 된다. 이에 병 방어 유전자를 식물체로부터 분리하여, 식물체에 과발현시키거나 또는 병 유발 유전자의 발현을 억제하여 병에 대한 저항성을 얻고자하는 연구가 진행되어 왔다. On the other hand, when a plant is attacked by pathogens or pests, it activates a sophisticated immune system to defend it. In the case of invasion of pathogens, resistance to disease is obtained by expressing disease defense (resistance) genes or suppressing the expression of another disease-causing gene. Accordingly, studies have been conducted to obtain resistance to diseases by separating disease defense genes from plants and overexpressing them in plants or suppressing the expression of disease-causing genes.

또한, 식물은 병원체의 공격에 대한 인식이나 내부 면역반응을 활성화시키는데 있어 복잡한 기작을 갖고 있는 것으로 알려져 있다. 식물과 병원체는 각기 적응성과 감염성의 관계를 통해 공진화(coevolution)를 해왔다. 이러한 현상은 병원체와 기주식물의 공격과 방어가 비 병원성 유전자(avr 유전자)와 저항성 유전자(R 유전자) 간의 관계로 나타난다. 병원체는 감염을 통한 기주식물체 내에서의 성공적인 증식과 효율적인 기생을 위해 식물의 이중 방어체계를 무너뜨려야 한다. 1차 방어시스템을 통해 식물은 기본 방어체계를 유도하는 PRRs(Patterns recognition receptors)를 사용하여 병원균의 MAMP(Microbe-associated molecular patterns)를 인식한다. 그러나 이런 1차 방어 체계는 분비성 이펙터에 의해 붕괴되며, 이후 이 분비성 이펙터는 식물 내부의 R 단백질에 의해 인식되어진다. 식물의 병저항성 유전자인 R 유전자는 주로 수용체 단백질을 암호화하고 있으며 박테리아의 감염성 Avr 유전자 산물인 분비성 단백질(effector)과 직접 또는 간접적으로 결합한다.In addition, plants are known to have a complex mechanism in recognizing pathogen attacks and activating internal immune responses. Plants and pathogens each have coevolution through the relationship between adaptability and infectivity. This phenomenon appears as a relationship between the non-pathogenic gene (avr gene) and the resistance gene (R gene) in the attack and defense of pathogens and host plants. Pathogens must destroy the plant's dual defense system for successful propagation and efficient parasitics in the host plant through infection. Through the primary defense system, plants recognize microbe-associated molecular patterns (MAMPs) of pathogens using PRRs (Patterns recognition receptors) that induce basic defense systems. However, this primary defense system is disrupted by a secretory effector, which is then recognized by the R protein inside the plant. The R gene, a disease resistance gene in plants, mainly encodes a receptor protein, and binds directly or indirectly to a secretory protein (effector), a product of the bacterial infectious Avr gene.

일반적으로 벼 흰잎마름병균(Xanthomonas oryzae pv. oryzae, Xoo)에 의하여 야기되는 벼(Oryza sativa L.) 흰잎마름병은 대부분의 벼 생산국 특히 적도 지역에 심각한 손해를 야기한다. 벼 흰잎마름병(bacterial blight)은 그람 음성 간균인 Xanthomonas oryzae pv. oryzae(Xoo)에 의해 발생하는 벼의 주요 병해 중 하나이며, 벼 잎의 수공과 상처를 통해 침입하여 도관을 따라 증식한다. 벼 흰잎마름병균(Xoo)은 T3SS(Type Ⅲ Secretion System)을 통해 TAL 이펙터(transcription activator-like effector)를 포함한 많은 이펙터(effector) 단백질을 분출한다(Annu Rev Microbiol., 54:735-774, 2000; Biochim Biophys Acta., 1694(1-3):181-206, 2004).Rice ( Oryza sativa L.) white leaf blight, which is generally caused by rice white leaf blight ( Xanthomonas oryzae pv. oryzae, Xoo ), causes serious damage to most rice producing countries, especially in the equator. Rice white leaf blight (bacterial blight) is a Gram-negative bacillus, Xanthomonas oryzae pv. It is one of the major diseases of rice caused by oryzae ( Xoo ). It invades through the hand and wound of rice leaves and proliferates along the duct. Rice white leaf blight bacteria ( Xoo ) emit many effector proteins, including a transcription activator-like effector, through T3SS (Type III Secretion System) (Annu Rev Microbiol., 54:735-774, 2000). ; Biochim Biophys Acta., 1694(1-3):181-206, 2004).

TAL 이펙터(transcription activator-like effector, TALEs)는 식물 세균 병원균의 구조적 및 기능적으로 독특한 종류의 단백질로서, Xanthomonas 속 세균의 대부분에서 발견되는데 각각의 Xanthomonas 균들은 다양한 수의 TAL 이펙터를 가지고 있다. TAL 이펙터는 전사인자로 작용하여 숙주 세포의 특정 유전자 프로모터 부위에 특이적으로 결합하여 그 유전자의 발현을 조절한다. TAL 이펙터와 식물체와의 상호작용은 병원성을 촉진하는 기주의 유전자를 활성화하거나, TAL 이펙터에 대한 방어 기작을 작동하게 한다(Mol Plant Microbe Interact.,13(12):1322-1329, 2000). TAL 이펙터는 T3SS에 필요한 N 말단과, C 말단에 핵위치신호(nuclear localization signals; NLSs)와 전사인자 특이적 AAD(acid activation domain)를 가진다. TAL 이펙터는 중앙부위가 다른데 주로 33~34개 아미노산 길이의 도메인들이 반복되어 존재하며 특히 도메인들의 12, 13 잔기에서 다형성이 많이 발생하는데 이를 RVD(repeat-variable di-residue)라 한다.TAL effectors (transcription activator-like effectors, TALEs) are structurally and functionally unique proteins of plant bacterial pathogens, and are found in most of the bacteria of the genus Xanthomonas , and each of the Xanthomonas bacteria has a variable number of TAL effectors. The TAL effector acts as a transcription factor and specifically binds to a specific gene promoter region of a host cell and regulates the expression of that gene. The interaction of the TAL effector with the plant activates the host gene that promotes pathogenicity or triggers a defense mechanism against the TAL effector (Mol Plant Microbe Interact., 13(12): 1322-1329, 2000). The TAL effector has nuclear localization signals (NLSs) and transcription factor-specific AAD (acid activation domain) at the N-terminus and C-terminus required for T3SS. The TAL effector has a different central region, mainly 33-34 amino acid length domains are repetitively present. In particular, polymorphism occurs at residues 12 and 13 of the domains, which is called RVD (repeat-variable di-residue).

벼 흰잎마름병균(Xoo)의 주요 병원성 요인인 TAL 이펙터 PthXo1에 의한 벼의 Os8N3 유전자의 전사 촉진이 세균의 증식과 흰잎마름병 발병 촉진에 중요한 역할을 하며, TAL 이펙터 AvrXa7에 의해 벼의 Os11N3 유전자를 활성화시켜서 벼가 벼 흰잎마름병균(Xoo)에 대한 감수성이 높아지게 한다는 보고가 있다(Current Opinion in Plant Biology, 13:394-401, 2010). 한국(Nucleic acid research, 33:577-586, 2005), 일본(Jpn Agric Res Q., 39:275-287, 2005), 필리핀(BMC genomics., 9:204, 2008)에서 분리된 Xoo 균주의 염기서열이 보고되었는데 놀랍게도 Xoo 균주의 TAL 이펙터 RVD 서열이 분리된 나라에 따라 완전히 달랐다. 각 나라 균주의 공진화가 재배되고 있는 벼 품종에 따라 다르게 진행되었기 때문에 한국 균주의 TAL 이펙터 연구가 중요하다.The promotion of transcription of the rice Os8N3 gene by the TAL effector PthXo1, a major pathogenic factor of rice white leaf blight ( Xoo ), plays an important role in promoting bacterial proliferation and the onset of white leaf blight, and the TAL effector AvrXa7 activates the rice Os11N3 gene. It has been reported that rice increases susceptibility to rice white leaf blight ( Xoo ) by doing so (Current Opinion in Plant Biology, 13:394-401, 2010). Xoo strains isolated from Korea (Nucleic acid research, 33:577-586, 2005), Japan (Jpn Agric Res Q., 39:275-287, 2005), and the Philippines (BMC genomics., 9:204, 2008). The sequence was reported, but surprisingly, the sequence of the TAL effector RVD of the Xoo strain was completely different depending on the country in which it was isolated. Since the co-evolution of each country strain was carried out differently depending on the rice variety being grown, it is important to study the TAL effector of the Korean strain.

본 발명에서는, 벼(Oryza sativa)로부터 병 방어 억제 유전자를 분리하고자 하였다. 벼 흰잎마름병균에 대해 병 방어 억제 또는 병 유발 유전자(감수성 유전자)의 발현을 억제하여 병에 대한 저항성을 얻을 수 있는 식물체를 개발하고자 하였다. 또한, 이들 유전자의 프로모터를 이용하여, 벼 흰잎마름병 저항성 식물체를 선별하거나, 벼 흰잎마름병 저항성을 증진시키고자 하였다. In the present invention, it was attempted to isolate a disease defense inhibitory gene from rice ( Oryza sativa ). The purpose of this study was to develop a plant capable of obtaining resistance to disease by suppressing disease defense or suppressing the expression of disease-causing genes (sensitivity genes) against rice white leaf blight bacteria. In addition, using the promoters of these genes, it was attempted to select a rice plant that is resistant to white leaf blight or to improve resistance to rice white leaf blight.

대한민국 등록특허 제110-1785101호Korean Patent Registration No. 110-1785101

본 발명의 하나의 목적은, 상기 OsWRKY55 유전자에 대한 RNAi(ribonucleic acid interference) 염기서열을 포함하는 벼 흰잎마름병 저항성 증진용 재조합 벡터를 제공하는 것이다.One object of the present invention is to provide a recombinant vector for enhancing rice white leaf blight resistance comprising a RNAi (ribonucleic acid interference) nucleotide sequence for the OsWRKY55 gene.

본 발명의 다른 목적은, 상기 OsWRKY55 유전자에 대한 RNAi 염기서열을 포함하는 벼 흰잎마름병 저항성 증진용 재조합 벡터로 형질전환된 식물체를 제공하는 것이다.Another object of the present invention is to provide a plant transformed with a recombinant vector for enhancing rice white leaf blight resistance comprising the RNAi nucleotide sequence for the OsWRKY55 gene.

본 발명의 또 다른 목적은, 상기 OsWRKY55 유전자에 대한 RNAi 염기서열을 포함하는 벼 흰잎마름병 저항성 증진용 재조합 벡터를 식물체에 형질전환하는 단계를 포함하는, 벼 흰잎마름병 저항성이 증진된 형질전환 식물체의 제조방법을 제공하는 것이다.Another object of the present invention is to produce a transgenic plant with improved rice white leaf blight resistance, comprising the step of transforming the plant with a recombinant vector for enhancing rice white leaf blight resistance comprising the RNAi nucleotide sequence for the OsWRKY55 gene To provide a way.

본 발명의 또 다른 목적은, 상기 OsWRKY55 유전자에 대한 RNAi 염기서열을 포함하는 재조합 벡터를 식물체에 도입하는 단계를 포함하는, 식물체의 병 방어 억제 유전자 OsWRKY55 발현을 억제하여 벼 흰잎마름병 저항성을 증진시키는 방법을 제공하는 것이다.Another object of the present invention is a method for enhancing rice white leaf blight resistance by inhibiting the expression of OsWRKY55, a disease defense inhibitory gene in a plant, comprising the step of introducing a recombinant vector containing the RNAi nucleotide sequence for the OsWRKY55 gene into a plant. Is to provide.

본 발명의 또 다른 목적은, 벼 흰잎마름병균(Xanthomonas oryzae pv. oryzae, Xoo)의 TAL 이펙터 LJ4(Transcription activator-like effector LJ4) 유전자와 결합하는, 서열번호 18의 염기서열로 이루어진 병 방어 억제 유전자 OsWRKY55 프로모터 부위를 제공하는 것이다. Another object of the present invention is a disease defense inhibitory gene consisting of the nucleotide sequence of SEQ ID NO: 18, which binds to the TAL effector LJ4 (Transcription activator-like effector LJ4) gene of rice white leaf blight ( Xanthomonas oryzae pv. oryzae , Xoo ) OsWRKY55 promoter region is provided.

본 발명의 또 다른 목적은 상기 서열번호 18의 염기서열로 이루어진 OsWRKY55 프로모터 부위를 포함하는, TAL 이펙터 LJ4 유전자 서열 인식용 재조합 벡터를 제공하는 것이다. Another object of the present invention is to provide a recombinant vector for TAL effector LJ4 gene sequence recognition, comprising the OsWRKY55 promoter region consisting of the nucleotide sequence of SEQ ID NO: 18.

본 발명의 또 다른 목적은, a) 벼 흰잎마름병 저항성 품종을 육성하기 위해 상기 TAL 이펙터 LJ4 유전자 서열 인식용 재조합 벡터를 도입하는 단계; b) 상기 TAL 이펙터 LJ4 유전자 서열 인식용 재조합 벡터가 도입된 벼 흰잎마름병 저항성 품종 또는 벼 흰잎마름병 저항성 후보 식물체에 벼 흰잎마름병균(Xanthomonas oryzae pv. oryzae, Xoo)을 감염시키는 단계; 및 c) 벼 흰잎마름병 저항성 품종을 대조군으로 하여 벼 흰잎마름병 저항성 후보 식물체의 OsWRKY55 프로모터 활성 정도를 평가하는 단계;를 포함하는, 벼 흰잎마름병 저항성 식물체 선별 방법을 제공하는 것이다.Another object of the present invention is a) introducing a recombinant vector for recognizing the TAL effector LJ4 gene sequence in order to cultivate a rice white leaf blight resistant variety; b) infecting the rice white leaf blight resistant cultivar or rice white leaf blight resistant candidate plant into which the recombinant vector for recognizing the TAL effector LJ4 gene sequence was introduced, with Xanthomonas oryzae pv. oryzae, Xoo ); And c) evaluating the degree of the OsWRKY55 promoter activity of the rice white leaf blight-resistant candidate plant using the rice white leaf blight-resistant cultivar as a control; it is to provide a method for selecting rice white leaf blight-resistant plants.

본 발명의 또 다른 목적은, 서열번호 19의 염기서열로 이루어진 OsWRKY55 프로모터 변이체 단편을 제공하는 것이다.Another object of the present invention is to provide an OsWRKY55 promoter variant fragment consisting of the nucleotide sequence of SEQ ID NO: 19.

본 발명의 또 다른 목적은, 상기 OsWRKY55 프로모터 변이체 단편을 포함하는 벼 흰잎마름병 저항성 증진용 재조합 벡터를 제공하는 것이다.Another object of the present invention is to provide a recombinant vector for enhancing rice white leaf blight resistance comprising the OsWRKY55 promoter variant fragment.

본 발명의 또 다른 목적은, 상기 OsWRKY55 프로모터 변이체 단편을 포함하는 벼 흰잎마름병 저항성 증진용 재조합 벡터로 형질전환된 식물체를 제공하는 것이다.Another object of the present invention is to provide a plant transformed with a recombinant vector for enhancing rice white leaf blight resistance comprising the OsWRKY55 promoter variant fragment.

본 발명의 또 다른 목적은, 상기 OsWRKY55 프로모터 변이체 단편을 포함하는 벼 흰잎마름병 저항성 증진용 재조합 벡터를 식물체에 형질전환하는 단계를 포함하는, 벼 흰잎마름병 저항성이 증진된 형질전환 식물체의 제조방법을 제공하는 것이다.Another object of the present invention is to provide a method for producing a transgenic plant with improved rice white leaf blight resistance, comprising transforming a recombinant vector for enhancing rice white leaf blight resistance including the OsWRKY55 promoter variant fragment into a plant Is to do.

본 발명의 또 다른 목적은, 상기 OsWRKY55 프로모터 변이체 단편을 포함하는 재조합 벡터를 식물체에 도입하는 단계를 포함하는, 식물체의 벼 흰잎마름병 저항성을 증진시키는 방법을 제공하는 것이다.Another object of the present invention is to provide a method for enhancing rice white leaf blight resistance of plants, comprising the step of introducing a recombinant vector containing the OsWRKY55 promoter variant fragment into a plant.

이러한 배경하에서, 본 발명자들은 벼 흰잎마름병 저항성 작물을 개발하고 저항성 작물을 용이하게 선별하기 위해 예의 연구 노력한 결과, 벼 흰잎마름병균(Xanthomonas oryzae pv. oryzae) XOOKXO576에 의해 벼 유래 OsWRKY55 유전자가 활성화됨을 확인하고, 이를 기반으로 벼 흰잎마름병균의 TAL 이펙터 LJ4와 특이적으로 결합하는 OsWRKY55 프로모터의 인식부위를 도출함으로써, 본 발명을 완성하게 되었다.Under this background, the present inventors have made intensive research efforts to develop rice white leaf blight-resistant crops and easily select resistant crops, and as a result, it was found that the OsWRKY55 gene derived from rice is activated by the rice white leaf blight (Xanthomonas oryzae pv. oryzae) XOO KXO576 . The present invention was completed by confirming and deriving the recognition site of the OsWRKY55 promoter that specifically binds to the TAL effector LJ4 of rice white leaf blight based on this.

상기 목적을 달성하기 위한 하나의 양태로서, 본 발명은 상기 OsWRKY55 유전자에 대한 RNAi 염기서열을 포함하는 벼 흰잎마름병 저항성 증진용 재조합 벡터를 제공한다.As an aspect for achieving the above object, the present invention provides a recombinant vector for enhancing rice white leaf blight resistance comprising the RNAi nucleotide sequence for the OsWRKY55 gene.

본 발명에서 용어 "벼 흰잎마름병균(Xanthomonas oryzae pv. oryzae, Xoo)"은 그람음성세균으로, 벼에만 병원성이 있는 기주특이적 특성을 가진 병원균이다. 벼에 감염하여 흰잎마름병(Bacterial Blight, BB)을 일으키며, 벼 잎의 수공과 상처를 통해 침입하여 도관을 따라 증식한다. In the present invention, the term "rice white leaf blight ( Xanthomonas oryzae pv. oryzae , Xoo )" is a gram-negative bacterium, which is a pathogen having host-specific characteristics that are only pathogenic to rice. It infects rice, causing Bacterial Blight (BB), and invades through handwork and wounds of rice leaves and proliferates along the duct.

본 발명에서 용어 "OsWRKY55"은 WRKY 패밀리에 속하는 유전자로서, 메틸 자스몬산(methyl jasmonate), 살리실산(salicylic acid) 및 ACC(1-aminocyclo-propane-1-carboxylic acid) 등의 여러 신호 분자, 또는 상처나 병원균 감염 등의 비생물학적 요인에 대한 방어 기전을 수행한다. In the present invention, the term "OsWRKY55" is a gene belonging to the WRKY family, and several signaling molecules such as methyl jasmonate, salicylic acid, and 1-aminocyclo-propane-1-carboxylic acid (ACC), or wounds B. Implement defense mechanisms against abiotic factors such as pathogen infection.

본 발명에서 상기 OsWRKY55 단백질을 코딩하는 유전자의 구체적인 염기서열 및 단백질 정보는 NCBI에 공지되어 있다(GenBank: Accession AK101653.1, BAG95171.1 등).In the present invention, the specific nucleotide sequence and protein information of the gene encoding the OsWRKY55 protein are known from NCBI (GenBank: Accession AK101653.1, BAG95171.1, etc.).

본 발명에서 용어 "재조합"은 세포가 이종의 핵산을 복제하거나, 상기 핵산을 발현하거나 또는 펩티드, 이종의 펩티드 또는 이종의 핵산에 의해 암호된 단백질을 발현하는 세포를 지칭하는 것이다. 재조합 세포는 상기 세포의 천연 형태에서는 발견되지 않는 유전자 또는 유전자 절편을, 센스 또는 안티센스 형태 중 하나로 발현할 수 있다. 또한 재조합 세포는 천연 상태의 세포에서 발견되는 유전자를 발현할 수 있으며, 그러나 상기 유전자는 변형된 것으로써 인위적인 수단에 의해 세포 내 재도입된 것이다.In the present invention, the term "recombinant" refers to a cell in which a cell replicates a heterologous nucleic acid, expresses the nucleic acid, or expresses a peptide, a heterogeneous peptide, or a protein encoded by a heterogeneous nucleic acid. Recombinant cells may express genes or gene segments that are not found in the natural form of the cell in either a sense or antisense form. In addition, the recombinant cells can express genes found in cells in their natural state, but the genes are modified and reintroduced into cells by artificial means.

본 발명에서 용어 "벡터"는 세포 내로 전달하는 DNA 단편(들), 핵산 분자를 지칭할 때 사용된다. 벡터는 DNA를 복제시키고, 숙주세포에서 독립적으로 재생산될 수 있다. 용어 "발현 벡터"는 흔히 "재조합 벡터"와 호환하여 사용된다. 용어 "재조합 벡터"는 목적한 코딩 서열과, 특정 숙주 생물에서 작동가능하게 연결된 코딩 서열을 발현하는데 필수적인 적정 핵산 서열을 포함하는 재조합 DNA 분자를 의미한다. 진핵세포에서 이용 가능한 프로모터, 인핸서, 종결신호 및 폴리아데닐레이션 신호는 공지되어 있다.In the present invention, the term "vector" is used to refer to a DNA fragment(s) or nucleic acid molecule to be delivered into a cell. Vectors replicate DNA and can be reproduced independently in host cells. The term “expression vector” is often used interchangeably with “recombinant vector”. The term “recombinant vector” refers to a recombinant DNA molecule comprising a coding sequence of interest and an appropriate nucleic acid sequence essential for expressing the coding sequence operably linked in a particular host organism. Promoters, enhancers, termination signals and polyadenylation signals usable in eukaryotic cells are known.

본 발명에서 용어 "RNAi"는 짧은 이중가닥 RNA가 자신의 염기서열에 해당하는 표적 mRNA를 선택적으로 분해하여 표적 유전자의 전사와 단백질 합성을 중단시키는 과정이다. 이러한 RNAi 현상을 특이적으로 유도하는데 사용되는 siRNA(small interfering RNA)을 제조하기 위해서 in vitro에서 siRNA를 직접 합성한 후 transfection을 통해 세포 안으로 도입시키는 방법과 세포 내에서 siRNA를 발현할 수 있도록 제작된 shRNA(short hairpin RNA) 발현 벡터를 활용하는 방법이 널리 사용되고 있다.In the present invention, the term "RNAi" is a process in which short double-stranded RNA selectively degrades the target mRNA corresponding to its nucleotide sequence to stop transcription of the target gene and protein synthesis. In order to produce siRNA (small interfering RNA) used to specifically induce such RNAi phenomenon, a method of directly synthesizing siRNA in vitro and then introducing it into cells through transfection, and a method designed to express siRNA in cells. A method using a short hairpin RNA (shRNA) expression vector is widely used.

본 발명에서는 상기 서열번호 24의 염기서열로 이루어진 유전자를 이용하여, OsWRKY55 유전자의 발현을 제어하기 위해 RNAi 기술을 활용하였으며, OsWRKY55유전자에 대한 RNAi(ribonucleic acid interference) 염기서열을 포함하는 재조합 벡터를 제작하였다.In the present invention, using the gene consisting of the nucleotide sequence of SEQ ID NO: 24, RNAi technology was used to control the expression of the OsWRKY55 gene, and a recombinant vector including the RNAi (ribonucleic acid interference) nucleotide sequence for the OsWRKY55 gene was produced. I did.

상기 서열번호 24의 염기서열로 이루어진 유전자를 포함하는 OsWRKY55에 대한 RNAi를 포함하는 재조합 벡터로 형질전환된 벼 식물체(OsWRKY55RNAi)에서 병 저항성이 증가하여 병 발생 길이가 줄어듦을 확인하였다. 이에 따라 OsWRKY55는 Xoo에 대한 병 방어 억제 유전자로 작용하는 것을 알 수 있었으며, OsWRKY55 유전자를 과발현 시켰을 때 벼 흰잎마름병균에 대해 감수성(susceptibility)이 증가되는 것을 알 수 있었다. 따라서, OsWRKY55 유전자는 병원균의 침입이 없을 때 식물이 잘 자랄 수 있도록 병 방어를 억제하는 역할을 한다는 것을 알 수 있었다.In the rice plant (OsWRKY55RNAi) transformed with a recombinant vector containing RNAi for OsWRKY55 containing a gene consisting of the nucleotide sequence of SEQ ID NO: 24, it was confirmed that disease resistance increased and the length of disease occurrence was reduced. Accordingly, it was found that OsWRKY55 acts as a disease defense inhibitory gene against Xoo , and when the OsWRKY55 gene is overexpressed, it was found that susceptibility to rice white leaf blight bacteria was increased. Therefore, it was found that the OsWRKY55 gene plays a role in inhibiting disease defense so that plants can grow well when there is no invasion of pathogens.

다른 하나의 양태로서, 본 발명은 OsWRKY55 유전자에 대한 RNAi(ribonucleic acid interference) 염기서열을 포함하는 벼 흰잎마름병 저항성 증진용 재조합 벡터로 형질전환된 식물체를 제공한다. As another aspect, the present invention provides a plant transformed with a recombinant vector for enhancing rice white leaf blight resistance comprising a RNAi (ribonucleic acid interference) nucleotide sequence for OsWRKY55 gene.

본 발명에서 용어 "OsWRKY55 유전자", "OsWRKY55 유전자에 대한 RNAi", "재조합 벡터", 벼 흰잎마름병"에 대한 설명은 전술한 바와 같다. In the present invention, descriptions of the terms "OsWRKY55 gene", "RNAi for the OsWRKY55 gene", "recombinant vector", and rice white leaf blight are as described above.

본 발명에서 용어 "형질전환"은, 유전물질인 DNA를 다른 계통의 살아 있는 세포에 주입했을 때, DNA가 그 세포에 들어가 유전형질(遺傳形質)을 변화시키는 현상으로, 형질변환, 형전환, 또는 형변환이라고도 한다.In the present invention, the term "transformation" refers to a phenomenon in which DNA enters the cell and changes the genotypic trait when DNA, which is a genetic material, is injected into a living cell of another lineage. Transformation, transformation, Or it is also called casting.

본 발명에서 상기 벡터를 식물체에 도입하는 형질전환방법으로는 아그로박테리움을 이용한 형질전환방법, 미세사출법(microprojectile bombardment), 일렉트로포레이션(electroporation), PEG-매개 융합법(PEG-mediated fusion), 미세주입법(microinjection), 리포좀 매개법(liposome-mediated method), 인-플란타 형질전환법(In planta transformation), 진공 침윤법(Vacuum infiltration method), 화아침지법(floral meristem dipping method) 또는 아그로박테리아 분사법(Agrobacterium spraying method)을 이용할 수 있으나, 이에 한정되는 것은 아니다. In the present invention, as a transformation method for introducing the vector into a plant, a transformation method using Agrobacterium, microprojectile bombardment, electroporation, PEG-mediated fusion method (PEG-mediated fusion) , Microinjection, liposome-mediated method, in planta transformation, vacuum infiltration method, floral meristem dipping method, or agro Bacteria spraying method (Agrobacterium spraying method) may be used, but is not limited thereto.

또한, 본 발명의 방법은 상기 형질전환된 식물 세포로부터 형질전환 식물을 재분화하는 단계를 포함한다. 형질전환 식물 세포로부터 형질전환 식물을 재분화하는 방법은 당업계에 공지된 임의의 방법을 이용할 수 있다.In addition, the method of the present invention includes the step of regenerating a transformed plant from the transformed plant cell. Any method known in the art may be used as a method of regenerating a transformed plant from a transformed plant cell.

본 발명에서 용어 "식물체"는, 성숙한 식물체뿐만 아니라 성숙한 식물로 발육할 있는 식물 세포, 식물 조직 및 식물의 종자 등을 모두 포함하는 의미이다. In the present invention, the term "plant" is meant to include not only mature plants, but also plant cells, plant tissues, and seeds of plants that can develop into mature plants.

본 발명에서 상기 식물체는 특별히 제한되지 않으며, 일례로서 벼, 밀, 보리, 옥수수, 콩, 감자, 밀, 팥, 귀리 또는 수수를 포함하는 식량 작물류; 애기장대, 배추, 무, 고추, 딸기, 토마토, 수박, 오이, 양배추, 참외, 호박, 파, 양파 또는 당근을 포함하는 채소 작물류; 인삼, 담배, 목화, 참깨, 사탕수수, 사탕무우, 들깨, 땅콩 또는 유채를 포함하는 특용작물류; 사과나무, 배나무, 대추나무, 복숭아, 양다래, 포도, 감귤, 감, 자두, 살구 또는 바나나를 포함하는 과수류; 장미, 글라디올러스, 거베라, 카네이션, 국화, 백합 또는 튤립을 포함하는 화훼류; 및 라이그라스, 레드클로버, 오차드그라스, 알파알파, 톨페스큐 또는 페레니얼라이그라스를 포함하는 사료작물류로 이루어진 군으로부터 선택된 어느 하나이며, 구체적으로는 벼이나, 이에 제한되지 않는다.In the present invention, the plant is not particularly limited, and as an example, rice, wheat, barley, corn, soybeans, potatoes, wheat, red beans, food crops including oats or sorghum; Vegetable crops including Arabidopsis, Chinese cabbage, radish, pepper, strawberry, tomato, watermelon, cucumber, cabbage, melon, pumpkin, green onion, onion or carrot; Specialty crops including ginseng, tobacco, cotton, sesame, sugar cane, sugar beet, perilla, peanut or rapeseed; Fruit trees including apple tree, pear tree, jujube tree, peach, papaver, grape, citrus, persimmon, plum, apricot or banana; Flowers including roses, gladiolus, gerberas, carnations, chrysanthemums, lilies or tulips; And any one selected from the group consisting of ryegrass, red clover, orchardgrass, alpha alpha, tall fescue, or perennial ryegrass, and specifically rice, but is not limited thereto.

본 발명에서 상기 OsWRKY55 유전자의 발현이 억제되는 경우, 식물체의 벼 흰잎마름병 저항성이 증진되므로, 식물체의 벼 흰잎마름병 저항성을 증진시키기 위하여, 전술한 바와 같이 상기 서열번호 24의 염기서열로 이루어진 OsWRKY55 유전자에 대한 RNAi 염기서열을 포함하는 재조합 벡터를 제조하고, 이를 식물체에 형질전환하여 상기 OsWRKY55 유전자의 발현을 억제시켜 식물체의 벼 흰잎마름병에 대한 저항성을 증진시킬 수 있다. In the present invention, when the expression of the OsWRKY55 gene is suppressed, since the resistance of the plant to rice white leaf blight is increased, in order to improve the resistance of the plant to rice white leaf blight, as described above, the OsWRKY55 gene consisting of the nucleotide sequence of SEQ ID NO: 24 is A recombinant vector containing the RNAi nucleotide sequence is prepared and transformed into a plant to inhibit the expression of the OsWRKY55 gene, thereby enhancing the resistance of the plant to rice white leaf blight.

또 다른 하나의 양태로서, 본 발명은, 상기 OsWRKY55 유전자에 대한 RNAi 염기서열을 포함하는 벼 흰잎마름병 저항성 증진용 재조합 벡터를 식물체에 형질전환하는 단계를 포함하는, 벼 흰잎마름병 저항성이 증진된 형질전환 식물체의 제조방법을 제공한다.As another aspect, the present invention, comprising the step of transforming a recombinant vector for enhancing rice white leaf blight resistance including the RNAi nucleotide sequence for the OsWRKY55 gene into a plant, rice white leaf blight resistance is enhanced transformation It provides a method for producing a plant.

본 발명에서 용어 "벼 흰잎마름병", "OsWRKY55 유전자에 대한 RNAi", "OsWRKY55 유전자", "재조합 벡터", "형질전환", "식물체"에 대한 설명은 전술한 바와 같다. In the present invention, descriptions of the terms "rice white leaf blight", "RNAi against the OsWRKY55 gene", "OsWRKY55 gene", "recombinant vector", "transformation" and "plant" are as described above.

본 발명은 서열번호 24의 염기서열로 이루어진 OsWRKY55 유전자에 대한 RNAi 염기서열을 포함하는 재조합 벡터를 제조하고, 이를 식물체에 형질전환시켜, 벼 흰잎마름병 저항성이 증진된 형질전환 식물체의 제조가 가능하다.In the present invention, a recombinant vector comprising the RNAi nucleotide sequence for the OsWRKY55 gene consisting of the nucleotide sequence of SEQ ID NO: 24 is prepared and transformed into a plant, thereby making it possible to produce a transgenic plant with improved resistance to rice white leaf blight.

또 다른 하나의 양태로서, 본 발명은, 상기 OsWRKY55 유전자에 대한 RNAi 염기서열을 포함하는 재조합 벡터를 식물체에 도입하는 단계를 포함하는, 식물체의 벼 흰잎마름병 저항성을 증진시키는 방법을 제공한다.As yet another aspect, the present invention provides a method for enhancing rice white leaf blight resistance of a plant comprising the step of introducing a recombinant vector containing the RNAi nucleotide sequence for the OsWRKY55 gene into a plant.

본 발명에서 용어 "벼 흰잎마름병", "OsWRKY55 유전자에 대한 RNAi", "OsWRKY55 유전자", "재조합 벡터", "형질전환", "식물체"에 대한 설명은 전술한 바와 같다. In the present invention, descriptions of the terms "rice white leaf blight", "RNAi against the OsWRKY55 gene", "OsWRKY55 gene", "recombinant vector", "transformation" and "plant" are as described above.

본 발명에서 용어 "식물체에 도입하는 단계"는 특정 염기서열을 갖는 폴리뉴클레오티드를 포함하는 재조합 벡터를 제작하고, 그 재조합 벡터를 식물체에 형질전환시키는 단계를 의미한다. In the present invention, the term "introducing into a plant" means a step of constructing a recombinant vector including a polynucleotide having a specific nucleotide sequence and transforming the recombinant vector into a plant.

구체적으로 본 발명에서는, OsWRKY55 유전자에 대한 RNAi 염기서열을 삽입하여 형질전환용 재조합 벡터를 제작하고 이의 형질전환체를 제작하였으며, 상기 OsWRKY55 유전자에 대한 RNAi 염기서열 도입에 의해 식물체의 벼 흰잎마름병 저항성이 증진되는 것을 확인하였다.Specifically, in the present invention, a recombinant vector for transformation was prepared by inserting the RNAi nucleotide sequence for the OsWRKY55 gene, and a transformant thereof was prepared. It was confirmed that it is improved.

본 발명에 의하면, 상기 OsWRKY55 유전자의 발현이 억제되는 경우, 식물체의 벼 흰잎마름병 저항성이 증진되므로, 식물체의 벼 흰잎마름병 저항성을 증진시키기 위하여, 서열번호 24의 염기서열로 이루어진 OsWRKY55 유전자에 대한 RNAi 염기서열을 포함하는 재조합 벡터를 제조하고, 이를 식물체에 형질전환하여 상기 OsWRKY55 유전자의 발현을 억제시켜 식물체의 벼 흰잎마름병을 증진시키는 것도 가능하다. According to the present invention, when the expression of the OsWRKY55 gene is suppressed, since the resistance of the plant to rice white leaf blight is enhanced, the RNAi base for the OsWRKY55 gene consisting of the nucleotide sequence of SEQ ID NO: 24 in order to increase the resistance of the plant to rice white leaf blight It is also possible to prepare a recombinant vector comprising the sequence and transform it into a plant to inhibit the expression of the OsWRKY55 gene, thereby enhancing the rice white leaf blight of the plant.

또 다른 하나의 양태로서, 본 발명은, 벼 흰잎마름병균(Xanthomonas oryzae pv. oryzae, Xoo)의 TAL 이펙터 LJ4(Transcription activator-like effector LJ4) 유전자와 결합하는, 서열번호 18의 염기서열로 이루어진 OsWRKY55 프로모터(promoter) 부위(단편)를 제공한다.In yet another aspect, the present invention is a TAL effector LJ4 (Transcription activator-like effector LJ4) gene of rice white leaf blight ( Xanthomonas oryzae pv. oryzae , Xoo ), which binds to the nucleotide sequence of SEQ ID NO: 18 OsWRKY55 Promoter site (fragment) is provided.

본 발명에서는 흰잎마름병균(Xanthomonas oryzae pv. oryzae, Xoo)이 식물에 내재되어 있는 병 방어 억제 유전자 OsWRKY55의 발현을 증가시켜 벼 흰잎마름병에 대한 감수성을 증가시킨다는 결과를 확인하였다. In the present invention, it was confirmed that the white leaf blight bacteria ( Xanthomonas oryzae pv. oryzae , Xoo ) increased the expression of the disease defense inhibitory gene OsWRKY55 inherent in plants, thereby increasing the susceptibility to rice white leaf blight.

벼 흰잎마름병균(Xanthomonas oryzae pv. oryzae, Xoo)의 TAL 이펙터 중에서 LJ4(Transcription activator-like effector LJ4)가 병 방어 억제 유전자 OsWRKY55 유전자의 발현을 증가시키고 서열번호 18의 염기서열로 이루어진 OsWRKY55 프로모터(promoter) 부위와 결합하는 것을 확인하였다. Among the TAL effectors of rice white leaf blight ( Xanthomonas oryzae pv. oryzae , Xoo ), LJ4 ( transscription activator-like effector LJ4) increases the expression of the disease defense suppressor gene OsWRKY55 gene, and the OsWRKY55 promoter consisting of the nucleotide sequence of SEQ ID NO: 18 ) It was confirmed that it binds to the site.

본 발명에서 용어 "벼 흰잎마름병", "OsWRKY55 유전자"에 대한 설명은 전술한 바와 같다. In the present invention, the description of the terms "rice white leaf blight" and "OsWRKY55 gene" is as described above.

본 발명에서 용어 "벼 흰잎마름병균(Xanthomonas oryzae pv. oryzae, Xoo)"은 T3SS(type Ⅲ secretion system)을 통해 TAL 이펙터(Transcription activator-like effector, TALE)를 포함한 많은 이펙터(effector) 단백질을 분출한다.In the present invention, the term "rice white leaf blight ( Xanthomonas oryzae pv. oryzae , Xoo )" ejects many effector proteins including TAL effectors (Transcription activator-like effector, TALE) through T3SS (type III secretion system) do.

본 발명에 있어서, 상기 벼 흰잎마름병균(Xanthomonas oryzae pv. oryzae, Xoo)은 XOOKXO576로, 약 18개의 이펙터 단백질을 가지고 있다. In the present invention, the rice white leaf blight ( Xanthomonas oryzae pv. oryzae , Xoo ) is XOO KXO576 , and has about 18 effector proteins.

본 발명에서 용어 "TAL 이펙터(Transcription activator-like effector, TALE)"는 식물 세균 병원균의 구조적 및 기능적으로 독특한 종류의 단백질로서, Xanthomonas 속 세균의 대부분에서 발견되는데 각각의 Xanthomonas 균들은 다양한 수의 TAL 이펙터를 가지고 있다. TAL 이펙터는 T3SS(type Ⅲ secretion system)에 필요한 N 말단과, C 말단에 핵 위치 신호(nuclear localization signals; NLSs)와 전사인자 특이적 AAD(acid activation domain)를 가지며, T3SS을 통해 식물 세포 내로 주입된다. 식물 세포 내에서 핵으로 이동하여 TAL 이펙터 특이적 DNA 서열에 결합하여 하위 유전자의 발현에 관여하며, 식물체와의 상호작용은 병원성을 촉진하는 기주의 유전자를 활성화하거나, 병 방어 기작을 억제하여 병 발생을 심화시킨다.In the present invention, the term "TAL effector (Transcription activator-like effector, TALE)" is a structurally and functionally unique type of protein of plant bacterial pathogens, and is found in most of the bacteria of the genus Xanthomonas . Each Xanthomonas bacteria is a variable number of TAL effectors. Have. The TAL effector has nuclear localization signals (NLSs) and transcription factor-specific AAD (acid activation domain) at the N-terminus and C-terminus required for the T3SS (type III secretion system), and is injected into plant cells through T3SS. do. It moves from the plant cell to the nucleus and binds to the TAL effector-specific DNA sequence and is involved in the expression of sub-genes, and the interaction with the plant activates the host gene that promotes pathogenicity or suppresses the disease defense mechanism to cause disease. Deepen

본 발명에서 용어 "TAL 이펙터 LJ4(Transcription activator-like effector LJ4)"는 벼 흰잎마름병균(Xanthomonas oryzae pv. oryzae, Xoo) XOOKXO576 유래 TAL 이펙터로, LJ4는 NI HG NI NI NI NN HD NS NN NS NN HD NN NI HD NN NI NG HD NG 20개의 RVD(repeat variable dinucleotide, 서열번호 12)로 이루어져 있으며, 'RVD 서열'은 TAL 이펙터 결합 도메인 내에서의 RVD의 연속적인 서열로 이해되며, 이 경우 이 서열은 달리 명시되지 않는 한, N-C-방향으로, 즉 N-말단으로부터 C-말단까지로 명시되어 있다.In the present invention, the term "TAL effector LJ4 (Transcription activator-like effector LJ4)" refers to rice white leaf blight ( Xanthomonas oryzae pv. oryzae , Xoo ) XOO KXO576- derived TAL effector, LJ4 is NI HG NI NI NI NI NN HD NS NN NS NN HD NN NI HD NN NI NG HD NG Consists of 20 RVDs (repeat variable dinucleotide, SEQ ID NO: 12), and the'RVD sequence' is understood as a continuous sequence of RVDs within the TAL effector binding domain. Sequences are specified in the NC-direction, ie from N-terminus to C-terminus, unless otherwise specified.

본 발명에서 용어 "프로모터(promoter)"는 유전자의 전사 개시 부위의 전사 방향과 관련하여 상류(5')에 위치하고(전사 개시점을 서열의 위치 +1로 나타내고, 그와 관련하여 상류에 있는 임의의 뉴클레오티드는 음수를 사용하여 나타낸다), DNA-의존 RNA 중합효소에 대한 결합 부위, 전사 개시 부위, 전사 인자 결합 부위, 억제 인자 및 활성 인자 단백질 결합 부위, 및 프로모터로부터 전사량을 직접 또는 간접적으로 조절하는 작용을 하는 것으로 당업자에게 알려져 있는 임의의 다른 뉴클레오티드 서열을 포함하나, 이에 제한되지 않는 임의의 다른 DNA 도메인(cis-acting 서열)의 존재에 의해 구조적으로 동정되는, 하나 이상의 유전자의 전사를 제어하는 기능을 갖는 핵산 단편을 나타낸다. 전사 개시점(+1) 상류에 있는 진핵생물의 시스 작용 서열의 일 예로는 TATA 박스, CAAT 박스, 5' 인핸서 또는 침묵 인자 요소 등을 포함한다.In the present invention, the term "promoter" is located upstream (5') with respect to the transcriptional direction of the transcription initiation site of the gene (the transcription start point is represented by the position +1 of the sequence, and any upstream Nucleotides are indicated using negative numbers), the binding site for DNA-dependent RNA polymerase, the transcription initiation site, the transcription factor binding site, the inhibitory factor and activator protein binding site, and the amount of transcription from the promoter directly or indirectly regulated. Controls the transcription of one or more genes, structurally identified by the presence of any other DNA domain (cis-acting sequence), including, but not limited to, any other nucleotide sequence known to those skilled in the art to act Represents a nucleic acid fragment having a function. Examples of eukaryotic cis-acting sequences upstream of the transcription initiation point (+1) include a TATA box, a CAAT box, a 5'enhancer or a silencing factor element.

본 발명에서 용어 "OsWRKY55 프로모터"는 벼 유래 전사인자 OsWRKY55 유전자 프로모터로, 서열번호 17의 염기서열로 이루어지며, OsWRKY55 유전자의 전사시작부위(+1)를 기준으로 업스트림(upstream) 부위 (-1000)까지의 부위를 포함하고 있으며, 벼 흰잎마름병균(Xanthomonas oryzae pv. oryzae, Xoo) XOOKXO576에 의해 활성화되는 유도성 프로모터이다.In the present invention, the term "OsWRKY55 promoter" is a rice-derived transcription factor OsWRKY55 gene promoter, consisting of the nucleotide sequence of SEQ ID NO: 17, and an upstream site (-1000) based on the transcription start site (+1) of the OsWRKY55 gene It contains the sites to, and is an inducible promoter activated by rice white leaf blight ( Xanthomonas oryzae pv. oryzae , Xoo ) XOO KXO576 .

상기 "유도성 프로모터"는 생리학적으로(예를 들면, 특정 화합물의 외적 작용) 또는 발생학적으로 조절되는 프로모터를 의미한다.The "inducible promoter" refers to a promoter that is physiologically (eg, exogenous action of a specific compound) or embryologically regulated.

본 발명에서 용어 "OsWRKY55 프로모터 단편"은 전사조절인자들(transcription factor)이 결합하는 OsWRKY55 프로모터의 일부 영역으로서, 전사인자로서 작용하는 벼 흰잎마름병균의 TAL 이펙터 LJ4와 특이적으로 결합하는 P1 영역이다. OsWRKY55 프로모터 단편은 OsWRKY55 유전자의 전사시작부위(+1)를 기준으로 업스트림(upstream) 부위 (-300) 내지 (-30) 보다 구체적으로, (-68) 내지 (-48) 부위에 포함되며, 'AGAGCGGTGGTGGTTTTTAT'(서열번호 18)의 염기서열로 이루어진다.In the present invention, the term "OsWRKY55 promoter fragment" is a partial region of the OsWRKY55 promoter to which transcription factors bind, and is a P1 region that specifically binds to the TAL effector LJ4 of rice white leaf blight, which acts as a transcription factor. . OsWRKY55 promoter fragment is included in the upstream (-300) to (-30), more specifically, (-68) to (-48) sites based on the transcription start site (+1) of the OsWRKY55 gene, ' It consists of the nucleotide sequence of AGAGCGGTGGTGGTTTTTAT' (SEQ ID NO: 18).

본 발명의 일실시예에 있어서, 벼 흰잎마름병균(Xanthomonas oryzae pv. oryzae)XOOKXO576에 의해 OsWRKY55 유전자의 발현이 현저히 증가함을 확인하였으며, OsWRKY55 프로모터의 단편이 벼 흰잎마름병균 XOOKXO576 유래 TAL 이펙터 LJ4와 특이적으로 결합하여 프로모터 활성을 유도함을 확인하였다(도 4).In one embodiment of the present invention, it was confirmed that the expression of the OsWRKY55 gene was significantly increased by the rice white leaf blight (Xanthomonas oryzae pv. oryzae) XOO KXO576 , and the fragment of the OsWRKY55 promoter was a TAL effector derived from the rice white leaf blight XOO KXO576. It was confirmed that it specifically binds to LJ4 to induce promoter activity (FIG. 4).

또 다른 하나의 양태로서, 본 발명은 서열번호 18의 염기서열로 이루어진 OsWRKY55 프로모터 단편을 포함하는, TAL 이펙터 LJ4 유전자 서열 인식용 재조합 벡터를 제공한다.As another aspect, the present invention provides a recombinant vector for TAL effector LJ4 gene sequence recognition, comprising the OsWRKY55 promoter fragment consisting of the nucleotide sequence of SEQ ID NO: 18.

본 발명에서 용어 "재조합 벡터", "OsWRKY55"는 전술한 바와 같다. In the present invention, the terms "recombinant vector" and "OsWRKY55" are as described above.

본 발명의 일실시예에 따른 벼 흰잎마름병균(Xanthomonas oryzae pv. oryzae)XOOKXO576에 의해 활성화되는 OsWRKY55 유도성 프로모터를 포함하는 식물용 병원체 유도성 발현 벡터는 통상적인 식물 발현용 벡터의 구성을 포함할 수 있으며, 식물 발현용 벡터에 필수적인 공지 구성 요소를 포함할 수 있다. 예컨대, 상기 식물용 병원체 유도성 발현 벡터는 인핸서, 본 발명의 병원체 유도성 프로모터, 클로닝 부위, 전사종결부, 선별마커를 포함할 수 있다. 또한, 상기 식물용 병원체 유도성 발현 벡터는 통상의 벡터에 프로모터를 본 발명의 프로모터로 치환시킨 것일 수 있으며, 상기 통상의 벡터로는 pUC 계열의 벡터, 예컨대, pBR322, pBI121, pCAMBIA vector 시리즈, Gateway binery vector, Ti-plasmid 등 이에 파생된 벡터일 수 있으나 이에 한정되는 것은 아니다.Rice white leaf blight bacteria ( Xanthomonas oryzae pv. oryzae ) XOO KXO576 according to an embodiment of the present invention plant pathogen inducible expression vector containing the OsWRKY55 inducible promoter activated by the constitution of a conventional plant expression vector It may, and may include known components essential to the vector for plant expression. For example, the plant pathogen-inducible expression vector may include an enhancer, a pathogen-inducible promoter of the present invention, a cloning site, a transcription terminator, and a selection marker. In addition, the plant pathogen inducible expression vector may be one obtained by substituting the promoter of the present invention in a conventional vector, and the conventional vector is a pUC family vector such as pBR322, pBI121, pCAMBIA vector series, Gateway It may be a vector derived therefrom, such as a binery vector or Ti-plasmid, but is not limited thereto.

본 발명에서, 상기 재조합 벡터는 상기 프로모터 단편과 작동가능하게 연결된 목적 단백질을 코딩하는 외래 유전자를 포함한다.In the present invention, the recombinant vector includes a foreign gene encoding a protein of interest operably linked to the promoter fragment.

본 발명의 용어, "외래 유전자"는 외부에서 식물체로 도입되는 유전자를 의미하며, 개체(즉, 형질전환을 유도하고자 하는 대상)에 이미 존재하는 것이거나, 또는 존재하지 않는 것일 수 있다. 상기 외래 유전자의 염기 서열은 목적 단백질의 코돈 최적화를 통하여 얻어질 수 있다.The term "foreign gene" of the present invention refers to a gene introduced into a plant from the outside, and may already exist in an individual (ie, a subject to induce transformation) or may not exist. The nucleotide sequence of the foreign gene can be obtained through codon optimization of the target protein.

상기 용어, "작동가능하게 연결된"(operably linked)은 일반적 기능을 수행하도록 핵산 발현조절 서열과 목적하는 단백질 또는 펩타이드를 암호화하는 핵산 서열이 기능적으로 연결(functional linkage)되어 있는 상태를 의미한다. 예로, 프로모터와 단백질을 암호화하는 핵산 서열이 작동가능하게 연결되어 핵산 서열의 발현에 영향을 미칠 수 있다. 발현 벡터와의 작동적 연결은 당해 기술분야에서 잘 알려진 유전자 재조합 기술을 이용하여 제조할 수 있으며, 부위 특이적 DNA 절단 및 연결은 당해 기술분야에서 일반적으로 알려진 효소 등을 사용할 수 있다.The term "operably linked" refers to a state in which a nucleic acid expression control sequence and a nucleic acid sequence encoding a protein or peptide of interest are functionally linked to perform a general function. For example, a promoter and a nucleic acid sequence encoding a protein may be operably linked to affect the expression of the nucleic acid sequence. The operative linkage with the expression vector may be prepared using gene recombination techniques well known in the art, and site-specific DNA cleavage and linkage may use enzymes generally known in the art.

상기 외래 유전자는 표지 유전자 또는 형광 단백질 유전자를 포함한다. 상기 표지 유전자는, 이에 제한되지는 않으나, GUS(β-glucuronidase) 일 수 있으며, 상기 형광 단백질은, 이에 제한되지는 않으나, GFP(green fluorescent protein), 루시퍼라아제(luciferase) 또는 CFP(cyan fluorescent protein) 일 수 있다. The foreign gene includes a marker gene or a fluorescent protein gene. The marker gene may be, but is not limited to, GUS (β-glucuronidase), and the fluorescent protein is, but is not limited to, GFP (green fluorescent protein), luciferase, or CFP (cyan fluorescent protein). protein).

본 발명에 따른 상기 재조합 발현 벡터에는, 이에 제한되지는 않으나, 상기 표지 유전자 및 형광 단백질 유전자가 모두 포함될 수 있으며, 선택적으로 표지 유전자 또는 형광 단백질 유전자가 각각 포함될 수 있다. The recombinant expression vector according to the present invention may include, but is not limited to, both the marker gene and the fluorescent protein gene, and may optionally include a marker gene or a fluorescent protein gene, respectively.

본 발명에 따른 TAL 이펙터 LJ4 유전자 서열 인식용 재조합 벡터는 'AGAGCGGTGGTGGTTTTTAT'(서열번호 18)의 염기서열로 이루어진 OsWRKY55 프로모터 단편, 즉, OsWRKY55 프로모터 인식부위를 필수적으로 포함할 수 있으며, 상기 OsWRKY55 프로모터 인식부위(서열번호 18)가 포함되어 있는 서열번호 17의 염기서열로 이루어진 OsWRKY55 프로모터를 포함할 수 있다. 상기 서열번호 18의 염기서열로 이루어진 OsWRKY55 프로모터 인식부위를 필수적으로 포함하는 한, TAL 이펙터 LJ4 유전자 서열 인식용 재조합 벡터에 포함되는 OsWRKY55 프로모터 유전자는 일부 특정 염기서열로 한정되지 않는다.The recombinant vector for recognizing the TAL effector LJ4 gene sequence according to the present invention may essentially include an OsWRKY55 promoter fragment consisting of the nucleotide sequence of'AGAGCGGTGGTGGTTTTTAT' (SEQ ID NO: 18), that is, an OsWRKY55 promoter recognition site, and the OsWRKY55 promoter recognition site It may include the OsWRKY55 promoter consisting of the nucleotide sequence of SEQ ID NO: 17 containing (SEQ ID NO: 18). As long as the OsWRKY55 promoter recognition site consisting of the nucleotide sequence of SEQ ID NO: 18 is essentially included, the OsWRKY55 promoter gene included in the recombinant vector for recognizing the TAL effector LJ4 gene sequence is not limited to some specific nucleotide sequences.

본 발명의 일실시예에 있어서, 벼 흰잎마름병균 XOOKXO576의 TAL 이펙터(TAL effector) LJ4가 포함되어 있는 35S::LJ4-YFP로 명명한 TAL 이펙터 벡터 및 OsWRKY55 유전자 프로모터 영역(서열번호 17; OsWRKY55 프로모터 인식부위 P1(서열번호 18)가 포함되어 있음)이 포함되어 있는 pOsWRKY55::GFP-GUS로 명명한 리포터 벡터를 제작하고, 이를 각각 벼의 중배축에서 유도된 원형질체에 PEG를 이용하여 원형질체에 형질주입(transfection)한 후, TAL 이펙터 LJ4와 OsWRKY55 프로모터의 인식부위인 P1 영역의 결합에 따른 OsWRKY55 프로모터의 활성을 측정하기 위하여 표지 유전자인 GUS 유전자의 발색 반응을 관찰한 결과, 벼 흰잎마름병균 Xoo KXO576 유래 TAL 이펙터 LJ4와 벼 유래 OsWRKY55 프로모터의 인식부위가 특이적으로 결합하여 활성을 나타냄을 확인하였다(도3 및 도 4).In one embodiment of the present invention, the TAL effector vector named 35S::LJ4-YFP containing the TAL effector LJ4 of rice white leaf blight bacteria XOO KXO576 and OsWRKY55 gene promoter region (SEQ ID NO: 17; OsWRKY55 A reporter vector named pOsWRKY55::GFP-GUS containing the promoter recognition site P1 (which contains SEQ ID NO: 18) was constructed, and each of the protoplasts derived from the mesocotyls of rice was prepared using PEG to protoplasts. After transfection, in order to measure the activity of the OsWRKY55 promoter according to the binding of the TAL effector LJ4 and the P1 region, the recognition site of the OsWRKY55 promoter, the color reaction of the GUS gene, a marker gene, was observed. As a result, rice white leaf blight bacteria Xoo It was confirmed that the recognition site of the KXO576- derived TAL effector LJ4 and the rice-derived OsWRKY55 promoter specifically binds to exhibit activity (Figs. 3 and 4).

따라서, 본 발명의 OsWRKY55 유전자 프로모터의 단편(서열번호 18)이 포함되어 있는 pOsWRKY55::GFP-GUS로 명명한 리포터 벡터를 이용하여, 타겟 서열로서 벼 흰잎마름병균 Xoo KXO576의 TAL 이펙터(TAL effector) LJ4 유전자 서열을 인식할 경우, 표지 유전자 또는 형광 단백질 유전자의 발현 유무에 따라 벼 흰잎마름병균 Xoo KXO576의 감염 여부를 판단할 수 있다.Therefore, using a reporter vector named pOsWRKY55::GFP-GUS containing a fragment (SEQ ID NO: 18) of the OsWRKY55 gene promoter of the present invention, the TAL effector of rice white leaf blight Xoo KXO576 as a target sequence When the LJ4 gene sequence is recognized, it can be determined whether or not the rice white leaf blight bacteria Xoo KXO576 are infected according to the presence or absence of a marker gene or a fluorescent protein gene.

또 다른 하나의 양태로서, 본 발명은 a) 벼 흰잎마름병 저항성 품종 또는 벼 흰잎마름병 저항성 후보 식물체에 상기 TAL 이펙터 LJ4 유전자 서열 인식용 재조합 벡터를 도입하는 단계; b) 상기 TAL 이펙터 LJ4 유전자 서열 인식용 재조합 벡터가 도입된 벼 흰잎마름병 저항성 품종 또는 벼 흰잎마름병 저항성 후보 식물체에 벼 흰잎마름병균(Xanthomonas oryzae pv. oryzae, Xoo)을 감염시키는 단계; 및 c) 벼 흰잎마름병 저항성 품종을 대조군으로 하여 벼 흰잎마름병 저항성 후보 식물체의 OsWRKY55 프로모터 활성 정도를 평가하는 단계;를 포함하는, 벼 흰잎마름병 저항성 식물체 선별 방법을 제공한다.In another aspect, the present invention a) introducing a recombinant vector for recognizing the TAL effector LJ4 gene sequence to a rice white leaf blight resistant cultivar or a rice white leaf blight resistant candidate plant; b) Infecting rice white leaf blight bacteria ( Xanthomonas oryzae pv. oryzae , Xoo ) to the rice white leaf blight-resistant cultivar or rice white leaf blight-resistant candidate plant into which the recombinant vector for recognizing the TAL effector LJ4 gene sequence was introduced; And c) evaluating the degree of the OsWRKY55 promoter activity of the rice white leaf blight-resistant candidate plants using the rice white leaf blight-resistant cultivar as a control; it provides a method for selecting rice white leaf blight-resistant plants.

본 발명에 있어서, 상기 TAL 이펙터 LJ4 유전자 서열 인식용 재조합 벡터는 서열번호 18의 염기서열로 이루어진 OsWRKY55 프로모터 단편 및 기 프로모터 단편과 작동가능하게 연결된 목적 단백질을 코딩하는 외래 유전자를 포함하는 재조합 벡터로 전술한 바와 같다.In the present invention, the recombinant vector for recognizing the TAL effector LJ4 gene sequence is a recombinant vector comprising an OsWRKY55 promoter fragment consisting of the nucleotide sequence of SEQ ID NO: 18 and a foreign gene encoding the target protein operably linked to the group promoter fragment. Same as one.

상기 단계 a)에서 벼 흰잎마름병 저항성 품종은, 이에 제한되지는 않으나, 종래 벼 흰잎마름병 저항성 품종인 수안벼, 수려진미, 신백벼, 만백, 안백, 수진벼, 또는 일미벼일 수 있다.The rice white leaf blight-resistant varieties in step a) may be, but are not limited to, Suan rice, Surye Jinmi, Sinbaek rice, Manbaek, Anbaek, Sujin rice, or Ilmi rice, which are conventional rice white leaf blight-resistant varieties.

상기 단계 a)에서 서열번호 18의 염기서열로 이루어진 OsWRKY55 프로모터 단편을 포함하는 TAL 이펙터 LJ4 유전자 서열 인식용 재조합 벡터를 벼 흰잎마름병 저항성 품종 또는 벼 흰잎마름병 저항성 후보 식물체에 도입하는 방법은, 이에 제한되지는 않으나, 당업자에게 공지된 형질전환기술에 의해 수행될 수 있다. The method of introducing the recombinant vector for recognizing the TAL effector LJ4 gene sequence comprising the OsWRKY55 promoter fragment consisting of the nucleotide sequence of SEQ ID NO: 18 in step a) into a rice white leaf blight resistant variety or a rice white leaf blight resistant candidate plant is not limited thereto. Although not, it can be performed by a transformation technique known to those skilled in the art.

본 발명에서 상기 벡터를 식물체에 도입하는 형질전환방법으로는 아그로박테리움을 이용한 형질전환방법, 미세사출법(microprojectile bombardment), 일렉트로포레이션(electroporation), PEG-매개 융합법(PEG-mediated fusion), 미세주입법(microinjection), 리포좀 매개법(liposome-mediated method), 인-플란타 형질전환법(In planta transformation), 진공 침윤법(Vacuum infiltration method), 화아침지법(floral meristem dipping method) 또는 아그로박테리아 분사법(Agrobacterium spraying method)을 이용할 수 있으며, 보다 구체적으로는 PEG-매개 융합을 이용할 수 있으나, 이에 한정되는 것은 아니다. In the present invention, as a transformation method for introducing the vector into a plant, a transformation method using Agrobacterium, microprojectile bombardment, electroporation, PEG-mediated fusion method (PEG-mediated fusion) , Microinjection, liposome-mediated method, in planta transformation, vacuum infiltration method, floral meristem dipping method, or agro A bacterium spraying method may be used, and more specifically, PEG-mediated fusion may be used, but is not limited thereto.

본 발명에서 용어 "형질전환"은, 유전물질인 DNA를 다른 계통의 살아 있는 세포에 주입했을 때, DNA가 그 세포에 들어가 유전형질(遺傳形質)을 변화시키는 현상으로, 형질변환, 형전환, 또는 형변환이라고도 한다.In the present invention, the term "transformation" refers to a phenomenon in which DNA enters the cell and changes the genotypic trait when DNA, which is a genetic material, is injected into a living cell of another lineage. Transformation, transformation, Or it is also called casting.

또한, 본 발명의 방법은 상기 형질전환된 식물 세포로부터 형질전환 식물을 재분화하는 단계를 포함한다. 형질전환 식물 세포로부터 형질전환 식물을 재분화하는 방법은 당업계에 공지된 임의의 방법을 이용할 수 있다.In addition, the method of the present invention includes the step of regenerating a transformed plant from the transformed plant cell. Any method known in the art may be used as a method of regenerating a transformed plant from a transformed plant cell.

상기 단계 b)에서 벼 흰잎마름병 저항성 품종 또는 벼 흰잎마름병 저항성 후보 식물체에 감염시키는 상기 벼 흰잎마름병균(Xanthomonas oryzae pv. oryzae, Xoo)은, 이에 제한되지는 않으나, 벼 흰잎마름병균 Xoo KXO576 균주일 수 있다. The rice white leaf blight bacteria ( Xanthomonas oryzae pv. oryzae , Xoo ), which infects the rice white leaf blight resistant variety or the rice white leaf blight resistant candidate plant in step b), are, but are not limited to, the rice white leaf blight strain Xoo KXO576 strain. I can.

한편, 상기 단계 a)에서 도입된 서열번호 18로 표시되는 염기서열로 이루어진 OsWRKY55 프로모터 단편 및 상기 프로모터 단편과 작동가능하게 연결된 목적 단백질을 코딩하는 외래 유전자를 포함하는 TAL 이펙터 LJ4 유전자 서열 인식용 재조합 벡터와, 상기 단계 b)에서 감염시킨 벼 흰잎마름병균 Xoo KXO576 유래의 TAL 이펙터 LJ4와의 상호작용, 즉 OsWRKY55 프로모터 단편과 TAL 이펙터 LJ4와의 특이적 결합을 통한 전사촉진활성에 의해 외래 유전자 구체적으로, 표지 유전자 또는 형광 단백질의 발현이 유도된다.Meanwhile, a recombinant vector for TAL effector LJ4 gene sequence recognition comprising an OsWRKY55 promoter fragment consisting of a nucleotide sequence represented by SEQ ID NO: 18 introduced in step a) and a foreign gene encoding a target protein operably linked to the promoter fragment And, by the interaction with the TAL effector LJ4 derived from the rice white leaf blight bacteria Xoo KXO576 infected in step b), that is, by the transcription-promoting activity through specific binding between the OsWRKY55 promoter fragment and the TAL effector LJ4, specifically, a marker gene Alternatively, the expression of the fluorescent protein is induced.

이에 따라, 상기 단계 c)에서 OsWRKY55프로모터 활성 정도 평가는, 벼 흰잎마름병 저항성 품종을 대조군으로 하여 외래 유전자 구체적으로, 표지 유전자 또는 형광 단백질의 발현 정도, 즉 발색 반응 정도 또는 형광 세기에 따라 벼 흰잎마름병 저항성 후보 식물체의 벼 흰잎마름병균에 대한 저항성 정도를 판단하여 벼 흰잎마름병 저항성 식물체를 선별할 수 있다. 예컨대, 발색 반응 정도 또는 형광 세기가 벼 흰잎마름병 저항성 품종과 유사하거나 더 높은 경우, 벼 흰잎마름병 저항성 후보 식물체를 벼 흰잎마름병 저항성 품종인 것으로 판단, 또는 선별할 수 있다.Accordingly, the evaluation of the degree of OsWRKY55 promoter activity in step c) is performed by using rice white leaf blight resistant varieties as a control, and specifically, the expression level of a marker gene or fluorescent protein, that is, the degree of color reaction or fluorescence intensity. Rice white leaf blight resistant plants can be selected by determining the degree of resistance of the resistant candidate plants to rice white leaf blight bacteria. For example, when the degree of color reaction or fluorescence intensity is similar to or higher than the rice white leaf blight resistant variety, the rice white leaf blight resistance candidate plant may be determined or selected as a rice white leaf blight resistant variety.

또 다른 하나의 양태로서, 본 발명은 서열번호 19의 염기서열로 이루어진 OsWRKY55 프로모터 변이체 단편을 제공한다. As another aspect, the present invention provides an OsWRKY55 promoter variant fragment consisting of the nucleotide sequence of SEQ ID NO: 19.

상기 "OsWRKY55 프로모터 단편"은 전술한 바와 같이, 전사조절인자들(transcription factor)이 결합하는 OsWRKY55 프로모터의 일부 영역으로서, 전사인자로서 작용하는 벼 흰잎마름병균의 TAL 이펙터 LJ4와 특이적으로 결합하는 P1 영역이며, OsWRKY55 프로모터 단편은 OsWRKY55 유전자의 전사시작부위(+1)를 기준으로 업스트림(upstream) 부위 (-300) 내지 (-30) 보다 구체적으로, (-68) 내지 (-48) 부위에 포함되며, 'AGAGCGGTGGTGGTTTTTAT'(서열번호 18)의 염기서열로 이루어진다.As described above, the "OsWRKY55 promoter fragment" is a partial region of the OsWRKY55 promoter to which transcription factors bind, and P1 specifically binds to the TAL effector LJ4 of rice white leaf blight, which acts as a transcription factor. Region, and the OsWRKY55 promoter fragment is included in the upstream region (-300) to (-30) more specifically, (-68) to (-48) region based on the transcription start site (+1) of the OsWRKY55 gene. And consists of the nucleotide sequence of'AGAGCGGTGGTGGTTTTTAT' (SEQ ID NO: 18).

본 발명에서 용어 "OsWRKY55 프로모터 변이체 단편"은 서열번호 19의 염기서열로 이루어진다. "변이체 단편"은, 서열번호 18의 염기서열로 이루어진 OsWRKY55 프로모터 단편의 염기서열 내에서 특정 염기가 결실(deletion), 삽입(insertion) 또는 치환(substitution) 된 것으로, 구체적으로 서열번호 19의 염기서열을 가진다.In the present invention, the term "OsWRKY55 promoter variant fragment" consists of the nucleotide sequence of SEQ ID NO: 19. "Variant fragment" refers to the deletion, insertion, or substitution of a specific base within the base sequence of the OsWRKY55 promoter fragment consisting of the base sequence of SEQ ID NO: 18, specifically the base sequence of SEQ ID NO: 19 Have.

상기 서열번호 19의 염기서열로 이루어진 OsWRKY55 프로모터 변이체 단편은 벼 흰잎마름병균(Xanthomonas oryzae pv. oryzae, Xoo)의 TAL 이펙터 LJ4 유전자와의 결합이 저해된다. 상기 OsWRKY55 프로모터 변이체 단편에 의해, OsWRKY55 프로모터 단편, 즉, OsOsWRKY55 프로모터 인식부위 구체적으로, P1영역과 벼 흰잎마름병균의 TAL 이펙터 LJ4와의 결합이 저해 또는 차단된다. 이에 따라, 벼 흰잎마름병균에 의해 유도되는 OsWRKY55 프로모터의 전사활성이 저해되고, 벼 흰잎마름병균에 대한 식물체의 저항성을 증진시킬 수 있다.The OsWRKY55 promoter variant fragment consisting of the nucleotide sequence of SEQ ID NO: 19 inhibits binding of the TAL effector LJ4 gene of rice white leaf blight ( Xanthomonas oryzae pv. oryzae , Xoo ). By the OsWRKY55 promoter mutant fragment, the OsWRKY55 promoter fragment, that is, the OsOsWRKY55 promoter recognition site, specifically, the binding of the P1 region to the TAL effector LJ4 of rice white leaf blight is inhibited or blocked. Accordingly, the transcriptional activity of the OsWRKY55 promoter induced by rice white leaf blight bacteria is inhibited, and resistance of plants to rice white leaf blight bacteria can be improved.

또 다른 하나의 양태로서, 본 발명은 상기 OsWRKY55 프로모터 변이체 단편을 포함하는 벼 흰잎마름병 저항성 증진용 재조합 벡터를 제공한다.As another aspect, the present invention provides a recombinant vector for enhancing rice white leaf blight resistance comprising the OsWRKY55 promoter variant fragment.

본 발명에서, 용어 "OsWRKY55 프로모터 변이체 단편", "재조합 벡터", "벼 흰잎마름병"에 대한 설명은 전술한 바와 같다.In the present invention, descriptions of the terms "OsWRKY55 promoter variant fragment", "recombinant vector", and "rice white leaf blight" are as described above.

본 발명의 일실시예에 있어서, 상기 TAL 이펙터 LJ4를 분리하여 식물 형질전환용 발현 벡터 35S::YFP-LJ4를 제작하고, OsWRKY55 프로모터의 P1 영역이 포함되어 있는 OsWRKY55 프로모터를 분리하여 pOsWRKY55::GFP-GUS 리포터 벡터를 제작하였으며, 또한, OsWRKY55 프로모터의 P1 영역이 변이된 서열번호 19의 염기서열로 이루어진 OsWRKY55 프로모터 변이체를 이용하여, pOsWRKY55m::GFP-GUS 리포터 벡터를 제작하였으며, 상기 제작한 벡터를 이용하여 TAL 이펙터 LJ4와 OsWRKY55 프로모터의 인식부위인 P1 영역의 결합에 따른 OsWRKY55 프로모터 활성을 검정하였다. 그 결과, OsWRKY55 프로모터의 P1 영역이 변이된 서열번호 19의 염기서열로 이루어진 OsWRKY55 프로모터 변이체에서 활성이 전혀 확인되지 않았다(도 4). In one embodiment of the present invention, the TAL effector LJ4 was isolated to prepare an expression vector 35S::YFP-LJ4 for plant transformation, and the OsWRKY55 promoter containing the P1 region of the OsWRKY55 promoter was isolated to pOsWRKY55::GFP. -GUS reporter vector was prepared, and pOsWRKY55m::GFP-GUS reporter vector was prepared using the OsWRKY55 promoter variant consisting of the nucleotide sequence of SEQ ID NO: 19 in which the P1 region of the OsWRKY55 promoter was mutated, and the prepared vector was used. Using the TAL effector LJ4 and OsWRKY55 promoter activity according to the binding of the P1 region, the recognition site of the OsWRKY55 promoter was assayed. As a result, no activity was observed in the OsWRKY55 promoter variant consisting of the nucleotide sequence of SEQ ID NO: 19 in which the P1 region of the OsWRKY55 promoter was mutated (FIG. 4).

따라서 OsWRKY55 프로모터 변이체 단편을 포함하는 재조합 벡터에 의해, OsOsWRKY55 프로모터 인식부위 P1영역과 벼 흰잎마름병균의 TAL 이펙터 LJ4와의 결합이 저해 또는 차단되어, 벼 흰잎마름병균에 의해 유도되는 OsWRKY55 프로모터의 전사활성이 저해되고, 벼 흰잎마름병균에 대한 식물체의 저항성을 증진시킬 수 있다.Therefore, by the recombinant vector containing the OsWRKY55 promoter variant fragment, the binding of the OsOsWRKY55 promoter recognition site P1 region to the TAL effector LJ4 of the rice white leaf blight was inhibited or blocked, and the transcriptional activity of the OsWRKY55 promoter induced by the rice white leaf blight was inhibited. It is inhibited, and can improve the resistance of plants to rice white leaf blight.

또 다른 하나의 양태로서, 본 발명은 상기 OsWRKY55 프로모터 변이체 단편을 포함하는 벼 흰잎마름병 저항성 증진용 재조합 벡터로 형질전환된 식물체를 제공한다.In yet another aspect, the present invention provides a plant transformed with a recombinant vector for enhancing rice white leaf blight resistance, including the OsWRKY55 promoter variant fragment.

본 발명에서 용어 "형질전환", "OsWRKY55 프로모터 변이체 단편", "벼 흰잎마름병", "재조합 벡터", "식물체"에 대한 설명은 전술한 바와 같다. In the present invention, descriptions of the terms "transformation", "OsWRKY55 promoter variant fragment", "rice white leaf blight", "recombinant vector", and "plant" are as described above.

본 발명에서 상기 형질전환된 식물체는 상기 OsWRKY55 프로모터 변이체 단편을 포함하는 재조합 벡터를 도입함으로써 OsWRKY55 프로모터 인식부위 P1 영역과 벼 흰잎마름병균의 TAL 이펙터 LJ4와의 결합이 저해 또는 차단되어, 벼 흰잎마름병균에 의해 유도되는 OsWRKY55 프로모터의 전사활성이 저해되고, 벼 흰잎마름병균에 대한 식물체의 저항성을 증진시킬 수 있다.In the present invention, the transformed plant is inhibited or blocked from binding between the OsWRKY55 promoter recognition site P1 region and the TAL effector LJ4 of the rice white leaf blight by introducing a recombinant vector containing the OsWRKY55 promoter variant fragment. The transcriptional activity of the OsWRKY55 promoter induced by this is inhibited, and the resistance of plants to rice white leaf blight bacteria can be improved.

또 다른 하나의 양태로서, 본 발명은 상기 OsWRKY55 프로모터 변이체 단편을 포함하는 벼 흰잎마름병 저항성 증진용 재조합 벡터를 식물체에 형질전환하는 단계를 포함하는, 벼 흰잎마름병 저항성이 증진된 형질전환 식물체의 제조방법을 제공한다.As another aspect, the present invention is a method for producing a transgenic plant with improved rice white leaf blight resistance, comprising transforming the plant with a recombinant vector for enhancing rice white leaf blight resistance comprising the OsWRKY55 promoter variant fragment Provides.

본 발명에서 용어 "OsWRKY55 프로모터 변이체 단편", "벼 흰잎마름병", "재조합 벡터", "형질전환", "식물체"에 대한 설명은 전술한 바와 같다. In the present invention, descriptions of the terms "OsWRKY55 promoter variant fragment", "rice white leaf blight", "recombinant vector", "transformation", and "plant" are as described above.

본 발명은 상기 서열번호 19의 염기서열로 이루어진 벼 흰잎마름병에 대한 저항성을 가지는 OsWRKY55 프로모터 변이체 단편을 포함하는 재조합 벡터를 제조하고, 이를 식물체에 형질전환시켜, 벼 흰잎마름병 저항성이 증진된 형질전환 식물체의 제조가 가능하다. The present invention is to prepare a recombinant vector comprising the OsWRKY55 promoter mutant fragment having resistance to rice white leaf blight consisting of the nucleotide sequence of SEQ ID NO: 19, and transform it into a plant, thereby improving resistance to rice white leaf blight. It is possible to manufacture.

본 발명에서 상기 형질전환된 식물체는 상기 OsWRKY55 프로모터 변이체 단편을 포함하는 재조합 벡터를 도입함으로써 OsOsWRKY55 프로모터 인식부위 P1 영역과 벼 흰잎마름병균의 TAL 이펙터 LJ4와의 결합이 저해 또는 차단되어, 벼 흰잎마름병균에 의해 유도되는 OsWRKY55 프로모터의 전사활성이 저해되고, 벼 흰잎마름병균에 대한 식물체의 저항성을 증진시킬 수 있다.In the present invention, the transformed plant is inhibited or blocked from binding of the OsOsWRKY55 promoter recognition site P1 region to the TAL effector LJ4 of the rice white leaf blight by introducing a recombinant vector containing the OsWRKY55 promoter variant fragment. The transcriptional activity of the OsWRKY55 promoter induced by this is inhibited, and the resistance of plants to rice white leaf blight bacteria can be improved.

또 다른 하나의 양태로서, 본 발명은 상기 OsWRKY55 프로모터 변이체 단편을 포함하는 재조합 벡터를 식물체에 도입하는 단계를 포함하는, 식물체의 벼 흰잎마름병 저항성을 증진시키는 방법을 제공한다.In yet another aspect, the present invention provides a method for enhancing rice white leaf blight resistance of a plant, comprising introducing a recombinant vector containing the OsWRKY55 promoter variant fragment into a plant.

본 발명에서 용어 "OsWRKY55 프로모터 변이체 단편", "벼 흰잎마름병", "OsWRKY55 유전자", "형질전환", "식물체"에 대한 설명은 전술한 바와 같다. In the present invention, descriptions of the terms "OsWRKY55 promoter variant fragment", "rice white leaf blight", "OsWRKY55 gene", "transformation", and "plant" are as described above.

본 발명에서 용어 "식물체에 도입하는 단계"는 특정 염기서열을 갖는 폴리뉴클레오티드를 포함하는 재조합 벡터를 제작하고, 그 재조합 벡터를 식물체에 형질전환시키는 단계를 의미한다. In the present invention, the term "introducing into a plant" means a step of constructing a recombinant vector including a polynucleotide having a specific nucleotide sequence and transforming the recombinant vector into a plant.

본 발명에서 상기 형질전환된 식물체는 상기 OsWRKY55 프로모터 변이체 단편을 포함하는 재조합 벡터를 도입함으로써 OsOsWRKY55 프로모터 인식부위 P1 영역과 벼 흰잎마름병균의 TAL 이펙터 LJ4와의 결합이 저해 또는 차단되어, 벼 흰잎마름병균에 의해 유도되는 OsWRKY55 프로모터의 전사활성이 저해되고, 벼 흰잎마름병균에 대한 식물체의 저항성을 증진시킬 수 있다.In the present invention, the transformed plant is inhibited or blocked from binding of the OsOsWRKY55 promoter recognition site P1 region to the TAL effector LJ4 of the rice white leaf blight by introducing a recombinant vector containing the OsWRKY55 promoter variant fragment. The transcriptional activity of the OsWRKY55 promoter induced by this is inhibited, and the resistance of plants to rice white leaf blight bacteria can be improved.

본 발명에 따른, OsWRKY55 유전자에 대한 RNAi 염기서열과 OsWRKY55 프로모터 단편의 변이체(mutant)를 이용하여, 벼 흰잎마름병 저항성 작물을 개발할 수 있을 뿐만 아니라, 벼 흰잎마름병에 의한 피해를 줄일 수 있는 기반기술로 유용하게 이용될 수 있다. 또한, 벼 흰잎마름병균의 TAL 이펙터 LJ4 유전자와 결합하는 OsWRKY55 프로모터 부위를 유전자 가위기술을 이용하여 편집 (변이)을 하게 되면 벼 흰잎마름병 저항성 작물을 육성하는 데 유용하게 활용할 수 있다.According to the present invention, using the RNAi sequence for the OsWRKY55 gene and a mutant of the OsWRKY55 promoter fragment, it is possible to develop rice white leaf blight-resistant crops, as well as to reduce the damage caused by rice white leaf blight. It can be usefully used. In addition, if the OsWRKY55 promoter region that binds to the TAL effector LJ4 gene of rice white leaf blight bacteria is edited (mutated) using gene scissors technology, it can be usefully used to cultivate rice white leaf blight resistant crops.

도 1은 OsWRKY55.1의 과발현체와 발현 억제체에서의 벼 흰잎마름병 저항성 테스트와 병 저항성 유전자들의 발현 양상을 나타낸 것이다.
도 2는 벼 흰잎마름병균 KACC10331의 TAL effector LJ4의 식물 형질 전환용 벡터 지도를 개략적으로 나타낸 도이다. 여기에서, P35S는 Cauliflower mosaic virus(CaMV) 35S promoter이고, DsRed::His는 Discosoma sp. red fluorescent protein::6×histidine이며, Tnos는 nopaline sy도 1은 OsWRKY55의 과발현체와 발현 억제체에서의 벼 흰잎마름병 저항성 테스트와 병 저항성 유전자들의 발현 양상을 나타낸 것으로 병 방어 억제 기능을 확인 한 결과임.
도 2는 벼 흰잎마름병균 KACC10859의 TAL effector LJ4의 식물 형질
전환용 벡터 지도를 개략적으로 나타낸 도이다. 여기에서, P35S는 Cauliflower mosaic virus(CaMV) 35S promoter이고, yellow flourescence protein (YFP)이며, Tnos는 nopaline synthase terminator이고, Bar는 bialaphos resistance gene이며, T35S는 CaMV 35S terminator이다.
도 3은 LJ4의 OsWRKY55 프로모터에 대해 크로마틴 면역침강법(Chromatin immunopreciptation)으로 프로모터 결합부위를 나타낸 것이다.
도 4는 LJ4 결합 위치가 변형된 OsWRKY55 promoter에 대한 프로모터 활성 분석 결과 나타낸 것이다.
도 5는 본 발명의 일실시예에 따라 벼 흰잎마름병균 Xoo KXO57의 TAL effector(탈 이펙터, transcription activator-like effector)로 분리된 LJ4의 아미노산 서열을 나타낸 도이다. 여기에서, 노란색 박스에 위치한 아미노산 서열은 반복서열이며, 노란색 박스 사이에 있는 위치한 아미노산 서열은 프로모터 결합 도메인을 나타낸다.
Figure 1 shows the expression pattern of rice white leaf blight resistance test and disease resistance genes in the overexpression body and expression suppressor of OsWRKY55.1.
Figure 2 is a diagram schematically showing a vector map for plant transformation of TAL effector LJ4 of rice white leaf blight bacteria KACC10331. Here, P35S is the Cauliflower mosaic virus (CaMV) 35S promoter, and DsRed::His is Discosoma sp . red fluorescent protein::6×histidine, Tnos is nopaline sy, Fig. 1 shows the expression pattern of rice white leaf blight resistance test and disease resistance genes in the overexpression and expression suppressor of OsWRKY55. being.
2 is a plant trait of TAL effector LJ4 of rice white leaf blight bacteria KACC10859
It is a diagram schematically showing a vector map for conversion. Here, P35S is a Cauliflower mosaic virus (CaMV) 35S promoter, yellow flourescence protein (YFP), Tnos is a nopaline synthase terminator, Bar is a bialaphos resistance gene, and T35S is a CaMV 35S terminator.
Figure 3 shows the promoter binding site for the OsWRKY55 promoter of LJ4 by chromatin immunopreciptation.
Figure 4 shows the results of promoter activity analysis for the OsWRKY55 promoter in which the LJ4 binding site is modified.
Figure 5 is a diagram showing the amino acid sequence of LJ4 isolated by the TAL effector (transcription activator-like effector) of the rice white leaf blight bacteria Xoo KXO57 according to an embodiment of the present invention. Here, the amino acid sequence located in the yellow box is a repeat sequence, and the amino acid sequence located in the yellow box indicates the promoter binding domain.

이하, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본 발명의 실시예에 대하여 첨부한 도면을 참고로 하여 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다. Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings so that those of ordinary skill in the art can easily implement the present invention. However, the present invention may be implemented in various different forms and is not limited to the embodiments described herein.

<실시예 1> OsWRKY55 형질전환체의 벼 흰잎마름병 저항성 확인<Example 1> Confirmation of resistance to rice white leaf blight of OsWRKY55 transformant

<실시예 1-1> OsWRKY55 과발현 형질전환 식물체 제작<Example 1-1> OsWRKY55 overexpression transgenic plant production

벼 잎에서 RNA를 추출하고 추출된 RNA로부터 cDNA를 합성하였다. 상기 cDNA로부터 OsWRKY55OX-F 프라이머, 5'-CAAAAAAGCAGGCTTGATGTCTCCTGTGCCGAGTC-3'(서열번호 27: OsWRKY55OX-F)과 OsWRKY55OX-R 프라이머, 5'-AGAAAGCTGGGTTCAAAAAATGAATCTGA-3'(서열번호 28: OsWRKY55OX-R)의 프라이머를 이용하여 1차 PCR을 진행하였고 PCR을 통해 증폭된 PCR 산물은 attB1 프라이머-F(5'-GGGGACAAGTTTGTACAAAAAAGCAGGCT-3': 하기 서열변호 22)와 attB2 프라이머-R(5'-GGGGACCACTTTGTACAAGAAAGCTGGGT-3': 하기 서열번호 23)을 사용하여 2차 PCR을 진행하였다. 2차 PCR 산물은 정제 후 pDNOR221 벡터로 BP 클로나제를 이용하여 클로닝하여 엔트리 클론(Entry clone)을 제조하였다. 상기 엔트리 클론으로부터 식물 과발현 목적의(destination) 벡터인 pEarleygate104에 LR 반응((LR clonase reaction)에 의해 과발현 식물체 제작을 위한 35S::YFP-OsWRKY55를 최종적으로 제작하였다. OsWRKY55를 바이러스로부터 유래된 Cauliflower Mosaic Virus (35S) 프로모터를 이용하여 일미(Oryza sativa L. ssp. Japonica cv. Ilmi)에 아그로박테리움(Agrobacterium)을 통해 과발현된 형질전환체(OsWRKY55OX)를 만들었다.RNA was extracted from rice leaves and cDNA was synthesized from the extracted RNA. From the cDNA, the OsWRKY55OX-F primer, 5'-CAAAAAAGCAGGCTTGATGTCTCCTGTGCCGAGTC-3' (SEQ ID NO: 27: OsWRKY55OX-F) and OsWRKY55OX-R primer, 5'-AGAAAGCTGGGTTCAAAAAATGAATCTGA-3' (SEQ ID NO: 28: OsWRKY55OX-R) The first PCR was performed, and the PCR product amplified through PCR was attB1 primer-F (5'-GGGGACAAGTTTGTACAAAAAAGCAGGCT-3': SEQ ID NO: 22 below) and attB2 primer-R (5'-GGGGACCACTTTGTACAAGAAAGCTGGGT-3': the following SEQ ID NO: 23) was used to perform the second PCR. After purification, the secondary PCR product was cloned using BP clonase with pDNOR221 vector to prepare an entry clone. From the above entry clone, 35S::YFP-OsWRKY55 was finally produced for the production of overexpressing plants by LR clonase reaction to pEarleygate104, a vector for plant overexpression (destination). OsWRKY55 was derived from virus Cauliflower Mosaic Using the Virus (35S) promoter, a transformant (OsWRKY55OX) overexpressed through Agrobacterium was made in Japan ( Oryza sativa L. ssp. Japonica cv. Ilmi).

<실시예 1-2> OsWRKY55 발현 억제 형질전환 식물체 제작<Example 1-2> OsWRKY55 expression inhibition transgenic plant production

OsWRKY55의 엔트리 클론으로부터 OsWRKY55 RNAi-F 프라이머, 5'-AAAAAAGCAGGCTCTGCACTGAGCTCCAATCTT-3'(서열번호 29)와 OsWRKY55 RNAi-R 프라이머, 5'-AGAAAGCTGGGTCGGTGACATGCAAGGAAACC-3'(서열번호 30) 를 이용해 1차 PCR을 진행하였고 PCR을 통해 증폭된 PCR 산물은 attB1 프라이머-F(5'-GGGGACAAGTTTGTACAAAAAAGCAGGCT-3')(하기 서열번호 22)와 attB2 프라이머-R(5'-GGGGACCACTTTGTACAAGAAAGCTGGGT-3')(하기 서열번호 23)을 사용하여 2차 PCR을 진행하였다. 2차 PCR 산물은 정제 후 pDNOR221 벡터로 BP 클로나제를 이용하여 클로닝하여 엔트리 클론(Entry clone)을 제조하였다. 상기 엔트리 클론으로부터 유전자 발현 억제 목적(destination) 벡터인 pB7GWIWG2(ii)에 LR 반응((LR clonase reaction)에 의해 발현 억제 형질전환 식물체 제작을 위한 벡터를 최종적으로 제작하였다. 상기 발현 억제 벡터를 일미(Oryza sativa L. ssp. Japonica cv. Ilmi)에 아그로박테리움(Agrobacterium)을 통해 서열번호 24의 염기서열로 이루어진 OsWRKY55 RNAi를 포함하는 OsWRKY55 발현 억제 형질전환체(OsWRKY55RNAi)를 만들었다.Primary PCR was performed from the entry clone of OsWRKY55 using OsWRKY55 RNAi-F primer, 5'-AAAAAAGCAGGCTCTGCACTGAGCTCCAATCTT-3' (SEQ ID NO: 29) and OsWRKY55 RNAi-R primer, 5'-AGAAAGCTGGGTCGGTGACATGCAAGGAAACC-3' (SEQ ID NO: 30). The PCR product amplified through PCR was attB1 primer-F(5'-GGGGACAAGTTTGTACAAAAAAGCAGGCT-3') (SEQ ID NO: 22 below) and attB2 primer-R (5'-GGGGACCACTTTGTACAAGAAAGCTGGGT-3') (SEQ ID NO: 23 below). Second PCR was performed. After purification, the secondary PCR product was cloned using BP clonase with pDNOR221 vector to prepare an entry clone. From the entry clone, a vector for constructing an expression-suppressing transgenic plant was finally constructed by an LR reaction to pB7GWIWG2(ii), which is a vector for gene expression suppression (destination). Oryza sativa L. ssp. Japonica cv. Ilmi) was prepared via Agrobacterium , an OsWRKY55 expression inhibitory transformant (OsWRKY55RNAi) comprising OsWRKY55 RNAi consisting of the nucleotide sequence of SEQ ID NO: 24.

<실시예 1-3> OsWRKY55 과발현벼와 발현억제벼의 병 반응분석<Example 1-3> Disease reaction analysis of OsWRKY55 overexpression rice and expression suppression rice

상기 실시예 1-1과 1-2에서 제조된 형질전환체의 병 저항성을 확인하기 위하여 Xanthomonas oryzae pv. oryzae (XOO)의 한 종류(strain)인 Xoo KXO576를 가위 접종 (scissors-dip method)을 통해 일미와 상기 형질전환체에 접종(inoculation)하였다. 그 결과, OsWRKY55의 과발현체의 경우 병 저항성이 감소하여 병 발생 길이가 증가하는 것을 확인하였다(도 1). 이와 반대로 OsWRKY55에 대한 RNAi (RNA interference, RNAi)를 통해 OsWRKY55의 발현을 감소시킨 형질전환 식물 (OsWRKY55RNAi)는 병 저항성이 증가하여 병 발생 길이가 줄어듦을 확인하였다. In order to confirm the disease resistance of the transformants prepared in Examples 1-1 and 1-2, Xanthomonas oryzae pv. Xoo KXO576 , a strain of oryzae (XOO) , was inoculated in Japan and the transformant through a scissors-dip method. As a result, it was confirmed that in the case of the overexpression of OsWRKY55, disease resistance decreased and the length of disease occurrence increased (FIG. 1). On the contrary, it was confirmed that the transgenic plant (OsWRKY55RNAi), which reduced the expression of OsWRKY55 through RNAi (RNA interference, RNAi) for OsWRKY55, increased disease resistance and reduced the length of disease occurrence.

이를 통해 OsWRKY55는 Xoo에 대해 병 방어 억제 유전자임을 알 수 있었다. 즉, OsWRKY55 유전자가 벼 흰잎마름병균에 대해 감수성(susceptibility)을 보임을 알 수 있었다.Through this, it was found that OsWRKY55 is a disease defense inhibitory gene against Xoo . In other words, it was found that the OsWRKY55 gene showed susceptibility to rice white leaf blight bacteria.

<실시예 1-4> OsWRKY55 과발현벼와 억제벼에서 병 방어관련 유전자의 발현양상 분석<Example 1-4> Analysis of the expression pattern of disease defense-related genes in OsWRKY55 overexpressing rice and suppressed rice

일미벼와 OsWRKY55OX, OsWRKY55RNAi 종자를 3일간 발아시켜, 파종 후 3주가 된 벼를 온실에 확보하였다. 이후 벼 잎으로부터 총(total) RNA를 트리졸 시약 키트(Trizol reagent kit)(Invitrogen, 미국)를 이용하여 분리하고, 올리고 dT 프라이머(oligo dT primer)와 MMLV 역전사효소(reverse transcriptase)(Promega, 미국)를 이용하여 cDNA를 합성하였다. OsWRKY55, Chitinase, PR1a, BetV1 qRT-PCR(Quantitative real-time PCR) 프라이머(표 1)를 이용하여 qPCR을 MyIQ(BioRad, 미국)를 이용하여 수행하였다. Japanese rice, OsWRKY55OX, and OsWRKY55RNAi seeds were germinated for 3 days, and the rice 3 weeks old after sowing was secured in a greenhouse. Thereafter, total RNA from rice leaves was isolated using a Trizol reagent kit (Invitrogen, USA), and oligo dT primer and MMLV reverse transcriptase (Promega, USA). ) Was used to synthesize cDNA. OsWRKY55, Chitinase, PR1a, BetV1 qRT-PCR (Quantitative real-time PCR) primers (Table 1) were used to perform qPCR using MyIQ (BioRad, USA).

서열 번호Sequence number 프라이머 명칭Primer name 프라이머 방향Primer direction 서열(5'→3')Sequence (5'→3') 1One OsWRKY55 qRT-PCR-F OsWRKY55 qRT-PCR-F 정방향Forward direction 5'-AGGGGTGCCCTAGTTTGGTA-3'5'-AGGGGTGCCCTAGTTTGGTA-3' 22 OsWRKY55 qRT-PCR-R OsWRKY55 qRT-PCR-R 역방향Reverse 5'-AGACACACCCGGAGAGAGAA-3'5'-AGACACACCCGGAGAGAGAA-3' 33 Chitinase qRT-PCR-FChitinase qRT-PCR-F 정방향Forward direction 5'-TGGGCTATCTCTCGTCCTCT-3'5'-TGGGCTATCTCTCGTCCTCT-3' 44 Chitinase qRT-PCR-RChitinase qRT-PCR-R 역방향Reverse 5'-TTCAGGAACGATTGCCGTGT-3'5'-TTCAGGAACGATTGCCGTGT-3' 55 PR1a qRT-PCR-FPR1a qRT-PCR-F 정방향Forward direction 5'-GGAAGTACGGCGAGAACATC-3'5'-GGAAGTACGGCGAGAACATC-3' 66 PR1a qRT-PCR-RPR1a qRT-PCR-R 역방향Reverse 5'-TGGTCGTACCACTGCTTCTC-3'5'-TGGTCGTACCACTGCTTCTC-3' 77 BetV1 qRT-PCR-FBetV1 qRT-PCR-F 정방향Forward direction 5'-CAGATGATCGAGGCGTACCT-3'5'-CAGATGATCGAGGCGTACCT-3' 88 BetV1 qRT-PCR-RBetV1 qRT-PCR-R 역방향Reverse 5'-CCACGCCACAGTAACATGAC-3'5'-CCACGCCACAGTAACATGAC-3' 99 Osactin qRT-PCR-FOsactin qRT-PCR-F 정방향Forward direction 5'-ATCCTTGTATGCTAGCGGTCGA-3'5'-ATCCTTGTATGCTAGCGGTCGA-3' 1010 Osactin qRT-PCR-ROsactin qRT-PCR-R 역방향Reverse 5'-ATCCAACCGGAGGATAGCATG-3'5'-ATCCAACCGGAGGATAGCATG-3'

OsWRKY55OX에서 나타난 저항성 감소 (또는 감수성 증가)와 OsWRKY55RNAi에서 나타난 저항성 증가(또는 감수성 감소)의 원인을 분석하기 위해 OsWRKY55OX(과발현 형질전환체)와 RNAi 식물체(발현 억제 형질전환체)에서 병 방어 유전자들의 발현을 분석하였다. 그 결과 Chitinase, PR1a 그리고 BetV1 등과 같이 병 저항에 관여하는 유전자들의 발현이 OsWRKY55OX에서는 감소되었고, OsWRKY55RNAi 식물체에서는 증가된 것을 관찰할 수 있었다(도 1). 이러한 결과는 OsWRKY55 유전자가 병 저항성 유전자들의 발현을 감소시킴으로 병 저항성이 감소된 다는 것을 보여주는 것이다. 따라서, OsWRKY55 유전자의 발현을 억제하면 OsWRKY55에 의해 억제되어 있던 병방어가 유도되어, 벼 흰잎마름병에 대한 저항성이 증가된다는 것을 알 수 있었다.Expression of disease defense genes in OsWRKY55OX (overexpression transformants) and RNAi plants (expression-inhibiting transformants) to analyze the cause of the decreased resistance (or increased susceptibility) seen in OsWRKY55OX and the increased resistance (or decreased susceptibility) seen in OsWRKY55RNAi. Was analyzed. As a result, it was observed that the expression of genes involved in disease resistance such as Chitinase, PR1a, and BetV1 was decreased in OsWRKY55OX and increased in OsWRKY55RNAi plants (FIG. 1). These results show that the OsWRKY55 gene decreases the expression of disease resistance genes, thereby reducing disease resistance. Therefore, it was found that suppressing the expression of the OsWRKY55 gene induces disease defense, which was inhibited by OsWRKY55, and increases resistance to rice white leaf blight.

<실시예 2> Xoo가 OsWRKY55 유전자 발현 조절여부 조사 및 프로모터 결합 이펙터 탐색<Example 2> Investigation of whether Xoo regulates OsWRKY55 gene expression and search for a promoter-binding effector

병원균 (예: Xoo)은 병원균 증식에 도움을 줄 수 있는 숙주 (예:벼)유전자를 이용하게 되는 데 OsWRKY55 유전자가 병방어를 억제하는 유전자이기 때문에 Xoo가 OsWRKY55 유전자를 증식에 활용하는 지를 조사해보았다. 이를 위해 웹프로그램을 활용하여 검색한 결과 LJ4 이펙터가 결합가능성이 높은 것으로 추정되어 실험을 통해 OsWRKY55의 프로모터에 결합해 OsWRKY55의 유전자 발현을 높이는 것을 확인하였다.Pathogens (e.g. Xoo) use host (e.g. rice) genes that can help pathogen growth.Since OsWRKY55 gene is a gene that suppresses disease defense, we investigated whether Xoo uses OsWRKY55 gene for proliferation . For this, as a result of searching using a web program, it was presumed that the LJ4 effector had a high binding potential, and it was confirmed that the gene expression of OsWRKY55 was increased by binding to the promoter of OsWRKY55 through experiments.

<실시예 2-1> TAL 이펙터 LJ4 식물 발현용 벡터 작성<Example 2-1> Preparation of vector for expression of TAL effector LJ4 plant

Xoo에는 전사활성체유사 효과체 (transcription activator like effector; TALe)가 존재하며, 이들은 숙주와의 결합 시 Type3 secretion system (T3SS)을 통해 숙주 세포 안으로 들어가 숙주 세포의 유전자를 특이적으로 발현시켜 자신에게 유리한 환경을 만든다. Xoo KXO576는 지놈 분석을 통해 18개의 TALe가 존재하는 것이 확인되었다. 이 중 OsWRKY55를 조절할 가능성이 있는 TALe을 찾기 위해 TAL Effector Nucleotide Targeter 2.0 (https://tale-nt.cac.cornell.edu)을 이용하여 LJ4의 'TATAAAAACCACCACCGCTCT'(서열번호 11) 부분이 OsWRKY55 프로모터에 결합 가능할 것으로 예상되었다. Xoo has There is a transcription activator-like effector (TALe), which, when combined with a host, enters the host cell through the Type3 secretion system (T3SS) and specifically expresses the host cell's gene, which is a favorable environment for them. Make Xoo KXO576 was confirmed to have 18 TALes through genome analysis. Among these, the'TATAAAAACCACCACCGCTCT' (SEQ ID NO: 11) part of LJ4 was added to the OsWRKY55 promoter using TAL Effector Nucleotide Targeter 2.0 (https://tale-nt.cac.cornell.edu) to find TALe that may regulate OsWRKY55. It was expected to be combined.

LJ4 유전자 염기서열(서열번호 15) 및 아미노산 서열(서열번호 16)을 포함하는 인비트로젠사 (invitrogen) 게이트웨이용 (gateway) 엔트리벡터 (entry vector)를 활용하여 LR clonase reaction을 통해 식물 형질전환용 발현 벡터인 pEarleygate104 벡터에 클로닝하여 35S::YFP-LJ4를 만들었다(도 2).For plant transformation through LR clonase reaction using an invitrogen gateway entry vector including the LJ4 gene sequence (SEQ ID NO: 15) and amino acid sequence (SEQ ID NO: 16) 35S::YFP-LJ4 was made by cloning into the expression vector pEarleygate104 vector (Fig. 2).

TAL effectorTAL effector effector binding element sequenceeffector binding element sequence 방향direction LJ4LJ4 TATAAAAACCACCACCGCTCT(서열번호 11)TATAAAAACCACCACCGCTCT (SEQ ID NO: 11) 역방향Reverse

<실시예 2-2> TAL 이펙터 LJ4의 OsWRKY55 프로모터 결합 확인과 발현 증가 분석<Example 2-2> TAL effector LJ4 OsWRKY55 promoter binding confirmation and expression increase analysis

실시예 2-1의 내용을 바탕으로 크로마틴 면역침강법(Chromatin immunopreciptation)을 사용하여 LJ4와 OsWRKY55의 프로모터의 결합여부를 확인하였다. 그 결과, 대조군과 달리, OsWRKY55의 프로모터의 4개의 부위 중 P1 부위에서 LJ4와 결합이 이루어짐을 알 수 있었다(도 3). 이러한 결과는 LJ4가 P1 부위(AGAGCGGTGGTGGTTTTTAT:서열번호 18)에 특이적으로 결합함을 의미한다.Based on the contents of Example 2-1, it was confirmed whether the promoters of LJ4 and OsWRKY55 were bound by using chromatin immunopreciptation. As a result, unlike the control group, it was found that binding to LJ4 was made at the P1 site among the four sites of the promoter of OsWRKY55 (FIG. 3). These results mean that LJ4 specifically binds to the P1 site (AGAGCGGTGGTGGTTTTTAT: SEQ ID NO: 18).

<실시예 2-3> 벼 원형질체를 이용한 OsWRKY55의 프로모터 활성 측정<Example 2-3> Measurement of promoter activity of OsWRKY55 using rice protoplasts

상기 실시예 2-2에서 벼 흰잎마름병균(Xanthomonas oryzae pv. oryzae) Xoo KXO576의 TAL 이펙터 중 하나인 LJ4가 OsWRKY55 프로모터의 P1 부위에 특이적으로 결합함을 확인하였다. 이러한 결합이 OsWRKY55의 프로모터 활성에 어떠한 영향을 미치는 지 확인하기 위하여 Promoter assay를 수행하였다. 이를 위해 OsWRKY55 프로모터의 P1 영역이 포함되어 있는 OsWRKY55 프로모터를 분리하여 pOsWRKY55::GFP-GUS 리포터 벡터를 제작하였다. 구체적으로, 게이트웨이(Gateway) 클로닝 방법에 따라, OsWRKY55(Os03g20550.1)의 개시코돈으로부터 약 1.0 kb의 프로모터(서열번호 17)를 pOsWRKY55 cloning-F (서열번호 20, 표 4)과 pOsWRKY55 cloning-R (서열번호 21, 표 4)의 프라이머를 이용하여 PCR을 수행하여 분리하였다. 이 후 attB1, attB2 프라이머 (서열번호 22, 23)를 이용하여 2 차 PCR 후 BP reaction을 통해 pDONR221 벡터에 클로닝 하였다. 그 후 리포터 벡터를 제작하기 위해 pBGWFS7 벡터에 LR reaction을 통해 (pOsWRKY55::GFP-GUS) 형태로 벡터를 제작하였다. In Example 2-2, it was confirmed that LJ4, one of the TAL effectors of the rice white leaf blight ( Xanthomonas oryzae pv. oryzae ) Xoo KXO576 , specifically binds to the P1 site of the OsWRKY55 promoter. Promoter assay was performed to determine how this binding affects the promoter activity of OsWRKY55. To this end, the OsWRKY55 promoter containing the P1 region of the OsWRKY55 promoter was isolated to produce a pOsWRKY55::GFP-GUS reporter vector. Specifically, according to the Gateway cloning method, a promoter (SEQ ID NO: 17) of about 1.0 kb from the start codon of OsWRKY55 (Os03g20550.1) was transferred to pOsWRKY55 cloning-F (SEQ ID NO: 20, Table 4) and pOsWRKY55 cloning-R. It was isolated by performing PCR using the primers of (SEQ ID NO: 21, Table 4). Thereafter, attB1 and attB2 primers (SEQ ID NOs: 22 and 23) were used to perform secondary PCR, followed by BP reaction, and cloned into pDONR221 vector. After that, in order to produce a reporter vector, a vector was prepared in the form of (pOsWRKY55::GFP-GUS) through LR reaction to the pBGWFS7 vector.

상기 제작한 벡터를 이용하여 벼 원형질체에서 promoter assay를 수행하고, 이를 통해 TAL 이펙터 LJ4와 OsWRKY55 프로모터의 인식부위인 P1 영역의 결합에 따른 OsWRKY55 프로모터 활성을 검정하였다 (도 3). 그 결과 LJ4는 OsWRKY55의 프로모터 활성을 증가시키게 되고 이는 OsWRKY55 유전자의 발현으로 이어져 병 방어가 억제되기 때문에 벼 흰잎마름병 발생을 증가시킬 수 있음을 알 수 있었다. A promoter assay was performed in rice protoplasts using the prepared vector, and the OsWRKY55 promoter activity according to the binding of the TAL effector LJ4 and the P1 region, which is the recognition site of the OsWRKY55 promoter, was assayed (FIG. 3). As a result, it can be seen that LJ4 increases the promoter activity of OsWRKY55, which leads to the expression of the OsWRKY55 gene and inhibits disease defense, thus increasing the occurrence of rice white leaf blight.

OsWRKY55의 프로모터 클로닝 프라이머 서열정보 OsWRKY55 promoter cloning primer sequence information 번프라이머 명칭Burn primer name 프라이머 방향Primer direction 서열(5'→3')Sequence (5'→3') pOsWRKY55 cloning-F pOsWRKY55 cloning-F 정방향Forward direction 5'-CAAAAAAGCAGGCTTGATTTCACTTGCAATTTTACT-3'5'-CAAAAAAGCAGGCTTGATTTCACTTGCAATTTTACT-3' pOsWRKY55 cloning-R pOsWRKY55 cloning-R 역방향Reverse 5'-AGAAAGCTGGGTTGTTTCCAGAGAGAAAGAAA-3'5'-AGAAAGCTGGGTTGTTTCCAGAGAGAAAGAAA-3'

<실시예 3> 돌연변이 OsWRKY55 프로모터 제조 및 LJ4에 대한 프로모터 활성 분석<Example 3> Preparation of mutant OsWRKY55 promoter and analysis of promoter activity for LJ4

<실시예 3-1> OsWRKY55의 돌연변이 프로모터 제조 <Example 3-1> Preparation of OsWRKY55 mutant promoter

OsWRKY55 프로모터 부분 중 LJ4가 결합하는 부위 (서열번호 11, 표 2)에 3 개의 뉴클레오티드를 변형시킨 부분(서열 번호 19: AGCGCGGTGGTAGTTCTTAT)을 포함하는 OsWRKY55의 프로모터를 제작하였다(pW55m). pW55m은 엔트리 벡터에 클로닝 후 게이트웨이(Gateway) 클로닝 방법에 따라 LR reaction을 통해 pBGWFS7 벡터에 pOsWRKY55::GFP-GUS 형태로 클로닝 하였다. A promoter of OsWRKY55 including a portion (SEQ ID NO: 19: AGCGCGGTGGTAGTTCTTAT) in which three nucleotides were modified at the site to which LJ4 binds (SEQ ID NO: 11, Table 2) of the OsWRKY55 promoter portion was constructed (pW55m). pW55m was cloned into the entry vector and then cloned into the pBGWFS7 vector in the form of pOsWRKY55::GFP-GUS through LR reaction according to the Gateway cloning method.

번프라이머 명칭Burn primer name 프라이머 방향Primer direction 서열(5'→3')Sequence (5'→3') attB1-FattB1-F 정방향Forward direction 5'-GGGGACAAGTTTGTACAAAAAAGCAGGCT-3'5'-GGGGACAAGTTTGTACAAAAAAGCAGGCT-3' attB2-RattB2-R 역방향Reverse 5'-GGGGACCACTTTGTACAAGAAAGCTGGGT-3’5'-GGGGACCACTTTGTACAAGAAAGCTGGGT-3'

상기 엔트리 클론으로부터 식물 프로모터 클로닝 목적(destination) 벡터인 pBGWFS7에 LR 반응((LR clonase reaction)에 의해 식물 프로모터 활성 검정용 pOsWRKY55:GFP-GUS 리포터 벡터를 최종적으로 제작하였다.From the entry clone, a plant promoter activity assay pOsWRKY55:GFP-GUS reporter vector was finally produced by LR reaction to pBGWFS7, a vector for cloning a plant promoter, by LR clonase reaction.

<실시예 3-2> 돌연변이 OsWRKY55 프로모터 활성 측정<Example 3-2> Measurement of mutant OsWRKY55 promoter activity

상기 실시예에서 클로닝된 정상 OsWRKY55 프로모터와 돌연변이 프로모터를 2주된 벼의 중배축에서 유도된 원형질체에 PEG를 이용하여 원형질체에 형질주입(transfection)하였다. 이 때 벼 흰잎마름병균 XOOKXO576의 TAL 이펙터(TAL effector; transcription activator-like effector)인 LJ4를 함께 넣은 것과 넣지 않은 것을 비교하여 OsWRKY55의 프로모터 활성을 비교하였다. 아울러, 프로모터 발현의 비교를 위해 CAM35S 프로모터가 결합된 Renilla luciferase를 함께 형질주입 하였다.The normal OsWRKY55 promoter and the mutant promoter cloned in the above example were transfected into the protoplasts derived from the middle embryonic axis of a two-week-old rice using PEG. At this time, the promoter activity of OsWRKY55 was compared with the addition of LJ4, the TAL effector (transcription activator-like effector) of rice white leaf blight XOO KXO576 , with and without the addition. In addition, Renilla luciferase to which the CAM35S promoter is bound was transfected together for comparison of promoter expression.

형질주입된 원형질체는 28℃에서 12 시간 배양 후 MUG(4-metylumbelliferyl-b-D-glucuronide hydrate)를 사용하여 프로모터의 활성을 분석하였고 원형질체에서의 발현을 비교하기 위해 Renilla luciferase의 활성은 프로메가(Promega. LTD)에서 생산된 dual luciferase assay system을 이용하였다.The transfected protoplasts were incubated at 28°C for 12 hours, and then the activity of the promoter was analyzed using MUG (4-metylumbelliferyl-bD-glucuronide hydrate). In order to compare the expression in the protoplasts, the activity of Renilla luciferase was determined by Promega. LTD) produced a dual luciferase assay system.

그 결과 OsWRKY55의 정상적인 프로모터(pW55)에서는 LJ4를 함께 발현시켰을 때 그 활성이 증가되었지만 돌연변이 프로모터(pW55m)에서는 LJ4에 의해 그 활성이 거의 변화하지 않았다 (도 4). 이러한 결과는 Xoo의 TALe중 하나인 LJ4가 OsWRKY55의 프로모터 중 P1 부위에 결합하여 그 활성을 증가시켜 OsWRKY55의 발현을 증가시킴을 의미한다. As a result, in the normal promoter (pW55) of OsWRKY55, when LJ4 was expressed together, its activity increased, but in the mutant promoter (pW55m), the activity was hardly changed by LJ4 (Fig. 4). These results indicate that LJ4, one of the TALes of Xoo, binds to the P1 site of the promoter of OsWRKY55 and increases its activity, thereby increasing the expression of OsWRKY55.

이에 따라, 벼 흰잎마름병균 유래 TAL 이펙터 LJ4와 특이적으로 결합하는 OsWRKY55 프로모터의 인식부위를 변이(mutation)시켜 TAL 이펙터와 식물체와의 상호작용을 조절함으로써, 벼 흰잎마름병 저항성 작물을 개발할 수 있을 뿐만 아니라, OsWRKY55 프로모터의 인식부위를 이용하여 TAL 이펙터 LJ4를 타겟으로 한 벼흰잎마름병 저항성 작물 또한 용이하게 선별할 수 있다.Accordingly, by mutating the recognition site of the OsWRKY55 promoter, which specifically binds to the TAL effector LJ4 derived from rice white leaf blight, by controlling the interaction between the TAL effector and the plant, it is possible to develop rice white leaf blight-resistant crops. In addition, rice white leaf blight resistant crops targeting the TAL effector LJ4 can also be easily selected using the recognition site of the OsWRKY55 promoter.

<110> Republic of Korea <120> Defense suppression function of OsWRKY55 gene, or promoter region recognized by the effector of Xanthomonas oryzae pv. oryzae and uses thereof <130> DP20190143 <160> 30 <170> KoPatentIn 3.0 <210> 1 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> OsWRKY55 qRT-PCR-F primer <400> 1 aggggtgccc tagtttggta 20 <210> 2 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> OsWRKY55 qRT-PCR-R primer <400> 2 agacacaccc ggagagagaa 20 <210> 3 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Chitinase qRT-PCR-F primer <400> 3 tgggctatct ctcgtcctct 20 <210> 4 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Chitinase qRT-PCR-R primer <400> 4 ttcaggaacg attgccgtgt 20 <210> 5 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> PR1a qRT-PCR-F primer <400> 5 ggaagtacgg cgagaacatc 20 <210> 6 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> PR1a qRT-PCR-R primer <400> 6 tggtcgtacc actgcttctc 20 <210> 7 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> BetV1 qRT-PCR-F primer <400> 7 cagatgatcg aggcgtacct 20 <210> 8 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> BetV1 qRT-PCR-R primer <400> 8 ccacgccaca gtaacatgac 20 <210> 9 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Osactin qRT-PCR-F primer <400> 9 atccttgtat gctagcggtc ga 22 <210> 10 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Osactin qRT-PCR-R primer <400> 10 atccaaccgg aggatagcat g 21 <210> 11 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> LJ4 binding element sequence <400> 11 tataaaaacc accaccgctc t 21 <210> 12 <211> 40 <212> PRT <213> Artificial Sequence <220> <223> LJ4 RVD sequence <400> 12 Asn Ile His Gly Asn Ile Asn Ile Asn Ile Asn Asn His Asp Asn Ser 1 5 10 15 Asn Asn Asn Ser Asn Asn His Asp Asn Asn Asn Ile His Asp Asn Asn 20 25 30 Asn Ile Asn Gly His Asp Asn Gly 35 40 <210> 13 <211> 31 <212> DNA <213> Artificial Sequence <220> <223> XooKXO576 C genomic PCR-F primer <400> 13 aggcgtcttt gcatgcattc gccgattcgc t 31 <210> 14 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> XooKXO576 C genomic PCR-R primer <400> 14 tcagatcgtc cctccgactg agcctgact 29 <210> 15 <211> 5838 <212> DNA <213> Artificial Sequence <220> <223> LJ4 <400> 15 gcgctcggtg cggatgtagg tgatgtcggc cacccaggct tggtccgcag cactgggctt 60 gaagcgccga tccagaacgt tggccgccac aggcaagtcg tgccggctgt cggtggtgtg 120 ggtgaacttg cgtttccagc gcgccttcag cccgtggcgc ttcatcaggc ggcggacccg 180 gtggcgacca gcgggcaggc cctgggcctt caggctggcg ctcaatcgac ggctgccata 240 gttgccgccg ctggcctgga aggccgtctg caccgctgcc gcaagtacat cagcgcgtgg 300 agccggtcgc cgtcggcgcg ccgcatacac ccccgaacga ctcaccccca gcaaccggca 360 cagccgggcg gttctggcct tctcctgcca ctgctggatc atctgctgga tcacttcagt 420 tcccgggcga agaaggccga cgcttttttt aacaggctgt tgtcctcacg cagccgttgg 480 ttttcccgct ccaattcacg gatgcgttgc tgctcgggcg tcagcggccg gccttgtccc 540 ggctggccgc tctgctcggc ttggtactgg gccaaccagc ggcgcacggc gctatcgacc 600 agatcacagg tcgcggcaca cctgacccac actcagacct tggtctcgga tcatctgcac 660 cacgtgcagc ttgaaggcag tatcgaaatt cctacgcggg cgggatgtca tatcgggttc 720 ggtcctcgtt gggatgatca tcccctatcg aggtgtccac gagaattaga ccaggacatc 780 tacctgcggg acgtactgga gggttggcag ggattcgtat aaaaaacagc caaaagtggg 840 ctaactcgct gtcagcacag aaatttttca caaccctctg ccgatcctcc atgcgggtcc 900 gggatcgcct tcatgtctgc gcctcaccct ggtcgtcgag ggttgccagg atcacccgaa 960 gttgtgtact gccatgcggc ctcggaagct acgtagggac cacagaccgc tagtctggag 1020 gcgaccatgt aaagaggtat gcctgatgga tcccattcgt tcgcgcacgc caagtcctgc 1080 ccgcgagctt ctgcccggac cccaaccgga tagggttcag ccgactgcag atcggggggg 1140 gggctccgcc tgctggcggc cccctggatg gcttgcccgc tcggcggacg atgtcccgga 1200 cccggctgcc atctccccct gcgccctcgc ctgcgttctc ggcgggcagc ttcagcgatc 1260 tgctccgtca gttcgatccg tcgcttcttg atacatcgct tcttgattcg atgcctgccg 1320 tcggcacgcc gcatacagcg gctgccccag cagagtgcga tgaggtgcaa tcgggtctgc 1380 gtgcagccga tgacccgcca cccaccgtgc gtgtcgctgt cactgccgcg cggccgccgc 1440 gcgccaagcc ggccccgcga cggcgtgcgg cgcaaccctc cgacgcttcg ccggccgcgc 1500 aggtggatct acgcacgctc ggctacagtc agcagcagca agagaagatc aaaccgaagg 1560 tgcgttcgac agtggcgcag caccacgagg cactggtggg ccatgggttt acacacgcgc 1620 acatcgttgc gctcagccaa cacccggcag cgttagggac cgttgctgtc acgtatcagg 1680 acataatcag ggcgttgcca gaggcgacac acgaagacat cgttggcgtc ggcaaacagt 1740 ggtccggcgc acgcgccctg gaggccttgc tcacggaggc gggggagttg agaggtccgc 1800 cgttacagtt ggacacaggc caacttctca agattgcaaa acgtggcggc gtgaccgcag 1860 tggaggcagt gcatgcatgg cgcaatgcac tgacgggtgc ccccctgaac ctgaccccgg 1920 accaagtggt ggccatcgcc agcaatattg gcggcaacca ggcgctggag acggtgcagc 1980 ggctgttgcc ggtgctgtgc caggcccatg gcctgacccc ggaccaggtc gtggccatcg 2040 ccagccatgg cggcggcaag caggcgctgg agacggtgca gcggctgttg ccggtgctgt 2100 gccaggacca tggcctgacc ccggaccagg tggtggccat cgccagcaat attggcggca 2160 agcaggcgct ggagacggtg caacggctgt tgccggtgct gtgccaggac catggcctga 2220 ccccggacca ggtggtggcc atcgccagca atattggcgg caagcaggcg ctggagacgg 2280 tgcagcggct gttgccggtg ctgtgccagg accatggcct gaccccggac caggtggtgg 2340 ccatcgccag caatattggc ggcaagcagg cgctggagac ggtgcagcgg ctgttgccgg 2400 tgctgtgcca ggaccatggc ctgaccccgg accaggtggt ggccatcgcc aacaataacg 2460 gcggcaagca ggcgctggag acggtgcaac ggctgttgcc ggtgctgtgc caggaccatg 2520 gcctgacccc ggaccaggtg gtggccatcg ccagccacga tggcggcaag caggcgctgg 2580 agacggtgca gcggctgttg ccggtgctgt gccagggcca tggcctgacc ccggacaagg 2640 tggtggccat cgccagcaat agtggcggca agcaggcgct ggagacggtg cagcggctgt 2700 tgccagtgct gtgccaggcc catggcctga ccccggacaa ggtggtggcc atcgccaaca 2760 ataacggcgg caagcaggcg ctggagacgg tgcagcggct gttgccggtg ctgtgccagg 2820 accatggcct gaccccggac caggtggtgg ccatcgccag caatagtggc ggcaagcagg 2880 cgctggagac ggtgcagcgg ctgttgccgg tgctgtgcca ggaccatggt ctgaccccgg 2940 cccaggtggt ggccatcgcc aacaataacg gcggcaagca ggcgctggag acggtgcggc 3000 ggctgttgcc ggtgctgtgc caggaccatg gcctgacccc ggaccaggtc gtggccatcg 3060 ccagccacga tggcggcaag caggcgctgg agacggtgca gcggctgttg ccggtactgt 3120 gccaggacca tggcctgacc ccggaccagg tggtggccat cgccaacaat aacggcggca 3180 agcaggcgct ggagacggtg cagcggctgt tgccggtgct gtgccaggac catggcctga 3240 cccaggacca ggtggtggcc atcgccagca atattggcgg caagcaggcg ctggagacgg 3300 tgcagcggct gttgccggtg ctgtgccagg accatggcct gaccccggac caggtggtgg 3360 ccatcgccag ccacgatggc ggcaagcagg cgctggagac ggtgcagcgg ctgttgccgg 3420 tgctgtgcca ggaccatggc ctgaccccgg cccaggtggt ggccatcgcc aacaataacg 3480 gcggcaagca ggcgctggag acggtgcagc ggctgttgcc ggtgctgtgc caggaccatg 3540 gcctgagccc ggaccaggtc gtggccatcg ccagcaatat tggcggcaag caggcgctgg 3600 agacggtgca gcggctgttg ccggtgctgt gccaggacca tggcctgacc ccggaccagg 3660 tggtggccat cgccagcaat ggcggcggca agcaggcgct ggagacggtg cagcggctgt 3720 tgccggtgct gtgccaggac catggcctga gcccggacca ggtcgtggcc atcgccagcc 3780 atgatggcgg caagcaggcg ctggagacgg tgcagcggct gttgccggtg ctgtgccagg 3840 accatggcct gaccccggac caggtggtgg ccatcgccag caatggcggc ggcaagcagg 3900 cgctggagag cattgttgcc cagttatctt gccctgatcc ggcgttggcc gcgttgacca 3960 acgaccacct cgtcgccttg gcctgcctcg gcggacgtcc tgccatggat gcagtgaaaa 4020 agggattgcc gcacgcgccg gaattgatca gaagagtcaa tagccgtatt ggcgaacgca 4080 cgtcccatcg cgttgccgac tacgcgcaag tggttcgcgt gctggagttt ttccagtgcc 4140 actcccaccc agcgtacgca tttgatgagg ccatgacgca gttcgggatg agcaggaacg 4200 ggttggtaca gctctttcgc agagtgggcg tcaccgaact cgaagcccgc tgcggaacgc 4260 tccccccagc ctcgcagcgt tgggaccgta tcctccaggc atcagggatg aaaagggcca 4320 aaccgtcccc tacttcagct caaacaccgg atcaggcgtc tttgcatgca ttcgccgatt 4380 cgctggagcg tgaccttgat gcgcccagcc caatgcacga gggagatcag acgcgggcaa 4440 gcagccgtaa acggtcccga tcggatcgtg ctgtcaccgg cccctccgca cagcaatctt 4500 tcgaggtgcg cgttcccgaa cagcgcgatg cgctgcattt gcccctcagc tggagggtaa 4560 aacgcccgcg taccaggatc gggggcggcc tcccggatcc tggtacgccc atcgctgccg 4620 acctggcagc gtccagcacc gtgatgtggg aacaagatgc ggcccccttc gcaggggcag 4680 cggatgattt cccggcattc aacgaagagg agctcgcatg gttgatggag ctattgcctc 4740 agtcaggctc agttggaggg acgatctgag gggcggcagg gattcgagta agaaaccttt 4800 actgacagca agttagctca cttttggctg tgttttacac gaatccctgc cgaccctcta 4860 ctccggcgca ggcgtgaaat gcggttatca gtggtggatc gcgcggggtt cgccgacaga 4920 gcgcgtgtgg tccggcgtac acgtgggcca cgaagtccaa ggcgcaggtg aggcgttatc 4980 cgtaggggcg atgcccctac acccctacaa tcccggagca tcgtcattgg ggaccgtatg 5040 agctacagac cgcagaacaa ccaagatggg ctttggtggg aaatcgccct gggcatcttc 5100 gtcggccagc tgatgaccgc agcgttcgca ggtgtggtgg ccctgtgcct gggctacttc 5160 acgctgcgca gcgtcagcgc aggactaccg gcaccacgat tactgccggt cactccacag 5220 gaagcggact gaacaatgac ctttgacacc tacgagcgcg tagacctgac cggcccttgg 5280 gccggttttg gttttcaggg acatcgattc ttcacaccag aaaattacga catcgagccc 5340 tgcggcatgc ggtactgggc gctgacctgc gccatcgcac gggagtggtc gctgatgatg 5400 tccgaagaac gcaatacgcg ctcggcgacc ccgcgaacgc ctactgccac caggtctccg 5460 gggtcgcgtt tgtctcaagg cgcagaagtg atctacctgc gggacgtact ggagggttgg 5520 cagggattcg tgtaaaaaac agccaaaagt gggctaactc gctgtcagca cagaaatttc 5580 tcacaaccct ctgccgatcc tccatgcggg tccgggatcg ccttcatgtc tgcgcctcac 5640 cctggtcgtc gagggttgcc aggatcaccc gaagttgtgt actgccatgc ggcctcggaa 5700 gctatgtagg gaccacagac cgctagtctg gaggcgacca tgtaaagagg tatgcctgat 5760 ggatcccatt cgttcgcgca cgccaagtcc tgcccgcgag cttctgcccg gaccccaacc 5820 ggatagggtt cagccgac 5838 <210> 16 <211> 1945 <212> PRT <213> Artificial Sequence <220> <223> LJ4 <400> 16 Ala Leu Gly Ala Asp Val Gly Asp Val Gly His Pro Gly Leu Val Arg 1 5 10 15 Ser Thr Gly Leu Glu Ala Pro Ile Gln Asn Val Gly Arg His Arg Gln 20 25 30 Val Val Pro Ala Val Gly Gly Val Gly Glu Leu Ala Phe Pro Ala Arg 35 40 45 Leu Gln Pro Val Ala Leu His Gln Ala Ala Asp Pro Val Ala Thr Ser 50 55 60 Gly Gln Ala Leu Gly Leu Gln Ala Gly Ala Gln Ser Thr Ala Ala Ile 65 70 75 80 Val Ala Ala Ala Gly Leu Glu Gly Arg Leu His Arg Cys Arg Lys Tyr 85 90 95 Ile Ser Ala Trp Ser Arg Ser Pro Ser Ala Arg Arg Ile His Pro Arg 100 105 110 Thr Thr His Pro Gln Gln Pro Ala Gln Pro Gly Gly Ser Gly Leu Leu 115 120 125 Leu Pro Leu Leu Asp His Leu Leu Asp His Phe Ser Ser Arg Ala Lys 130 135 140 Lys Ala Asp Ala Phe Phe Asn Arg Leu Leu Ser Ser Arg Ser Arg Trp 145 150 155 160 Phe Ser Arg Ser Asn Ser Arg Met Arg Cys Cys Ser Gly Val Ser Gly 165 170 175 Arg Pro Cys Pro Gly Trp Pro Leu Cys Ser Ala Trp Tyr Trp Ala Asn 180 185 190 Gln Arg Arg Thr Ala Leu Ser Thr Arg Ser Gln Val Ala Ala His Leu 195 200 205 Thr His Thr Gln Thr Leu Val Ser Asp His Leu His His Val Gln Leu 210 215 220 Glu Gly Ser Ile Glu Ile Pro Thr Arg Ala Gly Cys His Ile Gly Phe 225 230 235 240 Gly Pro Arg Trp Asp Asp His Pro Leu Ser Arg Cys Pro Arg Glu Leu 245 250 255 Asp Gln Asp Ile Tyr Leu Arg Asp Val Leu Glu Gly Trp Gln Gly Phe 260 265 270 Val *** Lys Thr Ala Lys Ser Gly Leu Thr Arg Cys Gln His Arg Asn 275 280 285 Phe Ser Gln Pro Ser Ala Asp Pro Pro Cys Gly Ser Gly Ile Ala Phe 290 295 300 Met Ser Ala Pro His Pro Gly Arg Arg Gly Leu Pro Gly Ser Pro Glu 305 310 315 320 Val Val Tyr Cys His Ala Ala Ser Glu Ala Thr *** Gly Pro Gln Thr 325 330 335 Ala Ser Leu Glu Ala Thr Met *** Arg Gly Met Pro Asp Gly Ser His 340 345 350 Ser Phe Ala His Ala Lys Ser Cys Pro Arg Ala Ser Ala Arg Thr Pro 355 360 365 Thr Gly *** Gly Ser Ala Asp Cys Arg Ser Gly Gly Ala Pro Pro Ala 370 375 380 Gly Gly Pro Leu Asp Gly Leu Pro Ala Arg Arg Thr Met Ser Arg Thr 385 390 395 400 Arg Leu Pro Ser Pro Pro Ala Pro Ser Pro Ala Phe Ser Ala Gly Ser 405 410 415 Phe Ser Asp Leu Leu Arg Gln Phe Asp Pro Ser Leu Leu Asp Thr Ser 420 425 430 Leu Leu Asp Ser Met Pro Ala Val Gly Thr Pro His Thr Ala Ala Ala 435 440 445 Pro Ala Glu Cys Asp Glu Val Gln Ser Gly Leu Arg Ala Ala Asp Asp 450 455 460 Pro Pro Pro Thr Val Arg Val Ala Val Thr Ala Ala Arg Pro Pro Arg 465 470 475 480 Ala Lys Pro Ala Pro Arg Arg Arg Ala Ala Gln Pro Ser Asp Ala Ser 485 490 495 Pro Ala Ala Gln Val Asp Leu Arg Thr Leu Gly Tyr Ser Gln Gln Gln 500 505 510 Gln Glu Lys Ile Lys Pro Lys Val Arg Ser Thr Val Ala Gln His His 515 520 525 Glu Ala Leu Val Gly His Gly Phe Thr His Ala His Ile Val Ala Leu 530 535 540 Ser Gln His Pro Ala Ala Leu Gly Thr Val Ala Val Thr Tyr Gln Asp 545 550 555 560 Ile Ile Arg Ala Leu Pro Glu Ala Thr His Glu Asp Ile Val Gly Val 565 570 575 Gly Lys Gln Trp Ser Gly Ala Arg Ala Leu Glu Ala Leu Leu Thr Glu 580 585 590 Ala Gly Glu Leu Arg Gly Pro Pro Leu Gln Leu Asp Thr Gly Gln Leu 595 600 605 Leu Lys Ile Ala Lys Arg Gly Gly Val Thr Ala Val Glu Ala Val His 610 615 620 Ala Trp Arg Asn Ala Leu Thr Gly Ala Pro Leu Asn Leu Thr Pro Asp 625 630 635 640 Gln Val Val Ala Ile Ala Ser Asn Ile Gly Gly Asn Gln Ala Leu Glu 645 650 655 Thr Val Gln Arg Leu Leu Pro Val Leu Cys Gln Ala His Gly Leu Thr 660 665 670 Pro Asp Gln Val Val Ala Ile Ala Ser His Gly Gly Gly Lys Gln Ala 675 680 685 Leu Glu Thr Val Gln Arg Leu Leu Pro Val Leu Cys Gln Asp His Gly 690 695 700 Leu Thr Pro Asp Gln Val Val Ala Ile Ala Ser Asn Ile Gly Gly Lys 705 710 715 720 Gln Ala Leu Glu Thr Val Gln Arg Leu Leu Pro Val Leu Cys Gln Asp 725 730 735 His Gly Leu Thr Pro Asp Gln Val Val Ala Ile Ala Ser Asn Ile Gly 740 745 750 Gly Lys Gln Ala Leu Glu Thr Val Gln Arg Leu Leu Pro Val Leu Cys 755 760 765 Gln Asp His Gly Leu Thr Pro Asp Gln Val Val Ala Ile Ala Ser Asn 770 775 780 Ile Gly Gly Lys Gln Ala Leu Glu Thr Val Gln Arg Leu Leu Pro Val 785 790 795 800 Leu Cys Gln Asp His Gly Leu Thr Pro Asp Gln Val Val Ala Ile Ala 805 810 815 Asn Asn Asn Gly Gly Lys Gln Ala Leu Glu Thr Val Gln Arg Leu Leu 820 825 830 Pro Val Leu Cys Gln Asp His Gly Leu Thr Pro Asp Gln Val Val Ala 835 840 845 Ile Ala Ser His Asp Gly Gly Lys Gln Ala Leu Glu Thr Val Gln Arg 850 855 860 Leu Leu Pro Val Leu Cys Gln Gly His Gly Leu Thr Pro Asp Lys Val 865 870 875 880 Val Ala Ile Ala Ser Asn Ser Gly Gly Lys Gln Ala Leu Glu Thr Val 885 890 895 Gln Arg Leu Leu Pro Val Leu Cys Gln Ala His Gly Leu Thr Pro Asp 900 905 910 Lys Val Val Ala Ile Ala Asn Asn Asn Gly Gly Lys Gln Ala Leu Glu 915 920 925 Thr Val Gln Arg Leu Leu Pro Val Leu Cys Gln Asp His Gly Leu Thr 930 935 940 Pro Asp Gln Val Val Ala Ile Ala Ser Asn Ser Gly Gly Lys Gln Ala 945 950 955 960 Leu Glu Thr Val Gln Arg Leu Leu Pro Val Leu Cys Gln Asp His Gly 965 970 975 Leu Thr Pro Ala Gln Val Val Ala Ile Ala Asn Asn Asn Gly Gly Lys 980 985 990 Gln Ala Leu Glu Thr Val Arg Arg Leu Leu Pro Val Leu Cys Gln Asp 995 1000 1005 His Gly Leu Thr Pro Asp Gln Val Val Ala Ile Ala Ser His Asp Gly 1010 1015 1020 Gly Lys Gln Ala Leu Glu Thr Val Gln Arg Leu Leu Pro Val Leu Cys 1025 1030 1035 1040 Gln Asp His Gly Leu Thr Pro Asp Gln Val Val Ala Ile Ala Asn Asn 1045 1050 1055 Asn Gly Gly Lys Gln Ala Leu Glu Thr Val Gln Arg Leu Leu Pro Val 1060 1065 1070 Leu Cys Gln Asp His Gly Leu Thr Gln Asp Gln Val Val Ala Ile Ala 1075 1080 1085 Ser Asn Ile Gly Gly Lys Gln Ala Leu Glu Thr Val Gln Arg Leu Leu 1090 1095 1100 Pro Val Leu Cys Gln Asp His Gly Leu Thr Pro Asp Gln Val Val Ala 1105 1110 1115 1120 Ile Ala Ser His Asp Gly Gly Lys Gln Ala Leu Glu Thr Val Gln Arg 1125 1130 1135 Leu Leu Pro Val Leu Cys Gln Asp His Gly Leu Thr Pro Ala Gln Val 1140 1145 1150 Val Ala Ile Ala Asn Asn Asn Gly Gly Lys Gln Ala Leu Glu Thr Val 1155 1160 1165 Gln Arg Leu Leu Pro Val Leu Cys Gln Asp His Gly Leu Ser Pro Asp 1170 1175 1180 Gln Val Val Ala Ile Ala Ser Asn Ile Gly Gly Lys Gln Ala Leu Glu 1185 1190 1195 1200 Thr Val Gln Arg Leu Leu Pro Val Leu Cys Gln Asp His Gly Leu Thr 1205 1210 1215 Pro Asp Gln Val Val Ala Ile Ala Ser Asn Gly Gly Gly Lys Gln Ala 1220 1225 1230 Leu Glu Thr Val Gln Arg Leu Leu Pro Val Leu Cys Gln Asp His Gly 1235 1240 1245 Leu Ser Pro Asp Gln Val Val Ala Ile Ala Ser His Asp Gly Gly Lys 1250 1255 1260 Gln Ala Leu Glu Thr Val Gln Arg Leu Leu Pro Val Leu Cys Gln Asp 1265 1270 1275 1280 His Gly Leu Thr Pro Asp Gln Val Val Ala Ile Ala Ser Asn Gly Gly 1285 1290 1295 Gly Lys Gln Ala Leu Glu Ser Ile Val Ala Gln Leu Ser Cys Pro Asp 1300 1305 1310 Pro Ala Leu Ala Ala Leu Thr Asn Asp His Leu Val Ala Leu Ala Cys 1315 1320 1325 Leu Gly Gly Arg Pro Ala Met Asp Ala Val Lys Lys Gly Leu Pro His 1330 1335 1340 Ala Pro Glu Leu Ile Arg Arg Val Asn Ser Arg Ile Gly Glu Arg Thr 1345 1350 1355 1360 Ser His Arg Val Ala Asp Tyr Ala Gln Val Val Arg Val Leu Glu Phe 1365 1370 1375 Phe Gln Cys His Ser His Pro Ala Tyr Ala Phe Asp Glu Ala Met Thr 1380 1385 1390 Gln Phe Gly Met Ser Arg Asn Gly Leu Val Gln Leu Phe Arg Arg Val 1395 1400 1405 Gly Val Thr Glu Leu Glu Ala Arg Cys Gly Thr Leu Pro Pro Ala Ser 1410 1415 1420 Gln Arg Trp Asp Arg Ile Leu Gln Ala Ser Gly Met Lys Arg Ala Lys 1425 1430 1435 1440 Pro Ser Pro Thr Ser Ala Gln Thr Pro Asp Gln Ala Ser Leu His Ala 1445 1450 1455 Phe Ala Asp Ser Leu Glu Arg Asp Leu Asp Ala Pro Ser Pro Met His 1460 1465 1470 Glu Gly Asp Gln Thr Arg Ala Ser Ser Arg Lys Arg Ser Arg Ser Asp 1475 1480 1485 Arg Ala Val Thr Gly Pro Ser Ala Gln Gln Ser Phe Glu Val Arg Val 1490 1495 1500 Pro Glu Gln Arg Asp Ala Leu His Leu Pro Leu Ser Trp Arg Val Lys 1505 1510 1515 1520 Arg Pro Arg Thr Arg Ile Gly Gly Gly Leu Pro Asp Pro Gly Thr Pro 1525 1530 1535 Ile Ala Ala Asp Leu Ala Ala Ser Ser Thr Val Met Trp Glu Gln Asp 1540 1545 1550 Ala Ala Pro Phe Ala Gly Ala Ala Asp Asp Phe Pro Ala Phe Asn Glu 1555 1560 1565 Glu Glu Leu Ala Trp Leu Met Glu Leu Leu Pro Gln Ser Gly Ser Val 1570 1575 1580 Gly Gly Thr Ile *** Gly Ala Ala Gly Ile Arg Val Arg Asn Leu Tyr 1585 1590 1595 1600 *** Gln Gln Val Ser Ser Leu Leu Ala Val Phe Tyr Thr Asn Pro Cys 1605 1610 1615 Arg Pro Ser Thr Pro Ala Gln Ala *** Asn Ala Val Ile Ser Gly Gly 1620 1625 1630 Ser Arg Gly Val Arg Arg Gln Ser Ala Cys Gly Pro Ala Tyr Thr Trp 1635 1640 1645 Ala Thr Lys Ser Lys Ala Gln Val Arg Arg Tyr Pro *** Gly Arg Cys 1650 1655 1660 Pro Tyr Thr Pro Thr Ile Pro Glu His Arg His Trp Gly Pro Tyr Glu 1665 1670 1675 1680 Leu Gln Thr Ala Glu Gln Pro Arg Trp Ala Leu Val Gly Asn Arg Pro 1685 1690 1695 Gly His Leu Arg Arg Pro Ala Asp Asp Arg Ser Val Arg Arg Cys Gly 1700 1705 1710 Gly Pro Val Pro Gly Leu Leu His Ala Ala Gln Arg Gln Arg Arg Thr 1715 1720 1725 Thr Gly Thr Thr Ile Thr Ala Gly His Ser Thr Gly Ser Gly Leu Asn 1730 1735 1740 Asn Asp Leu *** His Leu Arg Ala Arg Arg Pro Asp Arg Pro Leu Gly 1745 1750 1755 1760 Arg Phe Trp Phe Ser Gly Thr Ser Ile Leu His Thr Arg Lys Leu Arg 1765 1770 1775 His Arg Ala Leu Arg His Ala Val Leu Gly Ala Asp Leu Arg His Arg 1780 1785 1790 Thr Gly Val Val Ala Asp Asp Val Arg Arg Thr Gln Tyr Ala Leu Gly 1795 1800 1805 Asp Pro Ala Asn Ala Tyr Cys His Gln Val Ser Gly Val Ala Phe Val 1810 1815 1820 Ser Arg Arg Arg Ser Asp Leu Pro Ala Gly Arg Thr Gly Gly Leu Ala 1825 1830 1835 1840 Gly Ile Arg Val Lys Asn Ser Gln Lys Trp Ala Asn Ser Leu Ser Ala 1845 1850 1855 Gln Lys Phe Leu Thr Thr Leu Cys Arg Ser Ser Met Arg Val Arg Asp 1860 1865 1870 Arg Leu His Val Cys Ala Ser Pro Trp Ser Ser Arg Val Ala Arg Ile 1875 1880 1885 Thr Arg Ser Cys Val Leu Pro Cys Gly Leu Gly Ser Tyr Val Gly Thr 1890 1895 1900 Thr Asp Arg *** Ser Gly Gly Asp His Val Lys Arg Tyr Ala *** Trp 1905 1910 1915 1920 Ile Pro Phe Val Arg Ala Arg Gln Val Leu Pro Ala Ser Phe Cys Pro 1925 1930 1935 Asp Pro Asn Arg Ile Gly Phe Ser Arg 1940 1945 <210> 17 <211> 1000 <212> DNA <213> Artificial Sequence <220> <223> OsWRKY55 promoter <400> 17 atctatctat ctatctatct atctatctat ctatctatct atctatttat ctatcaaatt 60 tatgatctac tatcaatcta tcctggctat agtatattca tggtgcattg ccatcagcat 120 tttcacttgc aattttacta ccaaaaaaaa aagcacattt actgcttcag gcttgcagtg 180 ccacttgatg catcaactgg ctgctatcat cgtgatgcat tcatcaactg gccgctatca 240 tcgtgatgca cataacgtct gtactgccaa tctctacaaa aatatcccca gtggccgggc 300 aatgcatccg cccagttgcc acgcgcccct tttaactaag acccctattg gaggcaaagc 360 acagtacatc actggtgaga tcattttccg ggtcctaaat taggcgaaaa gcgggagatt 420 ccttgctgcc tcaacttgtc ctgcagcatg tgcaggtctt taaaaaaacc atcgatatgc 480 gttaggtatc agctaatctc cctccccaag caacgagacg attcctgcct ctggctttgt 540 gaggcaaagg aaagaatcag gtcaagtcca actagtttat aattaatcaa ttatctaagc 600 aatcaccaac gcaccggggc aggcttccat tctggccaag atttgtgaac tggtccggcc 660 gattatataa tcaatttgcc cgagttccaa tcaaagcaat taattaacca tttaatcgcc 720 ccaagttgct agatcgatga cagtgcttag tccttaaaaa aacggggtga cacatcattt 780 tgaggccact tgtagctcct atgtgtgtcc ggggcctttg aagaagctgc aaagaaattt 840 ctcaagtcgc cccgtcggtg cgcgggagca cgtgacagcg atacggggag aggagaagat 900 aatctttgca tcgtttttgg tcttcagctt agagagcggt ggtggttttt atatggtgat 960 aagggcctca attatggagc tctttgatgt tttaagctaa 1000 <210> 18 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> OsWRKY55 promoter P1 region <400> 18 agagcggtgg tggtttttat 20 <210> 19 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> OsWRKY55 promoter P1 region mutant <400> 19 agcgcggtgg tagttcttat 20 <210> 20 <211> 36 <212> DNA <213> Artificial Sequence <220> <223> pOsWRKY55 cloning-F primer <400> 20 caaaaaagca ggcttgattt cacttgcaat tttact 36 <210> 21 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> pOsWRKY55 cloning-R primer <400> 21 agaaagctgg gttgtttcca gagagaaaga aa 32 <210> 22 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> attB1-F primer <400> 22 ggggacaagt ttgtacaaaa aagcaggct 29 <210> 23 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> attB2-R primer <400> 23 ggggaccact ttgtacaaga aagctgggt 29 <210> 24 <211> 228 <212> DNA <213> Artificial Sequence <220> <223> OsWRKY55 RNAi <400> 24 ctgcactgag ctccaatctt gcagcaccga atgtcaggat gcattttcag ctggtacgat 60 tcctgaagag acagtagatg caggaagatt tggttctatc agattcttcc attttttgta 120 aatgaattaa tggaagacag tttattttat ttcaaagagc taatatgata cacatgtttt 180 ttcctctaca ccctcaaaga gtatgagagg ttttccttgc atgtcacc 228 <210> 25 <211> 633 <212> DNA <213> Artificial Sequence <220> <223> OsWRKY55 <400> 25 atgtctcctg tgccgagtcc gcatcaatca caccatctag gccatggctc aaggaaagag 60 aagcgcatga ggaaggtgga tacctttgcg ccgcacaacg acggccacca gtggaggaag 120 tacggcgaga agaagataaa caactgtaat ttccccagat actactacag atgcacctat 180 aaagataaca tgaattgccc agcaacgaag cagattcagc agaaagatta tagtgatcca 240 ccattgtact cagtcaccta ctacaatgag catacatgta atagtgcttt tcttcctctt 300 agcccctcag agttccagct gcagactgca tctgggaagg cagtctccat ctgctttgaa 360 tcatctgggg ctcaagaacc aatgaccaat gccagctcac cttcttcaag cgcagcacgg 420 cgtagcacac cttcagagaa caagaatcag cctcttccac ggcattcgga agcctattct 480 tggggggttg gtgttgtaga acaaaagccg tcctgcactg agctccaatc ttgcagcacc 540 gaatgtcagg atgcattttc agctggtacg attcctgaag agacagtaga tgcaggaaga 600 tttggttcta tcagattctt ccattttttg taa 633 <210> 26 <211> 210 <212> PRT <213> Artificial Sequence <220> <223> OsWRKY55 <400> 26 Met Ser Pro Val Pro Ser Pro His Gln Ser His His Leu Gly His Gly 1 5 10 15 Ser Arg Lys Glu Lys Arg Met Arg Lys Val Asp Thr Phe Ala Pro His 20 25 30 Asn Asp Gly His Gln Trp Arg Lys Tyr Gly Glu Lys Lys Ile Asn Asn 35 40 45 Cys Asn Phe Pro Arg Tyr Tyr Tyr Arg Cys Thr Tyr Lys Asp Asn Met 50 55 60 Asn Cys Pro Ala Thr Lys Gln Ile Gln Gln Lys Asp Tyr Ser Asp Pro 65 70 75 80 Pro Leu Tyr Ser Val Thr Tyr Tyr Asn Glu His Thr Cys Asn Ser Ala 85 90 95 Phe Leu Pro Leu Ser Pro Ser Glu Phe Gln Leu Gln Thr Ala Ser Gly 100 105 110 Lys Ala Val Ser Ile Cys Phe Glu Ser Ser Gly Ala Gln Glu Pro Met 115 120 125 Thr Asn Ala Ser Ser Pro Ser Ser Ser Ala Ala Arg Arg Ser Thr Pro 130 135 140 Ser Glu Asn Lys Asn Gln Pro Leu Pro Arg His Ser Glu Ala Tyr Ser 145 150 155 160 Trp Gly Val Gly Val Val Glu Gln Lys Pro Ser Cys Thr Glu Leu Gln 165 170 175 Ser Cys Ser Thr Glu Cys Gln Asp Ala Phe Ser Ala Gly Thr Ile Pro 180 185 190 Glu Glu Thr Val Asp Ala Gly Arg Phe Gly Ser Ile Arg Phe Phe His 195 200 205 Phe Leu 210 <210> 27 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> OsWRKY55OX-F primer <400> 27 caaaaaagca ggcttgatgt ctcctgtgcc gagtc 35 <210> 28 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> OsWRKY55OX-R primer <400> 28 agaaagctgg gttcaaaaaa tgaatctga 29 <210> 29 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> OsWRKY55 RNAi-F primer <400> 29 aaaaaagcag gctctgcact gagctccaat ctt 33 <210> 30 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> OsWRKY55 RNAi-R primer <400> 30 agaaagctgg gtcggtgaca tgcaaggaaa cc 32 <110> Republic of Korea <120> Defense suppression function of OsWRKY55 gene, or promoter region recognized by the effector of Xanthomonas oryzae pv. oryzae and uses thereof <130> DP20190143 <160> 30 <170> KoPatentIn 3.0 <210> 1 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> OsWRKY55 qRT-PCR-F primer <400> 1 aggggtgccc tagtttggta 20 <210> 2 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> OsWRKY55 qRT-PCR-R primer <400> 2 agacacaccc ggagagagaa 20 <210> 3 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Chitinase qRT-PCR-F primer <400> 3 tgggctatct ctcgtcctct 20 <210> 4 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Chitinase qRT-PCR-R primer <400> 4 ttcaggaacg attgccgtgt 20 <210> 5 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> PR1a qRT-PCR-F primer <400> 5 ggaagtacgg cgagaacatc 20 <210> 6 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> PR1a qRT-PCR-R primer <400> 6 tggtcgtacc actgcttctc 20 <210> 7 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> BetV1 qRT-PCR-F primer <400> 7 cagatgatcg aggcgtacct 20 <210> 8 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> BetV1 qRT-PCR-R primer <400> 8 ccacgccaca gtaacatgac 20 <210> 9 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Osactin qRT-PCR-F primer <400> 9 atccttgtat gctagcggtc ga 22 <210> 10 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Osactin qRT-PCR-R primer <400> 10 atccaaccgg aggatagcat g 21 <210> 11 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> LJ4 binding element sequence <400> 11 tataaaaacc accaccgctc t 21 <210> 12 <211> 40 <212> PRT <213> Artificial Sequence <220> <223> LJ4 RVD sequence <400> 12 Asn Ile His Gly Asn Ile Asn Ile Asn Ile Asn Asn His Asp Asn Ser 1 5 10 15 Asn Asn Asn Ser Asn Asn His Asp Asn Asn Asn Ile His Asp Asn Asn 20 25 30 Asn Ile Asn Gly His Asp Asn Gly 35 40 <210> 13 <211> 31 <212> DNA <213> Artificial Sequence <220> <223> XooKXO576 C genomic PCR-F primer <400> 13 aggcgtcttt gcatgcattc gccgattcgc t 31 <210> 14 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> XooKXO576 C genomic PCR-R primer <400> 14 tcagatcgtc cctccgactg agcctgact 29 <210> 15 <211> 5838 <212> DNA <213> Artificial Sequence <220> <223> LJ4 <400> 15 gcgctcggtg cggatgtagg tgatgtcggc cacccaggct tggtccgcag cactgggctt 60 gaagcgccga tccagaacgt tggccgccac aggcaagtcg tgccggctgt cggtggtgtg 120 ggtgaacttg cgtttccagc gcgccttcag cccgtggcgc ttcatcaggc ggcggacccg 180 gtggcgacca gcgggcaggc cctgggcctt caggctggcg ctcaatcgac ggctgccata 240 gttgccgccg ctggcctgga aggccgtctg caccgctgcc gcaagtacat cagcgcgtgg 300 agccggtcgc cgtcggcgcg ccgcatacac ccccgaacga ctcaccccca gcaaccggca 360 cagccgggcg gttctggcct tctcctgcca ctgctggatc atctgctgga tcacttcagt 420 tcccgggcga agaaggccga cgcttttttt aacaggctgt tgtcctcacg cagccgttgg 480 ttttcccgct ccaattcacg gatgcgttgc tgctcgggcg tcagcggccg gccttgtccc 540 ggctggccgc tctgctcggc ttggtactgg gccaaccagc ggcgcacggc gctatcgacc 600 agatcacagg tcgcggcaca cctgacccac actcagacct tggtctcgga tcatctgcac 660 cacgtgcagc ttgaaggcag tatcgaaatt cctacgcggg cgggatgtca tatcgggttc 720 ggtcctcgtt gggatgatca tcccctatcg aggtgtccac gagaattaga ccaggacatc 780 tacctgcggg acgtactgga gggttggcag ggattcgtat aaaaaacagc caaaagtggg 840 ctaactcgct gtcagcacag aaatttttca caaccctctg ccgatcctcc atgcgggtcc 900 gggatcgcct tcatgtctgc gcctcaccct ggtcgtcgag ggttgccagg atcacccgaa 960 gttgtgtact gccatgcggc ctcggaagct acgtagggac cacagaccgc tagtctggag 1020 gcgaccatgt aaagaggtat gcctgatgga tcccattcgt tcgcgcacgc caagtcctgc 1080 ccgcgagctt ctgcccggac cccaaccgga tagggttcag ccgactgcag atcggggggg 1140 gggctccgcc tgctggcggc cccctggatg gcttgcccgc tcggcggacg atgtcccgga 1200 cccggctgcc atctccccct gcgccctcgc ctgcgttctc ggcgggcagc ttcagcgatc 1260 tgctccgtca gttcgatccg tcgcttcttg atacatcgct tcttgattcg atgcctgccg 1320 tcggcacgcc gcatacagcg gctgccccag cagagtgcga tgaggtgcaa tcgggtctgc 1380 gtgcagccga tgacccgcca cccaccgtgc gtgtcgctgt cactgccgcg cggccgccgc 1440 gcgccaagcc ggccccgcga cggcgtgcgg cgcaaccctc cgacgcttcg ccggccgcgc 1500 aggtggatct acgcacgctc ggctacagtc agcagcagca agagaagatc aaaccgaagg 1560 tgcgttcgac agtggcgcag caccacgagg cactggtggg ccatgggttt acacacgcgc 1620 acatcgttgc gctcagccaa cacccggcag cgttagggac cgttgctgtc acgtatcagg 1680 acataatcag ggcgttgcca gaggcgacac acgaagacat cgttggcgtc ggcaaacagt 1740 ggtccggcgc acgcgccctg gaggccttgc tcacggaggc gggggagttg agaggtccgc 1800 cgttacagtt ggacacaggc caacttctca agattgcaaa acgtggcggc gtgaccgcag 1860 tggaggcagt gcatgcatgg cgcaatgcac tgacgggtgc ccccctgaac ctgaccccgg 1920 accaagtggt ggccatcgcc agcaatattg gcggcaacca ggcgctggag acggtgcagc 1980 ggctgttgcc ggtgctgtgc caggcccatg gcctgacccc ggaccaggtc gtggccatcg 2040 ccagccatgg cggcggcaag caggcgctgg agacggtgca gcggctgttg ccggtgctgt 2100 gccaggacca tggcctgacc ccggaccagg tggtggccat cgccagcaat attggcggca 2160 agcaggcgct ggagacggtg caacggctgt tgccggtgct gtgccaggac catggcctga 2220 ccccggacca ggtggtggcc atcgccagca atattggcgg caagcaggcg ctggagacgg 2280 tgcagcggct gttgccggtg ctgtgccagg accatggcct gaccccggac caggtggtgg 2340 ccatcgccag caatattggc ggcaagcagg cgctggagac ggtgcagcgg ctgttgccgg 2400 tgctgtgcca ggaccatggc ctgaccccgg accaggtggt ggccatcgcc aacaataacg 2460 gcggcaagca ggcgctggag acggtgcaac ggctgttgcc ggtgctgtgc caggaccatg 2520 gcctgacccc ggaccaggtg gtggccatcg ccagccacga tggcggcaag caggcgctgg 2580 agacggtgca gcggctgttg ccggtgctgt gccagggcca tggcctgacc ccggacaagg 2640 tggtggccat cgccagcaat agtggcggca agcaggcgct ggagacggtg cagcggctgt 2700 tgccagtgct gtgccaggcc catggcctga ccccggacaa ggtggtggcc atcgccaaca 2760 ataacggcgg caagcaggcg ctggagacgg tgcagcggct gttgccggtg ctgtgccagg 2820 accatggcct gaccccggac caggtggtgg ccatcgccag caatagtggc ggcaagcagg 2880 cgctggagac ggtgcagcgg ctgttgccgg tgctgtgcca ggaccatggt ctgaccccgg 2940 cccaggtggt ggccatcgcc aacaataacg gcggcaagca ggcgctggag acggtgcggc 3000 ggctgttgcc ggtgctgtgc caggaccatg gcctgacccc ggaccaggtc gtggccatcg 3060 ccagccacga tggcggcaag caggcgctgg agacggtgca gcggctgttg ccggtactgt 3120 gccaggacca tggcctgacc ccggaccagg tggtggccat cgccaacaat aacggcggca 3180 agcaggcgct ggagacggtg cagcggctgt tgccggtgct gtgccaggac catggcctga 3240 cccaggacca ggtggtggcc atcgccagca atattggcgg caagcaggcg ctggagacgg 3300 tgcagcggct gttgccggtg ctgtgccagg accatggcct gaccccggac caggtggtgg 3360 ccatcgccag ccacgatggc ggcaagcagg cgctggagac ggtgcagcgg ctgttgccgg 3420 tgctgtgcca ggaccatggc ctgaccccgg cccaggtggt ggccatcgcc aacaataacg 3480 gcggcaagca ggcgctggag acggtgcagc ggctgttgcc ggtgctgtgc caggaccatg 3540 gcctgagccc ggaccaggtc gtggccatcg ccagcaatat tggcggcaag caggcgctgg 3600 agacggtgca gcggctgttg ccggtgctgt gccaggacca tggcctgacc ccggaccagg 3660 tggtggccat cgccagcaat ggcggcggca agcaggcgct ggagacggtg cagcggctgt 3720 tgccggtgct gtgccaggac catggcctga gcccggacca ggtcgtggcc atcgccagcc 3780 atgatggcgg caagcaggcg ctggagacgg tgcagcggct gttgccggtg ctgtgccagg 3840 accatggcct gaccccggac caggtggtgg ccatcgccag caatggcggc ggcaagcagg 3900 cgctggagag cattgttgcc cagttatctt gccctgatcc ggcgttggcc gcgttgacca 3960 acgaccacct cgtcgccttg gcctgcctcg gcggacgtcc tgccatggat gcagtgaaaa 4020 agggattgcc gcacgcgccg gaattgatca gaagagtcaa tagccgtatt ggcgaacgca 4080 cgtcccatcg cgttgccgac tacgcgcaag tggttcgcgt gctggagttt ttccagtgcc 4140 actcccaccc agcgtacgca tttgatgagg ccatgacgca gttcgggatg agcaggaacg 4200 ggttggtaca gctctttcgc agagtgggcg tcaccgaact cgaagcccgc tgcggaacgc 4260 tccccccagc ctcgcagcgt tgggaccgta tcctccaggc atcagggatg aaaagggcca 4320 aaccgtcccc tacttcagct caaacaccgg atcaggcgtc tttgcatgca ttcgccgatt 4380 cgctggagcg tgaccttgat gcgcccagcc caatgcacga gggagatcag acgcgggcaa 4440 gcagccgtaa acggtcccga tcggatcgtg ctgtcaccgg cccctccgca cagcaatctt 4500 tcgaggtgcg cgttcccgaa cagcgcgatg cgctgcattt gcccctcagc tggagggtaa 4560 aacgcccgcg taccaggatc gggggcggcc tcccggatcc tggtacgccc atcgctgccg 4620 acctggcagc gtccagcacc gtgatgtggg aacaagatgc ggcccccttc gcaggggcag 4680 cggatgattt cccggcattc aacgaagagg agctcgcatg gttgatggag ctattgcctc 4740 agtcaggctc agttggaggg acgatctgag gggcggcagg gattcgagta agaaaccttt 4800 actgacagca agttagctca cttttggctg tgttttacac gaatccctgc cgaccctcta 4860 ctccggcgca ggcgtgaaat gcggttatca gtggtggatc gcgcggggtt cgccgacaga 4920 gcgcgtgtgg tccggcgtac acgtgggcca cgaagtccaa ggcgcaggtg aggcgttatc 4980 cgtaggggcg atgcccctac acccctacaa tcccggagca tcgtcattgg ggaccgtatg 5040 agctacagac cgcagaacaa ccaagatggg ctttggtggg aaatcgccct gggcatcttc 5100 gtcggccagc tgatgaccgc agcgttcgca ggtgtggtgg ccctgtgcct gggctacttc 5160 acgctgcgca gcgtcagcgc aggactaccg gcaccacgat tactgccggt cactccacag 5220 gaagcggact gaacaatgac ctttgacacc tacgagcgcg tagacctgac cggcccttgg 5280 gccggttttg gttttcaggg acatcgattc ttcacaccag aaaattacga catcgagccc 5340 tgcggcatgc ggtactgggc gctgacctgc gccatcgcac gggagtggtc gctgatgatg 5400 tccgaagaac gcaatacgcg ctcggcgacc ccgcgaacgc ctactgccac caggtctccg 5460 gggtcgcgtt tgtctcaagg cgcagaagtg atctacctgc gggacgtact ggagggttgg 5520 cagggattcg tgtaaaaaac agccaaaagt gggctaactc gctgtcagca cagaaatttc 5580 tcacaaccct ctgccgatcc tccatgcggg tccgggatcg ccttcatgtc tgcgcctcac 5640 cctggtcgtc gagggttgcc aggatcaccc gaagttgtgt actgccatgc ggcctcggaa 5700 gctatgtagg gaccacagac cgctagtctg gaggcgacca tgtaaagagg tatgcctgat 5760 ggatcccatt cgttcgcgca cgccaagtcc tgcccgcgag cttctgcccg gaccccaacc 5820 ggatagggtt cagccgac 5838 <210> 16 <211> 1945 <212> PRT <213> Artificial Sequence <220> <223> LJ4 <400> 16 Ala Leu Gly Ala Asp Val Gly Asp Val Gly His Pro Gly Leu Val Arg 1 5 10 15 Ser Thr Gly Leu Glu Ala Pro Ile Gln Asn Val Gly Arg His Arg Gln 20 25 30 Val Val Pro Ala Val Gly Gly Val Gly Glu Leu Ala Phe Pro Ala Arg 35 40 45 Leu Gln Pro Val Ala Leu His Gln Ala Ala Asp Pro Val Ala Thr Ser 50 55 60 Gly Gln Ala Leu Gly Leu Gln Ala Gly Ala Gln Ser Thr Ala Ala Ile 65 70 75 80 Val Ala Ala Ala Gly Leu Glu Gly Arg Leu His Arg Cys Arg Lys Tyr 85 90 95 Ile Ser Ala Trp Ser Arg Ser Pro Ser Ala Arg Arg Ile His Pro Arg 100 105 110 Thr Thr His Pro Gln Gln Pro Ala Gln Pro Gly Gly Ser Gly Leu Leu 115 120 125 Leu Pro Leu Leu Asp His Leu Leu Asp His Phe Ser Ser Arg Ala Lys 130 135 140 Lys Ala Asp Ala Phe Phe Asn Arg Leu Leu Ser Ser Arg Ser Arg Trp 145 150 155 160 Phe Ser Arg Ser Asn Ser Arg Met Arg Cys Cys Ser Gly Val Ser Gly 165 170 175 Arg Pro Cys Pro Gly Trp Pro Leu Cys Ser Ala Trp Tyr Trp Ala Asn 180 185 190 Gln Arg Arg Thr Ala Leu Ser Thr Arg Ser Gln Val Ala Ala His Leu 195 200 205 Thr His Thr Gln Thr Leu Val Ser Asp His Leu His His Val Gln Leu 210 215 220 Glu Gly Ser Ile Glu Ile Pro Thr Arg Ala Gly Cys His Ile Gly Phe 225 230 235 240 Gly Pro Arg Trp Asp Asp His Pro Leu Ser Arg Cys Pro Arg Glu Leu 245 250 255 Asp Gln Asp Ile Tyr Leu Arg Asp Val Leu Glu Gly Trp Gln Gly Phe 260 265 270 Val *** Lys Thr Ala Lys Ser Gly Leu Thr Arg Cys Gln His Arg Asn 275 280 285 Phe Ser Gln Pro Ser Ala Asp Pro Pro Cys Gly Ser Gly Ile Ala Phe 290 295 300 Met Ser Ala Pro His Pro Gly Arg Arg Gly Leu Pro Gly Ser Pro Glu 305 310 315 320 Val Val Tyr Cys His Ala Ala Ser Glu Ala Thr *** Gly Pro Gln Thr 325 330 335 Ala Ser Leu Glu Ala Thr Met *** Arg Gly Met Pro Asp Gly Ser His 340 345 350 Ser Phe Ala His Ala Lys Ser Cys Pro Arg Ala Ser Ala Arg Thr Pro 355 360 365 Thr Gly *** Gly Ser Ala Asp Cys Arg Ser Gly Gly Ala Pro Pro Ala 370 375 380 Gly Gly Pro Leu Asp Gly Leu Pro Ala Arg Arg Thr Met Ser Arg Thr 385 390 395 400 Arg Leu Pro Ser Pro Pro Ala Pro Ser Pro Ala Phe Ser Ala Gly Ser 405 410 415 Phe Ser Asp Leu Leu Arg Gln Phe Asp Pro Ser Leu Leu Asp Thr Ser 420 425 430 Leu Leu Asp Ser Met Pro Ala Val Gly Thr Pro His Thr Ala Ala Ala 435 440 445 Pro Ala Glu Cys Asp Glu Val Gln Ser Gly Leu Arg Ala Ala Asp Asp 450 455 460 Pro Pro Pro Thr Val Arg Val Ala Val Thr Ala Ala Arg Pro Pro Arg 465 470 475 480 Ala Lys Pro Ala Pro Arg Arg Arg Ala Ala Gln Pro Ser Asp Ala Ser 485 490 495 Pro Ala Ala Gln Val Asp Leu Arg Thr Leu Gly Tyr Ser Gln Gln Gln 500 505 510 Gln Glu Lys Ile Lys Pro Lys Val Arg Ser Thr Val Ala Gln His His 515 520 525 Glu Ala Leu Val Gly His Gly Phe Thr His Ala His Ile Val Ala Leu 530 535 540 Ser Gln His Pro Ala Ala Leu Gly Thr Val Ala Val Thr Tyr Gln Asp 545 550 555 560 Ile Ile Arg Ala Leu Pro Glu Ala Thr His Glu Asp Ile Val Gly Val 565 570 575 Gly Lys Gln Trp Ser Gly Ala Arg Ala Leu Glu Ala Leu Leu Thr Glu 580 585 590 Ala Gly Glu Leu Arg Gly Pro Pro Leu Gln Leu Asp Thr Gly Gln Leu 595 600 605 Leu Lys Ile Ala Lys Arg Gly Gly Val Thr Ala Val Glu Ala Val His 610 615 620 Ala Trp Arg Asn Ala Leu Thr Gly Ala Pro Leu Asn Leu Thr Pro Asp 625 630 635 640 Gln Val Val Ala Ile Ala Ser Asn Ile Gly Gly Asn Gln Ala Leu Glu 645 650 655 Thr Val Gln Arg Leu Leu Pro Val Leu Cys Gln Ala His Gly Leu Thr 660 665 670 Pro Asp Gln Val Val Ala Ile Ala Ser His Gly Gly Gly Lys Gln Ala 675 680 685 Leu Glu Thr Val Gln Arg Leu Leu Pro Val Leu Cys Gln Asp His Gly 690 695 700 Leu Thr Pro Asp Gln Val Val Ala Ile Ala Ser Asn Ile Gly Gly Lys 705 710 715 720 Gln Ala Leu Glu Thr Val Gln Arg Leu Leu Pro Val Leu Cys Gln Asp 725 730 735 His Gly Leu Thr Pro Asp Gln Val Val Ala Ile Ala Ser Asn Ile Gly 740 745 750 Gly Lys Gln Ala Leu Glu Thr Val Gln Arg Leu Leu Pro Val Leu Cys 755 760 765 Gln Asp His Gly Leu Thr Pro Asp Gln Val Val Ala Ile Ala Ser Asn 770 775 780 Ile Gly Gly Lys Gln Ala Leu Glu Thr Val Gln Arg Leu Leu Pro Val 785 790 795 800 Leu Cys Gln Asp His Gly Leu Thr Pro Asp Gln Val Val Ala Ile Ala 805 810 815 Asn Asn Asn Gly Gly Lys Gln Ala Leu Glu Thr Val Gln Arg Leu Leu 820 825 830 Pro Val Leu Cys Gln Asp His Gly Leu Thr Pro Asp Gln Val Val Ala 835 840 845 Ile Ala Ser His Asp Gly Gly Lys Gln Ala Leu Glu Thr Val Gln Arg 850 855 860 Leu Leu Pro Val Leu Cys Gln Gly His Gly Leu Thr Pro Asp Lys Val 865 870 875 880 Val Ala Ile Ala Ser Asn Ser Gly Gly Lys Gln Ala Leu Glu Thr Val 885 890 895 Gln Arg Leu Leu Pro Val Leu Cys Gln Ala His Gly Leu Thr Pro Asp 900 905 910 Lys Val Val Ala Ile Ala Asn Asn Asn Gly Gly Lys Gln Ala Leu Glu 915 920 925 Thr Val Gln Arg Leu Leu Pro Val Leu Cys Gln Asp His Gly Leu Thr 930 935 940 Pro Asp Gln Val Val Ala Ile Ala Ser Asn Ser Gly Gly Lys Gln Ala 945 950 955 960 Leu Glu Thr Val Gln Arg Leu Leu Pro Val Leu Cys Gln Asp His Gly 965 970 975 Leu Thr Pro Ala Gln Val Val Ala Ile Ala Asn Asn Asn Gly Gly Lys 980 985 990 Gln Ala Leu Glu Thr Val Arg Arg Leu Leu Pro Val Leu Cys Gln Asp 995 1000 1005 His Gly Leu Thr Pro Asp Gln Val Val Ala Ile Ala Ser His Asp Gly 1010 1015 1020 Gly Lys Gln Ala Leu Glu Thr Val Gln Arg Leu Leu Pro Val Leu Cys 1025 1030 1035 1040 Gln Asp His Gly Leu Thr Pro Asp Gln Val Val Ala Ile Ala Asn Asn 1045 1050 1055 Asn Gly Gly Lys Gln Ala Leu Glu Thr Val Gln Arg Leu Leu Pro Val 1060 1065 1070 Leu Cys Gln Asp His Gly Leu Thr Gln Asp Gln Val Val Ala Ile Ala 1075 1080 1085 Ser Asn Ile Gly Gly Lys Gln Ala Leu Glu Thr Val Gln Arg Leu Leu 1090 1095 1100 Pro Val Leu Cys Gln Asp His Gly Leu Thr Pro Asp Gln Val Val Ala 1105 1110 1115 1120 Ile Ala Ser His Asp Gly Gly Lys Gln Ala Leu Glu Thr Val Gln Arg 1125 1130 1135 Leu Leu Pro Val Leu Cys Gln Asp His Gly Leu Thr Pro Ala Gln Val 1140 1145 1150 Val Ala Ile Ala Asn Asn Asn Gly Gly Lys Gln Ala Leu Glu Thr Val 1155 1160 1165 Gln Arg Leu Leu Pro Val Leu Cys Gln Asp His Gly Leu Ser Pro Asp 1170 1175 1180 Gln Val Val Ala Ile Ala Ser Asn Ile Gly Gly Lys Gln Ala Leu Glu 1185 1190 1195 1200 Thr Val Gln Arg Leu Leu Pro Val Leu Cys Gln Asp His Gly Leu Thr 1205 1210 1215 Pro Asp Gln Val Val Ala Ile Ala Ser Asn Gly Gly Gly Lys Gln Ala 1220 1225 1230 Leu Glu Thr Val Gln Arg Leu Leu Pro Val Leu Cys Gln Asp His Gly 1235 1240 1245 Leu Ser Pro Asp Gln Val Val Ala Ile Ala Ser His Asp Gly Gly Lys 1250 1255 1260 Gln Ala Leu Glu Thr Val Gln Arg Leu Leu Pro Val Leu Cys Gln Asp 1265 1270 1275 1280 His Gly Leu Thr Pro Asp Gln Val Val Ala Ile Ala Ser Asn Gly Gly 1285 1290 1295 Gly Lys Gln Ala Leu Glu Ser Ile Val Ala Gln Leu Ser Cys Pro Asp 1300 1305 1310 Pro Ala Leu Ala Ala Leu Thr Asn Asp His Leu Val Ala Leu Ala Cys 1315 1320 1325 Leu Gly Gly Arg Pro Ala Met Asp Ala Val Lys Lys Gly Leu Pro His 1330 1335 1340 Ala Pro Glu Leu Ile Arg Arg Val Asn Ser Arg Ile Gly Glu Arg Thr 1345 1350 1355 1360 Ser His Arg Val Ala Asp Tyr Ala Gln Val Val Arg Val Leu Glu Phe 1365 1370 1375 Phe Gln Cys His Ser His Pro Ala Tyr Ala Phe Asp Glu Ala Met Thr 1380 1385 1390 Gln Phe Gly Met Ser Arg Asn Gly Leu Val Gln Leu Phe Arg Arg Val 1395 1400 1405 Gly Val Thr Glu Leu Glu Ala Arg Cys Gly Thr Leu Pro Pro Ala Ser 1410 1415 1420 Gln Arg Trp Asp Arg Ile Leu Gln Ala Ser Gly Met Lys Arg Ala Lys 1425 1430 1435 1440 Pro Ser Pro Thr Ser Ala Gln Thr Pro Asp Gln Ala Ser Leu His Ala 1445 1450 1455 Phe Ala Asp Ser Leu Glu Arg Asp Leu Asp Ala Pro Ser Pro Met His 1460 1465 1470 Glu Gly Asp Gln Thr Arg Ala Ser Ser Arg Lys Arg Ser Arg Ser Asp 1475 1480 1485 Arg Ala Val Thr Gly Pro Ser Ala Gln Gln Ser Phe Glu Val Arg Val 1490 1495 1500 Pro Glu Gln Arg Asp Ala Leu His Leu Pro Leu Ser Trp Arg Val Lys 1505 1510 1515 1520 Arg Pro Arg Thr Arg Ile Gly Gly Gly Leu Pro Asp Pro Gly Thr Pro 1525 1530 1535 Ile Ala Ala Asp Leu Ala Ala Ser Ser Thr Val Met Trp Glu Gln Asp 1540 1545 1550 Ala Ala Pro Phe Ala Gly Ala Ala Asp Asp Phe Pro Ala Phe Asn Glu 1555 1560 1565 Glu Glu Leu Ala Trp Leu Met Glu Leu Leu Pro Gln Ser Gly Ser Val 1570 1575 1580 Gly Gly Thr Ile *** Gly Ala Ala Gly Ile Arg Val Arg Asn Leu Tyr 1585 1590 1595 1600 *** Gln Gln Val Ser Ser Leu Leu Ala Val Phe Tyr Thr Asn Pro Cys 1605 1610 1615 Arg Pro Ser Thr Pro Ala Gln Ala *** Asn Ala Val Ile Ser Gly Gly 1620 1625 1630 Ser Arg Gly Val Arg Arg Gln Ser Ala Cys Gly Pro Ala Tyr Thr Trp 1635 1640 1645 Ala Thr Lys Ser Lys Ala Gln Val Arg Arg Tyr Pro *** Gly Arg Cys 1650 1655 1660 Pro Tyr Thr Pro Thr Ile Pro Glu His Arg His Trp Gly Pro Tyr Glu 1665 1670 1675 1680 Leu Gln Thr Ala Glu Gln Pro Arg Trp Ala Leu Val Gly Asn Arg Pro 1685 1690 1695 Gly His Leu Arg Arg Pro Ala Asp Asp Arg Ser Val Arg Arg Cys Gly 1700 1705 1710 Gly Pro Val Pro Gly Leu Leu His Ala Ala Gln Arg Gln Arg Arg Thr 1715 1720 1725 Thr Gly Thr Thr Ile Thr Ala Gly His Ser Thr Gly Ser Gly Leu Asn 1730 1735 1740 Asn Asp Leu *** His Leu Arg Ala Arg Arg Pro Asp Arg Pro Leu Gly 1745 1750 1755 1760 Arg Phe Trp Phe Ser Gly Thr Ser Ile Leu His Thr Arg Lys Leu Arg 1765 1770 1775 His Arg Ala Leu Arg His Ala Val Leu Gly Ala Asp Leu Arg His Arg 1780 1785 1790 Thr Gly Val Val Ala Asp Asp Val Arg Arg Thr Gln Tyr Ala Leu Gly 1795 1800 1805 Asp Pro Ala Asn Ala Tyr Cys His Gln Val Ser Gly Val Ala Phe Val 1810 1815 1820 Ser Arg Arg Arg Ser Asp Leu Pro Ala Gly Arg Thr Gly Gly Leu Ala 1825 1830 1835 1840 Gly Ile Arg Val Lys Asn Ser Gln Lys Trp Ala Asn Ser Leu Ser Ala 1845 1850 1855 Gln Lys Phe Leu Thr Thr Leu Cys Arg Ser Ser Met Arg Val Arg Asp 1860 1865 1870 Arg Leu His Val Cys Ala Ser Pro Trp Ser Ser Arg Val Ala Arg Ile 1875 1880 1885 Thr Arg Ser Cys Val Leu Pro Cys Gly Leu Gly Ser Tyr Val Gly Thr 1890 1895 1900 Thr Asp Arg *** Ser Gly Gly Asp His Val Lys Arg Tyr Ala *** Trp 1905 1910 1915 1920 Ile Pro Phe Val Arg Ala Arg Gln Val Leu Pro Ala Ser Phe Cys Pro 1925 1930 1935 Asp Pro Asn Arg Ile Gly Phe Ser Arg 1940 1945 <210> 17 <211> 1000 <212> DNA <213> Artificial Sequence <220> <223> OsWRKY55 promoter <400> 17 atctatctat ctatctatct atctatctat ctatctatct atctatttat ctatcaaatt 60 tatgatctac tatcaatcta tcctggctat agtatattca tggtgcattg ccatcagcat 120 tttcacttgc aattttacta ccaaaaaaaa aagcacattt actgcttcag gcttgcagtg 180 ccacttgatg catcaactgg ctgctatcat cgtgatgcat tcatcaactg gccgctatca 240 tcgtgatgca cataacgtct gtactgccaa tctctacaaa aatatcccca gtggccgggc 300 aatgcatccg cccagttgcc acgcgcccct tttaactaag acccctattg gaggcaaagc 360 acagtacatc actggtgaga tcattttccg ggtcctaaat taggcgaaaa gcgggagatt 420 ccttgctgcc tcaacttgtc ctgcagcatg tgcaggtctt taaaaaaacc atcgatatgc 480 gttaggtatc agctaatctc cctccccaag caacgagacg attcctgcct ctggctttgt 540 gaggcaaagg aaagaatcag gtcaagtcca actagtttat aattaatcaa ttatctaagc 600 aatcaccaac gcaccggggc aggcttccat tctggccaag atttgtgaac tggtccggcc 660 gattatataa tcaatttgcc cgagttccaa tcaaagcaat taattaacca tttaatcgcc 720 ccaagttgct agatcgatga cagtgcttag tccttaaaaa aacggggtga cacatcattt 780 tgaggccact tgtagctcct atgtgtgtcc ggggcctttg aagaagctgc aaagaaattt 840 ctcaagtcgc cccgtcggtg cgcgggagca cgtgacagcg atacggggag aggagaagat 900 aatctttgca tcgtttttgg tcttcagctt agagagcggt ggtggttttt atatggtgat 960 aagggcctca attatggagc tctttgatgt tttaagctaa 1000 <210> 18 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> OsWRKY55 promoter P1 region <400> 18 agagcggtgg tggtttttat 20 <210> 19 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> OsWRKY55 promoter P1 region mutant <400> 19 agcgcggtgg tagttcttat 20 <210> 20 <211> 36 <212> DNA <213> Artificial Sequence <220> <223> pOsWRKY55 cloning-F primer <400> 20 caaaaaagca ggcttgattt cacttgcaat tttact 36 <210> 21 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> pOsWRKY55 cloning-R primer <400> 21 agaaagctgg gttgtttcca gagagaaaga aa 32 <210> 22 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> attB1-F primer <400> 22 ggggacaagt ttgtacaaaa aagcaggct 29 <210> 23 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> attB2-R primer <400> 23 ggggaccact ttgtacaaga aagctgggt 29 <210> 24 <211> 228 <212> DNA <213> Artificial Sequence <220> <223> OsWRKY55 RNAi <400> 24 ctgcactgag ctccaatctt gcagcaccga atgtcaggat gcattttcag ctggtacgat 60 tcctgaagag acagtagatg caggaagatt tggttctatc agattcttcc attttttgta 120 aatgaattaa tggaagacag tttattttat ttcaaagagc taatatgata cacatgtttt 180 ttcctctaca ccctcaaaga gtatgagagg ttttccttgc atgtcacc 228 <210> 25 <211> 633 <212> DNA <213> Artificial Sequence <220> <223> OsWRKY55 <400> 25 atgtctcctg tgccgagtcc gcatcaatca caccatctag gccatggctc aaggaaagag 60 aagcgcatga ggaaggtgga tacctttgcg ccgcacaacg acggccacca gtggaggaag 120 tacggcgaga agaagataaa caactgtaat ttccccagat actactacag atgcacctat 180 aaagataaca tgaattgccc agcaacgaag cagattcagc agaaagatta tagtgatcca 240 ccattgtact cagtcaccta ctacaatgag catacatgta atagtgcttt tcttcctctt 300 agcccctcag agttccagct gcagactgca tctgggaagg cagtctccat ctgctttgaa 360 tcatctgggg ctcaagaacc aatgaccaat gccagctcac cttcttcaag cgcagcacgg 420 cgtagcacac cttcagagaa caagaatcag cctcttccac ggcattcgga agcctattct 480 tggggggttg gtgttgtaga acaaaagccg tcctgcactg agctccaatc ttgcagcacc 540 gaatgtcagg atgcattttc agctggtacg attcctgaag agacagtaga tgcaggaaga 600 tttggttcta tcagattctt ccattttttg taa 633 <210> 26 <211> 210 <212> PRT <213> Artificial Sequence <220> <223> OsWRKY55 <400> 26 Met Ser Pro Val Pro Ser Pro His Gln Ser His His Leu Gly His Gly 1 5 10 15 Ser Arg Lys Glu Lys Arg Met Arg Lys Val Asp Thr Phe Ala Pro His 20 25 30 Asn Asp Gly His Gln Trp Arg Lys Tyr Gly Glu Lys Lys Ile Asn Asn 35 40 45 Cys Asn Phe Pro Arg Tyr Tyr Tyr Arg Cys Thr Tyr Lys Asp Asn Met 50 55 60 Asn Cys Pro Ala Thr Lys Gln Ile Gln Gln Lys Asp Tyr Ser Asp Pro 65 70 75 80 Pro Leu Tyr Ser Val Thr Tyr Tyr Asn Glu His Thr Cys Asn Ser Ala 85 90 95 Phe Leu Pro Leu Ser Pro Ser Glu Phe Gln Leu Gln Thr Ala Ser Gly 100 105 110 Lys Ala Val Ser Ile Cys Phe Glu Ser Ser Gly Ala Gln Glu Pro Met 115 120 125 Thr Asn Ala Ser Ser Pro Ser Ser Ser Ala Ala Arg Arg Ser Thr Pro 130 135 140 Ser Glu Asn Lys Asn Gln Pro Leu Pro Arg His Ser Glu Ala Tyr Ser 145 150 155 160 Trp Gly Val Gly Val Val Glu Gln Lys Pro Ser Cys Thr Glu Leu Gln 165 170 175 Ser Cys Ser Thr Glu Cys Gln Asp Ala Phe Ser Ala Gly Thr Ile Pro 180 185 190 Glu Glu Thr Val Asp Ala Gly Arg Phe Gly Ser Ile Arg Phe Phe His 195 200 205 Phe Leu 210 <210> 27 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> OsWRKY55OX-F primer <400> 27 caaaaaagca ggcttgatgt ctcctgtgcc gagtc 35 <210> 28 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> OsWRKY55OX-R primer <400> 28 agaaagctgg gttcaaaaaa tgaatctga 29 <210> 29 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> OsWRKY55 RNAi-F primer <400> 29 aaaaaagcag gctctgcact gagctccaat ctt 33 <210> 30 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> OsWRKY55 RNAi-R primer <400> 30 agaaagctgg gtcggtgaca tgcaaggaaa cc 32

Claims (17)

OsWRKY55 유전자에 대한 서열번호 24의 염기서열로 표시되는 RNAi(ribonucleic acid interference)를 포함하는, 벼 흰잎마름병 저항성 증진용 재조합 벡터.Recombinant vector for enhancing rice white leaf blight resistance, including RNAi (ribonucleic acid interference) represented by the nucleotide sequence of SEQ ID NO: 24 for OsWRKY55 gene. 삭제delete 제1항의 재조합 벡터로 형질전환된 식물체.A plant transformed with the recombinant vector of claim 1. 제1항의 재조합 벡터를 식물체에 형질전환하는 단계를 포함하는, 벼 흰잎마름병 저항성이 증진된 형질전환 식물체의 제조방법.A method for producing a transgenic plant with improved resistance to white leaf blight disease, comprising the step of transforming the plant with the recombinant vector of claim 1. 제1항의 재조합 벡터를 식물체에 도입하는 단계를 포함하는, 식물체의 벼 흰잎마름병 저항성을 증진시키는 방법.A method for enhancing rice white leaf blight resistance of a plant comprising the step of introducing the recombinant vector of claim 1 into a plant. 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete
KR1020190073091A 2019-06-19 2019-06-19 Defense suppression function of OsWRKY55 gene, or promoter region recognized by the effector of Xanthomonas oryzae pv. oryzae and uses thereof KR102194867B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020190073091A KR102194867B1 (en) 2019-06-19 2019-06-19 Defense suppression function of OsWRKY55 gene, or promoter region recognized by the effector of Xanthomonas oryzae pv. oryzae and uses thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020190073091A KR102194867B1 (en) 2019-06-19 2019-06-19 Defense suppression function of OsWRKY55 gene, or promoter region recognized by the effector of Xanthomonas oryzae pv. oryzae and uses thereof

Publications (1)

Publication Number Publication Date
KR102194867B1 true KR102194867B1 (en) 2020-12-23

Family

ID=74089382

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020190073091A KR102194867B1 (en) 2019-06-19 2019-06-19 Defense suppression function of OsWRKY55 gene, or promoter region recognized by the effector of Xanthomonas oryzae pv. oryzae and uses thereof

Country Status (1)

Country Link
KR (1) KR102194867B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112725351A (en) * 2021-03-23 2021-04-30 上海师范大学 Application of gene OsWRKY43 in resisting bacterial blight of rice

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101785101B1 (en) 2016-06-15 2017-10-13 대한민국 OsDWD1 gene and use thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101785101B1 (en) 2016-06-15 2017-10-13 대한민국 OsDWD1 gene and use thereof

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Genbank Accession number EF576048 (2016.07.23.) *
V.E. Viana, 등. Genet.Mol.Res. Vol. 16, No. 3, 페이지 1-16 (2017.09.27.)* *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112725351A (en) * 2021-03-23 2021-04-30 上海师范大学 Application of gene OsWRKY43 in resisting bacterial blight of rice
CN112725351B (en) * 2021-03-23 2022-11-11 上海师范大学 Application of gene OsWRKY43 in resisting bacterial blight of rice

Similar Documents

Publication Publication Date Title
KR20080083145A (en) Constitutive plant promoters
US20150232876A1 (en) Use of a Receptor Kinase Having LysM Motifs in Order to Improve the Response of Plants to Lipochitooligosaccharides
CA3022345A1 (en) Construct and vector for intragenic plant transformation
KR102194867B1 (en) Defense suppression function of OsWRKY55 gene, or promoter region recognized by the effector of Xanthomonas oryzae pv. oryzae and uses thereof
CN101781362A (en) Plant development associated protein, encoding gene and application thereof
AU2016200894A1 (en) Genetic engineering method and material for increasing plant yield
Woo et al. Altered susceptibility to infection by Sinorhizobium meliloti and Nectria haematococca in alfalfa roots with altered cell cycle
CN101824078B (en) Protein for controlling growth of plants as well as coding gene and application thereof
WO2018016556A1 (en) Peptide effective in geminivirus disease prevention, and method for using same
KR20030023699A (en) Lipoxygenase genes, promoters, transit peptides and proteins thereof
KR20190044866A (en) Promoter recognition site by Xanthomonas oryzae pv. oryzae and uses thereof
KR102000465B1 (en) Method of improving resistance of Bakanae disease
KR101028113B1 (en) CaHB1 gene involved in growth enhancement, salt tolerance and senescence regulation of Capsicum annuum and uses thereof
CN112501184B (en) Soybean GmMT1 gene, vector containing GmMT1 gene, and preparation method and application thereof
KR100859988B1 (en) Above-Ground Specific Promoter and Above-Ground Specific Expression Method of Target Protein Using the Same
WO2015150412A1 (en) Transgenic plants with increased number of fruits and seeds and method for obtaining thereof
US6956149B1 (en) Method of conveying BNYVV resistance to sugar beet plants
US20220042030A1 (en) A method to improve the agronomic characteristics of plants
CN112501196B (en) Application of tomato gene in flower stalk falling process based on expression regulation technology
CN117904143B (en) Upland cotton GhDIR gene, coded protein and expression vector and application thereof
JP4464879B2 (en) Genes involved in the initiation of nodule formation and their utilization
JP5833827B2 (en) Genes that increase oil and fat productivity of plants and methods for using the same
US20230081195A1 (en) Methods of controlling grain size and weight
US20090044296A1 (en) Hrpn interactors and uses thereof
Sun et al. Inhibition of tobacco axillary bud differentiation by silencing CUP-SHAPED COTYLEDON 3

Legal Events

Date Code Title Description
GRNT Written decision to grant