KR102191201B1 - 대형 복합재난 영향 확산을 고려한 수치모형 및 시나리오 기반 피해 예측방법 - Google Patents

대형 복합재난 영향 확산을 고려한 수치모형 및 시나리오 기반 피해 예측방법 Download PDF

Info

Publication number
KR102191201B1
KR102191201B1 KR1020180089639A KR20180089639A KR102191201B1 KR 102191201 B1 KR102191201 B1 KR 102191201B1 KR 1020180089639 A KR1020180089639 A KR 1020180089639A KR 20180089639 A KR20180089639 A KR 20180089639A KR 102191201 B1 KR102191201 B1 KR 102191201B1
Authority
KR
South Korea
Prior art keywords
tsunami
model
condition
estuary
water level
Prior art date
Application number
KR1020180089639A
Other languages
English (en)
Other versions
KR20200014147A (ko
Inventor
이승오
김동현
유형주
Original Assignee
홍익대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 홍익대학교 산학협력단 filed Critical 홍익대학교 산학협력단
Priority to KR1020180089639A priority Critical patent/KR102191201B1/ko
Publication of KR20200014147A publication Critical patent/KR20200014147A/ko
Application granted granted Critical
Publication of KR102191201B1 publication Critical patent/KR102191201B1/ko

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/10Services
    • G06Q50/26Government or public services
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q90/00Systems or methods specially adapted for administrative, commercial, financial, managerial or supervisory purposes, not involving significant data processing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A10/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE at coastal zones; at river basins
    • Y02A10/40Controlling or monitoring, e.g. of flood or hurricane; Forecasting, e.g. risk assessment or mapping
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A90/00Technologies having an indirect contribution to adaptation to climate change
    • Y02A90/10Information and communication technologies [ICT] supporting adaptation to climate change, e.g. for weather forecasting or climate simulation

Landscapes

  • Business, Economics & Management (AREA)
  • Economics (AREA)
  • Physics & Mathematics (AREA)
  • General Business, Economics & Management (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Tourism & Hospitality (AREA)
  • Educational Administration (AREA)
  • Development Economics (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Human Resources & Organizations (AREA)
  • Marketing (AREA)
  • Primary Health Care (AREA)
  • Strategic Management (AREA)
  • Geophysics And Detection Of Objects (AREA)
  • Alarm Systems (AREA)

Abstract

본 발명은 수치모형을 이용하여 해일과 홍수 등이 복합된 복합재난의 피해를 예측하는 방법에 관한 것으로, 해역내 기준점(10)을 설정하고, 기준점(10)에서 전파되는 다양한 조건의 가상해일을 상정하여 파랑모형을 가동하며, 조건별로 산출된 하구(河口) 수위를 시나리오 데이터베이스로 구축한 후, 실제 해일 발생시 전체 해역 및 하구에 대하여 파랑모형을 가동하지 않고 기준점(10)에서의 모의해일 조건만을 산출한 후, 이를 가상해일 조건과 대비하여, 가장 근접한 하구 수위를 시나리오 데이터베이스에서 인출한 후, 이를 경계조건으로 홍수에 대한 범람모형을 가동함으로써, 내륙 주거지 등의 피해구역을 신속하고 정확하게 예측할 수 있도록 한 것이다.

Description

대형 복합재난 영향 확산을 고려한 수치모형 및 시나리오 기반 피해 예측방법{NUMERICAL MODEL AND SCENARIO BASED DAMAGE PREDICTION METHOD CONSIDERING THE INFLUENCE DIFFUSION OF COMPLEX DISASTER}
본 발명은 수치모형을 이용하여 해일과 홍수 등이 복합된 복합재난의 피해를 예측하는 방법에 관한 것으로, 해역내 기준점(10)을 설정하고, 기준점(10)에서 전파되는 다양한 조건의 가상해일을 상정하여 파랑모형을 가동하며, 조건별로 산출된 하구(河口) 수위를 시나리오 데이터베이스로 구축한 후, 실제 해일 발생시 전체 해역 및 하구에 대하여 파랑모형을 가동하지 않고 기준점(10)에서의 모의해일 조건만을 산출한 후, 이를 가상해일 조건과 대비하여, 가장 근접한 하구 수위를 시나리오 데이터베이스에서 인출한 후, 이를 경계조건으로 홍수에 대한 범람모형을 가동함으로써, 내륙 주거지 등의 피해구역을 예측할 수 있도록 한 것이다.
지구온난화 및 이상기후로 인하여 대형 풍수해가 빈발하고 있을 뿐 아니라, 지진 및 화산활동 역시 빈발하고 있는 바, 지진해일 내습과 홍수로 인한 하천 범람이 동시에 발생되거나, 각 재난의 영향이 전파 및 확산되면서 피해가 증폭되는 대형 복합재난 영향 확산 현상에 대한 우려가 점증되고 있다.
특히, 지진해일은 해저 지진 또는 해저 화산분출 등 해저 지각변동에 의하여 발생되는 해일로서, 심해에서는 파장에 비하여 극히 낮은 파고를 나타내지만 해일파가 해안에 도달함에 따라 파고가 증폭되는 천수효과(淺水效果, Shoaling effects)가 발생되어 막대한 피해를 야기할 뿐 아니라, 설령 해일파의 파고가 내륙에 대한 직접적 피해를 야기하지 않는 규모라 하여도 홍수와 복합되는 경우 하천 하구의 수위상승 및 이로 인한 배수(背水, back water) 효과로 인하여 내륙의 침수 피해를 심각하게 가중하게 된다.
도 1은 해저 지진으로 발생된 지진해일의 전파과정을 예시한 것으로, 도면상 표시된 수치는 지진해일의 전파에 소요되는 시간을 분(分)으로 표시한 것이며, 지진해일이 전파되어 동 도면의 발췌 확대부에서와 같은 하천의 하구에 도달하면, 하구 수위가 비약적으로 상승하면서, 하도를 경유하는 배수 현상이 유발되어 내륙까지 피해가 전파될 수 밖에 없다.
이러한 하천 하구 수위의 상승은 평상시는 물론 특히 홍수시에 막대한 피해를 초래하게 되는데, 홍수로 인한 하천 수위 상승과 하수 수위 상승이 복합되면서 심각한 침수 내지 범람 피해를 야기하게 된다.
한편, 도 1에 도시된 바와 같이, 일본 서북부 해저 지진으로 발생된 지진해일이 우리나라 동해안에 도달하는데 소요되는 시간은 100분 내외에 불과하며, 심해에서의 지진해일은 수십 km에 달하는 파장을 가지지만 파고는 수 m 내외에 불과하여 관측이 어려울 뿐 아니라 항해하는 선박에서도 체감이 거의 불가능한 반면, 항공기 속도에 상당하는 500km/h 내외의 전파속도를 가지므로, 지진해일로 인한 하구 수위 상승에 대한 사전 예측에는 제한이 따를 수 밖에 없다.
이에, 실제 관측치를 기반으로 지진해일 전파를 모의하여 피해를 예측하고자 하는 다양한 시도가 있었으며, 관련 종래기술로는 공개특허 제2016-117766호 등을 들 수 있다.
지진해일의 물리 현상은 편미분 연립방정식 형태의 지배방정식으로 해석될 수 밖에 없는 바, 임의의 진동 및 지형 조건에 대한 해석해(解析解)를 구하는 것은 현실적으로 불가능하므로, 제한된 계산영역을 미소(微小) 분할하고 반복 계산하는 전산수치해석(電算數値解析) 기법을 활용하여 수치해(數値解)를 산출함으로써 지진해일의 물리적 거동을 모의(模擬, Simulation)하게 된다.
지진해일의 전산수치해석을 수행할 수 있는 상용 수치모형으로는 Delft3D모형, ADCIRC모형(ADvanced CIRCulation model for oceanic, coastal and estuarine water) 및 FVCOM모형(Finite-Volume Coastal Ocean Model) 등을 들 수 있으며, 이러한 수치모형을 가동함에 있어서 적용되는 계산격자가 도 2에 예시되어 있다.
도 2에 예시된 계산격자는 유한차분법(有限差分法, Finite Difference Method) 기반 모형의 계산격자로서, 이러한 수치모형 계산격자는 당해 수치모형의 적용 기법에 따라 미차가 있을 수 있으나, 동 도면에 예시된 바와 같이, 모의대상 해역 및 하구에 설정되는 격자망은 전체 망목(網目)이 균일하지 않을 수 있는데, 이는 원해와 해안에서의 지진해일 거동 차이와 계산시간 단축 목적에서 기인한다.
지진해일 모의에 있어서 주된 관심사는 지진해일이 내습하는 해안지역의 수위라 할 수 있으며, 전술한 천수효과에서와 같이, 원해와 해안에서 지진해일의 물리적 거동이 상이하므로, 지배방정식이 선형 Boussinesq방정식인 원해에서는 상대적으로 넓은 간격의 계산격자를 구성하고, 지배방정식이 비선형 천수방정식인 해안에서는 조밀한 계산격자를 구성하여 정밀한 계산을 수행한다.
이렇듯, 계산격자 밀도를 조정하고 지점별 지배방정식을 변동하는 등 계산시간 단축을 위한 부단한 노력이 있었을 뿐 아니라, 컴퓨터 처리 속도 및 용량의 비약적인 발전이 이루어졌음에도 불구하고, 지진해일의 수치모형 가동에는 막대한 계산량 및 전산자원이 소요되는 바, 실제 지진해일 발생 후 경보대상 지역에 해일파가 도달하기 이전에 실질적인 모의와 예보를 수행하는 것은 지극히 어려운 실정이다.
또한, 해일과 홍수가 복합되는 상황에서 피해를 예측하기 위해서는 해일에 대한 모의뿐 아니라, 범람에 대한 모의 역시 수행하여야 하는데, 범람모의 역시 수치모형을 통하여 수행될 수 있으며, 도 3에 도시된 바와 같은 지형 및 수문(水文) 정보와 도 4에 도시된 바와 같은 계산격자가 활용될 수 있다.
즉, 홍수 현상 자체에 대한 수문량으로서 유량으로 표현되는 홍수량은 다양한 수문학적(水文學的) 기법을 통하여 산출될 수 있으며, 산출된 홍수량과 하도 및 주변 지형 및 하구 수위를 기초로 도 4에서와 같은 계산격자를 활용하여 수치모형을 가동함으로써 범람모의를 수행하는 것이다.
이렇듯, 파랑모의 및 범람모의를 순차 수행함으로써 내륙 하천변 지역의 침수선을 산출하고 피해구역을 예측할 수 있느나, 전술한 바와 같이, 실제 상황 발생시 하구 수위의 예측을 위한 파랑모의의 수행에도 상당한 시간이 소요되는 바, 후속되는 범람모의를 적시에 완료하고 사전에 대피 등의 조치를 취하는 것은 사실상 불가능하였다.
본 발명은 전술한 문제점을 감안하여 창안된 것으로, 수치모형을 이용한 복합재난 피해 예측방법에 있어서, 컴퓨터에 탑재된 파랑모형에 모의대상 해역 및 하구의 지형정보가 입력되고 해역내 기준점(10)이 설정되며, 컴퓨터에 탑재된 범람모형에 모의대상 하천의 지형정보가 입력되는 기초입력단계(S10)와, 컴퓨터에 탑재된 예측프로그램이 수면변위 및 전파방향을 포함하는 조건이 상이한 다수의 가상해일을 기준점(10)에 설정하고, 가상해일의 조건을 파랑모형에 입력하여 파랑모형을 가동하며, 파랑모형에 의하여 산출된 하구 수위를 시나리오 데이터베이스에 수록하되, 상이한 조건의 가상해일에 대하여 파랑모형 가동 및 하구 수위 데이터베이스 수록을 반복하는 DB구축단계(S20)와, 예측프로그램이 해역내 실제해일의 발생시 실제해일의 조건을 파랑모형에 입력하여 파랑모형을 가동하는 실제입력단계(S31)와, 파랑모형이 해역내 기준점(10)에서의 수면변위 및 전파방향을 포함하는 모의해일 조건을 산출하는 조건산출단계(S32)와, 예측프로그램이 모의해일 조건과 가장 근접한 가상해일 조건의 하구 수위를 시나리오 데이터베이스에서 인출하는 근사인출단계(S41)와, 예측프로그램이 상기 근사인출단계(S41)에서 인출된 하구 수위를 경계조건으로 설정하고 수문량을 입력하여 범람모형을 가동하는 범람모의단계(S51)와, 범람모형이 해당 하천의 유역내 피해구역을 산출하는 피해예측단계(S52)로 이루어짐을 특징으로 하는 대형 복합재난 영향 확산을 고려한 수치모형 및 시나리오 기반 피해 예측방법이다.
본 발명을 통하여, 전체 해역 및 하구에 대한 모의 없이 일부 해역에 대한 모의만으로 경보 대상 하구의 수위를 상당한 정밀도로 예측할 수 있으며, 이를 내륙 하천 유역 범람모의의 경계조건으로 활용함으로써, 내륙 주거지 등 인구밀집 지역의 피해를 정확하고 신속하게 예측할 수 있다.
즉, 해일과 홍수가 복합된 대형 복합재난의 피해를 신속하고 정확하게 예측함으로써, 사전 대피를 통한 인명피해 경감 효과를 얻을 수 있을 뿐 아니라, 각종 수방시설 운용의 효율성 역시 도모할 수 있다.
도 1은 지진해일의 전파 양상 설명도
도 2는 파랑모형의 계산격자 예시도
도 3은 하천 유역 예시도
도 4는 범람모형의 계산격자 예시도
도 5는 본 발명의 기준점 및 가상해일 설명도
도 6은 본 발명의 흐름도
도 7은 본 발명의 조건산출단계 수행 파랑모형 계산격자 예시도
도 8은 본 발명의 피해구역 산출결과 예시도
도 9는 본 발명의 보간형 실시예 흐름도
본 발명의 상세한 구성 및 수행과정을 첨부된 도면을 통하여 설명하면 다음과 같다.
전술한 바와 같이, 본 발명은 해일과 홍수의 복합재난 상황을 상정하여, 실제 심각한 피해를 야기하는 내륙 인구 밀집 지역의 범람 피해를 신속하게 예측하기 위한 것으로, 본 발명의 기본적인 착안점은 도 5에서와 같이, 모의 대상 해역내 기준점(10)을 설정하고, 다양한 조건을 가지는 가상해일 상황을 기준점(10)에 조성한 후, 이를 파랑모형으로 모의하여, 피해 예측 대상 하천의 하구에서의 수위를 사전 산출하고, 이를 추후 하천의 범람모형 가동에 활용하는 것이다.
즉, 다양한 조건의 가상해일에 대응되는 하구 수위를 일종의 시나리오 데이터베이스로 구축하고, 실제 지진해일 발생시 전체 해역 및 하구에 대하여 파랑모형을 가동하지 않고, 기준점(10)에서의 해일 조건만을 산출한 후, 이를 토대로 시나리오 데이터베이스를 조회하여 유의(有意)한 하구 수위를 설정하는 것이다.
이러한 본 발명은 도 6에서와 같이, 컴퓨터에 탑재된 파랑모형에 모의대상 해역 및 하구의 지형정보가 입력되고 해역내 기준점(10)이 설정되며, 컴퓨터에 탑재된 범람모형에 모의대상 하천의 지형정보가 입력되는 기초입력단계(S10)로 개시된다.
기초입력단계(S10)에 있어서 입력되는 해역, 하구 및 하천의 지형정보는 이후 수행되는 전 과정에 걸쳐 동일하게 적용되는 기초 정보이며, 해역내 설정되는 기준점(10)은 예측대상 하천의 하구 위치를 고려하되, 당해 하구에 내습할 가능성이 있는 지진해일의 전파 경로를 충분히 고려하여 설정하는 것이 바람직하다.
다만, 기준점(10)이 예측대상 하천의 하구와 지나치게 근접될 경우, 후술할 조건산출단계(S32)에서, 파랑모형이 기준점(10)에서의 수면변위 및 전파방향을 포함하는 모의해일 조건을 산출하는 과정에 장시간이 소요될 수 있으므로, 가급적 기준점(10)을 원해에 설정하는 것이 바람직하다.
기초입력단계(S10)가 완료되면, 컴퓨터에 탑재된 예측프로그램이 수면변위 및 전파방향을 포함하는 조건이 상이한 다수의 가상해일을 기준점(10)에 설정하고, 가상해일의 조건을 파랑모형에 입력하여 파랑모형을 가동하며, 파랑모형에 의하여 산출된 하구 수위를 시나리오 데이터베이스에 수록하되, 상이한 조건의 가상해일에 대하여 파랑모형 가동 및 산출된 하구 수위의 데이터베이스 수록을 반복하는 DB구축단계(S20)가 수행된다.
여기서 DB구축단계(S20)를 수행하는 예측프로그램은 다양한 조건을 설정하여 파랑모형을 가동하는 일종의 배치(batch) 처리 프로그램 내지 제어 프로그램으로서, 펄(Perl) 또는 파이썬(Python) 등의 스크립트로 구축될 수 있다.
실제 지진해일의 전파 양상을 도시한 도 1에서와 같이, 지진해일의 최초 발생 지점 인근에서는 해일파가 동심원상으로 생성 및 전파되지만, 해일파가 대양을 횡단하여 실제 예측 대상 하천의 하구에 접근하는 대부분의 경로상에서는, 평면상 지진파의 시각(時刻)별 파봉선이 평행을 이루면서 전파되며, 이러한 양상은 예측 대상 하천 유역의 해안에 도달할 때까지 반복된다.
즉, 예측 대상 하천의 하구에 실제 내습하는 지진해일의 해일파는 길이가 충분히 긴 직선형 단일 파봉을 가지는 파랑이 해역내에서 발생한 경우와 동일하게 거동하게 되는 바, 도 5에서와 같이, 해역내 기준점(10)에서도 동일한 조건을 적용하여 가상해일을 설정할 수 있는 것이다.
따라서, 도 5에서와 같이, 평면상 전체 해역에 걸친 직선의 파봉선을 가지는 단일 파봉의 가상해일을 설정하여도 실제 지진해일로 인한 하구 수위 상승을 충분히 모의할 수 있으며, 이러한 가상해일을 다양한 조건으로 설정하고, 파랑모형을 가동하여 이를 모의함으로써, 다양한 시나리오에 대한 예측 대상 하천의 하구 수위를 산출할 수 있는 것이다.
도 5에 예시된 실시예에 있어서, 가변 조건으로 설정된 가상해일의 조건은 기준점(10)에서의 전파방향 및 수면변위로서, 동 도면에서는 -20° 내지 50°범위의 전파방향에 대하여 10°간격으로 전파방향이 변동되고 있고, 수면변위는 1.0m 내지 3.0m의 범위에서 1.0m 간격으로 변동되고 있다.
조건별로 산출된 가상해일별 하구 수위는 데이터베이스에 지속적으로 수록되며, 이로써 본 발명의 시나리오 데이터베이스가 구축되는데, 이러한 시나리오 데이터베이스의 구축은 지진해일이 실제 발생하여 예측이 필요한 시점에 수행되는 것이 아니라, 평상시 예측프로그램에 의하여 지속적으로 수행되는 것으로, 예측프로그램에 의한 시나리오 데이터베이스 구축이 지속됨에 따라 방대하고 세밀한 조건별 하구 수위 자료가 확보될 수 있다.
이렇듯, DB구축단계(S20)가 수행된 후, 실제 지진해일 발생되면, 예측프로그램이 해역내 실제해일의 조건을 파랑모형에 입력하여 파랑모형을 가동하는 실제입력단계(S31)가 수행되고, 이어서 파랑모형이 해역내 기준점(10)에서의 수면변위 및 전파방향을 포함하는 모의해일 조건을 산출하는 조건산출단계(S32)가 수행되는데, 이러한 실제입력단계(S31) 내지 조건산출단계(S32)의 수행에 있어서 파랑모형 가동에 적용되는 계산격자가 도 7에 예시되어 있다.
도 7을 통하여 확인할 수 있는 바와 같이, 조건산출단계(S32)는 전체 해역 및 하구에 대한 지진해일 모의를 수행하는 것이 아니라, 기준점(10)에서의 해일 조건을 산출할 수 있는 모의만을 수행하여도 충분하므로, 동 도면에서와 같이 축소 및 단순화된 계산격자를 적용할 수 있다.
즉, 조건산출단계(S32)에서는 전체 해역 및 하구에 대하여 파랑모형을 가동하는 것이 아니라, 기준점(10) 인근에 경계가 설정되는 해역의 일부분에 대한 모의만을 수행하는 것인 바, 파랑모형 가동에 소요되는 시간 및 전산자원을 획기적으로 절감할 수 있고, 신속한 결과 도출이 가능한 것이며, 이는 하구 수위를 기초로 범람모형을 추가 가동하여 복합재난 피해를 예측하여야 하는 상황에서 특히 유용한 것이다.
도 5에 도시된 본 발명의 실시예에서는 가상해일의 조건으로서 전파방향 및 수면변위가 설정되었는 바, 동 실시예에서는 조건산출단계(S32)에서도 기준점(10)에서의 해일파 전파방향 및 수면변위가 산출된다.
이어서, 도 6에서와 같이, 예측프로그램이 모의해일 조건과 가장 근접한 가상해일 조건의 하구 수위를 시나리오 데이터베이스에서 인출하는 근사인출단계(S41)가 수행됨으로써, 전체 해역 및 하구에 대한 파랑모형 가동 없이도 지진해일의 내습으로 인한 하구 수위 상승을 예측할 수 있다.
이후, 예측프로그램이 상기 근사인출단계(S41)에서 인출된 하구 수위를 경계조건으로 설정하고 수문량(水文量)을 입력하여 범람모형을 가동하는 범람모의단계(S51)와, 범람모형이 해당 하천의 유역내 피해구역을 산출하는 피해예측단계(S52)가 수행됨으로써, 도 8에서와 같이, 해당 하천 유역내 인구 밀집 주거지 등에 있어서의 피해구역을 신속하고 정확하게 예측할 수 있다.
여기서 수문량이란 강우강도 및 지속시간 등을 망라하는 강우자료와, 이들 강우자료를 기초로 산출된 홍수량 또는 실측 수위를 기초로 산출된 홍수량 등으로서, 수치모형인 범람모형은 입력된 수문량 및 전술한 경계조건으로서의 하구 수위를 활용하여 하천 주변 지역의 범람 즉, 침수 여부를 모의하게 된다.
범람모형에 입력되는 입력자료로는 수문량외에도 해당 하천의 하상을 비롯한 하도 지형, 제방, 제내지 및 제외지를 비롯한 주변 지역의 지형정보가 입력되는데, 지형정보는 홍수 사상(事象, event)에 따른 변량이 아니라 일종의 고정치인 바, 범람모형의 매 가동시에 갱신될 필요는 없다.
한편, 전술한 바와 같이, 본 발명에 있어서 해일파의 전파방향 및 수면변위 등 가상해일의 조건은 연속적으로 설정되는 것이 아니라, 일정한 변량으로 증감되면서 간헐적으로 설정되는 것인 바, 조건산출단계(S32)에서 산출된 기준점(10)의 해일 조건이 중간치를 가지는 경우, 하구 수위의 예측 정확도가 부족할 수 있다.
이에, 본 발명에서는 도 9에서와 같이, 다수의 하구 수위를 보간함으로써, 예측 정확도를 확보할 수 있도록 하였다.
이러한 본 발명의 하구 수위 보간 실시예에서는 도 9에서와 같이, 조건산출단계(S32)가 완료된 후, 모의해일 조건을 상회하는 조건 중 가장 근접한 가상해일 조건의 하구 수위를 시나리오 데이터베이스에서 인출하고, 모의해일 조건을 하회하는 조건 중 가장 근접한 가상해일 조건의 하구 수위를 시나리오 데이터베이스에서 인출하는 다중인출단계(S42)가 수행된다.
이후, 다중인출단계(S42)에서 인출된 상회측 하구 수위와 하회측 하구 수위를 상호 보간하고, 이를 범람모의단계(S51)에서 활용되는 하구 수위로서 설정하는 보간단계(S43)가 수행된다.
이상에서와 같은 본 발명의 시나리오 기반 복합재난 피해 예측은 자연재해를 해석함에 있어서, 물리적 현상 전체를 실제 모의하지 않고, 기 구축된 정보를 기반으로 예측치를 도출하는 방식으로서, SIND(Scientific Interpolation for Natural Disaster)로 명명될 수 있으며, 예측에 소요되는 시간 및 전산자원 측면에서 전체 현상을 모의하는 종래기술 대비 상당한 이점을 얻을 수 있다.
10 : 기준점
S10 : 기초입력단계
S20 : DB구축단계
S31 : 실제입력단계
S32 : 조건산출단계
S41 : 근사인출단계
S42 : 다중인출단계
S43 : 보간단계
S51 : 범람모의단계
S52 : 피해예측단계

Claims (1)

  1. 수치모형을 이용한 복합재난 피해 예측방법에 있어서,
    컴퓨터에 탑재된 파랑모형에 모의대상 해역 및 하구의 지형정보가 입력되고 해역내 기준점(10)이 설정되며, 컴퓨터에 탑재된 범람모형에 모의대상 하천의 지형정보가 입력되는 기초입력단계(S10)와;
    컴퓨터에 탑재된 예측프로그램이 수면변위 및 전파방향을 포함하는 조건이 상이한 다수의 가상해일을 기준점(10)에 설정하고, 가상해일의 조건을 파랑모형에 입력하여 파랑모형을 가동하며, 파랑모형에 의하여 산출된 하구 수위를 시나리오 데이터베이스에 수록하되, 지진해일의 실제 발생시가 아닌 평상시에 지속적으로, 상이한 조건의 가상해일에 대하여 파랑모형 가동 및 하구 수위 데이터베이스 수록을 반복하는 DB구축단계(S20)와;
    예측프로그램이 해역내 실제해일의 발생시 실제해일의 조건을 파랑모형에 입력하여 파랑모형을 가동하는 실제입력단계(S31)와;
    예측프로그램이 파랑모형이 해역내 기준점(10)에서의 수면변위 및 전파방향을 포함하는 모의해일 조건을 산출하는 조건산출단계(S32)와;
    예측프로그램이 모의해일 조건을 상회하는 조건 중 가장 근접한 가상해일 조건의 하구 수위를 시나리오 데이터베이스에서 인출하고, 모의해일 조건을 하회하는 조건 중 가장 근접한 가상해일 조건의 하구 수위를 시나리오 데이터베이스에서 인출하는 다중인출단계(S42)와;
    예측프로그램이 다중인출단계(S42)에서 인출된 상회측 하구 수위와 하회측 하구 수위를 상호 보간하고, 이를 범람모의단계(S51)에서 활용되는 하구 수위로서 설정하는 보간단계(S43)와;
    예측프로그램이 상기 보간단계(S43)에서 설정된 하구 수위를 경계조건으로 설정하고 수문량을 입력하여 범람모형을 가동하는 범람모의단계(S51)와;
    범람모형이 해당 하천의 유역내 피해구역을 산출하는 피해예측단계(S52)로 이루어짐을 특징으로 하는 대형 복합재난 영향 확산을 고려한 수치모형 및 시나리오 기반 피해 예측방법.
KR1020180089639A 2018-07-31 2018-07-31 대형 복합재난 영향 확산을 고려한 수치모형 및 시나리오 기반 피해 예측방법 KR102191201B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020180089639A KR102191201B1 (ko) 2018-07-31 2018-07-31 대형 복합재난 영향 확산을 고려한 수치모형 및 시나리오 기반 피해 예측방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020180089639A KR102191201B1 (ko) 2018-07-31 2018-07-31 대형 복합재난 영향 확산을 고려한 수치모형 및 시나리오 기반 피해 예측방법

Publications (2)

Publication Number Publication Date
KR20200014147A KR20200014147A (ko) 2020-02-10
KR102191201B1 true KR102191201B1 (ko) 2020-12-15

Family

ID=69627640

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020180089639A KR102191201B1 (ko) 2018-07-31 2018-07-31 대형 복합재난 영향 확산을 고려한 수치모형 및 시나리오 기반 피해 예측방법

Country Status (1)

Country Link
KR (1) KR102191201B1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230057658A (ko) 2021-10-22 2023-05-02 (주)비엔티 재해예방기법 선정 방법, 프로그램 및 기록매체

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102389279B1 (ko) * 2020-07-20 2022-04-21 대한민국 유한요소법 기반의 지진해일 수치시뮬레이션 모델을 구축하는 방법 및 그 장치
KR102243453B1 (ko) * 2020-07-21 2021-04-22 동부엔지니어링 주식회사 하천 공간위상 구조를 이용한 도시하천 홍수범람지도의 갱신 방법 및 이를 기록한 기록매체
KR102482927B1 (ko) * 2022-02-11 2022-12-30 대한민국 대규모 재난대피 시뮬레이션 제공방법
KR102492407B1 (ko) * 2022-05-03 2023-02-06 대한민국 지진 해일 침수범람 위험성 평가 시스템 및 방법
CN115048806B (zh) * 2022-06-30 2024-04-09 中交水运规划设计院有限公司 风浪数值模拟方法
CN116757003B (zh) * 2023-08-18 2024-01-05 长江三峡集团实业发展(北京)有限公司 平原河网模拟方法、装置、计算机设备及介质

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004197554A (ja) * 2002-12-03 2004-07-15 Foundation Of River & Basin Integrated Communications Japan リアルタイム動的氾濫シミュレーションシステム

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160117765A (ko) * 2015-03-31 2016-10-11 대한민국(국민안전처 국립재난안전연구원장) 지진 해일의 예측 및 대응 시스템

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004197554A (ja) * 2002-12-03 2004-07-15 Foundation Of River & Basin Integrated Communications Japan リアルタイム動的氾濫シミュレーションシステム

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230057658A (ko) 2021-10-22 2023-05-02 (주)비엔티 재해예방기법 선정 방법, 프로그램 및 기록매체

Also Published As

Publication number Publication date
KR20200014147A (ko) 2020-02-10

Similar Documents

Publication Publication Date Title
KR102191201B1 (ko) 대형 복합재난 영향 확산을 고려한 수치모형 및 시나리오 기반 피해 예측방법
Vacondio et al. Simulation of the January 2014 flood on the Secchia River using a fast and high-resolution 2D parallel shallow-water numerical scheme
KR101917734B1 (ko) 수치모형 및 시나리오 데이터베이스를 이용한 지진해일 예측방법
KR101761707B1 (ko) 능동형 정보수집 스크립트 및 수치모형을 이용한 태풍해일 자동 예측 방법
Anarde et al. Impacts of hurricane storm surge on infrastructure vulnerability for an evolving coastal landscape
KR101906858B1 (ko) 수치모형 및 침수선 보간을 이용한 하천 범람 예측 방법
Castellarin et al. Identifying robust large-scale flood risk mitigation strategies: A quasi-2D hydraulic model as a tool for the Po river
Battjes et al. Coastal modelling for flood defence
Denamiel et al. Impact of geomorphological changes to harbor resonance during meteotsunamis: The Vela Luka Bay test case
Lavrentiev et al. FPGA based solution for fast tsunami wave propagation modeling
Pudjaprasetya et al. A nonhydrostatic two-layer staggered scheme for transient waves due to anti-symmetric seabed thrust
Abebe et al. Information theory and neural networks for managing uncertainty in flood routing
Benedet et al. Evaluation of the physical process controlling beach changes adjacent to nearshore dredge pits
KR101219352B1 (ko) 유량기반 계산영역 가변형 지진해일 수치모의 방법
Hu et al. Quantification of the nonlinear interaction among the tide, surge and river in Pearl River Estuary
Wichakul et al. Developing a regional distributed hydrological model for water resources assessment and its application to the Chao Phraya River Basin
Du et al. An integrative modelling framework for predicting the compound flood hazards induced by tropical cyclones in an estuarine area
KR102166692B1 (ko) 조석-지진해일 상호작용을 고려한 지진해일 예측시스템 및 그 방법
KR101273977B1 (ko) 계산영역 가변형 지진해일 수치모의 방법
Chen et al. Numerical simulation of potential inundation in a coastal zone
Li et al. A numerical study of the impact of hurricane-induced storm surge on the Herbert Hoover Dike at Lake Okeechobee, Florida
Yuk et al. Modelling of storm-induced seawater flooding in the Suyeong River area, South Korea: A case study due to the storm surge and waves during Typhoon Sanba
Davila et al. Development of hurricane storm surge model to predict coastal highway inundation for South Texas
Ding et al. Integrated coastal process modeling and impact assessment of flooding and sedimentation in coasts and estuaries
KR101568819B1 (ko) 능동형 정보수집 스크립트 및 수치모형을 이용한 연안침식 자동 예측 방법

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant