KR102187662B1 - A method for manufacturing electrolytic solution of lead-acid battery to provide discharge capacity improvement and durability improvement - Google Patents

A method for manufacturing electrolytic solution of lead-acid battery to provide discharge capacity improvement and durability improvement Download PDF

Info

Publication number
KR102187662B1
KR102187662B1 KR1020190089472A KR20190089472A KR102187662B1 KR 102187662 B1 KR102187662 B1 KR 102187662B1 KR 1020190089472 A KR1020190089472 A KR 1020190089472A KR 20190089472 A KR20190089472 A KR 20190089472A KR 102187662 B1 KR102187662 B1 KR 102187662B1
Authority
KR
South Korea
Prior art keywords
acid battery
electrolyte
lead
emi
lead acid
Prior art date
Application number
KR1020190089472A
Other languages
Korean (ko)
Inventor
최석모
이응래
양지수
Original Assignee
주식회사 한국아트라스비엑스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 한국아트라스비엑스 filed Critical 주식회사 한국아트라스비엑스
Priority to KR1020190089472A priority Critical patent/KR102187662B1/en
Application granted granted Critical
Publication of KR102187662B1 publication Critical patent/KR102187662B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/06Lead-acid accumulators
    • H01M10/08Selection of materials as electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/06Lead-acid accumulators
    • H01M10/12Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0002Aqueous electrolytes
    • H01M2300/0005Acid electrolytes
    • H01M2300/0011Sulfuric acid-based
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)

Abstract

The present invention relates to a method of manufacturing an electrolyte of a lead-acid battery for providing improved characteristics of electrolyte decrease and life. More particularly, the present invention relates to a method of manufacturing an electrolyte of a lead-acid battery for providing improved characteristics of electrolyte decrease and life, which prevents magnetic corrosion of a negative electrode and reduces the generation of hydrogen gas when an electrolyte is prepared by adding EMI-BF4, an ionic liquid, as an additive to the electrolyte of a lead-acid battery, and then added to the lead-acid battery, thereby providing a lead-acid battery with improved characteristics of electrolyte decrease, durability, and product life. According to the present invention, there is an effect of providing a lead-acid battery with improved characteristics of electrolyte decrease, durability, and product life by adding EMI-BF4, which is an ionic liquid, to prepare an electrolyte, which is then introduced into a lead-acid battery, thereby preventing magnetic corrosion of a negative electrode and reducing the generation of hydrogen gas.

Description

감액 특성 및 수명 향상을 제공하기 위한 납축전지의 전해액 제조방법{A method for manufacturing electrolytic solution of lead-acid battery to provide discharge capacity improvement and durability improvement}A method for manufacturing electrolytic solution of lead-acid battery to provide discharge capacity improvement and durability improvement.

본 발명은 감액 특성 및 수명 향상을 제공하기 위한 납축전지의 전해액 제조방법에 관한 것으로서, 더욱 상세하게는 납축전지의 전해액에 첨가제로서, 이온성 액체인 EMI-BF4 를 첨가하여 전해액을 제조하여 이를 납축전지에 투입할 경우에 음극의 자기부식을 방지하고, 수소 가스 발생을 감소시켜 감액 특성과 내구성 및 제품 수명을 향상시킨 납축전지를 제공할 수 있는 감액 특성 및 수명 향상을 제공하기 위한 납축전지의 전해액 제조방법에 관한 것이다.The present invention relates to a method of manufacturing an electrolyte solution for a lead acid battery to provide improved liquid reduction characteristics and life, and more particularly, as an additive to the electrolyte solution of a lead acid battery, an electrolyte solution is prepared by adding EMI-BF 4 which is an ionic liquid. When inserted into a lead acid battery, the lead acid battery prevents magnetic corrosion of the negative electrode and reduces the generation of hydrogen gas to provide a lead acid battery with improved liquid reduction characteristics, durability, and product life. It relates to a method of manufacturing an electrolyte.

납축전지는 각각 납과 산화납으로 이루어진 두 극판과 전해질인 황산 사이의 산화환원 반응에 의해 충방전이 가능한 축전지이다. A lead acid battery is a storage battery capable of charging and discharging by an oxidation-reduction reaction between two electrode plates made of lead and lead oxide, respectively, and sulfuric acid, an electrolyte.

이것은 일반적으로 복수의 양극과 음극판을 포함하고 있으며, 각각의 판들을 인접한 판들과 격리시키는 격리판과 함께 음극판과 양극판이 번갈아 배치된다. This generally includes a plurality of positive and negative plates, and the negative and positive plates are alternately arranged with a separator for separating each of the plates from adjacent plates.

이렇게 배치된 극판과 격리판 이외의 공간은 전해질인 황산으로 채워져 있다.The spaces other than the electrode plates and separators arranged in this way are filled with sulfuric acid, an electrolyte.

이와 같은 납축전지는 오랜 사용 역사에 따른 안정적인 기술이며, 저렴한 가격과 대용량화 및 재활용이 용이한 장점을 가지고 있다. Such a lead acid battery is a stable technology according to a long history of use, and has advantages of low price, high capacity, and easy recycling.

한편, 일반적으로 자동차 등에 사용되는 납축전지는 충전과 방전이 가능한 2차 전지이다. Meanwhile, a lead acid battery generally used in automobiles, etc. is a secondary battery capable of charging and discharging.

이는 전해액으로서 황산(H2SO4)이 사용되고, 극판의 활물질로서 양극에 이산화납(PbO2)을, 음극에 해면상 납(Pb)을 도포하여, 혼합하여 페이스트(paste)상으로 만든다. Sulfuric acid (H2SO4) is used as an electrolytic solution, lead dioxide (PbO2) is applied to the positive electrode as an active material of the electrode plate, and spongy lead (Pb) is applied to the negative electrode, and mixed to form a paste.

이렇게 만들어진 활물질은 기판에 바르는 작업인 도포 작업을 진행하며, 양극 및 음극 특성에 따라 숙성 공정 및 건조 공정을 거친 후, 준비된 양극판과 음극판을 중첩하면서 극판군을 제조한다.The thus-made active material undergoes a coating operation, which is a work applied to a substrate, and after undergoing a aging process and a drying process according to the characteristics of the positive electrode and the negative electrode, the prepared positive electrode plate and the negative electrode plate are overlapped to produce an electrode plate group.

상기 극판군은 축전지 용량에 따라 여러 개가 직렬로 접속되어 전조(Case) 안에 수용된다. Several of the electrode plate groups are connected in series according to the capacity of the storage battery and are accommodated in a case.

상기 수용된 극판군은 전기적인 성질을 가질 수 있도록 충전인 화성 공정을 거치게 되어 납축전지의 역할을 하게 된다. The accommodated electrode plate group undergoes a chemical conversion process, which is charged so as to have electrical properties, and thus serves as a lead acid battery.

종래 기술인 대한민국등록특허번호 제10-1011859호인 납축전지 및 납축전지의 제조 방법의 경우, 알루미늄(AL) 이온의 몰 농도가 0.01 ~ 0.3mol/l로 하였으나, 알루미늄(AL) 이온의 효과를 제공하여 납축전지의 수명을 향상시키는 것이다.In the case of the manufacturing method of lead acid battery and lead acid battery, which is Korean Patent Registration No. 10-1011859, which is a prior art, the molar concentration of aluminum (AL) ions was 0.01 to 0.3 mol/l, but the effect of aluminum (AL) ions was provided. It is to improve the life of lead acid batteries.

그러나, 현재 납축전지를 필요로 하는 사용환경이 점점 가혹해 짐에 따라 납축전지의 충방전 특성이 상기한 선행 특허문헌을 통해 제조된 납축전지보다 우수한 제품을 요구하고 있고, 요구 조건에 부응하는 새로운 형태의 재료들이 개발되고 있다.However, as the current use environment that requires lead acid batteries is becoming more and more severe, the charge/discharge characteristics of lead acid batteries are demanding products that are superior to lead acid batteries manufactured through the preceding patent documents. Shaped materials are being developed.

근래의 납축전지 업계는 충전/방전 심도가 높은 환경의 마이크로-하이브리드(Micro-hybrid) 또는 마일드-하이브리드(Mild-hybrid) 자동차용 전지 개발에 힘쓰고 있으며, 일반적인 납축전지의 요구 조건을 상회하는 내구성이 요구되어지고 있다. The recent lead acid battery industry is striving to develop a battery for micro-hybrid or mild-hybrid automobiles in environments with high charge/discharge depth, and durability that exceeds the requirements of general lead acid batteries. Is being demanded.

따라서, 내구성을 더욱 향상시킬 수 있는 새로운 기술이 요구되는 실정이다.Therefore, there is a situation in which a new technology capable of further improving the durability is required.

대한민국특허등록번호 제10-1011859호Korean Patent Registration No. 10-1011859

따라서, 본 발명은 상기 종래의 문제점을 해소하기 위해 안출된 것으로,Therefore, the present invention was devised to solve the above conventional problems,

납축전지의 전해액에 첨가제로서, 이온성 액체인 EMI-BF4 를 첨가하여 전해액을 제조하여 이를 납축전지에 투입함으로써, 음극의 자기부식을 방지하고, 수소 가스 발생을 감소시켜 감액 특성과 내구성 및 제품 수명을 향상시킨 납축전지를 제공하고자 한다.As an additive to the electrolyte of a lead acid battery, EMI-BF 4 , an ionic liquid, is added to prepare the electrolyte, and by injecting it into the lead acid battery, magnetic corrosion of the negative electrode is prevented, and hydrogen gas generation is reduced to reduce liquid-reduction characteristics, durability, and products. It is intended to provide a lead acid battery with improved life.

본 발명이 해결하고자 하는 과제를 달성하기 위하여, 본 발명의 일실시예에 따른 감액 특성 및 수명 향상을 제공하기 위한 납축전지의 전해액 제조방법은,In order to achieve the problem to be solved by the present invention, a method of manufacturing an electrolyte solution for a lead acid battery for providing an improvement in liquid reduction characteristics and life according to an embodiment of the present invention,

납축전지의 화성공정 과정에서 2차 전해액 투입공정에서, In the process of forming a lead acid battery, in the process of introducing the secondary electrolyte,

1.280kg/L 비중의 상온(10 ~ 25℃) 희황산(H2SO4) 전해액 대비 0.08 ~ 0.1 wt%의 이온성 액체인 EMI-BF4 를 첨가제로서 투입하는 EMI-BF4 첨가제 투입단계(S100);와EMI-BF 4 additive input step (S100) in which EMI-BF 4 , an ionic liquid of 0.08 to 0.1 wt% compared to the 1.280 kg/L specific gravity of room temperature (10 to 25°C) electrolyte (H 2 SO 4 ), is added as an additive. );Wow

이후, 상온(10 ~ 25℃)에서 1 ~ 24시간 동안 교반하여 전해액을 완성시키는 전해액완성단계(S200);를 포함함으로써, 본 발명의 과제를 해결하게 된다.Thereafter, by including an electrolyte solution completion step (S200) of completing the electrolyte by stirring at room temperature (10 to 25°C) for 1 to 24 hours, the problem of the present invention is solved.

본 발명인 감액 특성 및 수명 향상을 제공하기 위한 납축전지의 전해액 제조방법을 통해, 이온성 액체인 EMI-BF4 를 첨가하여 전해액을 제조하여 이를 납축전지에 투입함으로써, 음극의 자기부식을 방지하고, 수소 가스 발생을 감소시켜 감액 특성과 내구성 및 제품 수명을 향상시킨 납축전지를 제공할 수 있는 효과가 있다.Through the present inventor's method of manufacturing an electrolyte solution for a lead acid battery to provide improved liquid reduction characteristics and lifespan, an ionic liquid, EMI-BF 4 is added to prepare an electrolyte, and the electrolyte is added to the lead acid battery to prevent magnetic corrosion of the negative electrode, There is an effect of providing a lead acid battery with improved liquid reduction characteristics, durability, and product life by reducing the generation of hydrogen gas.

도 1은 본 발명의 일실시예에 따른 감액 특성 및 수명 향상을 제공하기 위한 납축전지의 전해액 제조방법을 나타낸 공정도이다.1 is a process diagram showing a method of manufacturing an electrolyte solution for a lead acid battery for providing liquid reduction characteristics and life improvement according to an embodiment of the present invention.

본 발명의 일실시예에 따른 감액 특성 및 수명 향상을 제공하기 위한 납축전지의 전해액 제조방법은,A method of manufacturing an electrolyte solution for a lead acid battery for providing liquid reduction characteristics and life improvement according to an embodiment of the present invention,

납축전지의 화성공정 과정에서 2차 전해액 투입공정에서, In the process of forming a lead acid battery, in the process of introducing the secondary electrolyte,

1.280kg/L 비중의 상온(10 ~ 25℃) 희황산(H2SO4) 전해액 대비 0.08 ~ 0.1 wt%의 이온성 액체인 EMI-BF4 를 첨가제로서 투입하는 EMI-BF4 첨가제 투입단계(S100);와EMI-BF 4 additive input step (S100) in which EMI-BF 4 , an ionic liquid of 0.08 to 0.1 wt% compared to the 1.280 kg/L specific gravity of room temperature (10 to 25°C) electrolyte (H 2 SO 4 ), is added as an additive. );Wow

이후, 상온(10 ~ 25℃)에서 1 ~ 24시간 동안 교반하여 전해액을 완성시키는 전해액완성단계(S200);를 포함하는 것을 특징으로 한다.Then, the electrolyte solution completion step (S200) of completing the electrolyte by stirring at room temperature (10 to 25°C) for 1 to 24 hours.

이때, 상기 EMI-BF4 첨가제 투입단계(S100)에서,At this time, in the EMI-BF 4 additive input step (S100),

이온성 액체인 EMI-BF4 첨가제를 첨가하여 음극의 자기 부식을 방지하고, 수소 가스 발생을 감소시켜 감액 특성 및 내구성 향상을 제공하는 것을 특징으로 한다.Addition of an ionic liquid, EMI-BF 4 additive, prevents self-corrosion of the cathode, and reduces the generation of hydrogen gas, thereby providing improved liquid-reducing properties and durability.

이때, 상기 감액 특성 및 수명 향상을 제공하기 위한 납축전지의 전해액 제조방법에 의해,At this time, by the method of manufacturing an electrolyte solution for a lead acid battery for providing the liquid reduction characteristics and life improvement,

납축전지의 요구되는 보유 용량이 70Ah의 용량일 경우에 EMI-BF4 첨가제를 첨가한 납축전지의 보유 용량은 71 ~ 73Ah의 용량인 것을 특징으로 한다.When the required storage capacity of the lead-acid battery is 70Ah, the storage capacity of the lead-acid battery to which the EMI-BF 4 additive is added is a capacity of 71 to 73Ah.

이때, 상기 감액 특성 및 수명 향상을 제공하기 위한 납축전지의 전해액 제조방법에 의해,At this time, by the method of manufacturing an electrolyte solution for a lead acid battery for providing the liquid reduction characteristics and life improvement,

EMI-BF4 첨가제를 포함하고 있는 전해액이 적용된 납축전지를 제조할 수 있게 된다.It is possible to manufacture a lead acid battery to which an electrolyte solution containing EMI-BF 4 additive is applied.

이하, 본 발명에 의한 감액 특성 및 수명 향상을 제공하기 위한 납축전지의 전해액 제조방법의 실시예를 통해 상세히 설명하도록 한다.Hereinafter, it will be described in detail through an embodiment of a method of manufacturing an electrolyte solution for a lead acid battery for providing liquid reduction characteristics and life improvement according to the present invention.

종래 기술인 대한민국등록특허번호 제10-1011859호인 납축전지 및 납축전지의 제조방법의 경우, 알루미늄(AL) 이온의 몰 농도가 0.01 ~ 0.3mol/l로 하였으나,In the case of a lead acid battery and a method of manufacturing a lead acid battery, which is a conventional Korean Patent No. 10-1011859, the molar concentration of aluminum (AL) ions was set to 0.01 to 0.3 mol/l,

이온 분석으로는 0.3mol/l 이상이며, Al(알루미늄)이온의 효과만을 제공하게 된다.By ion analysis, it is 0.3 mol/l or more, and provides only the effect of Al (aluminum) ions.

그러나, 본 발명인 전해액 제조방법은 납축전지의 전해액에 첨가제로서, 이온성 액체인 EMI-BF4 를 첨가하여 전해액을 제조함으로써, 음극의 자기부식을 방지하고, 수소 가스 발생을 감소시켜 감액 특성과 내구성 및 제품 수명을 향상시킨 납축전지를 제공할 수 있게 된다.However, the method of manufacturing an electrolyte according to the present invention prevents magnetic corrosion of the negative electrode and reduces the generation of hydrogen gas by adding EMI-BF 4 , an ionic liquid, as an additive to the electrolyte of a lead acid battery, thereby preventing liquid reduction characteristics and durability. And a lead acid battery with improved product life.

구체적으로, 본 발명은 납축전지 화성 공정 과정에서 2차 전해액을 투입할 경우에 이온성 액체인 EMI-BF4 를 첨가제로서 투입하여 음극의 자기부식을 방지하고, 수소 가스 발생을 감소시켜 감액 특성과 내구성을 향상시키게 된다.Specifically, the present invention prevents magnetic corrosion of the negative electrode and reduces hydrogen gas generation by introducing the ionic liquid EMI-BF 4 as an additive when the secondary electrolyte is introduced during the lead acid battery formation process. It improves durability.

다음은 좀 더 구체적으로 본 발명과 종래 기술의 차이점을 설명하도록 하겠다.The following will be described in more detail the difference between the present invention and the prior art.

현재, 납 축전지에서 필요로 하는 성능 및 내구성의 환경이 가혹해 짐에 따라 그리드 성장 및 부식 억제, 제품의 충방전 특성 향상과 같은 요구 조건에 부응하는 새로운 형태의 재료들이 개발되고 있다.Currently, as the environment of performance and durability required for lead-acid batteries becomes harsh, new types of materials are being developed that meet requirements such as grid growth and corrosion inhibition, and improvement in charge/discharge characteristics of products.

근래의 납축전지 업계는 고온 지역 및 고 성능의 배터리 개발을 요청하는 고객 및 자동차 업계를 위해 전지의 내구성을 향상시키는 노력을 하고 있으며, 이러한 환경에서 전지의 내구성을 향상시키기 위해서는 보다 높은 내구성을 갖는 제조 기술 개발이 요구되기 때문에 이에 착안하여 본 발명을 제안하게 된 것이다.The recent lead-acid battery industry is making efforts to improve the durability of batteries for customers and automotive industries who request the development of high-performance batteries in high-temperature areas, and in order to improve the durability of batteries in such environments, manufacturing with higher durability. Since technology development is required, the present invention was proposed based on this.

본 발명에서는 납축전지 전해액 첨가제로써 이온성 액체인 EMI-BF4 (1-ethyl-3-methylimidazolum tetrafluoroborate)를 적용하여 음극의 자기 부식을 방지하고, 수소 Gas 발생을 감소시켜 감액특성 및 내구성이 향상되게 된다.In the present invention, EMI-BF 4 (1-ethyl-3-methylimidazolum tetrafluoroborate), an ionic liquid, is applied as a lead acid battery electrolyte additive to prevent self-corrosion of the negative electrode and reduce the generation of hydrogen gas to improve liquid reduction characteristics and durability. do.

이온성 액체는 양이온과 음이온의 비대칭적인 크기로 인해, 결정체를 이루지 못한다. Ionic liquids cannot form crystals due to the asymmetric size of cations and anions.

그 중, 기존 염의 특성과는 달리 100℃이하의 온도에서 액체로 존재하거나, 특히 상온(25℃에서 액체로 존재하는 물질을 이온성 액체라고 한다. Among them, a substance that exists as a liquid at a temperature of 100° C. or less, or in particular, a liquid at room temperature (25° C.), unlike the characteristics of existing salts, is called an ionic liquid.

이온성 액체를 첨가제로 사용함으로써, 납축전지 충방전 과정 중 발생하는 수소 기체를 감소시켜 감액 특성이 증대됨을 실험을 통해 확인할 수 있었다.By using an ionic liquid as an additive, it was confirmed through an experiment that hydrogen gas generated during the charging and discharging process of the lead acid battery was reduced, thereby increasing the liquid reduction characteristics.

제품의 충방전 시, 전해액 내의 H+가 음극(Pb)에서 발생한 전자와 결합하여 H2 Gas가 된다. When the product is charged and discharged, H + in the electrolyte is combined with electrons generated from the cathode (Pb) to become H 2 Gas.

그러나, EMI-BF4 첨가 시, 물질의 Cationic 분자는 Van der Waals 힘에 의해 음극 표면에 흡착되고, 발생한 전자와 결합하여 수소이온이 수소기체로 환원되는 것을 방지하여, 수소 기체의 발생을 저하시키는 것이다.However, when EMI-BF 4 is added, the Cationic molecules of the material are adsorbed to the cathode surface by the Van der Waals force, and combined with the generated electrons, hydrogen ions are prevented from being reduced to hydrogen gas, thereby reducing the generation of hydrogen gas. will be.

(1) 납축전지에서의 수소 발생 과정(1) Hydrogen generation process in lead acid battery

Pb + H2SO4 →PbSO4 + 2H+ +2e- Pb + H 2 SO 4 → PbSO 4 + 2H + + 2e -

2H+ + 2e- →H2 (가스가 되어 날아감)(Sense is a gas fly) → H 2 - 2H + + 2e

(2) EMI-BF4 첨가 시, 전자의 이동 과정(2) When EMI-BF 4 is added, electron transfer process

Pb + IL+ →Pb(IL+)ads (*Van der waals Force)Pb + IL + →Pb(IL + )ads (*Van der waals Force)

Pb(IL+)ads + e- →Pb(IL)ads Pb (IL +) ads + e - → Pb (IL) ads

상기한 EMI-BF4의 Cationic 분자는 하기와 같다.The Cationic molecule of EMI-BF4 is as follows.

Figure 112019075995009-pat00001
Figure 112019075995009-pat00001

상기 Van der Waals 힘은 원자와 분자 간의 존재하는 근거리에서 작용하는 비교적 약한 인력, 비극성 유기화합물 상호 간에 생기는 인력이다.The Van der Waals force is a relatively weak attraction between atoms and molecules acting at a short distance, and attraction between non-polar organic compounds.

상기 EMI-BF4 미첨가 시에는 전해액 내의 H+가 음극(Pb)에서 발생한 전자와 결합하여 H2 Gas가 된다. When the EMI-BF 4 is not added, H+ in the electrolyte is combined with electrons generated in the cathode Pb to become H2 gas.

그러나, EMI-BF4 첨가 시, 물질의 Cationic 분자는 Van der Waals 힘에 의해 음극 표면에 흡착되고, 발생한 전자와 결합하여 수소 기체의 발생을 저하시키게 되는 것이다.However, when EMI-BF 4 is added, the Cationic molecules of the material are adsorbed on the cathode surface by the Van der Waals force, and combined with the generated electrons, the generation of hydrogen gas is reduced.

그리고, EMI-BF4의 음이온 부분인 BF4- (Tetrafluoroborate)가 음극판 표면에 흡착하여 막을 형성하여, 음극의 자기부식을 방지하는 효과를 제공하는 것이다.And, BF4 - which is an anion part of EMI-BF 4 (Tetrafluoroborate) is adsorbed on the surface of the negative electrode to form a film, thereby providing an effect of preventing magnetic corrosion of the negative electrode.

한편, 상기 투입 공정을 예를 들자면, 납축전지 제작 시, 화성 공정 완료 후, 전해액을 Dumping시켜 비워낸다. On the other hand, as an example of the input process, when manufacturing a lead acid battery, after completion of the chemical conversion process, the electrolyte is dumped and emptied.

이후, 1.350~1.360 g/ml 비중의 2차 전해액(H2SO4)으로 액갈이 시, EMI-BF4 를 전해액 양 대비 0.08 ~ 0.1 wt% 정도를 첨가제로 투입한다. Thereafter, when the liquid is changed to a secondary electrolyte (H 2 SO 4 ) having a specific gravity of 1.350 to 1.360 g/ml, about 0.08 to 0.1 wt% of EMI-BF 4 is added as an additive compared to the amount of the electrolyte.

이온성 액체의 높은 전도성과 특수한 분자구조 및 전자 흡수도로 인하여 감액 특성 및 음극의 자기부식을 방지하여 납축전지 수명 향상에 도움이 되게 된다.Due to the high conductivity of the ionic liquid, its special molecular structure and electron absorption, it helps to improve the life of the lead acid battery by preventing liquid reduction properties and magnetic corrosion of the negative electrode.

다른 실 예로 극판군의 전기적인 성질을 가질 수 있도록 하는 화성공정 시 사용 되는 전해액에 첨가하여도 무방하며, 화성 완료 후 설계된 비중을 맞추기 위해 전해액을 교체 시에 적용하여도 무방하다.As another example, it may be added to the electrolyte used in the chemical conversion process to have the electrical properties of the electrode plate group, or it may be applied when replacing the electrolyte to meet the designed specific gravity after completion of the conversion.

일반적인 납축전지 화성 공정시 황산 전해액(비중 1.100 ~ 1.240)에 본 발명의 첨가제를 투입하는 것으로 물이나 황산에 녹는 형태와 혼합되어지는 형태를 가지고 있다.In the general lead acid battery conversion process, the additive of the present invention is added to the sulfuric acid electrolyte (specific gravity 1.100 to 1.240), and it is mixed with water or sulfuric acid.

이렇게 제조된 황산 전해액은 납축전지 화성시 필요한 1차 전해액 및 완성품 제조를 위한 2차 전해액으로 활용되어진다. The sulfuric acid electrolyte prepared in this way is used as a primary electrolyte required for conversion of lead acid batteries and a secondary electrolyte for manufacturing finished products.

본 발명에서는 첨가제인 EMI-BF4 를 첨가함으로 내구성 향상 효과를 제공하게 된다.In the present invention, by adding the additive EMI-BF 4 , the durability improvement effect is provided.

상기와 같은 기능을 제공하기 위하여, 도 1에 도시한 바와 같이, 본 발명의 감액 특성 및 수명 향상을 제공하기 위한 납축전지의 전해액 제조방법은,In order to provide the above functions, as shown in FIG. 1, the method of manufacturing an electrolyte solution of a lead acid battery for providing an improvement in liquid reduction characteristics and life of the present invention,

납축전지의 화성공정 과정에서 2차 전해액 투입공정에서, In the process of forming a lead acid battery, in the process of introducing the secondary electrolyte,

1.280kg/L 비중의 상온(10 ~ 25℃) 희황산(H2SO4) 전해액 대비 0.08 ~ 0.1 wt%의 이온성 액체인 EMI-BF4 를 첨가제로서 투입하는 EMI-BF4 첨가제 투입단계(S100);와EMI-BF 4 additive input step (S100) in which EMI-BF 4 , an ionic liquid of 0.08 to 0.1 wt% compared to the 1.280 kg/L specific gravity of room temperature (10 to 25°C) electrolyte (H 2 SO 4 ), is added as an additive. );Wow

이후, 상온(10 ~ 25℃)에서 1 ~ 24시간 동안 교반하여 전해액을 완성시키는 전해액완성단계(S200);를 포함하게 된다.Then, the electrolyte solution completion step (S200) of completing the electrolyte solution by stirring at room temperature (10 to 25°C) for 1 to 24 hours.

구체적으로, 상기 EMI-BF4 첨가제 투입단계(S100)는,Specifically, the EMI-BF 4 additive input step (S100),

1.280kg/L 비중의 상온(10 ~ 25℃) 희황산(H2SO4) 전해액 대비 0.08 ~ 0.1 wt%의 이온성 액체인 EMI-BF4 를 첨가제로서 투입하는 단계이다.This is the step of introducing EMI-BF 4 , an ionic liquid of 0.08 to 0.1 wt%, as an additive, compared to an electrolytic solution of 1.280 kg/L at room temperature (10 to 25°C) of dilute sulfuric acid (H 2 SO 4 ).

이때, 상기 EMI-BF4 첨가제는 0.08 wt% 미만, 0.1 wt% 초과일 경우에 H2 Gas의 발생량이 증가하여 감액 내구성 시험 수명이 감소하고, 용량 및 CCA 성능이 감소함을 실험을 통해 확인할 수 있었으므로 상기한 범위 내에서 적절히 투입하는 것이 바람직할 것이다.At this time, it was confirmed through experiments that the EMI-BF 4 additive increased the amount of H2 gas generated when it was less than 0.08 wt% and exceeded 0.1 wt%, resulting in a decrease in the reduction durability test life, and decrease in capacity and CCA performance. Therefore, it would be desirable to properly add within the above range.

이후, 전해액완성단계(S200)는 상온(10 ~ 25℃)에서 1 ~ 24시간 동안 교반하여 전해액을 완성시키는 단계이며, 일반적으로 납축전지 전해액 제조 과정이므로 구체적인 설명은 생략하겠다.Thereafter, the electrolytic solution completion step (S200) is a step of completing the electrolytic solution by stirring at room temperature (10 to 25°C) for 1 to 24 hours, and since it is generally a lead acid battery electrolytic solution manufacturing process, a detailed description will be omitted.

현재, 납축전지를 필요로 하는 사용환경이 점점 가혹해 짐에 따라 납축전지의 충방전 특성이 우수한 제품을 요구하고 있고, 요구 조건에 부응하는 새로운 형태의 재료들이 개발되고 있다.Currently, as the use environment that requires lead acid batteries becomes increasingly severe, products with excellent charge/discharge characteristics of lead acid batteries are required, and new types of materials are being developed that meet the requirements.

근래의 납축전지 업계는 충전/방전 심도가 높은 환경의 마이크로-하이브리드(Micro-hybrid) 또는 마일드-하이브리드(Mild-hybrid) 자동차용 전지 개발에 힘쓰고 있으며, 일반적인 납축전지의 요구 조건을 상회하는 방전깊이(放電-, Depth of discharge, 이하 DOD)에서의 잔존 용량 과도한 Drop이 없을 것과 고온 내구성 (75도 SAE J2801) 시험이 많은 고객 들로 부터 요구 되어지고 있다. The recent lead acid battery industry is striving to develop micro-hybrid or mild-hybrid automobile batteries in environments with high charging/discharging depth, and discharging that exceeds the requirements of general lead-acid batteries. There is no excessive drop of residual capacity at depth (Depth of discharge, hereinafter DOD) and high temperature durability (75 degrees SAE J2801) test is required by many customers.

이에 따라, 본 발명은 감액 특성 및 내구성 및 제품 수명을 향상시키기 위하여 이온성 액체인 EMI-BF4 를 첨가제로서 투입하게 된 것이다.Accordingly, in the present invention, EMI-BF 4 , which is an ionic liquid, is introduced as an additive in order to improve liquid reduction properties, durability, and product life.

Figure 112019075995009-pat00002
Figure 112019075995009-pat00002

출원인이 제조하는 납축전지(BX80)에 사용하는 전해액에 본 발명의 첨가제를 첨가하지 않고 제조한 납축전지, 전해액에 본 발명의 첨가제인 EMI-BF4 0.08 ~ 0.1 wt% 첨가한 후 제조한 납축전지, 전해액에 본 발명의 첨가제인 EMI-BF4 0.2 wt% 첨가한 후 제조한 납축전지, 전해액에 본 발명의 첨가제인 EMI-BF4 0.05 wt% 첨가한 후 제조한 납축전지를 제조한 후 감액 시험과 기초 성능 시험을 실시하였다. A lead acid battery manufactured without adding the additive of the present invention to the electrolyte used in the lead acid battery (BX80) manufactured by the applicant, and a lead acid battery manufactured after adding 0.08 to 0.1 wt% of EMI-BF 4 , the additive of the present invention, to the electrolyte , followed by the addition of additives of EMI-BF 4 0.2 wt% of the present invention in the electrolytic solution in a lead-acid battery, adding additives in EMI-BF 4 0.05 wt% of the present invention in the electrolytic solution produced after the after manufacturing a lead-acid battery manufacturing reduction test And basic performance tests were conducted.

상기 표 1은 감액 내구성 시험 결과표로서, EMI-BF4 를 첨가하지 않을 경우에 21일 - 3.95g/Ah , 42일 - 5.28g/Ah 을 나타내고 있으며, MI-BF4 를 1.280kg/L 비중의 상온(10 ~ 25℃) 희황산(H2SO4) 전해액 대비 0.08 ~ 0.1 wt% 범위 내에서 투입하게 되면, 21일 - 1.95g/Ah , 42일 - 2.95g/Ah 을 나타내고 있다.Table 1 is a test result table for reducing durability, and shows 21 days-3.95g/Ah, 42 days-5.28g/Ah when EMI-BF 4 is not added, and MI-BF 4 has a specific gravity of 1.280kg/L. When added in the range of 0.08 to 0.1 wt% of dilute sulfuric acid (H 2 SO 4 ) at room temperature (10 to 25°C) electrolyte, 21 days-1.95g/Ah, 42 days-2.95g/Ah.

따라서, 본 발명의 MI-BF4 를 첨가할 경우에 감액 특성이 좋아짐을 알 수 있었다.Therefore, it was found that when the MI-BF 4 of the present invention was added, the liquid reduction property was improved.

한편, 상기 MI-BF4 첨가제를 0.08 wt% 미만, 0.1 wt% 초과하여 투입할 경우에는 미투입시 보다는 성능 향상을 기대할 수 있으나, 오히려 H2 Gas의 발생량이 증가하여 감액 내구성 시험 수명이 감소하고, 용량 및 CCA 성능이 감소하게 됨을 알 수 있어 상기한 범위 내에서 첨가하는 것이 바람직할 것이다.On the other hand, when the MI-BF 4 additive is added in less than 0.08 wt% and in excess of 0.1 wt%, performance improvement can be expected than when not added, but rather, the generation of H2 gas increases, so that the reduction durability test life is reduced, and the capacity And it can be seen that the CCA performance is reduced, it will be preferable to add within the above range.

Figure 112019075995009-pat00003
Figure 112019075995009-pat00003

상기 표 2는 기초 성능 시험 결과표로서, EMI-BF4 를 첨가하지 않을 경우에 0N C20 에서 70 Ah 보다 성능이 떨어진 60 Ah 임을 알 수 있었다.Table 2 is a basic performance test result table, and it was found that when EMI-BF 4 was not added, the performance was lower than 70 Ah at 0N C20 at 60 Ah.

반면에 MI-BF4 를 1.280kg/L 비중의 상온(10 ~ 25℃) 희황산(H2SO4) 전해액 대비 0.08 ~ 0.1 wt% 범위 내에서 투입하게 되면, 70 Ah 보다 성능이 우수하게 71 Ah 임을 알 수 있었다.On the other hand, if MI-BF 4 is added in the range of 0.08 ~ 0.1 wt% compared to the normal temperature (10 ~ 25℃) dilute sulfuric acid (H 2 SO 4 ) electrolyte with a specific gravity of 1.280 kg/L, the performance is better than 70 Ah. I could see that.

그러나, 상기 MI-BF4 첨가제를 0.08 wt% 미만, 0.1 wt% 초과하여 투입할 경우에는 미투입시 보다는 기초 성능은 향상되었으나, 요구치인 70 Ah 보다 성능이 떨어지게 되므로 기초 성능 향상에는 다소 기대치에 못미치는 결과를 제공하기 때문에 상기한 범위 내에서 첨가하는 것이 바람직할 것이다.However, when the MI-BF 4 additive is added in less than 0.08 wt% and in excess of 0.1 wt%, the basic performance is improved compared to when not added, but the performance is lower than the required 70 Ah, so the basic performance improvement is somewhat less than expected. It would be desirable to add within the above range as it provides results.

그리고, 1N C20 에서도 MI-BF4 첨가제 미첨가시에는 70 Ah 보다 성능이 떨어진 59 Ah 임을 알 수 있었으며, MI-BF4 를 1.280kg/L 비중의 상온(10 ~ 25℃) 희황산(H2SO4) 전해액 대비 0.08 ~ 0.1 wt% 범위 내에서 투입하게 되면, 70 Ah 보다 성능이 우수하게 73 Ah 임을 알 수 있었다.In addition, even in 1N C20, when the MI-BF 4 additive was not added, it was found that the performance was 59 Ah, which was lower than 70 Ah, and MI-BF 4 was used at room temperature (10 ~ 25℃) with a specific gravity of 1.280kg/L. Dilute sulfuric acid (H 2 SO 4 ) When added within the range of 0.08 ~ 0.1 wt% compared to the electrolyte, it was found that the performance was better than 70 Ah, 73 Ah.

그러나, 상기 MI-BF4 첨가제를 0.08 wt% 미만, 0.1 wt% 초과하여 투입할 경우에는 미투입시 보다는 기초 성능은 향상되었으나, 요구치인 70 Ah 보다 성능이 떨어지게 되므로 기초 성능 향상에는 다소 기대치에 못미치는 결과를 제공하기 때문에 상기한 범위 내에서 첨가하는 것이 바람직할 것이다.However, when the MI-BF 4 additive is added in less than 0.08 wt% and in excess of 0.1 wt%, the basic performance is improved compared to when not added, but the performance is lower than the required 70 Ah, so the basic performance improvement is somewhat less than expected. It would be desirable to add within the above range as it provides results.

본 실험 결과, 본 발명의 이온성 액체인 EMI-BF4 첨가제를 추가할 경우에 수소 가스 발생을 감소시켜 감액 특성과 내구성 및 제품 수명을 향상시킨 납축전지를 제공할 수 있음을 확인할 수 있었다.As a result of this experiment, it was confirmed that when adding the EMI-BF 4 additive, which is an ionic liquid of the present invention, it is possible to provide a lead acid battery with improved liquid reduction characteristics, durability and product life by reducing the generation of hydrogen gas.

결론적으로 본 발명을 통해, 이온성 액체인 EMI-BF4 를 첨가하여 전해액을 제조하여 이를 납축전지에 투입함으로써, 음극의 자기부식을 방지하고, 수소 가스 발생을 감소시켜 감액 특성과 내구성 및 제품 수명을 향상시킨 납축전지를 제공할 수 있는 효과를 제공하게 된다.In conclusion, through the present invention, by adding an ionic liquid, EMI-BF 4 , to prepare an electrolytic solution and injecting it into a lead acid battery, magnetic corrosion of the negative electrode is prevented and hydrogen gas generation is reduced to reduce the liquid-reduction characteristics, durability, and product life. It is to provide an effect that can provide a lead acid battery with improved.

본 발명을 첨부된 도면과 함께 설명하였으나, 이는 본 발명의 요지를 포함하는 다양한 실시 형태 중의 하나의 실시예에 불과하며, 당업계에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 하는 데에 그 목적이 있는 것으로, 본 발명은 상기 설명된 실시 예에만 국한되는 것이 아님은 명확하다. Although the present invention has been described with the accompanying drawings, this is only one of various embodiments including the gist of the present invention, and is intended to be easily implemented by those of ordinary skill in the art. As for the purpose, it is clear that the present invention is not limited to the above-described embodiments.

따라서, 본 발명의 보호범위는 하기의 청구범위에 의해 해석되어야 하며, 본 발명의 요지를 벗어나지 않는 범위 내에서의 변경, 치환, 대체 등에 의해 그와 동등한 범위 내에 있는 모든 기술 사상은 본 발명의 권리범위에 포함될 것이다. Accordingly, the scope of protection of the present invention should be interpreted by the following claims, and all technical ideas within the scope equivalent thereto by changes, substitutions, substitutions, etc. within the scope not departing from the gist of the present invention are the rights of the present invention. Will be included in the scope.

또한, 도면의 일부 구성은 구성을 보다 명확하게 설명하기 위한 것으로 실제보다 과장되거나 축소되어 제공된 것임을 명확히 한다. 또한, 청구항 부호는 이해를 돕기 위한 것일 뿐 본 발명의 형상과 구조를 첨부된 도면에 한정한다는 뜻이 아니다.In addition, some configurations in the drawings are intended to more clearly describe the configuration, and it is clarified that they are exaggerated or reduced and provided. In addition, the reference numerals are for better understanding and do not mean that the shape and structure of the present invention are limited to the accompanying drawings.

S100 : EMI-BF4 첨가제 투입단계
S200 : 전해액완성단계
S100: EMI-BF 4 additive input step
S200: Electrolytic solution completion step

Claims (4)

감액 특성 및 수명 향상을 제공하기 위한 납축전지의 전해액 제조방법에 있어서,
납축전지의 화성공정 과정에서 2차 전해액 투입공정에서,
1.280kg/L 비중의 상온(10 ~ 25℃) 희황산(H2SO4) 전해액 대비 0.08 ~ 0.1 wt%의 이온성 액체인 EMI-BF4 를 첨가제로서 투입하는 EMI-BF4 첨가제 투입단계(S100);와
이후, 상온(10 ~ 25℃)에서 1 ~ 24시간 동안 교반하여 전해액을 완성시키는 전해액완성단계(S200);를 포함하는 것을 특징으로 하며,
상기 EMI-BF4 첨가제 투입단계(S100)에서,
이온성 액체인 EMI-BF4 첨가제를 첨가하여 음극의 자기 부식을 방지하고, 수소 가스 발생을 감소시켜 감액 특성 및 내구성 향상을 제공하는 것을 특징으로 하며,
납축전지의 요구되는 보유 용량이 70Ah의 용량일 경우에 EMI-BF4 첨가제를 첨가한 납축전지의 보유 용량은 73Ah의 용량인 것을 특징으로 하는 감액 특성 및 수명 향상을 제공하기 위한 납축전지의 전해액 제조방법.
In the electrolyte manufacturing method of a lead acid battery for providing liquid reduction characteristics and life improvement,
In the process of forming a lead acid battery, in the process of introducing the secondary electrolyte,
EMI-BF 4 additive input step (S100) in which EMI-BF 4 , an ionic liquid of 0.08 to 0.1 wt% compared to the 1.280 kg/L specific gravity of room temperature (10 to 25°C) electrolyte (H 2 SO 4 ), is added as an additive. );Wow
Then, the electrolyte solution completion step (S200) of completing the electrolyte by stirring at room temperature (10 ~ 25 ℃) for 1 ~ 24 hours; characterized by including,
In the EMI-BF 4 additive input step (S100),
Addition of EMI-BF 4 additive, which is an ionic liquid, prevents self-corrosion of the cathode, and reduces the generation of hydrogen gas to improve liquid reduction properties and durability.
When the required holding capacity of the lead acid battery is 70Ah, the capacity of the lead acid battery added with the EMI-BF 4 additive is 73Ah. Way.
삭제delete 삭제delete 삭제delete
KR1020190089472A 2019-07-24 2019-07-24 A method for manufacturing electrolytic solution of lead-acid battery to provide discharge capacity improvement and durability improvement KR102187662B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020190089472A KR102187662B1 (en) 2019-07-24 2019-07-24 A method for manufacturing electrolytic solution of lead-acid battery to provide discharge capacity improvement and durability improvement

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020190089472A KR102187662B1 (en) 2019-07-24 2019-07-24 A method for manufacturing electrolytic solution of lead-acid battery to provide discharge capacity improvement and durability improvement

Publications (1)

Publication Number Publication Date
KR102187662B1 true KR102187662B1 (en) 2020-12-07

Family

ID=73791123

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020190089472A KR102187662B1 (en) 2019-07-24 2019-07-24 A method for manufacturing electrolytic solution of lead-acid battery to provide discharge capacity improvement and durability improvement

Country Status (1)

Country Link
KR (1) KR102187662B1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006114314A (en) * 2004-10-14 2006-04-27 Matsushita Electric Ind Co Ltd Manufacturing method of lead acid storage battery
KR101011859B1 (en) 2005-09-27 2011-01-31 후루카와 덴치 가부시키가이샤 Lead storage battery and manufacturing method of the same
KR20160126580A (en) * 2015-04-24 2016-11-02 김이환 Battery electrolyte composition and a method of manufacturing the same
WO2017186873A1 (en) * 2016-04-27 2017-11-02 University Of Vienna Method of manufacturing a separator for a battery and separator for a battery

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006114314A (en) * 2004-10-14 2006-04-27 Matsushita Electric Ind Co Ltd Manufacturing method of lead acid storage battery
KR101011859B1 (en) 2005-09-27 2011-01-31 후루카와 덴치 가부시키가이샤 Lead storage battery and manufacturing method of the same
KR20160126580A (en) * 2015-04-24 2016-11-02 김이환 Battery electrolyte composition and a method of manufacturing the same
WO2017186873A1 (en) * 2016-04-27 2017-11-02 University Of Vienna Method of manufacturing a separator for a battery and separator for a battery

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Journal of Power Sources 390(2018), 176-180* *

Similar Documents

Publication Publication Date Title
JP5584216B2 (en) Improved anti-shrink agent for lead-acid batteries
EP2709200B1 (en) Lead battery
JP4523580B2 (en) Negative electrode active material for secondary battery and intermediate kneaded material for producing them
CN107735889B (en) Doped conductive oxides and improved electrochemical energy storage device plates based thereon
KR20190128089A (en) Rechargeable electrochemical cell
JP2008047452A (en) Paste type electrode plate and its manufacturing method
US20080305396A1 (en) Lead-acid battery expanders with improved life at high temperatures
JP2003051306A (en) Negative electrode for lead-acid battery
EP2960978B1 (en) Flooded lead-acid battery
KR20210018085A (en) Cathode Active Material for Lithium Secondary Battery
JPH09306497A (en) Negative electrode plate for lead-acid battery
JP2003123760A (en) Negative electrode for lead-acid battery
JP2003151617A (en) Lead-acid battery
KR102187662B1 (en) A method for manufacturing electrolytic solution of lead-acid battery to provide discharge capacity improvement and durability improvement
KR102103311B1 (en) A method of manufacturing an electrolyte of a lead-acid battery capable of providing a stable durability cycle
KR102483433B1 (en) Electrolytic solution manufacturing method for providing electrode plate oxidation prevention
US10355316B2 (en) High performance lead acid battery with advanced electrolyte system
US1944065A (en) Low voltage storage battery
KR102187679B1 (en) A method for manufacturing electrolytic solution of lead-acid battery to provide discharge capacity improvement and durability improvement
JP2007250308A (en) Control valve type lead acid battery
JPH11329476A (en) Sealed lead-acid battery
KR20190019412A (en) Electrolyte for a lead storage battery and lead storage battery comprising it
JP2022166455A (en) Electrode group and lea acid battery
KR20220152466A (en) Thick film electrode for second battery comprising composite material, secodary battery comprising the same and manufacturing method thereof
JP2024501901A (en) Proton conductive synthetic additives for battery electrolytes

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant