KR102178565B1 - Anode Active Material for Lithium-Ion Secondary Battery - Google Patents

Anode Active Material for Lithium-Ion Secondary Battery Download PDF

Info

Publication number
KR102178565B1
KR102178565B1 KR1020180154192A KR20180154192A KR102178565B1 KR 102178565 B1 KR102178565 B1 KR 102178565B1 KR 1020180154192 A KR1020180154192 A KR 1020180154192A KR 20180154192 A KR20180154192 A KR 20180154192A KR 102178565 B1 KR102178565 B1 KR 102178565B1
Authority
KR
South Korea
Prior art keywords
oil
weight
active material
coating agent
negative electrode
Prior art date
Application number
KR1020180154192A
Other languages
Korean (ko)
Other versions
KR20200067394A (en
Inventor
이영석
김경훈
한정인
김종구
안동해
Original Assignee
충남대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 충남대학교산학협력단 filed Critical 충남대학교산학협력단
Priority to KR1020180154192A priority Critical patent/KR102178565B1/en
Publication of KR20200067394A publication Critical patent/KR20200067394A/en
Application granted granted Critical
Publication of KR102178565B1 publication Critical patent/KR102178565B1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Composite Materials (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

본 발명은 리튬이차전지용 새로운 음극활물질, 이를 이용한 음극 및 이를 채택한 리튬이차전지에 관한 것이다.The present invention relates to a new negative electrode active material for a lithium secondary battery, a negative electrode using the same, and a lithium secondary battery employing the same.

Description

리튬이차전지용 음극활물질, 이를 포함하는 음극 및 그 음극을 포함하는 리튬이차전지{Anode Active Material for Lithium-Ion Secondary Battery}Anode Active Material for Lithium-Ion Secondary Battery, Anode Active Material for Lithium-Ion Secondary Battery, Anode Active Material for Lithium-Ion Secondary Battery

본 발명은 리튬이차전지용 새로운 음극활물질, 이를 이용한 음극 및 이를 채택한 리튬이차전지에 관한 것이다.The present invention relates to a new negative electrode active material for a lithium secondary battery, a negative electrode using the same, and a lithium secondary battery employing the same.

일반적으로 리튬이차전지의 음극재로는 비정질 탄소 또는 결정질 탄소가 사용되고 있으며, 이중에서도 결정질 탄소가 용량이 높아 주로 사용되고 있다. In general, amorphous carbon or crystalline carbon is used as an anode material of a lithium secondary battery, and crystalline carbon is mainly used because of its high capacity.

이러한 결정질 탄소로는 천연흑연과 인조흑연이 있다. Such crystalline carbon includes natural graphite and artificial graphite.

인조흑연의 경우 충방전 효율은 높지만 비용이 고가이며, 용량이 상대적으로 낮다. 천연 흑연의 경우, 저가이면서도 인조 흑연과 유사한 전기 화학적 특성을 나타내기 때문에 음극 활물질로 효용성이 높다. In the case of artificial graphite, the charging and discharging efficiency is high, but the cost is high and the capacity is relatively low. In the case of natural graphite, since it is inexpensive and exhibits electrochemical properties similar to those of artificial graphite, it is highly useful as an anode active material.

그러나 천연 흑연은 판상의 형상을 갖기 때문에 표면적이 크고 엣지(edge)면이 그대로 노출되어 음극활물질로 적용 시 전해질의 침투나 분해반응이 일어날 수 있다. However, since natural graphite has a plate shape, the surface area is large and the edge surface is exposed as it is, and when applied as a negative electrode active material, penetration or decomposition reaction of the electrolyte may occur.

이 때문에 엣지면이 박리되거나 파괴되어 비가역 반응이 크게 일어나서 초기 효율 및 가역용량이 낮아 충방전 효율이 낮다는 문제가 있다.For this reason, there is a problem in that the charging/discharging efficiency is low due to low initial efficiency and reversible capacity since the edge surface is peeled off or destroyed, causing a large irreversible reaction.

따라서, 종래의 음극재가 갖는 문제를 보완하기 위하여 비정질 탄소를 전극재 입자 표면에 코팅을 하는데 연화점 및 퀴놀린 불용분으로만 분류된 다양한 탄화수소화합물의 혼합물을 사용하기 때문에 균일한 코팅이 어려워 효과적으로 비가역 반응을 낮추기 힘들다는 단점이 있어 이를 개선시킬 수 있는 음극활물질인 음극재 개발이 요구되고 있다.Therefore, in order to compensate for the problems of the conventional negative electrode material, amorphous carbon is coated on the electrode material particle surface.Since a mixture of various hydrocarbon compounds classified only as a softening point and quinoline insoluble matter is used, uniform coating is difficult and thus effective irreversible reaction is achieved. There is a disadvantage that it is difficult to lower it, and there is a need to develop an anode material that is an anode active material that can improve this.

본 발명은 종래 그라파이트 활물질이 판상이므로, 사용과정에서 엣지면이 박리되거나 파괴되어 비가역 반응이 크게 일어나서 초기 효율 및 가역용량이 낮아 충방전 효율이 낮다는 문제를 해결하기 위한 것이다.The present invention is to solve the problem that charging and discharging efficiency is low due to low initial efficiency and reversible capacity due to large irreversible reaction due to peeling or destruction of an edge surface during use, since the conventional graphite active material is a plate shape.

또한 본 발명은 종래의 음극재가 갖는 문제를 보완하기 위하여 다양한 탄화수소화합물의 혼합물을 코팅하였지만, 달성하기 어려웠던 균일한 코팅 및 비가역 반응을 낮출 수 있는 새로운 음극재를 제공하기 위한 것이다.In addition, the present invention is to provide a novel anode material capable of lowering a uniform coating and irreversible reaction, which was difficult to achieve, although a mixture of various hydrocarbon compounds was coated in order to compensate for the problem of the conventional anode material.

또한 본 발명은 코팅 균일도를 향상시켜 SEI (solid electrolyte interphase)층 생성을 억제할 수 있어 초기 효율과 가역용량을 증가시킬 수 있는 새로운 음극활물질인 음극재를 제공하는 것이다.In addition, the present invention provides a negative electrode material, a new negative electrode active material capable of increasing initial efficiency and reversible capacity by improving coating uniformity to suppress the generation of a solid electrolyte interphase (SEI) layer.

상기 목적을 달성하기 위하여 본 발명은In order to achieve the above object, the present invention

석유계 저급오일로부터 열처리하여 제조되는 하기 조건을 만족하는 탄소코팅제와 그라파이트를 혼합하고 소성하여 제조되는 음극활물질을 제공함으로써 본 발명을 달성하였다.The present invention was achieved by providing a negative electrode active material prepared by mixing and firing a carbon coating agent and graphite satisfying the following conditions prepared by heat treatment from petroleum-based lower oil.

(1) 중량평균분자량 400 내지 500 달톤(1) Weight average molecular weight of 400 to 500 Daltons

(2) 2 내지 3개의 방향족 환을 함유하는 탄화수소화합물의 함량이 탄소코팅제 전체에 대하여 85 내지 95중량%(2) The content of the hydrocarbon compound containing 2 to 3 aromatic rings is 85 to 95% by weight based on the total carbon coating agent

(3) 4 개 이상의 방향족 환을 포함하는 탄화수소화합물의 분율이 5중량% 이하 및 (3) the fraction of hydrocarbon compounds containing 4 or more aromatic rings is 5% by weight or less, and

(4) 지방족 탄화수소화합물이 2중량%이하 (4) 2% by weight or less of aliphatic hydrocarbon compounds

또한 본 발명의 일양태는 상기 음극활물질을 제조하기 위해 사용하는 상기 석유계 저급오일은 FCC-DO(Fluid catalytic cracking decant oil), NCB(Naphtha-cracking bottom oil), EBO(Ethylene bottom oil), VR(Vacuum residue oil), 중질유, 초중질유, 상압잔사유 및 PFO(Pyrolized fuel oil)에서 선택되는 1종 이상의 것을 선택함으로써 달성할 수 있다.In addition, one aspect of the present invention is that the petroleum-based lower oil used to prepare the negative active material is FCC-DO (Fluid catalytic cracking decant oil), NCB (Naphtha-cracking bottom oil), EBO (Ethylene bottom oil), VR (Vacuum residue oil), heavy oil, super heavy oil, atmospheric residue oil and PFO (Pyrolized fuel oil) can be achieved by selecting one or more selected from.

본 발명의 또 다른 양태는 상기 탄소코팅제는 상기 석유계 저급오일을 300~450℃에서 10분 내지 2시간 불활성분위기에서 열처리를 한 후, 300~400℃에서 1시간 내지 10시간 열중합하여 제조되므로서 상기 4가지의 특성을 가지는 음극코팅제를 제조할 수 있다.Another aspect of the present invention is that the carbon coating agent is prepared by heat-treating the petroleum-based lower oil at 300 to 450°C for 10 minutes to 2 hours in an inert atmosphere, and then thermally polymerizing the petroleum-based lower oil for 1 hour to 10 hours at 300 to 400°C. A negative electrode coating agent having the above four characteristics can be prepared.

또한 본 발명은 상기 본 발명의 다양한 양태에서 상기 음극활물질은 탄소코팅제와 흑연(그라파이트)를 혼합하여 코팅하고, 이를 열소성함으로써 제조될 수 있다.In addition, the present invention may be prepared by coating the negative electrode active material by mixing a carbon coating agent and graphite (graphite) in various aspects of the present invention, and thermally firing the negative electrode active material.

또한 본 발명은 상기 열처리 전에 열중합 반응에 참여하지 않는 저비점의 탄화수소화합물을 제거하는 단계를 더 가질 수 있다.In addition, the present invention may further have a step of removing a hydrocarbon compound having a low boiling point that does not participate in the thermal polymerization reaction before the heat treatment.

본 발명에서 코팅은 상기 탄소코팅제와 흑연을 혼합한 후, 교반하면서 400~600℃로 가온하면서 코팅할 수 있으며, 코팅시간은 특별히 제한하지 않지만 예를 들면 10분 내지 10시간 정도가 좋다.In the present invention, after mixing the carbon coating agent and graphite, the coating may be coated while heating to 400 to 600° C. while stirring. The coating time is not particularly limited, but, for example, about 10 minutes to 10 hours is good.

또한 본 발명에서 소성은 상기 코팅 후, 800~1000℃에서 10분 내지 10시간 비제한적으로 실시할 수 있다.In addition, in the present invention, the sintering may be performed at 800 to 1000° C. for 10 minutes to 10 hours without limitation after the coating.

또한 본 발명은 상기 본 발명의 다양한 양태에서 상기 음극활물질은 그라파이트 100중량부에 대하여 탄소코팅제 1 내지 100중량부를 혼합하여 제조될 수 있다.In addition, in the present invention, in various aspects of the present invention, the negative electrode active material may be prepared by mixing 1 to 100 parts by weight of a carbon coating agent with respect to 100 parts by weight of graphite.

또한 본 발명은 상기 다양한 양태의 본 발명의 음극활물질을 전극상에 코팅하여 제조되는 리튬이차전지용 음극을 제공할 수 있다.In addition, the present invention can provide a negative electrode for a lithium secondary battery manufactured by coating the negative electrode active material of the present invention of the various aspects on an electrode.

또한 본 발명은 상기 음극활물질을 가지는 음극을 채택한 리튬 이차전지를 제공할 수 있다.In addition, the present invention can provide a lithium secondary battery employing a negative electrode having the negative electrode active material.

본 발명에 따르면, 석유계 저급원료로부터 제조된 방향족 고리를 2 내지 3개를 갖는 방향족 탄화수소화합물이 주를 이루고 중량평균분자량이 400 내지 500Da인 탄화수소화합물을 이용하여 리튬이차전지 음극재 표면을 코팅함으로써 코팅 균일도를 향상시켜 SEI 층 생성을 억제할 수 있으므로 초기 효율과 가역용량을 증가시킬 수 있다.According to the present invention, by coating the surface of a lithium secondary battery negative electrode material using a hydrocarbon compound mainly composed of an aromatic hydrocarbon compound having 2 to 3 aromatic rings produced from a petroleum-based low-grade material and a weight average molecular weight of 400 to 500 Da. As coating uniformity can be improved to suppress SEI layer formation, initial efficiency and reversible capacity can be increased.

또한 종래 그라파이트 활물질이 판상이므로, 사용과정에서 엣지면이 박리되거나 파괴되어 비가역 반응이 크게 일어나서 초기 효율 및 가역용량이 낮아 충방전 효율이 낮다는 문제를 해결할 수 있다.In addition, since the conventional graphite active material is in a plate shape, the edge surface is peeled off or destroyed during use, resulting in a large irreversible reaction, thereby solving the problem of low charging/discharging efficiency due to low initial efficiency and reversible capacity.

또한 본 발명은 종래의 음극재가 갖는 문제를 보완하기 위하여 다양한 탄화수소화합물의 혼합물을 코팅하였지만, 달성하기 어려웠던 균일한 코팅 및 비가역 반응을 낮출 수 있는 새로운 음극재를 제공할 수 있다.In addition, the present invention can provide a novel anode material capable of lowering a uniform coating and irreversible reaction, which was difficult to achieve, although a mixture of various hydrocarbon compounds was coated to compensate for the problem of the conventional anode material.

이하 본 발명에 대하여 구체적으로 설명한다.Hereinafter, the present invention will be described in detail.

본 발명은 FCC-DO(Fluid catalytic cracking decant oil), NCB(Naphtha-cracking bottom oil), EBO(Ethylene bottom oil), VR(Vacuum residue oil), 중질유, 초중질유, 상압잔사유 및 PFO(Pyrolized fuel oil)에서 선택되는 1종 이상의 석유계 저급오일을 이용하여 저비점의 탄화수소화합물을 제거하는 단계, 상기 저비점의 탄화수소화합물이 제거된 저급오일 내의 고분자량의 탄화수소화합물을 열분해 하는 전처리단계 및 전처리된 탄화수소화합물을 중합하는 단계를 포함하여 제조되는 것으로,The present invention is FCC-DO (Fluid catalytic cracking decant oil), NCB (Naphtha-cracking bottom oil), EBO (Ethylene bottom oil), VR (Vacuum residue oil), heavy oil, ultra heavy oil, atmospheric residual oil and PFO (Pyrolized fuel) oil) using one or more petroleum-based lower oils to remove low-boiling hydrocarbon compounds, a pretreatment step of pyrolyzing the high molecular weight hydrocarbon compounds in the lower oil from which the low-boiling hydrocarbon compounds have been removed, and the pretreated hydrocarbon compounds To be prepared including the step of polymerizing,

MALDI_TOF에 의해 측정한 중량평균분자량이 400 내지 500달톤, The weight average molecular weight measured by MALDI_TOF is 400 to 500 Daltons,

방향족기가 2~3개인 탄화수소화합물이 85~95중량%,85 to 95% by weight of a hydrocarbon compound having 2 to 3 aromatic groups,

방향족기가 4개 이상인 탄화수소화합물의 함량이 5중량%이하, 좋게는 3중량%이하 및The content of hydrocarbon compounds having 4 or more aromatic groups is 5% by weight or less, preferably 3% by weight or less, and

지방족 탄화수소화합물의 함량이 2중량%이하인 탄소코팅제와 그라파이트를 포함하는 혼합물에 관한 것이다.It relates to a mixture comprising a carbon coating agent having an aliphatic hydrocarbon compound of 2% by weight or less and graphite.

따라서 본 발명의 양태를 예를 들어 살피면 2-dimensional gas chromatography(GC-2010Plus, Shimadzu)분석과 MALDI-TOF(Voyager-DE STR Biospectrometry workstation, Applied biosystems)분석에 의해 얻어지는 하기 4가지의 조건을 만족하는 석유계 저급오일로부터 제조되는 탄소코팅제와 그라파이트의 혼합물을 의미한다.Therefore, if you look at the aspect of the present invention as an example, the following four conditions are satisfied by 2-dimensional gas chromatography (GC-2010Plus, Shimadzu) analysis and MALDI-TOF (Voyager-DE STR Biospectrometry workstation, Applied biosystems) analysis. It means a mixture of graphite and a carbon coating agent manufactured from petroleum-based lower oil.

(1) 중량평균분자량 400 내지 500 달톤(1) Weight average molecular weight of 400 to 500 Daltons

(2) 2 내지 3개의 방향족 환을 함유하는 탄화수소화합물의 함량이 탄소코팅제 전체에 대하여 85 내지 95중량%(2) The content of the hydrocarbon compound containing 2 to 3 aromatic rings is 85 to 95% by weight based on the total carbon coating agent

(3) 4 개 이상의 방향족 환을 포함하는 탄화수소화합물의 분율이 5중량% 이하 및 (3) the fraction of hydrocarbon compounds containing 4 or more aromatic rings is 5% by weight or less, and

(4) 지방족 탄화수소화합물이 2중량%이하 (4) 2% by weight or less of aliphatic hydrocarbon compounds

상기에서 통상 4개 이상의 방향족 환을 포함하는 탄화수소화합물의 함량은 0.1 내지 5중량%일 수도 있으며, 지방족 탄화수소화합물의 함량은 0.01 내지 2중량%일 수 있다.In the above, the content of the hydrocarbon compound usually containing 4 or more aromatic rings may be 0.1 to 5% by weight, and the content of the aliphatic hydrocarbon compound may be 0.01 to 2% by weight.

본 발명에서 방향족 고리가 1개인 방향족 탄화수소화합물의 함량이 많거나 중량평균분자량이 400달톤 이하인 경우 흑연(그라파이트) 표면에 코팅 후 열처리 시에 잔존량이 매우 낮아 매우 얇은 코팅층을 형성하거나 코팅이 부분적으로 되는 문제가 있으며, 이를 이용할 경우 본 발명에서 목적으로 하는 효과를 얻을 수 없거나 현저히 효과가 저하되어서 좋지 않다.In the present invention, when the content of the aromatic hydrocarbon compound having one aromatic ring is large or the weight average molecular weight is 400 Daltons or less, the residual amount is very low during heat treatment after coating on the surface of graphite (graphite), forming a very thin coating layer or partially coating. There is a problem, and if this is used, it is not good because the target effect in the present invention cannot be obtained or the effect is remarkably reduced.

또한 방향족 고리가 4개 이상 포함된 방향족 탄화수소화합물의 함량이 많거나 중량평균분자량이 500달톤 이상인 경우 탄소코팅제의 경우 제조 시 코킹되어 유동성을 갖지 않거나 고온에서 유동성이 매우 낮아 흑연 표면에 균일한 코팅이 되지 않아 본 발명에서 목적으로 하는 효과를 얻을 수 없거나 현저히 효과가 저하되어서 좋지 않다.In addition, when the content of aromatic hydrocarbon compounds containing 4 or more aromatic rings is high or the weight average molecular weight is 500 Daltons or more, the carbon coating agent does not have fluidity due to caulking during manufacture, or it has very low fluidity at high temperatures, so a uniform coating on the graphite surface is not possible. It is not good because it is not possible to obtain the desired effect in the present invention or the effect is remarkably reduced.

또한 본 발명은 상기 음극활물질은 탄소코팅제와 흑연(그라파이트)를 혼합하여 코팅하고, 이를 열소성함으로써 제조될 수 있다.In addition, in the present invention, the negative electrode active material may be prepared by mixing and coating a carbon coating agent and graphite (graphite), followed by thermal firing.

본 발명에서 코팅은 상기 탄소코팅제와 흑연을 혼합한 후, 교반하면서 400~600℃, 좋게는 450~600℃로 가온하면서 코팅할 수 있으며, 코팅시간은 특별히 제한하지 않지만 예를 들면 10분 내지 10시간, 좋게는 2시간 내지 8시간 정도가 좋다.In the present invention, after mixing the carbon coating agent and graphite, the coating may be coated while stirring while heating at 400 to 600°C, preferably 450 to 600°C, and the coating time is not particularly limited, but, for example, 10 minutes to 10 Time, preferably 2 to 8 hours is good.

또한 본 발명에서 소성은 상기 코팅 후, 800~1000℃에서 10분 내지 10시간 비제한적으로 실시할 수 있다.In addition, in the present invention, the sintering may be performed at 800 to 1000° C. for 10 minutes to 10 hours without limitation after the coating.

본 발명에서 본 발명의 목적을 달성하는 한에서는 상기 탄소코팅제와 흑연의 함량은 특별히 한정하지 않지만, 예를 들면 흑연 100중량부에 대하여 탄소코팅제 1 내지 100중량부를 사용할 수 있다. In the present invention, the contents of the carbon coating agent and graphite are not particularly limited as long as the object of the present invention is achieved, but for example, 1 to 100 parts by weight of the carbon coating agent may be used based on 100 parts by weight of graphite.

본 발명에서 상기 비율은 반드시 지켜야 하는 것을 아니지만, 상기 범위에서 혼합하는 경우, 충분히 탄소코팅제가 흑연입자에 코팅되고, 또한 리튬이온의 삽입 및 탈리 시 확산도가 충분하여 용량이 증가되는 장점이 있다. In the present invention, the ratio is not necessarily observed, but when mixed within the above range, the carbon coating agent is sufficiently coated on the graphite particles, and the diffusion is sufficient when lithium ions are inserted and desorbed, thereby increasing the capacity.

이하에서는 본 발명의 상기 탄소코팅제의 제조방법에 대하여 더욱 구체적으로 설명한다.Hereinafter, the method of manufacturing the carbon coating agent of the present invention will be described in more detail.

본 발명의 일례에 의한 리튬이차전지 음극재용 탄소코팅제의 제조방법은, 석유계 저급오일 내 열중합 반응에 참여하지 않는 저비점의 탄화수소화합물 휘발분 제거(가열 또는 가열/진공제거 또는 진공가온제거) 등의 다양한 방법으로 제고할 수 있다. 예를 들면, 전처리단계(제1단계열처리) 전에 휘발분, 저분자량 화합물들의 비점 이상의 온도, 예를 들면 200℃ 에서 1시간 열처리하여 제거할 수 있다.The manufacturing method of the carbon coating agent for a negative electrode material of a lithium secondary battery according to an exemplary embodiment of the present invention includes removing volatile components of hydrocarbon compounds having a low boiling point that do not participate in the thermal polymerization reaction in petroleum lower oil (heating or heating/vacuum removal or vacuum heating removal). It can be improved in various ways. For example, before the pretreatment step (first step heat treatment), the volatile components and low molecular weight compounds may be removed by heat treatment at a temperature above the boiling point, for example, 200°C for 1 hour.

또한 본 발명에서는 하기 전처리단계(제1단계열처리)에서 저비점 휘발분을 제거하는 공정과 지방족 사슬을 크래킹하는 공정이 동시에 발생하는 것을 유도할 수도 있다. In addition, in the present invention, it may be induced that the process of removing low-boiling volatiles and the process of cracking aliphatic chains occur simultaneously in the following pretreatment step (first stage heat treatment).

이어서 본 발명은 저비점의 물질이 제거된 후 남아 있는 고분자량의 탄화수소화합물의 지방족 사슬을 크래킹하는 제1단계(전처리단계)와 크래킹된 물질의 분자량 및 구조를 본 발명으로 조절하는 탄화수소화합물의 중합성장시키는 제2단계(열중합단계); 및 제조된 탄소코팅제를 이용해 리튬이차전지 음극재용 흑연에 탄소코팅하고 이를 열처리하여 리튬이차전지 음극재를 제조하는 제3단계;를 포함하여 이루어진다.Subsequently, the present invention relates to the first step (pretreatment step) of cracking the aliphatic chain of the high molecular weight hydrocarbon compound remaining after the low boiling point material is removed, and the polymerization growth of the hydrocarbon compound to control the molecular weight and structure of the cracked material by the present invention. A second step (thermal polymerization step); And a third step of carbon coating graphite for a negative electrode material of a lithium secondary battery using the prepared carbon coating agent and heat treatment to prepare a negative electrode material for a lithium secondary battery.

각각의 조건은 본 발명의 목적을 달성하는 한에서는 특별히 제한하지 않지만 일예를 들어 설명하면 다음과 같다. Each condition is not particularly limited as long as it achieves the object of the present invention, but an example will be described as follows.

본 발명의 전처리단계는 고분자량의 탄화수소화합물을 크래킹하는 단계로서 상기 석유계 저급오일을 300~450℃에서 10분 내지 2시간 불활성분위기에서 열처리하는 것을 의미할 수 있다.The pretreatment step of the present invention is a step of cracking a high molecular weight hydrocarbon compound and may mean heat-treating the petroleum-based lower oil at 300 to 450°C for 10 minutes to 2 hours in an inert atmosphere.

또한 분자량을 증가시키는 중합단계는 300~400℃에서 1시간 내지 10시간 열중합하여 제조됨으로서 상기 4가지의 특성을 가지는 음극코팅제를 제조할 수 있다.In addition, the polymerization step of increasing the molecular weight is prepared by thermal polymerization for 1 hour to 10 hours at 300 to 400°C, so that a negative electrode coating agent having the above four characteristics can be prepared.

한편, 본 발명에서 상기 탄소코팅제를 그라파이트에 코팅하는 방법은 상기 탄소코팅제와 흑연(그라파이트)을 혼합한 후, 로타리킬른 등에서 특별히 제한하지 않지만 10 내지 400rpm으로 교반하면서 400~600℃에서 1시간 내지 20시간, 좋게는 450~600℃로 가온하면서 코팅할 수 있으며, 코팅시간은 특별히 제한하는 것은 아니나, 10분 낸지 10시간 정도가 좋다.On the other hand, the method of coating the carbon coating agent on graphite in the present invention is not particularly limited in a rotary kiln, etc., after mixing the carbon coating agent and graphite (graphite), but stirring at 10 to 400 rpm and 1 hour to 20 at 400 to 600 ℃ Time, preferably, can be coated while heating to 450 ~ 600 ℃, the coating time is not particularly limited, 10 minutes after 10 hours is good.

또한 본 발명에서 소성은 상기 코팅 후, 800~1000℃에서 10분 내지 10시간 비제한적으로 실시할 수 있다.In addition, in the present invention, the sintering may be performed at 800 to 1000° C. for 10 minutes to 10 hours without limitation after the coating.

최종적으로 제조된 음극활물질 분말은 필요시 시브를 이용하여 분급하여 적절한 입도를 조절하여 사용할 수 있다. 예를 들면 평균입경이 10 내지 50㎛의 입경으로 분급하여 사용할 수 있지만 이에 한정하는 것은 아니다.The finally prepared negative electrode active material powder may be classified using a sieve and used by adjusting an appropriate particle size if necessary. For example, although the average particle diameter may be classified into a particle diameter of 10 to 50 μm, it is not limited thereto.

크랭킹하는 전처리단계에서 450℃ 이상에서 수행하는 경우, 분 코킹되어 방향족 고리가 4개 이상인 탄화수소화합물의 함량이 증가하여 탄소코팅제의 프리커서에 바람직하지 않다.If it is carried out at 450°C or higher in the pretreatment step of cranking, the content of the hydrocarbon compound having four or more aromatic rings increases due to minute coking, which is not preferable for the precursor of the carbon coating agent.

본 발명에서 흑연에 탄소코팅제를 코팅하고 소성한 후, 얻어진 음극활물질 분말은 필용시, 로터리 킬른에서 500℃의 온도조건에서 5시간 동안 100rpm으로 코팅하였다. 코팅된 흑연은 900℃의 온도에서 2시간 동안 열처리 후 25㎛ 체에서 분급하여 최종적으로 음극재를 제조하였다.In the present invention, after coating the graphite with a carbon coating agent and firing, the obtained negative electrode active material powder was coated at 100 rpm for 5 hours in a rotary kiln at 500° C. for peeling. The coated graphite was heat-treated at a temperature of 900° C. for 2 hours and then classified through a 25 μm sieve to finally prepare a negative electrode material.

상기 제조한 음극재를 이용하여 통상의 방법으로 음극을 제조하고, 이를 이용하여 리튬이차전지를 제조하여 본 발명의 특성을 측정한다. 본 발명에서 음극을 제조할 때, 집전체, 바인더, 증점제 등의 기타 첨가제에 대하여 본 발명에서 제한하는 것은 아니다.A negative electrode is prepared by a conventional method using the prepared negative electrode material, and a lithium secondary battery is manufactured using this to measure the characteristics of the present invention. When manufacturing the negative electrode in the present invention, other additives such as a current collector, a binder, and a thickener are not limited in the present invention.

이하, 실시예 및 비교예를 이용하여 본 발명에 대하여 더욱 상세히 설명한다. 본 발명의 실시예는 이해를 돕기위한 일예로서, 본 발명에 그 실시예에만 한정하는 것은 아니다.Hereinafter, the present invention will be described in more detail using Examples and Comparative Examples. The embodiments of the present invention are examples for aiding understanding and are not limited to the embodiments of the present invention.

실시예 1Example 1

[탄소코팅제 제조][Manufacture of carbon coating agent]

원료인 PFO(Pyrolized fuel oil)를 불활성가스(질소) 분위기하에 400℃에서 1시간 처리하여, 원료 내 존재하는 저비점의 탄화수소화합물을 휘발시켜 제거함과 동시에 고분자량의 지방족 탄화수소화합물을 크래킹하였다. 이어서 불활성분위기에서 350℃에서 추가적으로 4시간 열처리하여 중합하였다. 제조된 탄소코팅제는 MALDI-TOF분석을 통해 평균분자량을 측정하였고, 2D-GC분석을 통해 구조에 따른 조성비를 측정하였으며, 표1은 측정결과를 나타낸다.PFO (Pyrolized fuel oil) as a raw material was treated at 400° C. for 1 hour in an inert gas (nitrogen) atmosphere to volatilize and remove low-boiling hydrocarbon compounds present in the raw materials, and at the same time crack high molecular weight aliphatic hydrocarbon compounds. Subsequently, polymerization was performed by heat treatment for an additional 4 hours at 350°C in an inert atmosphere. The average molecular weight of the prepared carbon coating agent was measured through MALDI-TOF analysis, and the composition ratio according to the structure was measured through 2D-GC analysis, and Table 1 shows the measurement results.

[음극재 제조; 탄소코팅된 흑연 제조][Manufacture of cathode materials; Manufacture of carbon coated graphite]

상기 제조된 탄소코팅제와 흑연 입자를 1:2 중량비로 혼합하고 로터리 킬른에서 500℃의 온도조건에서 5시간 동안 100rpm으로 코팅하였다. 코팅된 흑연은 900℃의 온도에서 2시간 열처리 후 25㎛ 체에서 분급하여 최종적으로 음극재를 제조하였다.The prepared carbon coating agent and graphite particles were mixed in a weight ratio of 1:2, and coated at 100 rpm for 5 hours at 500°C in a rotary kiln. The coated graphite was heat-treated at 900° C. for 2 hours and then classified through a 25 μm sieve to finally prepare a negative electrode material.

[코인형 리튬이차전지 제조][Manufacture of coin-type lithium secondary battery]

상기 제조된 음극재, 바인더(스티렌-부타디엔 러버) 및 증점제(CMC)를 90:6:4의 중량비로 혼합한 후 증류수에 분산시켜 음극재 슬러리 조성물을 제조하였다. 상기 조성물을 구리 호일 집전체에 코팅한 후, 건조 및 압연하여 전극 밀도가 1.50±0.05g/cm3이 되도록 제조하였다. 상기 음극을 작동전극으로 하고, 리튬 금속을 상대전극으로 사용하여, 2032 코인타입의 반쪽 전지를 제작하였다. 이 때, 작동전극과 상대전극 사이에 다공질 폴리프로필렌 필름으로 이루어진 분리막을 삽입하고, 전해액으로는 디에틸카보네이트(DEC)와 에틸렌카보네이트(EC)의 혼합 부피비가 1:1인 혼합 용액에 1M 농도의 LiPF6가 용해된 것을 사용하였다. 제조된 전지를 이용하여 전지 특성을 평가한 결과 표 2와 같이 기재하였다.The prepared negative electrode material, binder (styrene-butadiene rubber), and thickener (CMC) were mixed in a weight ratio of 90:6:4 and then dispersed in distilled water to prepare a negative electrode material slurry composition. The composition was coated on a copper foil current collector, dried and rolled to prepare an electrode density of 1.50±0.05 g/cm 3 . Using the negative electrode as a working electrode and lithium metal as a counter electrode, a 2032 coin-type half battery was fabricated. At this time, a separator made of a porous polypropylene film is inserted between the working electrode and the counter electrode, and as an electrolyte, a mixture of diethyl carbonate (DEC) and ethylene carbonate (EC) is 1:1 in a mixed solution having a concentration of 1M. What dissolved LiPF 6 was used. As a result of evaluating the battery characteristics using the prepared battery, it is described as shown in Table 2.

비교예 1Comparative Example 1

탄소코팅제를 사용하지 않고 실시예 1과 동일한 흑연만을 사용하여 실험하였다.The experiment was performed using only the same graphite as in Example 1 without using a carbon coating agent.

비교예 2 내지 4Comparative Examples 2 to 4

실시예 1에서 중합하는 열처리단계를 제외하고는 동일하게 실시하였으며, 전처리조건에 따른 분석결과를 표 1에 수록하였으며, 비교예 2 내지 4의 경우 100th cycle 방전용량(mAh/g)이 220이하로서 매우 열세로서 비교에 1에 비하여도 현저히 저하됨을 알 수 있었다.Except for the heat treatment step of polymerization in Example 1, the same was carried out, and the analysis results according to the pretreatment conditions are listed in Table 1, and in the case of Comparative Examples 2 to 4, the 100 th cycle discharge capacity (mAh/g) is 220 or less. As was very inferior, it was found that it was significantly lowered even compared to 1 in comparison.

비교예 5 내지 9Comparative Examples 5 to 9

표 1과 같은 조건으로 표 1의 분자량 및 화합물의 분율을 가지는 코팅조성물을 사용한 것을 제외하고는 실시예 1과 동일하게 실시하였으며, 그 결과를 표 2에 수록하였다. It was carried out in the same manner as in Example 1, except that the coating composition having the molecular weight and the fraction of the compound of Table 1 was used under the same conditions as in Table 1, and the results are listed in Table 2.

실시예 2 및 3Examples 2 and 3

표 1의 조건을 제외하고는 실시예 1과 동일하게 실시하였다. 그 결과를 표 2에 수록하였다. Except for the conditions in Table 1, it was carried out in the same manner as in Example 1. The results are listed in Table 2.

전처리온도
(1단계; ℃)
Pretreatment temperature
(Step 1; ℃)
중합온도
(2단계; ℃)
Polymerization temperature
(Step 2; ℃)
중량평균
분자량
(Da)
Weight average
Molecular Weight
(Da)
방향족 고리를 n개 포함하는
탄화수소화합물의 함량비(중량%)
Containing n aromatic rings
Hydrocarbon compound content ratio (% by weight)
지방족
탄화수소 화합물
Aliphatic
Hydrocarbon compounds
n=1n=1 n=2n=2 n=3n=3 n≥4n≥4
비교예2Comparative Example 2 350350 00 191191 5.25.2 43.843.8 42.342.3 8.78.7 0.00.0 비교예3Comparative Example 3 400400 00 199199 3.63.6 49.649.6 38.438.4 8.08.0 0.40.4 비교예4Comparative Example 4 450450 00 232232 0.90.9 38.938.9 41.641.6 14.214.2 4.44.4 비교예5Comparative Example 5 350350 300300 312312 4.34.3 40.340.3 42.242.2 13.213.2 0.00.0 비교예6Comparative Example 6 350350 350350 374374 3.73.7 34.234.2 40.440.4 20.820.8 0.90.9 비교예7Comparative Example 7 350350 400400 403403 2.82.8 28.228.2 41.241.2 27.627.6 0.20.2 비교예8Comparative Example 8 400400 300300 398398 1.41.4 26.426.4 45.645.6 26.626.6 0.00.0 비교예9Comparative Example 9 400400 450450 498498 0.80.8 3.13.1 36.236.2 42.542.5 17.417.4 실시예1Example 1 400400 350350 427427 1.11.1 8.48.4 47.647.6 42.642.6 0.30.3 실시예2Example 2 370370 360360 403403 1.51.5 12.412.4 49.649.6 36.336.3 0.20.2 실시예3Example 3 400400 400400 459459 0.50.5 4.24.2 48.248.2 46.046.0 1.11.1

1st cycle
충전용량
(mAh/g)
1 st cycle
Charging capacity
(mAh/g)
1st cycle
방전용량
(mAh/g)
1 st cycle
Discharge capacity
(mAh/g)
100th cycle 방전용량
(mAh/g)
100 th cycle discharge capacity
(mAh/g)
1st cycle
쿨롱효율(%)
1 st cycle
Coulomb efficiency (%)
Retention (%)Retention (%)
비교예1Comparative Example 1 388.4388.4 332.8332.8 286.4286.4 85.785.7 86.186.1 비교예5Comparative Example 5 381.4381.4 337.2337.2 306.7306.7 88.488.4 91.091.0 비교예6Comparative Example 6 379.8379.8 334.8334.8 311.2311.2 88.288.2 93.093.0 비교예7Comparative Example 7 382.2382.2 334.2334.2 288.7288.7 87.487.4 86.486.4 비교예8Comparative Example 8 372.6372.6 331.4331.4 299.8299.8 88.988.9 90.590.5 비교예9Comparative Example 9 384.4384.4 335.8335.8 296.1296.1 87.487.4 88.288.2 실시예1Example 1 366.4366.4 348.6348.6 339.8339.8 95.195.1 97.597.5 실시예2Example 2 362.4362.4 354.2354.2 348.2348.2 97.797.7 98.398.3 실시예3Example 3 361.8361.8 356.4356.4 352.5352.5 98.598.5 98.998.9

상기 표 2에서 살피는 바와 같이, 본 발명과 같이 탄소코팅제가 본 발명의 조건을 만족하는 경우, 방전용량에서 현저한 증가효과를 가지고 있으며, 쿨롱효과에서 우수한 90%이상, 좋게는 95%이상의 값을 가지고, 100사이클 후의 방전용량에 절대 값이 매우 크고 우수하며 그 유지율(retention(%)=(B/A)×100, A: 1회 사이클 후의 방전용량, B: 100회 사이클 후의 방전용량)에서 95%이상, 좋게는 97%이상의 현저한 상승을 가지는 것임을 알 수 있다.As seen in Table 2 above, when the carbon coating agent satisfies the conditions of the present invention as in the present invention, it has a remarkable increase effect in the discharge capacity, and has a value of 90% or more, preferably 95% or more, which is excellent in the Coulomb effect. , The absolute value of the discharge capacity after 100 cycles is very large and excellent, and its retention rate (retention(%) = (B/A) × 100, A: discharge capacity after one cycle, B: discharge capacity after 100 cycles) 95 It can be seen that it has a significant increase of more than %, preferably more than 97%.

Claims (8)

석유계 저급 오일을 열처리하여 제조되는 탄소 코팅제를 판상 그라파이트에 코팅한 후 소성하여 제조되는 음극활물질이며,
상기 탄소 코팅제는 하기 (1) 내지 (4)를 만족하는 탄소 코팅제이고,
상기 그라파이트 100중량부에 대하여, 탄소코팅제 1 내지 100중량부를 혼합하여 제조되는 것인 음극활물질.

(1) 중량평균분자량 400 내지 500 달톤
(2) 2 내지 3개의 방향족 환을 함유하는 탄화수소화합물의 함량이 탄소코팅제 전체에 대하여 85 내지 95중량%
(3) 4 개 이상의 방향족 환을 포함하는 탄화수소화합물의 분율이 5중량% 이하 및
(4) 지방족 탄화수소화합물이 2중량%이하
It is a negative electrode active material produced by baking after coating a carbon coating agent produced by heat treatment of petroleum-based low-grade oil on plate-shaped graphite,
The carbon coating agent is a carbon coating agent satisfying the following (1) to (4),
An anode active material prepared by mixing 1 to 100 parts by weight of a carbon coating agent with respect to 100 parts by weight of the graphite.

(1) Weight average molecular weight 400 to 500 Daltons
(2) The content of the hydrocarbon compound containing 2 to 3 aromatic rings is 85 to 95% by weight based on the total carbon coating agent
(3) the fraction of hydrocarbon compounds containing 4 or more aromatic rings is 5% by weight or less, and
(4) 2% by weight or less of aliphatic hydrocarbon compounds
제 1항에 있어서,
상기 석유계 저급오일은 FCC-DO(Fluid catalytic cracking decant oil), NCB(Naphtha-cracking bottom oil), EBO(Ethylene bottom oil), VR(Vacuum residue oil), 중질유, 초중질유, 상압잔사유 및 PFO(Pyrolized fuel oil)에서 선택되는 1종 이상의 것인 음극활물질.
The method of claim 1,
The petroleum-based low-grade oil is FCC-DO (Fluid catalytic cracking decant oil), NCB (Naphtha-cracking bottom oil), EBO (Ethylene bottom oil), VR (Vacuum residue oil), heavy oil, ultra heavy oil, atmospheric residual oil and PFO (Pyrolized fuel oil) is one or more selected from the anode active material.
제 2항에 있어서,
상기 탄소코팅제는 상기 석유계 저급오일을 300~450℃에서 10분 내지 2시간 불활성분위기에서 열처리를 한 후, 300~400℃에서 1시간 내지 10시간 열중합하여 분자량을 증가시켜 제조되는 것인 음극활물질.
The method of claim 2,
The carbon coating agent is prepared by increasing the molecular weight by heat-treating the petroleum-based lower oil at 300 to 450°C for 10 minutes to 2 hours in an inert atmosphere, and then thermally polymerizing at 300 to 400°C for 1 hour to 10 hours .
제 3항에 있어서,
상기 열처리 전에 열중합 반응에 참여하지 않는 저비점의 탄화수소화합물을 제거하는 단계를 더 가지는 것인 음극활물질.
The method of claim 3,
The negative electrode active material further comprising the step of removing the hydrocarbon compound having a low boiling point that does not participate in the thermal polymerization reaction before the heat treatment.
제 1항에 있어서,
상기 코팅은 400 내지 600℃에서 교반하면서 10분 내지 10시간 동안 수행하고, 상기 소성은 800~1000℃에서 10분 내지 10시간 동안 수행하는 것인 음극활물질.
The method of claim 1,
The coating is performed for 10 minutes to 10 hours while stirring at 400 to 600 °C, and the sintering is performed at 800 to 1000 °C for 10 minutes to 10 hours.
삭제delete 제 1항 내지 제 5항에서 선택되는 어느 한 항의 음극활물질을 포함하여 제조되는 리튬이차전지용 음극
A negative electrode for a lithium secondary battery prepared including the negative active material of any one of claims 1 to 5
제 7항의 음극을 채택한 리튬이차전지.A lithium secondary battery adopting the negative electrode of claim 7.
KR1020180154192A 2018-12-04 2018-12-04 Anode Active Material for Lithium-Ion Secondary Battery KR102178565B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020180154192A KR102178565B1 (en) 2018-12-04 2018-12-04 Anode Active Material for Lithium-Ion Secondary Battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020180154192A KR102178565B1 (en) 2018-12-04 2018-12-04 Anode Active Material for Lithium-Ion Secondary Battery

Publications (2)

Publication Number Publication Date
KR20200067394A KR20200067394A (en) 2020-06-12
KR102178565B1 true KR102178565B1 (en) 2020-11-13

Family

ID=71088446

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020180154192A KR102178565B1 (en) 2018-12-04 2018-12-04 Anode Active Material for Lithium-Ion Secondary Battery

Country Status (1)

Country Link
KR (1) KR102178565B1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015513185A (en) * 2013-02-04 2015-04-30 エルジー・ケム・リミテッド Negative electrode containing spherical natural graphite and lithium secondary battery containing the same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101916392B1 (en) * 2016-12-27 2018-11-09 한국화학연구원 A method of preparing impregnating pitch from petroleum material and impregnating pitch prepared using the same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015513185A (en) * 2013-02-04 2015-04-30 エルジー・ケム・リミテッド Negative electrode containing spherical natural graphite and lithium secondary battery containing the same

Also Published As

Publication number Publication date
KR20200067394A (en) 2020-06-12

Similar Documents

Publication Publication Date Title
CN1290212C (en) Non-aqueous electrolyte secondary battery negative electrode material, making method, and lithium ion secondary battery
JP5638802B2 (en) Method for producing carbonaceous negative electrode material and method for using the same
EP4250397A1 (en) Negative electrode active material for lithium secondary battery, method for preparing same, and lithium secondary battery comprising negative electrode manufactured using same
JP5131913B2 (en) Carbon coating method for particles used for electrode material and secondary battery
US20130252091A1 (en) Lithium Ion Battery Electrode and Its Fabrication Method
US20180301714A1 (en) Battery electrode material of ionised sodium and preparation method thereof
CN108821275B (en) High-capacity and high-rate graphite negative electrode material for lithium ion battery and preparation method thereof
KR102169929B1 (en) Composite material for anode active material of lithium secondary battery, and manufacturing method of the composite material
CN115706230B (en) Composite graphite negative electrode material, negative electrode plate and lithium ion battery
CN108682804B (en) Preparation method of lithium ion battery cathode material with hard carbon-coated soft carbon
KR101790699B1 (en) Method for synthesis of anode material using active carbon and pitch prepared by chemical activation
KR102311801B1 (en) Preparation method of anode active material for lithium secondary battery
KR102178565B1 (en) Anode Active Material for Lithium-Ion Secondary Battery
CN108630912B (en) Silicon-carbon negative electrode material for lithium ion battery and preparation method thereof
CN109904428B (en) Preparation method of iron selenide/carbon composite material
CN113451575A (en) Lithium ion battery cathode material, preparation method thereof, cathode and lithium ion battery
CN108199026B (en) Preparation method of power battery cathode material and cathode material prepared by same
TWI805421B (en) Particles of silicon-carbon composite material and method of manufacturing the same
KR102287534B1 (en) Composite material for anode active material of lithium secondary battery, and manufacturing method of the composite material
CN110739450B (en) Process for coating graphite by mesophase pitch in edge contact manner
CN113764640A (en) Production method of high-compaction and fast-charging type lithium ion battery cathode material
KR101368366B1 (en) Amorphose carbon contained electrode active materials for lithium secondary batteries, the electrodes, and lithium secondary batteries containing the same
WO2023110903A1 (en) Improved carbonaceous coating material for battery electrode materials
KR20230155637A (en) Surface carbon-coated silicon oxide-based anode active material and its manufacturing method
KR20230057861A (en) Surface carbon-coated silicon oxide-based anode active material for high cycle stability and manufacturing method thereof

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant