KR102166530B1 - Continuous operation type waste plastic emulsifying device and emulsifying process by module assembly method with rotating screw mounted inside - Google Patents

Continuous operation type waste plastic emulsifying device and emulsifying process by module assembly method with rotating screw mounted inside Download PDF

Info

Publication number
KR102166530B1
KR102166530B1 KR1020200054923A KR20200054923A KR102166530B1 KR 102166530 B1 KR102166530 B1 KR 102166530B1 KR 1020200054923 A KR1020200054923 A KR 1020200054923A KR 20200054923 A KR20200054923 A KR 20200054923A KR 102166530 B1 KR102166530 B1 KR 102166530B1
Authority
KR
South Korea
Prior art keywords
pyrolysis
pyrolysis reactor
reactor
waste plastic
reactors
Prior art date
Application number
KR1020200054923A
Other languages
Korean (ko)
Inventor
정정학
Original Assignee
정정학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 정정학 filed Critical 정정학
Priority to KR1020200054923A priority Critical patent/KR102166530B1/en
Application granted granted Critical
Publication of KR102166530B1 publication Critical patent/KR102166530B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G1/00Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal
    • C10G1/10Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal from rubber or rubber waste
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B27/00Arrangements for withdrawal of the distillation gases
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B33/00Discharging devices; Coke guides
    • C10B33/003Arrangements for pollution-free discharge
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B5/00Coke ovens with horizontal chambers
    • C10B5/06Coke ovens with horizontal chambers with horizontal heating flues
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B53/00Destructive distillation, specially adapted for particular solid raw materials or solid raw materials in special form
    • C10B53/04Destructive distillation, specially adapted for particular solid raw materials or solid raw materials in special form of powdered coal
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B7/00Coke ovens with mechanical conveying means for the raw material inside the oven
    • C10B7/10Coke ovens with mechanical conveying means for the raw material inside the oven with conveyor-screws
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G1/00Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal
    • C10G1/002Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal in combination with oil conversion- or refining processes
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G1/00Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal
    • C10G1/008Controlling or regulating of liquefaction processes
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G70/00Working-up undefined normally gaseous mixtures obtained by processes covered by groups C10G9/00, C10G11/00, C10G15/00, C10G47/00, C10G51/00
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1003Waste materials
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1037Hydrocarbon fractions
    • C10G2300/1044Heavy gasoline or naphtha having a boiling range of about 100 - 180 °C
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1037Hydrocarbon fractions
    • C10G2300/1048Middle distillates
    • C10G2300/1051Kerosene having a boiling range of about 180 - 230 °C
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1037Hydrocarbon fractions
    • C10G2300/1048Middle distillates
    • C10G2300/1055Diesel having a boiling range of about 230 - 330 °C
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1037Hydrocarbon fractions
    • C10G2300/1048Middle distillates
    • C10G2300/1059Gasoil having a boiling range of about 330 - 427 °C
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Public Health (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Separation, Recovery Or Treatment Of Waste Materials Containing Plastics (AREA)

Abstract

In regards to a technical field of a pyrolysis emulsifying device for waste plastic which is a polymer compound, the present invention relates to the pyrolysis emulsifying device having a structure for connecting a plurality of pyrolysis reactors of the same module form in parallel in a horizontal direction. A connection pipe for connecting two adjacent pyrolysis reactors is installed therebetween, and a connection pipe screw for transferring a pyrolysis substance of an adjacent pyrolysis reactor to a neighboring pyrolysis reactor is embedded in the connection pipe. The connection pipe screw continuously transfers the pyrolysis substance of the adjacent pyrolysis reactor to the neighboring pyrolysis reactor while rotating at uniform speeds, thereby effectively preventing blockage of the connection pipe. A pyrolysis reactor screw is embedded in the pyrolysis reactor and continuously transfers a pyrolysis substance forward while rotating at uniform low speeds, thereby preventing coke from adhering to an inner wall of a reactor. The pyrolysis reactor screw and the connection pipe screw are connected to each other to control formation of coke inside a waste plastic pyrolysis emulsifying device and move a pyrolysis substance, which is a sticky viscous substance, at uniform speeds, thereby improving pyrolysis efficiency of the pyrolysis emulsifying device. Therefore, waste plastic refined oil that contains less impurities and does not have a strong odor is produced. Compared with a conventional continuous pyrolysis emulsifying device of a vertical serial installation method, the present invention has the advantage of being convenient to install and maintain, and to simply and easily increase production capacity by additionally installing pyrolysis reactors of the same module in parallel in a horizontal direction without being subject to any limitation of altitude.

Description

내부에 회전스크류를 장착한 모듈(Module)조립방식의 연속운전 폐플라스틱 유화장치 및 유화방법{Continuous operation type waste plastic emulsifying device and emulsifying process by module assembly method with rotating screw mounted inside }Continuous operation type waste plastic emulsifying device and emulsifying process by module assembly method with rotating screw mounted inside}

본 발명은 폐플라스틱 유화장치 및 유화방법에 관한 것으로, 보다 상세하게는 한개의 열분해반응로로 구동되는 수동식(Batch Type) 유화장치와 복수의 열분해실 또는 열분해반응로로 구성된 연속운전방식 유화장치에서 문제가 되어온 열분해반응로 내벽에 형성되는 다량의 코크스형성, 이로 인한 생산수율의 저하와 화재위험성의 증대, 독한 냄새를 지닌 저질의 정제유생산, 열분해반응로의 열전도율저하로 인한 가열연료소모의 증대, 장치구조의 복잡함 에 따른 설치 및 유지보수의 어려움과 비용의 증대, 생산능력 증대의 기술적 난점 등 제반문제를 해결하여 장치운전의 안전성과 경제성을 높인 내부에 회전스크류를 장착한 모듈(Module)조립방식의 연속운전 폐플라스틱 유화장치 및 유화방법에 관한 것이다.The present invention relates to a waste plastic emulsification apparatus and an emulsification method, and more particularly, in a continuous operation type emulsification apparatus consisting of a batch type emulsification apparatus driven by a single pyrolysis reactor and a plurality of pyrolysis chambers or pyrolysis reactors. The formation of a large amount of coke on the inner wall of the pyrolysis reaction, which has been a problem, decreases the production yield and increases the risk of fire, produces low-quality refined oil with a poisonous odor, and increases the consumption of heating fuel due to the decrease in the thermal conductivity of the pyrolysis reaction. A module assembly method with rotating screws installed inside to increase the safety and economic efficiency of device operation by solving various problems such as the difficulty of installation and maintenance due to the complexity of the device structure, increase in cost, and technical difficulties in increasing production capacity It relates to a continuous operation of waste plastic emulsification apparatus and emulsification method.

경제발전에 따른 개인의 소득증대는 지속적으로 각종 플라스틱사용의 증대를 가져왔고, 이에 따른 폐플라스틱의 급격한 증가는 효과적인 처리방법이 없어, 전 세계적으로 폐플라스틱 대란을 가져왔다.폐플라스틱은 자연적인 분해시간이 400-500년이 걸리며, 이들을 매립한 매립지의 주변의 지하수체계를 오염시키고, 강과 바다의 생태계를 심각하게 파괴하고, 소각시에 다량의 일산화탄소와 인체에 해로운 다이옥신을 발생시켜 대기를 오염시키는 등 그 폐해는 매우크다. 우리나라도 예외일 수 없는 심각한 환경오염을 일으키고 있으며 그 처리에 어려움을 격고 있고, 재생 가능한 에너지원의 대량낭비를 초래하고 있다. 따라서 환경보호와 낭비되는 재생에너지원을 효과적으로 회수할 수 있는 처리기술개발이 지속적으로 요구되고 있는 상황이다.The increase in personal income in line with economic development has led to a continuous increase in the use of various plastics, and the rapid increase in waste plastics according to this resulted in a global waste plastic crisis without effective treatment methods. Waste plastics are naturally decomposed. It takes 400-500 years and pollutes the groundwater system around the landfill where they are buried, seriously destroys the ecosystem of rivers and seas, and pollutes the atmosphere by generating large amounts of carbon monoxide and dioxin harmful to the human body during incineration. Etc. The harm is very great. Korea is also causing serious environmental pollution, which cannot be an exception, and is having difficulty in its treatment, causing a large waste of renewable energy sources. Therefore, there is a continuous demand for the development of treatment technology that can effectively recover the environment and waste renewable energy sources.

이에 부응하여 폐플라스틱을 효과적으로 처리할 수 있는 열분해방법에 의한 처리기술이 개발되었다.In response to this, a treatment technology using a pyrolysis method that can effectively treat waste plastics has been developed.

기존의 유화설비는 일반적으로 한개의 열분해반응로를 사용하는 수동식 열분해유화장치((Batch type)와 복수의 열분해반응로 또는 열분해실을 사용하는 연속운전방식의 열분해유화장치로 나누어져 있다.Existing emulsification facilities are generally divided into a manual pyrolysis and emulsification device (Batch type) using one pyrolysis reactor and a continuous operation pyrolysis and emulsification device using a plurality of pyrolysis reactors or pyrolysis chambers.

수동식 열분해유화장치(Batch Type)의 1회성 폐기물 열분해는 일반적으로 1회전에 24시간 이상의 시간이 소요되고, 그 처리량 또한 극히 제한적이다. 과다하게 폐기물을 채워 넣으면 열분해반응로에서 열분해가 충분히 일어나지 않게 되며, 또한 폐플라스틱의 열분해를 위한 열분해반응로의 내부온도는 통상 350∼500℃사이로 반응로 기벽의 온도는 이보다 100∼150℃이상 높게 유지되므로 실제 열원이 전달되는 열집중점(Hot Spot)을 중심으로 반응로벽에 상당량의 코크스 층이 형성된다. 이러한 코크스 발생은 잔사량 증가로 이어지며, 이는 결과적으로 상당한 정제유 수율의 저하 및 코킹현상에 기인한 독한 냄새와 다량의 불순물을 함유하여 소비자가 사용을 기피하는 저 품질의 정제유생산을 가져온다.The one-time waste pyrolysis of the manual pyrolysis emulsifier (Batch Type) generally takes more than 24 hours per rotation, and its throughput is also extremely limited. If the waste is excessively filled, pyrolysis will not occur sufficiently in the pyrolysis reactor, and the internal temperature of the pyrolysis reactor for pyrolysis of waste plastics is usually between 350 and 500℃, and the temperature of the wall of the reactor is 100 to 150℃ higher than this. As it is maintained, a considerable amount of coke layer is formed on the wall of the reactor around the hot spot where the actual heat source is transmitted. The generation of coke leads to an increase in the amount of residue, which results in a significant decrease in the yield of refined oil and the production of low-quality refined milk that consumers avoid using by containing a poisonous odor and a large amount of impurities caused by the coking phenomenon.

또한, 이렇게 형성된 열분해반응로 내벽의 코크스층의 증가는 가열장치와 열분해반응로 간의 열전달효율을 저하시켜 점진적으로 운전온도의 상승을 초래하고, 가열연료의 소모량을 증가시키며 결국 유화 공정의 운전중단을 가져오게 된다. 동시에 완전히 열 분해되지 않은 왁스(Wax)성분은 점진적으로 유화가스 파이프배관을 막아 매우 큰 화재위험을 초래한다. 수동식 열분해반응로(Batch Type)는 낮은 생산수율, 소비자가 외면하는 저 품질의 정제유, 또다른 폐기물인 다량의 잔사물 발생 및 상대적으로 높은 동력 소요, 높은 화재위험성으로 또 다른 환경오염을 일으키고 있다. 이에 더하여 기존의 수동식(Batch Type) 유화설비는 일반적으로 모터의 회전축이 열분해반응로 자체의 회전을 직접 구동한다. 반응로의 지름이 크고 토르크가 큰 까닭에 구동축과 열분해반응로 연결축이 동일한 동축도(同軸度)를 갖기 어렵다. 따라서 구동축의 파손과 절단이 일어나기 쉽고, 이로 인해 설비 손실율이 높아지며 생산원가의 증가를 초래하는 단점을 지녔다.In addition, the increase of the coke layer on the inner wall of the pyrolysis reaction furnace thus formed decreases the heat transfer efficiency between the heating device and the pyrolysis reaction furnace, causing a gradual increase in operating temperature, increasing the consumption of heating fuel, and eventually stopping the operation of the emulsification process. Is brought. At the same time, the wax component that is not completely decomposed by thermal decomposition gradually blocks the sulfide gas pipe piping, causing a very large fire risk. The manual pyrolysis reactor (Batch Type) is causing another environmental pollution due to its low production yield, low quality refined oil that consumers neglect, generation of a large amount of residue as another waste, relatively high power consumption, and high fire risk. In addition to this, in the existing batch type emulsification equipment, in general, the rotation shaft of the motor directly drives the rotation of the pyrolysis reactor itself. Due to the large diameter of the reactor and the large torque, it is difficult for the drive shaft and the pyrolysis reactor connection shaft to have the same coaxiality. Therefore, it is easy to damage and cut the drive shaft, resulting in a high facility loss rate and an increase in production cost.

선행기술문헌 Prior art literature

특허문헌 Patent Literature

(특허문헌 1) 10-2059937 폐기물 열분해장치 및 열분해방법 (Patent Document 1) 10-2059937 Waste pyrolysis device and pyrolysis method

(특허문헌 2) 10-1045600-폐플라스틱용 열분해 유화장치 (Patent Document 2) 10-1045600-Pyrolysis and emulsification device for waste plastics

복수의 열분해반응로 또는 열분해실을 사용하는 상기한 특허문헌 1과 특허문헌 2의 연속운전방식의 열분해유화장치를 살피건데 다음과 같은 문제점들이 있다.Considering the continuous operation type pyrolysis and emulsification apparatus of Patent Document 1 and Patent Document 2, which use a plurality of pyrolysis reactors or pyrolysis chambers, there are the following problems.

특허번호10-2059937은 폐기물 열분해유화장치 및 열분해 방법을 공고했는데, 이는 단일 몸체의 열분해부에 3개의 열분해실을 위에서 아래로 수직으로 직렬 연결하였다. 제1, 제2, 제3열분해실의 폐기물 이송속도는 각 열분해실의 설정온도를 기준으로 제어된다. 이와 같이 다수의 열분해실을 위에서 아래로 다단 설치하면, 중력의 작용에 의해 폐기물이 위에서 아래의 열분해실로 내려가기가 수월하다. 하지만, 중력에 의존한 폐기물의 열분해실간 이동방식과 설정온도 기준에 따르는 열분해반응로내의 폐기물의 이송속도 조절방식은 다음과 같은 결함이 있다.Patent No. 10-2059937 discloses a waste pyrolysis emulsifier and pyrolysis method, which connects three pyrolysis chambers vertically from top to bottom in a single body pyrolysis section. The waste transfer speed of the first, second, and third pyrolysis chambers is controlled based on the set temperature of each pyrolysis chamber. If a plurality of pyrolysis chambers are installed in multiple stages from top to bottom in this way, it is easy for waste to go down to the pyrolysis chambers from top to bottom by the action of gravity. However, the method of moving the waste between the pyrolysis chambers depending on gravity and the method of controlling the transfer speed of the waste in the pyrolysis reactor according to the set temperature standard have the following defects.

(1) 이러한 방식은 비점성 폐기물에 적합하고, 만약 폐기물의 점성도가 비교적 높거나 열분해 반응시 코크스화 현상이 있다면, 연결관의 막힘을 초래하기 쉽고 장치의 운전과 생산효율에도 악영향을 미치게 된다.(1) This method is suitable for non-viscous waste, and if the viscosity of the waste is relatively high or there is a coking phenomenon during pyrolysis reaction, it is easy to cause clogging of the connecting pipe and adversely affect the operation and production efficiency of the device.

(2) 폐기물이 하나의 열분해실에서 다른 열분해실로 내려갈 때, 폐기물은 중력 가속의 영향으로 이전에 내려온 폐기물을 깔아 누르고, 이로 인하여 반응로 내의 폐기물이 함께 코크스화 되기 쉽다. 이는 열분해 효율에 나쁜 영향을 미침은 물론 매우 높은 화재의 위험성을 갖는다. 동시에 불순물이 다수 포함된 저질 정제유생산을 가져온다.(2) When waste goes down from one pyrolysis chamber to another, the waste presses down on the previously descended waste under the influence of gravity acceleration, which makes it easy to coke the waste in the reactor together. This has a very high risk of fire as well as adversely affecting the pyrolysis efficiency. At the same time, it leads to the production of low quality refined milk containing many impurities.

(3) 다단의 상하 수직 연결 열분해실 유화장치는 복잡한 지지대가 필요하고, 유화장치 설치공정의 난이도가 비교적 높다. 또한, 설비의 지지 안전성은 낮고, 복잡한 구조의 지지장치는 별도의 설비요소를 증가시킨다.(3) The multi-stage vertically connected pyrolysis chamber emulsification device requires a complex support, and the difficulty of installing the emulsification device is relatively high. In addition, the support safety of the equipment is low, and the support device of a complex structure increases additional equipment elements.

(4) 상하수직 직렬 연속운전방식의 유화설비는 높이의 제한이 있고, 이로 인해 일정 생산량의 범위로 생산성이 국한된다. 또한, 설비의 검수와 유지보수가 어렵고, 생산능력의 증대가 어렵다.(4) Emulsification equipment of the vertical and vertical series continuous operation method has a height limitation, which limits productivity to a certain range of production. In addition, inspection and maintenance of equipment is difficult, and it is difficult to increase production capacity.

(5) 각 열분해반응로가 독립되어 있지 않고 단일 몸체에 3개의 열분해실이 상하로 수직 연결되어 있어, 가열된 열풍이 하부의 제3반응로에서 상부의 제1반응로로 이동하면서 열분해실을 가열함으로써 설정온도의 제어가 사실상 불가능하다.(5) Each pyrolysis reactor is not independent, and three pyrolysis chambers are vertically connected in a single body, so that the heated hot air moves from the third reaction furnace at the bottom to the first reaction furnace at the top and opens the pyrolysis chamber. By heating, it is virtually impossible to control the set temperature.

(6) 각 열분해실의 폐기물 이송속도는 서로 다르게 됨으로써, 열분해부 전체의 폐기물 이송에 대한 통제가 불가능 하다. 따라서 각 열분해실간 페기물이송에 심각한 충돌이 일어나고, 이는 화재의 위험, 잦은 고장 및 저질의 정제유생산으로 이어진다.(6) As the transfer speed of waste in each pyrolysis chamber is different, it is impossible to control the transfer of waste in the entire pyrolysis section. Therefore, a serious collision occurs in the transfer of waste between each pyrolysis chamber, which leads to the risk of fire, frequent breakdowns, and production of poor quality refined oil.

(7) 제2 열분해실 온도는 350-450℃로 유지되고 바로 밑의 제3 열분해실 온도를 배출잔재물의 화재위험을 방지하기 위해 160-180℃로 유지한다고 하였으나, 아무런 냉각장치없이 온도를 190-270℃ 폭으로 대폭 인하 시킨다는 것은 연속운전방식의 유화장치에서는 전혀 실현 가능성이 없다.(7) It is said that the temperature of the second pyrolysis chamber is maintained at 350-450°C, and the temperature of the third pyrolysis chamber immediately below is maintained at 160-180°C to prevent the risk of fire of the discharged residue. There is no possibility at all to reduce the width to -270℃ in an emulsifying device of a continuous operation method.

(8) 열분해방법에만 의존한 이러한 방식은 고분자화합물인 폐기물이 저분자화합물로 완전히 분자 분해되지 못해 다량의 가소성물질인 타르를 배출하고, 불순물이 다량 포함된 저질의 정제유를 생산하는 비경제적인 유화장치이다.(8) This method, which relies solely on the pyrolysis method, is an uneconomical emulsifying device that discharges a large amount of tar, which is a plastic material, and produces a low-quality refined oil containing a large amount of impurities because the waste, which is a polymer compound, cannot be completely molecularly decomposed into a low molecular compound. .

특허번호10-1045600은 폐 플라스틱 열분해 유화장치를 공고했는데, 이는 위에서 아래로 1단에서 4단까지 열분해장치를 수직 배열하였다. 이 방식은 전체장치의 최하단에 설치된 중량측정장치로 폐플라스틱투입을 자동제어하고, 투입된 폐 플라스틱은 최상단의 제1열분해부에서 용융된 후 아래쪽 3단의 폐 플라스틱 수용관으로 이송되고 이 수용관이 가득 차면 넘치는 유화 물질이 상단에 있는 제2단의 제2열분해부로 역류되어 열분해 후 다시 아래쪽에 있는 제3단의 제3열분해부로 이송되고, 이후 제4단의 제4열분해부로 이송된 후 최종적으로 잔사물이 배출되는 매우 복잡한방식으로 다음과 같은 결점을 갖고있다.Patent No. 10-1045600 discloses a waste plastic pyrolysis and emulsification device, which vertically arranges the pyrolysis device from top to bottom from 1st to 4th. This method automatically controls the injection of waste plastic with a weighing device installed at the bottom of the entire device. When it is full, the overflowing emulsified material flows back to the second pyrolysis unit in the second stage at the top, and after pyrolysis, is transferred to the third pyrolysis unit in the third stage at the bottom, and then transferred to the fourth pyrolysis unit in the fourth stage and finally It is a very complex way of discharging residues and has the following drawbacks.

(1) 중량측정장치가 전체 유화장치를 지지하는 지지대 최하단에 설치되어 있으며, 연속적으로 가동되는 본건 유화장치의 수십 톤이 넘는 전체중량을 받치고 있어 간헐적으로 투입되는 극히 미량(1분당 약 7Kg : 1일 처리용량 10,000Kg 기준)의 폐플라스틱의 무게증가를 측정 투입하는 것은 열분해반응로 구동에 따르는 기계진동등의 방해요인으로 정확한 재료투입구의 개폐를 어렵게 하여, 이로 인한 잦은 운전중단을 일으킨다.(1) A weighing device is installed at the bottom of the support stand that supports the entire emulsifying device, and it supports the total weight of more than tens tons of the emulsifying device, which is continuously operated, so a very small amount of intermittent input (about 7Kg per minute: 1) Measuring the increase in weight of waste plastic with a daily treatment capacity of 10,000Kg) makes it difficult to open and close the material input port accurately due to interference factors such as mechanical vibration caused by the operation of the pyrolysis reactor, resulting in frequent operation stoppages.

(2) 특히 유화 물질이 제1단의 제1열분해부에서 3단의 폐플라스틱 수용관을 거처 2단의 제2열분해부로 역류하여 이동할 때 이들 장치는 용융물질과 증류가스가 혼합되어 이동함에 따르는 열 저항 및 이물질 간의 비중차이에 의한 이동저항으로 잦은 운전장애를 일으킨다.(2) In particular, when the emulsified material moves from the first pyrolysis part in the first stage to the second pyrolysis part in the second stage through the waste plastic receiving pipe in the third stage, these devices move by mixing the molten material and the distillation gas. Heat resistance and movement resistance due to the difference in specific gravity between foreign substances cause frequent driving difficulties.

(3) 유화 물질과 증류가스의 이동저항으로 인한 잦은 정체는 각 반응로 내부의 코킹현상을 증가시켜 수율 저하 및 품질저하와 장치의 수명을 단축시키며 화재의 위험성 또한 높다.(3) Frequent stagnation due to the movement resistance of emulsified substances and distillation gas increases the caulking phenomenon inside each reactor, resulting in a decrease in yield and quality, shortening the life of the device, and a high risk of fire.

(4) 복잡한 설비구조는 유화장치의 원가를 높이고 설치 및 유지보수가 매우 어려워 생산원가를 높이는 주요 원인이 된다.(4) Complex facility structure increases the cost of petroleum equipment, and it is very difficult to install and maintain, which is the main reason for increasing production cost.

(5) 생산능력의 증대가 매우 어려운 구조적 취약점을 지녔다.(5) It has a structural weakness that makes it very difficult to increase production capacity.

본 발명은 전술한 수동식(Batch Type) 유화장치 및 상하 수직 직렬방식의 연속운전 유화장치의 기술적으로 미비한 부분을 보완하여, 설치와 유지보수의 편의를 제공하고, 내부에 스크류가 장착된 열분해반응로를 모듈(Module)화 하여 나란히 수평으로 설치된 복수의 열분해반응로에 모듈형태의 열분해반응로를 추가하는 방법으로 저비용과 노력으로 생산능력을 간단하게 증대시키고, 일정한 속도로 폐기물과 그 유화물질을 열 저항 없이 지속적으로 이웃한 열분해반응로로 이송시키고, 열분해반응로의 가열시 열원이 공급되는 열중심점(Hot Spot)을 중심으로 열분해반응로 벽에 다량으로 탄화 부착되는 코크스층의 형성을 억제하며, 가열로와 열분해반응로 간의 열전달면적을 확대하여 열효율을 높임으로써 가열에 필요한 연료소모를 줄이고, 유화가스에 포함된 다량의 왁스성분을 저감하여 유화가스배관 막힘으로 인한 장치의 높은 화재위험성을 배제시킴과 동시에 열분해반응로내벽의 코크스 생성과 부착을 방지하여 독한냄새와 불순물이 적은 양질의 폐플라스틱정제유를 생산할 수 있는 자동운전방식의 연속식 폐플라스틱 유화장치 및 유화방법을 제공하는 것이다. The present invention provides convenience of installation and maintenance by supplementing the technically inadequate parts of the above-described manual (Batch Type) emulsifying device and the vertical vertical series emulsifying device, and a pyrolysis reactor equipped with a screw inside. This is a method of adding a module-type pyrolysis reactor to a plurality of pyrolysis reactors installed side by side by making a module, thereby simply increasing the production capacity with low cost and effort, and heating waste and its emulsified material at a constant rate. It is continuously transferred to the neighboring pyrolysis reactor without resistance, and suppresses the formation of a coke layer that is carbonized and adhered to the wall of the pyrolysis reaction in a large amount, centering on the hot spot where the heat source is supplied when heating the pyrolysis reaction furnace. By increasing the heat efficiency by increasing the heat transfer area between the heating furnace and the pyrolysis reaction furnace, the consumption of fuel required for heating is reduced, and a large amount of wax components contained in the emulsified gas is reduced to eliminate the high fire risk of the device due to clogging of the emulsified gas pipe. At the same time, it is to provide a continuous waste plastic emulsification device and an emulsification method of an automatic operation method that can produce high quality waste plastic refined oil with little poisonous smell and impurities by preventing coke formation and adhesion on the inner wall of the pyrolysis reactor.

상기와 같은 목적을 달성하기 위해 본 발명은, 아래의 기술방안을 통해 실현한다.In order to achieve the above object, the present invention is realized through the following technical solutions.

폐플라스틱을 50mm x 50mm이하로 분쇄하여 재료공급장치로 보내는 폐플라스틱분쇄기, Waste plastic crusher that pulverizes waste plastic to less than 50mm x 50mm and sends it to the material supply device,

배기가스 폐열을 이용하여 분쇄된 폐플라스틱을 가열하여 분당 16Kg의 속도로 첫번째 열분해반응로로 공급하는 재료공급장치, A material supply device that heats the pulverized waste plastic using exhaust gas waste heat and supplies it to the first pyrolysis reactor at a rate of 16Kg per minute,

재료공급장치에 투입되는 폐플라스틱의 온도를 50-60℃로 유지시키기 위한 배기가스열교환기, Exhaust gas heat exchanger to maintain the temperature of the waste plastic input to the material supply device at 50-60℃,

수평으로 나란히 모듈(Module)조립방법으로 설치되어 폐플라스틱의 열분해를 일으키는 상호 연결관으로 연결된 6개의 열분해반응로,Six pyrolysis reactors connected by interconnecting pipes that cause the pyrolysis of waste plastics installed horizontally in a module assembly method.

열분해반응로 내부에서 투입되는 폐플라스틱과 열분해물질을 전방으로 이송시키는 열분해반응로스크류, Pyrolysis reactor screws that transfer waste plastics and pyrolysis materials to the front of the pyrolysis reactor,

열분해반응로를 가열하는 오일버너와 가스버너가 장착된 가열로A heating furnace equipped with an oil burner and a gas burner to heat the pyrolysis reaction furnace

두개의 인접한 열분해반응로를 연결하는 연결관과 연결관 내부에 열분해물질의 이송을 돕는 이송스크류가 내장된 연결관스크류,A connection pipe connecting two adjacent pyrolysis reactors and a connection pipe screw with a built-in transfer screw that helps transport pyrolysis materials inside the connection pipe,

두번째와 다섯번째 열분해반응로 상부에 설치된 제1촉매탑과 제2촉매탑, The first and second catalyst towers installed at the top of the second and fifth pyrolysis reactors,

상기한 촉매탑으로부터 이송된 유화가스에서 수분을 분리시키는 기수분리탱크, A water separation tank for separating moisture from the emulsified gas transferred from the catalyst tower,

유화가스를 액화시키는 두개의 냉각응축기, Two cooling condensers to liquefy sulfide gas,

상기 냉각응축기에서 액화되지 않고 남는 미응축유화가스를 안정화시키는 세개의 가스정제탱크, Three gas purification tanks for stabilizing uncondensed petroleum gas remaining without being liquefied in the cooling condenser,

상기 냉각응축기에서 액화된 오일을 저장하는 오일저장탱크, An oil storage tank for storing liquefied oil in the cooling condenser,

가열로에서 배출되는 배기가스를 정화시키는 배기가스정화장치, An exhaust gas purification device that purifies the exhaust gas discharged from the heating furnace,

저장된 데이터 베이스(Data Base)에 의해 열분해반응로 상부에 설치된 전자감응식 온도계와 압력계 및 가열로와 연계하여 열분해반응로의 온도를 제어하고, The temperature of the pyrolysis reaction furnace is controlled in connection with the electronic sensitive thermometer and pressure gauge and heating furnace installed on the pyrolysis reaction furnace by the stored data base,

열분해반응로스크류 및 연결관스크류 회전을 제어하여, 열분해 유화장치의 자동운전을 시현하는 PLC 제어장치(PLC Control Cabinet)가 포함된다.It includes a PLC control cabinet (PLC Control Cabinet) that controls the rotation of the pyrolysis reactor screw and the connecting pipe screw to demonstrate the automatic operation of the pyrolysis and emulsification device.

그중, 수평으로 나란히 설치된 6개의 열분해반응로는, 두개의 인접한 열분해반응로 사이에 연결관이 설치되며, 상술한 연결관 내부에는 열분해물질을 하나의 열분해반응로에서 균일한 속도로 끊김없이 그에 인접한 다른 열분해반응로로 보내는데 사용하는 연결관스크류가 포함되고, 열분해반응로의 단열벽과 내벽 사이에는 가열로에서 형성된 열풍이 통과하는 열풍관로 및 열풍관로를 상부와 하부로 나누는 차단날개, 열분해반응로스크류와 연결관스크류의 회전속도와 열분해반응로 내부의 온도를 제어하는 PLC제어장치가 포함된다. Among them, six pyrolysis reactors installed horizontally side by side, a connection pipe is installed between two adjacent pyrolysis reactors, and in the above-described connection pipe, pyrolysis materials are seamlessly adjacent to each other at a uniform rate in one pyrolysis reactor. A connecting pipe screw used to send to other pyrolysis reactors is included, and between the thermal insulation wall and the inner wall of the pyrolysis reactor, the hot air pipe through which the hot air formed in the heating furnace passes, and the blocking blade that divides the hot air pipe into the upper and lower parts, and the pyrolysis reaction furnace It includes a PLC control device that controls the rotation speed of the screw and the connecting pipe screw and the temperature inside the pyrolysis reactor.

그중, 상기 열분해유화장치는 동일 규격인 6개의 열분해반응로 모듈(Module)을 수평으로 나란히 조립하여 만들어지며, 모듈을 추가함으로써 생산능력을 증대시킨다.Among them, the pyrolysis and emulsification device is made by assembling six pyrolysis reactor modules of the same standard horizontally side by side, and increases production capacity by adding modules.

그중, 상기 연결관은 상술한 열분해반응로 밑부분에 설치되며, 동시에 상술한 열분해반응로 사이에 설치된다.Among them, the connecting pipe is installed at the bottom of the above-described pyrolysis reactor, and at the same time, it is installed between the above-described pyrolysis reactors.

그중, 상기 두개의 인접한 열분해반응로 내부의 열분해반응로스크류의 회전날개(Screw Fin)의 경사각은 서로 반대방향이며, 따라서 인접한 열분해반응로의 열분해물질의 이동방향은 서로 상반됨을 특징으로 한다.Among them, the inclination angles of the screw fins of the pyrolysis reactor screws inside the two adjacent pyrolysis reactors are opposite to each other, and therefore, the movement directions of the pyrolysis materials in the adjacent pyrolysis reactors are opposite to each other.

그중, 상기 열분해반응로의 열분해물질의 배출구는 연결관을 통해 그와 인접한 열부해반응로의 진입구와 연결된다.Among them, the outlet of the pyrolysis material in the pyrolysis reactor is connected to the entrance to the adjacent thermal decomposition reactor through a connection pipe.

그중, 상기 열분해반응로 내부에는 열분해물질을 전방으로 이송시키는 열분해반응로스크류가 설치되고, 이 스크류축은 열분해반응로스크류의 회전을 구동시키는 구동연결부품과 연결되어 있으며, 구동연결부품은 모터, 모터와 연결된 감속기, 감속기와 연결된 연결축, 연결축과 연결된 스크류축, 연결축과 스크류축사이에 설치된 첫번째 결합장치와 감속기의 구동축과 연접축사이에 설치된 두번째 결합장치와 회전자축을 포함한다.Among them, a pyrolysis reactor screw is installed inside the pyrolysis reactor to transfer pyrolysis materials forward, and the screw shaft is connected to a driving connecting part that drives the rotation of the pyrolysis reactor screw, and the driving connecting part is a motor and a motor. It includes a speed reducer connected to, a connection shaft connected to the speed reducer, a screw shaft connected to the connection shaft, a first coupling device installed between the connection shaft and the screw shaft, and a second coupling device and a rotor shaft installed between the drive shaft and the connection shaft of the reducer.

그중, 상기 첫번째결합장치와 두번째결합장치는 플랜지결합방식(Flange fitting), 걸쇠식(Plugging), 멀티-조(Multi-jaw)방식, 체인연결방식중 임의의 몇개의 방식으로 구성된다.Among them, the first coupling device and the second coupling device are configured in any of several methods among a flange fitting, a plugging, a multi-jaw method, and a chain connection method.

그중, 상기 열분해반응로의 스크류축과 연결축 사이에는 첫번째씰덮개(Seal jacket)와 두번째씰덮개(Seal jacket)가 설치되며 두번째씰덮개 내부는 내열팩킹충전제로 채워진다. 첫번째씰덮개의 한쪽 끝은 열분해반응로 끝 부분에 고정되고 다른 한 끝은 두번째씰덮개에 고정된다.Among them, a first seal cover and a second seal cover are installed between the screw shaft and the connection shaft of the pyrolysis reactor, and the inside of the second seal cover is filled with a heat-resistant packing filler. One end of the first seal cover is fixed to the end of the pyrolysis reaction, and the other end is fixed to the second seal cover.

그중, 상기 열분해반응로 내부의 온도는 150-200℃(반응로내부의 공기온도)로 제어되며, 폐플라스틱에 함유된 대부분의 수분을 증발시키고, 이들을 연결관을 통해 두번째 열분해반응로로 이송시키는 첫번째 열분해반응로와 ; Among them, the temperature inside the pyrolysis reactor is controlled at 150-200°C (air temperature inside the reactor), and most of the moisture contained in the waste plastic is evaporated, and these are transferred to the second pyrolysis reactor through a connection pipe. With the first pyrolysis reactor;

그중, 상기 열분해반응로 내부의 온도는 200-250℃로 제어되며, 폐플라스틱은 비등점이 낮은 납사(Naphtha)성분이 일부 기화되기 시작하여 상부에있는 제1촉매탑으로 보내지고 남은 재료는 페이스트(Paste)형태로 변형되어 세번째 열분해반응로 보내는 두번째 열분해반응로와 ;Among them, the temperature inside the pyrolysis reaction furnace is controlled at 200-250°C, and in the waste plastic, the naphtha component with a low boiling point begins to partially vaporize and is sent to the first catalyst tower at the top, and the remaining material is paste ( A second pyrolysis reactor that is transformed into a paste) and sent to the third pyrolysis reaction;

그중, 상기 열분해반응로 내부의 온도는 280-350℃로 제어되며, 대부분의 납사(Naphtha) 와 일부 경유(Diesel)유분이 기화된 유화가스는 제1촉매탑으로 보내지고 남은 페이스트(Paste)는 가소성물질로 변형되어 네번째 열분해반응로로 이송되는 세번째 열분해반응로와 ; Among them, the temperature inside the pyrolysis reactor is controlled at 280-350°C, and the emulsified gas in which most of the naphtha and some diesel oils are vaporized is sent to the first catalyst tower, and the remaining paste is A third pyrolysis reactor transformed into a plastic material and transferred to a fourth pyrolysis reactor;

그중, 상기 열분해반응로 내부의 온도는 350-400℃로 제어되며, 경유유분의 기화가 이루어지고 기화된 유화가스는 제2촉매탑으로 보내지며 남은 페이스트는 다섯번째 열분해반응로로 이송되는 네번째 열분해반응로와 ; Among them, the temperature inside the pyrolysis reaction furnace is controlled at 350-400°C, the gas oil is vaporized, the vaporized emulsified gas is sent to the second catalyst tower, and the remaining paste is transferred to the fifth pyrolysis reactor. With reactor;

그중, 상기 열분해반응로 내부의 온도는 380-420℃로 제어되며, 남아있는 열분해물질중 거의 대부분의 경유유분의 기화가 이루어져 기화된 유화가스는 제2촉매탑으로 보내지고, 동시에 대부분 미량의 카본블랙과 슬래그로 형성된 열분해반응로 내부의 잔사물을 약간의 남아있는 열분해물질과 함께 여섯번째 열분해반응로로 이송시키는 다섯번째 열분해반응로 및 ;Among them, the temperature inside the pyrolysis reaction furnace is controlled at 380-420°C, and most of the remaining pyrolysis materials are vaporized, and the vaporized emulsified gas is sent to the second catalyst tower. A fifth pyrolysis reactor in which the residues inside the pyrolysis reactor formed of black and slag are transferred to the sixth pyrolysis reactor together with some remaining pyrolysis materials;

그중, 상기 열분해반응로 내부의 온도는 300-350℃로 제어되며, 모든 액상의 열분해물질을 완전히 기화시켜 제2촉매탑으로 이송하고, 반응로 내부의 고형 잔사물인 미량의 카본블랙과 슬래그는 하부에 설치된 잔사물 배출장치를 통해 외부로 배출시키는 여섯번째 열분해반응로를 포함하는 각각의 열분해반응로의 설정온도 제어를 통해 폐프라스틱 정제유를 생산한다. Among them, the temperature inside the pyrolysis reaction furnace is controlled at 300-350°C, and all liquid pyrolysis materials are completely vaporized and transferred to the second catalyst tower, and trace amounts of carbon black and slag, which are solid residues inside the reaction furnace, are Waste plastic refined oil is produced by controlling the set temperature of each pyrolysis reactor including the sixth pyrolysis reactor that is discharged to the outside through a residue discharge device installed at the bottom.

그중, 상기 제1촉매탑과 제2촉매탑은 내부가 다층구조로 되어있으며, 하층에는 금속패킹이 채워지고 상층에는 유화가스 분해촉매가 채워지며, 금속팩킹은 유화가스중에 포함된 왁스(Wax)성분의 통과를 지연시켜 네번째 다섯번째 및 여섯번째 열분해반응로로 반복해서 환원 시키고, 환원되는 왁스성분은 이곳에서 반복적인 열분해를 거치게 됨으로써, 유화가스의 왁스성분을 감소시킨다.Among them, the first catalyst tower and the second catalyst tower have a multi-layered structure, the lower layer is filled with metal packing, the upper layer is filled with an emulsified gas decomposition catalyst, and the metal packing is wax contained in the emulsified gas. By delaying the passage of the component, it is repeatedly reduced to the fourth, fifth and sixth pyrolysis reactors, and the reduced wax component undergoes repeated pyrolysis here, thereby reducing the wax component of the emulsified gas.

, ,

그중, 상기 잔사물 배출장치의 외부는 고온의 잔사물을 냉각시키기 위한 수냉식 재킷(Jacket)으로 감싸여있고, 내부는 슬래그 이송스크류가 장착되어 화재위험성이 없는 저온의 잔사물을 배출한다.Among them, the outside of the residue discharge device is wrapped with a water-cooled jacket for cooling the high-temperature residue, and the inside is equipped with a slag transfer screw to discharge the low-temperature residue without the risk of fire.

그중, 상기 6개의 열분해반응로스크류 회전속도는 동일하게 분당 1-2회전, 연결관스크류의 회전속도는 동일하게 5-10회전으로 제어되어, 열분해물질이 6개의 열분해반응로를 균일한 속도로 끊김없이 이동되는 것을 특징으로 한다.Among them, the rotational speed of the six pyrolysis reactor screws is equally controlled at 1-2 rotations per minute, and the rotational speed of the connecting pipe screw is equally controlled at 5-10 rotations, so that the pyrolysis material flows through the six pyrolysis reactors at a uniform speed. It is characterized in that it moves seamlessly.

기존의 수동식(Batch Type) 유화장치와 연속식 수직 배열형식의 유화장치는 열집중점(Hot Spot) 및 유화 물질의 이동장애에 기인한 열분해반응로 내벽에 생성되는 다량의 코크스 층 형성, 이로 인한 생산수율의 저하 및 독한 냄새와 다량의 불순물이 포함된 저질의 정제유생산, 열분해반응로의 열전도율저하로 인한 가열연료소모의 증대, 높은 화재의 위험성, 장치구조의 복잡함 에 따른 설치 및 유지보수의 어려움과 비용의 증대 등 제반문제점을 가지고 있다. 상하수직 직렬식 유화장치는 복잡한 지지대가 필요하며 유화장치의 설치공정의 어려움이 많고, 지지 안정성은 매우 낮으며 별도의 설비요소를 증가시킨다. 동시에 상하수직 설치의 편의를 위해 열분해반응로의 용적은 일반적으로 동일하게 제작되며 설비의 유연성이 부족하고, 고도상의 제한을 받는다. 따라서 유화장치의 설치높이의 제한 때문에 설비의 생산능력이 일정 범위 내로 제한된다. 동시에 열분해반응로를 상하수직으로 설치하기 때문에 열분해반응로의 용적은 일반적으로 동일하게 제작되며 설비의 유연성이 부족하다. 따라서 유화장치의 설치높이의 제한 때문에 설비의 생산능력이 일정 범위내로 제한될 수 밖에없다..Existing batch type emulsifiers and continuous vertically arranged emulsifiers have a large amount of coke layer formed on the inner wall of the thermal decomposition reaction due to the hot spot and the movement of emulsified substances. Decreased production yield, production of low quality refined oil containing poisonous odors and large amounts of impurities, increased heating fuel consumption due to decrease in thermal conductivity of the pyrolysis reactor, high risk of fire, difficulty in installation and maintenance due to the complexity of the device structure It has various problems such as an increase in cost and cost. The vertical and vertical tandem emulsifying device requires a complex support, has many difficulties in the installation process of the emulsifying device, has very low support stability, and increases additional equipment elements. At the same time, for the convenience of vertical installation, the volume of the pyrolysis reactor is generally manufactured the same, the flexibility of the facility is insufficient, and the height is limited. Therefore, the production capacity of the facility is limited within a certain range due to the limitation of the installation height of the emulsifying device. At the same time, since the pyrolysis reactor is installed vertically and vertically, the volume of the pyrolysis reactor is generally manufactured the same, and the flexibility of the facility is insufficient. Therefore, due to the limitation of the installation height of the emulsifying device, the production capacity of the facility is bound to be limited within a certain range.

본 발명은 내부에 회전스크류를 장착한 모듈(Module)조립방식의 연속운전 폐플라스틱 유화장치 및 유화방법으로 동일한 모듈(Module)인 6개의 열분해반응로를 수평으로 나란히 조립하여 설치한다. 두 개의 인접한 열분해반응로 사이에 스크류가 내장된 연결관을 설치하며, 이들은 열분해반응로 내의 열분해 물질을 균일한 속도로 끊김 없이 이웃한 열분해반응로로 이송 시킨다. 열분해반응로 내부에 설치된 스크류는 열분해 물질을 균일한 속도로 전방으로 이동시킨다. 각각의 열분해반응로에는 가열로에서 만들어진 열풍이 통과하는 열분해반응로 단열벽과 내벽 사이에 열풍관로를 설치하고, 이것을 상부와 하부로 나누는 차단날개를가 설치된다. 열풍은 가열로와 연결된 열분해반응로의 하부 열풍관로 끝에서 반대편 끝으로 이동하고 다시 상부 열풍관로에서 반대편 끝으로 이동 후 배출되는 방법으로 열분해반응로의 열효율을 극대화시킨다. 또한, 6개의 열분해반응로를 나란히 수평으로 배열시켜 열전달면적(Heat Surface)을 극대화시킴으로써, 열집중점(Hot Spot)을 분산시키고, 동시에 각각의 열분해반응로에 서로 다르게 제어되는 내부온도를 통해, 기체와 액상물질(Paste)의 이동을 방해하는 열 저항을 줄이면서 연결관스크류와 연계하여 열분해 물질의 이동을 원활하게 한다. 이렇게 함으로써 열분해반응로 내부 벽에 다량으로 생성되는 코크스 형성을 억제해 열분해효율을 높임으로써 생산수율을 높이고, 가열로의 연료소모를 줄이며, 플라스틱정제유의 독한 냄새 및 불순물을 제거하여 양질의 정제유를 생산함과 동시에 수질오염과 대기오염을 일으키지 않는 연속운전방식의 폐플라스틱 유화장치 및 유화방법을 제공한다. 동시에 본 발명은 열분해반응로가 수평으로 나란히 설치되어 설치와 유지보수가 용이하며, 고도의 제한을 받지 않고, 기존의 열분해반응로와 같은 규격인 모듈(Module)형태의 열분해반응로를 추가설치 하는 비교적 간단한 방법으로 설비용량을 저비용으로 단기간에 증대시킬 수 있는 장점을 지닌다. In the present invention, a continuous operation waste plastic emulsification apparatus in a module assembly method with a rotating screw mounted therein, and six pyrolysis reactors of the same module in the emulsification method are assembled horizontally and installed side by side. A connection pipe with built-in screws is installed between two adjacent pyrolysis reactors, and they transfer the pyrolysis material in the pyrolysis reactor at a uniform speed to the adjacent pyrolysis reactor without interruption. The screw installed inside the pyrolysis reactor moves the pyrolysis material forward at a uniform speed. In each of the pyrolysis reactors, a hot air pipe is installed between the thermal insulation wall and the inner wall of the pyrolysis reaction furnace through which the hot air made in the heating furnace passes, and blocking blades are installed to divide it into upper and lower parts. The hot air is moved from the end of the lower hot air pipe to the other end of the pyrolysis reactor connected to the heating furnace and then moved from the upper hot air pipe to the opposite end and then discharged to maximize the thermal efficiency of the pyrolysis reactor. In addition, by maximizing the heat transfer area (Heat Surface) by arranging 6 pyrolysis reactors side by side, the hot spot is dispersed, and at the same time, through the internal temperature controlled differently in each pyrolysis reactor, Reduces thermal resistance that hinders the movement of gas and liquid substances (paste) and facilitates the movement of pyrolytic substances in connection with the connecting pipe screw. In this way, it suppresses the formation of coke generated in a large amount on the inner wall of the pyrolysis reaction furnace, thereby increasing the pyrolysis efficiency, thereby increasing the production yield, reducing the fuel consumption of the heating furnace, and removing the poisonous odor and impurities of the plastic refined oil to produce quality refined oil. At the same time, it provides a waste plastic emulsification device and emulsification method of continuous operation method that does not cause water pollution and air pollution. At the same time, in the present invention, the pyrolysis reactors are installed horizontally and side by side, so installation and maintenance are easy. It has the advantage of being able to increase the facility capacity in a short period at low cost by a relatively simple method.

도면을 이용해 본 발명에 대해 상세하게 설명한다. 도면 중의 실시 예는 본 발명 의 어떤 제한도 구성하고 있지 않다.
도면 1은 본 발명의 내부에 회전스크류를 장착한 모듈(Module)조립방식의 연속운전 폐플라스틱 유화장치의 구조 및 열분해 물질의 이동방향 설명도면
도면 2는 본 발명의 열분해반응로와 연결관의 연결상태를 내려다본 설명도면
도면 3은 본 발명의 인접한 열분해반응로의 회전날개(Screw Fin)의 경사각이 상호 반대방향으로 제작되어 열분해 물질의 이동방향이 반대임을 보여주는 설명도면
도면 4는 본 발명의 열분해반응로의 열분해 물질의 투입구와 배출구를 보여주는 정면 및 측면 단면 설명도면
도면 5는 본 발명의 열분해반응로의 연결관의 연결위치를 보여주는 설명도면
The present invention will be described in detail with reference to the drawings. The embodiments in the drawings do not constitute any limitation of the present invention.
1 is a schematic diagram illustrating the structure of a continuous operation waste plastic emulsifying device in a module assembly method equipped with a rotating screw in the present invention and the moving direction of the pyrolysis material.
Figure 2 is an explanatory view looking down on the connection state of the pyrolysis reactor and the connection pipe of the present invention
3 is an explanatory drawing showing that the inclination angles of the screw fins of the adjacent pyrolysis reactor of the present invention are manufactured in opposite directions, so that the moving direction of the pyrolysis material is opposite
Figure 4 is a front and side cross-sectional explanatory view showing the inlet and outlet of the pyrolysis material in the pyrolysis reactor of the present invention
Figure 5 is an explanatory view showing the connection position of the connection pipe of the pyrolysis reactor of the present invention

이하 도면을 참조하여 본 발명의 실시 예를 상세히 설명한다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the drawings.

본 발명의 내부에 회전스크류를 장착한 모듈(Module)조립방식의 연속운전 폐플라스틱 유화장치 및 유화방법의 구체적인 실시방법은 도면 1 에서 보는것과 같이 평행으로 나란히 설치된 6개의 열분해반응로(1A,1B,1C,1D,1E,1F)를 포함한다. 열분해반응로의 밑부분에는 열분해반응로를 가열해서 열분해반응로 내부의 열분해 물질의 열분해 반응을 촉진하는데 사용하는 가열로(11)가 설치된다. 두 개의 인접한 열분해반응로의 사이에는 연결관(81)이 설치되며, 연결관(81)은 내부에 설치된 연결관스크류(82)를 포함한다. 연결관(81)에 내장된 연결관스크류 (82)는 열분해 물질을 첫 번째 열분해반응로(1A)로부터 균일한 속도로 끊김 없이 이웃한 열분해반응로 (1A→1B,1B→1C,1C→1D,1D→1E,1E→1F)로 이송시킨다. The concrete implementation method of the continuous operation waste plastic emulsification device and the emulsification method of the module assembly method with a rotating screw mounted inside of the present invention is as shown in Figure 1, 6 pyrolysis reactors (1A, 1B) installed side by side in parallel as shown in Fig. ,1C,1D,1E,1F). At the bottom of the pyrolysis reaction furnace, a heating furnace 11 is installed which is used to heat the pyrolysis reaction furnace to accelerate the pyrolysis reaction of the pyrolysis material inside the pyrolysis reaction furnace. A connecting pipe 81 is installed between two adjacent pyrolysis reactors, and the connecting pipe 81 includes a connecting pipe screw 82 installed therein. The connecting tube screw 82 built in the connecting tube 81 removes the pyrolysis material from the first pyrolysis reactor 1A at a uniform rate and seamlessly from the adjacent pyrolysis reactor (1A→1B,1B→1C,1C→1D). ,1D→1E,1E→1F).

동시에 각각의 열분해반응로(1A,1B,1C,1D,1E,1F)의 설정된 온도차이를 이용하여 열분해 물질의 열 저항을 완화시켜 열분해반응로(1A,1B,1C,1D,1E,1F) 사이의 열분해 물질의 이송을 원활 하게 한다. 즉, 첫 번째 열분해반응로(1A)의 설정온도는 150℃∼200℃로 제어되어 주로 폐플라스틱에 함유된 수분을 증발시킨다. At the same time, the thermal resistance of the pyrolysis material is relaxed by using the set temperature difference of each pyrolysis reactor (1A, 1B, 1C, 1D, 1E, 1F), and the pyrolysis reactor (1A, 1B, 1C, 1D, 1E, 1F) It facilitates the transfer of pyrolytic substances between them. In other words, the set temperature of the first pyrolysis reactor 1A is controlled at 150°C to 200°C to evaporate the moisture contained in the waste plastic.

연결관스크류의 회전에 의해 점성이 높은 열분해 물질을 균일한 속도로 이웃한 열분해반응로(1B)로 보냄으로써 열분해반응로(1A)의 코크스생성을 방지하고, 연결관(81)의 막힘을 방지함과 동시에 열분해물질의 분해효율도 높이게 된다. By the rotation of the connecting pipe screw, the highly viscous pyrolysis material is sent to the neighboring pyrolysis reactor 1B at a uniform speed to prevent coke formation in the pyrolysis reactor 1A and blockage of the connection pipe 81. At the same time, the decomposition efficiency of the pyrolysis material is increased.

열분해반응로(1A,1B,1C,1D,1E,1F) 내부에 장착된 열분해반응로스크류(2)의 회전에 의해 열분해물질이 지속적으로 균일한 속도로 전방으로 이동함으로 열분해반응로 (1A,1B,1C,1D,1E,1F) 내벽에 코크스가 부착되지 않는다. Pyrolysis reaction furnace (1A, 1B, 1C, 1D, 1E, 1F) by rotating the pyrolysis reactor screw (2) installed inside the pyrolysis reactor (1A, 1B, 1C, 1E, 1F) 1B,1C,1D,1E,1F) Coke does not adhere to the inner wall.

기존의 상하수직의 직렬연결방식의 연속식 유화장치와 비교할 때, 본 발명의 내부에 회전스크류를 장착한 모듈(Module)조립방식의 연속운전 폐플라스틱 유화장치 및 유화방법은 복잡한 지지대가 필요하지 않고, 고도와 용적의 제한을 받지 않으며, 장치의 설치와 검수가 용이하여 설비원가를 낮출 수 있다. 또한, 기존의 열분해반응로(1A,1B,1C,1D,1E,1F)와 동일한 규격인 모듈(Module)형태의 열분해반응로를 수평으로 나란히 추가시킴으로써 생산규모를 쉽게 증가시킬 수 있으며, 비교적 큰 생산규모를 저비용으로 실현시킬 수 있다. Compared with the conventional vertically connected series-connected continuous emulsifying apparatus, the continuous operation of the continuous operation of the module assembly method equipped with a rotating screw in the present invention and the emulsifying method of the waste plastic does not require a complicated support. , It is not limited by altitude and volume, and installation and inspection of equipment are easy, so the cost of equipment can be lowered. In addition, the scale of production can be easily increased by adding a module-type pyrolysis reactor of the same standard as the existing pyrolysis reactors (1A, 1B, 1C, 1D, 1E, 1F) horizontally. Production scale can be realized at low cost.

본 실시 예 중 수평으로 나란히 설치된 열분해반응로(1A,1B,1C,1D,1E,1F)가 조성하는 모듈(Module)조립방식의 연속운전 폐플라스틱 유화장치 및 유화방법은 열분해 물질을 첫번째 열분해반응로(1A)의 내부로부터 순차적으로 마지막 열분해반응로(1F)로 이송시킨다. 본 발명의 모듈(Module)조립방식의 연속운전 폐플라스틱 유화장치에 위치한 첫번째 열분해반응로(1A)에 재료공급장치(12)와 예비용관로(13)가 설치된다. 첫번째 열분해반응로(1A)의 재료투입구는 재료공급장치(12)와 연결되고, 재료공급장치(12)는 끊임없이 첫 번째 분해반응로(1A)에 폐플라스틱을 공급한다. 예비용관로(13)는 열분해반응로(1A)의 내부상황을 관찰하는 데 사용되며, 첫번째 열분해반응로(1A)의 예비용관로(13)는, 본 발명의 유화장치에서 생산된 정제유를 높은 품질의 납사와 경유로 정제시키위해 별도로 설치된 정제유 감압증류설비공정의 부산물인 고점도잔사유의 추가적인 열분해를 위한 투입구로 사용된다. 조합식 연속운전 폐플라스틱 유화장치의 마지막 열분해반응로(1F)에는 열분해 물질을 분해한 후에 남는 분말상태의 잔사물을 배출하는 잔사물배출장치(83)가 설치된다.In the present embodiment, the continuous operation of the module assembly method and the emulsification method of the waste plastics emulsifying apparatus and the emulsification method of the module assembly method of the pyrolysis reactors (1A, 1B, 1C, 1D, 1E, 1F) installed horizontally side by side are the first pyrolysis reaction From the inside of the furnace 1A, it is sequentially transferred to the last pyrolysis reactor 1F. A material supply device 12 and a spare pipe 13 are installed in the first pyrolysis reactor 1A located in the continuous operation waste plastic emulsification device of the module assembly method of the present invention. The material inlet of the first pyrolysis reactor 1A is connected to the material supply device 12, and the material supply device 12 constantly supplies the waste plastic to the first cracking reactor 1A. The preliminary tube 13 is used to observe the internal situation of the pyrolysis reactor 1A, and the preliminary tube 13 of the first pyrolysis reactor 1A contains a high level of refined oil produced in the emulsification apparatus of the present invention. It is used as an inlet for additional pyrolysis of high-viscosity residual oil, a by-product of the process of a separately installed refined oil vacuum distillation facility for purification with quality naphtha and diesel. In the last pyrolysis reactor 1F of the combined continuous operation waste plastic emulsification apparatus, a residue discharge device 83 for discharging powdery residue remaining after decomposing the pyrolysis material is installed.

도면 3 에서 보는 바와 같이, 열분해반응로(1A,1B,1C,1D,1E,1F) 내부에는 열분해 물질을 앞으로 밀어내는 열분해반응로스크류(2)가 설치된다. 열분해반응로스크류(2)는 이를 회전시키는 구동축(31)과 열분해반응로스크루모터(3)에 연결된다. 열분해반응로스크류(2)에는 회전날개(Screw Fin)(21)를 설치하고, 이의 회전에 따라 열분해 물질을 열분해반응로 (1A,1B,1C,1D,1E,1F)의 진입구(33, 34)에서 같은 열분해반응로(1A,1B,1C,1D,1E,1F)의 배출구(35, 36)로 균일한 속도로 밀어낸다. 열분해반응로스크류(2)의 회전은 열분해 물질이 열분해반응로(1A,1B,1C,1D,1E,1F) 내에서 열을 균등하게 받도록 함으로써 열분해 물질의 뭉침을 방지하며, 동시에 열분해 물질의 이송을 원활하게 함으로써 코크스의 형성을 방지함과 더불어 열분해반응로의 열분해 효율을 높여 양질의 정제유를 생산한다. As shown in FIG. 3, a pyrolysis reactor screw 2 is installed inside the pyrolysis reactor 1A, 1B, 1C, 1D, 1E, 1F to push the pyrolysis material forward. The pyrolysis reactor screw 2 is connected to the drive shaft 31 rotating it and the pyrolysis reactor screw motor 3. Screw fins (21) are installed in the pyrolysis reactor screw (2), and the pyrolysis material is transferred to the entrance ports (33, 34) of the pyrolysis reactors (1A, 1B, 1C, 1D, 1E, 1F) according to their rotation. ) From the same pyrolysis reactor (1A, 1B, 1C, 1D, 1E, 1F) to the outlets (35, 36) at a uniform speed. Rotation of the pyrolysis reactor screw (2) prevents agglomeration of pyrolysis materials by allowing the pyrolysis materials to receive heat evenly in the pyrolysis reactors (1A, 1B, 1C, 1D, 1E, 1F) and at the same time transfers pyrolysis materials. By smoothing out, it prevents the formation of coke and increases the pyrolysis efficiency of the pyrolysis reactor to produce high quality refined oil.

열분해반응로(1A,1B,1C,1D,1E)의 열분해물질의 배출구는 연결관(81)을 통해 그에 이웃한 열분해반응로 (1B,1C,1D,1E,1F)의 열분해물질 투입구에 연결된다. 연결관(81)의 길이를 최대한 짧게 함으로써 열분해 물질이 열분해반응로 (1A,1B,1C,1D,1E) 내에서 그에 이웃한 열분해반응로(1B,1C,1D,1F) 내로 진입하기가 쉬워진다. 도면3에서 보듯이 열분해반응로(1A,1B,1C,1D,1E,1F) 내부의 열분해반응로스크류(2)의 회전방향은 동일하나 두 개의 인접한 열분해반응로 내부의 회전날개(Screw Fin) (21)의 경사각은 서로 상반되게 설치되며, 이에따라 두개의 이웃한 열분해반응로 내부의 열분해 물질의 진행방향도 서로 상반된다.The outlet of the pyrolysis material of the pyrolysis reactor (1A, 1B, 1C, 1D, 1E) is connected to the pyrolysis material inlet of the adjacent pyrolysis reactor (1B, 1C, 1D, 1E, 1F) through the connection pipe 81 do. By shortening the length of the connection pipe 81, it is easy for the pyrolysis material to enter into the adjacent pyrolysis reactors (1B, 1C, 1D, 1F) within the pyrolysis reactor (1A, 1B, 1C, 1D, 1E). Lose. As shown in Figure 3, the rotational direction of the pyrolysis reactor screw (2) inside the pyrolysis reactor (1A, 1B, 1C, 1D, 1E, 1F) is the same, but the screw fins inside two adjacent pyrolysis reactors The inclination angle of (21) is installed to be opposite to each other, and accordingly, the direction of progress of the pyrolysis material inside the two adjacent pyrolysis reactors is opposite to each other.

도면1, 도면2, 도면3 에서 보는 바와같이, 열분해 물질을 첫 번째 열분해반응로 (1A)로부터 그와 이웃한 열분해반응로(1B→1C→1D→1E→1F)의 내부로 밀어 넣기 위한 5개의 연결관(81)이 열분해반응로(1A)와 (1B)사이, (1B)와 (1C)사이, (1C)와 (1D)사이, (1D)와 (1E)사이 및 (1E)와 (1F)사이에 설치된다. 열분해반응로(1F)의 끝에는 열분해물질의 잔사물을 배출시키는 잔사물배출장치(83)가 설치된다As shown in Figures 1, 2, and 3, 5 to push the pyrolysis material from the first pyrolysis reactor (1A) into the neighboring pyrolysis reactor (1B→1C1D→1E→1F). The connecting pipes 81 are between the pyrolysis reactors (1A) and (1B), between (1B) and (1C), between (1C) and (1D), between (1D) and (1E) and between (1E) and It is installed between (1F). At the end of the pyrolysis reactor 1F, a residue discharge device 83 for discharging residues of pyrolysis substances is installed.

도면4 에서 보듯이, 열분해반응로(1A,1B,1C,1D,1E,1F) 밑부분에 설치된 연결관(81)의 바닥은 아랫쪽으로 볼록하다. As shown in Fig. 4, the bottom of the connection pipe 81 installed at the bottom of the pyrolysis reactors 1A, 1B, 1C, 1D, 1E, and 1F is convex downward.

도면4와 도면5에서 보듯이, 각각의 열분해반응로(1A,1B,1C,1D,1E,1F)에는 가열로(11)에서 만들어진 열풍이 통과하도록 열분해반응로 앞쪽의 단열벽(32)과 내벽 사이에 열풍관로(28)를 설치하고, 이것을 상부와 하부로 나누는 차단날개(27)가 설치된다. 열풍은 가열로(11)와 연결된 열분해반응로 앞쪽의 하부 열풍관로(28) 로 부터 반대편 끝으로 이동한후 상부 열풍관로(28)로 유턴(U-Turn)하여 앞쪽으로 이동 후 배기가스배출구(29)를 통해 외부로 배출되는 방법으로 열분해반응로의 열효율을 극대화시킨다As shown in Figures 4 and 5, each of the pyrolysis reactors (1A, 1B, 1C, 1D, 1E, and 1F) has an insulating wall 32 in front of the pyrolysis reactor so that the hot air made in the heating furnace 11 passes. A hot air pipe path 28 is installed between the inner walls, and blocking blades 27 are installed to divide it into upper and lower portions. The hot air moves from the lower hot air pipe 28 in front of the pyrolysis reactor connected to the heating furnace 11 to the opposite end, U-turns to the upper hot air pipe 28, and moves to the front, and then the exhaust gas outlet 29 ) To the outside to maximize the thermal efficiency of the pyrolysis reactor

도면 2, 도면 3 에서 보는 바와 같이, 열분해반응로 구동연결부품은 열분해반응로스크루모터(3), 이 모터(3)와 연결된 감속기, 감속기와 연결된 구동축(31),구동축과 연결된 두 번째 결합장치(7), 이것과 연결된 회전자축(5), 회전자축과 연결된 연결축(4), 연결축과 열분해반응로스크류(2) 사이에 설치된 첫 번째 결합장치(6)를 포함한다. 구동축과 열분해반응로스크루(2) 축은 연결축을 통해 간접 연결된다. 연결축에 회전자축이 연결되므로, 회전자축(5)은 연결축(4)과 구동축(31)에 연결되어 서로 같은 동축도를 갖게 된다. 따라서 구동축의 마모를 줄여 사용수명을 연장시키고 설비원가를 낮추며, 높은 동축도는 이송효율을 높이고 이에 따라 에너지손실을 줄인다. As shown in Figures 2 and 3, the pyrolysis reactor drive connecting part is a pyrolysis reactor screw motor (3), a reducer connected to this motor (3), a drive shaft connected to the speed reducer (31), and a second coupling device connected to the drive shaft. (7), a rotor shaft 5 connected thereto, a connecting shaft 4 connected to the rotor shaft, and a first coupling device 6 installed between the connecting shaft and the pyrolysis reactor screw 2. The drive shaft and the shaft of the pyrolysis reactor screw 2 are indirectly connected through a connecting shaft. Since the rotor shaft is connected to the connection shaft, the rotor shaft 5 is connected to the connection shaft 4 and the drive shaft 31 to have the same degree of coaxiality. Therefore, by reducing the wear of the drive shaft, the service life is extended and the equipment cost is lowered, and the high coaxiality increases the transfer efficiency and thus reduces the energy loss.

첫번째결합장치(6)와 두번째결합장치(7)는 플렌지(Flange Fitting)방식, 멀티조우(Multi-jaw)방식, 핀플러그(Pin Plug)방식, 체인(Chain)방식중 임의의 몇가지 결합방식을 사용한다.The first coupling device 6 and the second coupling device 7 have several coupling methods among the flange fitting method, multi-jaw method, pin plug method, and chain method. use.

구체적으로 열분해반응로스크류(2)와 연결축(4)이 연결된 곳에는 씰(Seal)구조물이 설치되며, 씰구조물은 첫번째결합장치(6)를 덮고 있는 첫번째씰덮개(9), 첫번째씰 덮개(9)와 두번째씰덮개(10)는 열분해반응로(1A,1B,1C,1D,1E,1F)의 강한 밀봉을 실현하고, 두번째씰덮개(10) 내부의 내열팩킹충전제(101)는 열분해반응로 (1A,1B,1C,1D,1E,1F)의 유연한 밀봉을 실현한다. 강한 밀봉과 유연한 밀봉의 상호 결합으로 열분해반응로(1A,1B,1C,1D,1E,1F)의 기체가 유출되지 않는 강력한 밀봉효과를 갖는다.Specifically, a seal structure is installed where the pyrolysis reactor screw (2) and the connecting shaft (4) are connected, and the seal structure is the first seal cover (9) covering the first coupling device (6), the first seal cover. (9) and the second seal cover (10) realize a strong sealing of the pyrolysis reactor (1A, 1B, 1C, 1D, 1E, 1F), and the heat-resistant packing filler 101 inside the second seal cover 10 is pyrolysis. It realizes flexible sealing of reactors (1A, 1B, 1C, 1D, 1E, 1F). It has a strong sealing effect that gas from the pyrolysis reactors (1A, 1B, 1C, 1D, 1E, 1F) does not leak through the mutual combination of strong sealing and flexible sealing.

마지막으로 밝혀 두고자 하는 것은, 위에 적은 실시 예들은 본 발명의 기술적 내용을 설명하기 위한 것이며, 본 발명의 기술적 사양을 모두 대변하는 것은 아니고, 본 발명의 보호범위에 대해 제한이 있음을 의미하지도 않는다. 또한, 본 발명의 기술적 본질과 범위를 벗어나지 않으면서 본 발명의 기술적 해결책에 대해 수정 또는 동등한 수준의 대체가 이루어질 수 있음은 본 발명이 속하는 기술분야의 통상적인 지식을 가진자들에게 명백히 이해 될것이다.Lastly, the embodiments described above are for describing the technical content of the present invention, do not represent all of the technical specifications of the present invention, and do not mean that there is a limitation on the protection scope of the present invention. . In addition, it will be clearly understood by those of ordinary skill in the art to which the present invention pertains that modifications or equivalent levels of substitution can be made to the technical solutions of the present invention without departing from the technical nature and scope of the present invention.


1A-첫 번째 열분해반응로, 1B-두 번째 열분해반응로, 1C-세 번째 열분해반응로, 1D-네 번째 열분해반응로, 1E-다섯 번째 열분해반응로, 1F-여섯 번째 열분해반응로, 2-열분해반응로스크루, 3-열분해반응로스크루모터, 4-연결축, 5-회전자축, 6-첫 번째결합장치, 7-두 번째결합장치, 8-연결관연결부품, 9-첫 번째 씰덮개, 10-두 번째 씰덮개, 11-가열로, 12-재료공급장치, 13-예비용관로, 14A-제1촉매탑, 14B-제2촉매탑, 15-기수분리탱크, 16A-제1냉각응축기, 16B-제2냉각응축기, 17-오일저장탱크, 18-미응축가스정제탱크, 19-배기가스열교환기, 20-배기가스정화장치, 21-회전날개(Screw Fin), 22-물탱크, 23-가스버너, 24-오일버너, 25-드래프트팬(Draft Fan), 26-폐플라스틱분쇄기, 27-차단날개, 28-열풍관로, 31-구동축, 32-단열벽, 33-열분해반응로 1B, 1D, 1F의 진입구, 34-열분해반응로 1C, 1E의 진입구, 35-열분해반응로 1A, 1C, 1E의 배출구, 36-열분해반응로 1B, 1D, 1F의 배출구, 81A-첫 번째 연결관, 81B-두 번째 연결관, 81C-세 번째 연결관, 81D-네 번째 연결관, 81E-다섯 번째 연결관, 82-연결관스크루, 83-잔사물배출장치, 101-내열패킹충전제

1A-first pyrolysis reactor, 1B-second pyrolysis reactor, 1C-third pyrolysis reactor, 1D-fourth pyrolysis reactor, 1E-fifth pyrolysis reactor, 1F-sixth pyrolysis reactor, 2- Pyrolysis reactor screw, 3-Pyrolysis reactor screw motor, 4-connection shaft, 5-rotor shaft, 6-first coupling device, 7-second coupling device, 8-connecting pipe fitting, 9-first seal cover , 10-second seal cover, 11-heating furnace, 12-material supply device, 13-preliminary pipe, 14A-first catalyst tower, 14B-second catalyst tower, 15-separate tank, 16A-first cooling Condenser, 16B-second cooling condenser, 17-oil storage tank, 18-non-condensed gas purification tank, 19-exhaust gas heat exchanger, 20-exhaust gas purification device, 21-screw fin, 22-water tank , 23-gas burner, 24-oil burner, 25-draft fan, 26-waste plastic crusher, 27-breaking blade, 28-hot air pipe, 31-drive shaft, 32-insulation wall, 33-pyrolysis reactor 1B, 1D, 1F entry, 34-Pyrolysis reactor 1C, 1E entry, 35-Pyrolysis reactor 1A, 1C, 1E exit, 36-Pyrolysis reactor 1B, 1D, 1F exit, 81A-first connection Pipe, 81B-second connector, 81C-third connector, 81D-fourth connector, 81E-fifth connector, 82-connector screw, 83-debris discharge device, 101-heat-resistant packing filler

Claims (13)

폐플라스틱을 50mm x 50mm이하로 분쇄하여 재료공급장치로 보내는 폐플라스틱분쇄기(26),
폐플라스틱분쇄기로부터 분당 16Kg의 속도로 공급되는 폐플라스틱을 첫 번째 열분해반응로(1A)로 공급하는 이송스크루가 내장된 재료공급장치(12),
가열로(11)로부터 배출되는 고온의 배기가스의 폐열을 이용하여 재료공급장치로부터 첫 번째 열분해반응로(1A)에 투입되는 폐플라스틱의 온도를 50-60℃로 유지시키기 위한 배기가스열교환기(19),
6개의 열분해반응로(1A, 1B, 1C, 1D, 1E, 1F)가 수평으로 나란히 설치되고, 이들 열분해반응로 사이에는 이들을 서로 횡적으로 연결하는 연결관(81A, 81B, 81C, 81D, 81E)이 설치되며, 열분해반응로와 연결관은 직각으로 연결되고, 홀수번호의 열분해반응로(1A, 1C, 1E)의 배출구(35)와 짝수번호의 열분해반응로(1B, 1D, 1F)의 진입구(33)가 연결되고, 짝수번호의 열분해반응로(1B, 1D, 1F)의 배출구(36)와 홀수번호의 열분해반응로(1C, 1E)의 진입구(34)가 연결되어 6개의 열분해반응로가 연결관에 의해 지그재그형태로 설치되는 모듈(Module)조립방식의 모듈화된 열분해반응로,
첫 번째 열분해반응로(1A) 내부로 투입되는 폐플라스틱과 세 번째(1C) 및 다섯 번째 열분해반응로(1E) 내부의 열분해 물질을 열분해반응로의 앞 부분인 연결관 81A, 81C, 8E가 장착된 방향으로 이송시키고, 두 번째(1B), 네 번째(1D) 및 여섯 번째 열분해반응로(1F) 내부의 열분해 물질을 열분해반응로의 뒷 부분인 연결관 81B, 81D가 장착된 방향으로 이송시키는 열분해반응로스크루(2),
열분해반응로를 가열하는 오일버너(24) 및 냉각응축기(16A, 16B)에서 정제유로 액화되지 않은 미응축가스를 연료로 사용하는 가스버너(23)가 장착된 가열로(11),
두개의 인접한 열분해반응로(1A-1B, 1B-1C, 1C-1D, 1D-1E, 1E-1F)를 수평으로 연결하고, 내부에 장착된 연결관스크루(82)에 의해 열분해반응로 간 열분해 물질의 이동을 원활하게 하는 연결관(81A, 81B, 81C, 81D, 81E),
세 번째 열분해반응로(1C)상부에 설치되어 두 번째(1B)와 세 번째 열분해반응로(1C)로부터 이송되는 비등점이 낮은 폐플라스틱 유화가스를 납사(Naphtha)유분으로 개질 시키는 제1촉매탑(14A)과 다섯 번째 열분해반응로(1E) 상부에 설치되어 네 번째(1D), 다섯 번째(1E), 여섯 번째 열분해반응로(1F)로부터 이송되는 비등점이 높은 폐플라스틱 유화가스를 경유 유분으로 개질 시키는 재2촉매탑(14B),
상기한 촉매탑으로부터 이송된 유화가스에서 수분을 분리시키는 기수분리탱크(15),
열분해반응로에서 생성되어 제1촉매탑과 제2촉매탑에서 개질된 유화가스를 액화시키는 두 개의 냉각응축기(16A, 16B),
상기 냉각응축기에서 액화되지 않고 남는 미응축 유화가스를 안정화시켜 가스버너의 연료로 사용되게 하는 세 개의 가스정제탱크(18),
상기 냉각응축기에서 액화된 오일을 저장하는 오일저장탱크(17),
가열로(11)에서 배출되는 배기가스를 정화하는 배기가스정화장치(20),
여섯 번째 열분해반응로(1F) 내부의 고형 잔사물인 미량의 카본블랙과 슬래그를 외부로 배출시키는 이송스크루가 내장된 잔사물배출장치(83) 및 저장된 데이터 베이스(Data Base)에 의해 열분해반응로 상부에 설치된 전자감응식 온도계와 압력계 및 가열로와 연계하여 열분해반응로의 온도를 제어하고, 열분해반응로스크루 및 연결관스크루 회전을 제어하여, 열분해 유화장치의 자동운전을 시현하는 PLC 제어장치(PLC Control Cabinet)가 포함된 폐플라스틱 열분해 유화장치.
Waste plastic crusher (26), which crushes waste plastic to less than 50mm x 50mm and sends it to the material supply device,
Material supply device 12 with a built-in transfer screw that supplies waste plastic supplied from the waste plastic crusher at a rate of 16Kg per minute to the first pyrolysis reactor 1A,
Exhaust gas heat exchanger for maintaining the temperature of the waste plastic injected into the first pyrolysis reactor 1A from the material supply device at 50-60℃ by using the waste heat of the high-temperature exhaust gas discharged from the heating furnace 11 19),
Six pyrolysis reactors (1A, 1B, 1C, 1D, 1E, 1F) are installed horizontally and between these pyrolysis reactors, connecting pipes (81A, 81B, 81C, 81D, 81E) connecting them horizontally to each other Is installed, and the pyrolysis reactor and the connection pipe are connected at right angles, and the outlet 35 of the odd-numbered pyrolysis reactors (1A, 1C, 1E) and the entrance of the even-numbered pyrolysis reactors (1B, 1D, 1F) (33) is connected, and the outlet 36 of the even-numbered pyrolysis reactors (1B, 1D, 1F) and the entrance port 34 of the odd-numbered pyrolysis reactors (1C, 1E) are connected, and six pyrolysis reactors A modularized pyrolysis reactor of the module assembly method installed in a zigzag form by means of a connector,
The connection pipes 81A, 81C, and 8E, which are the front part of the pyrolysis reactor, are installed for the waste plastic input into the first pyrolysis reactor (1A) and the pyrolysis materials inside the third (1C) and fifth pyrolysis reactors (1E). And transfer the pyrolysis material inside the second (1B), fourth (1D) and sixth pyrolysis reactor (1F) in the direction in which the connectors 81B and 81D, which are the rear part of the pyrolysis reactor, are installed. Pyrolysis reactor screw (2),
A heating furnace (11) equipped with an oil burner (24) for heating the pyrolysis reaction furnace and a gas burner (23) that uses uncondensed gas not liquefied as refined oil in the cooling condensers (16A, 16B) as fuel,
Two adjacent pyrolysis reactors (1A-1B, 1B-1C, 1C-1D, 1D-1E, 1E-1F) are connected horizontally, and pyrolysis between the pyrolysis reactors by means of the connecting pipe screw (82) installed inside. Connector (81A, 81B, 81C, 81D, 81E) that facilitates the movement of substances,
The first catalyst tower that is installed on the upper part of the third pyrolysis reactor (1C) and converts waste plastic emulsified gas with a low boiling point transferred from the second (1B) and third pyrolysis reactors (1C) into naphtha oil. 14A) and the fifth pyrolysis reactor (1E), installed above the fourth (1D), fifth (1E), and sixth pyrolysis reactors (1F), the high boiling point of waste plastic sulfide gas transferred to diesel oil Lethal re-2 catalyst tower (14B),
A water separation tank 15 for separating moisture from the emulsified gas transferred from the catalyst tower,
Two cooling condensers (16A, 16B) that are generated in the pyrolysis reactor to liquefy the modified sulfide gas in the first and second catalyst towers,
Three gas purification tanks 18 for stabilizing the uncondensed emulsified gas remaining without being liquefied in the cooling condenser to be used as fuel for a gas burner,
An oil storage tank 17 for storing liquefied oil in the cooling condenser,
An exhaust gas purification device 20 for purifying exhaust gas discharged from the heating furnace 11,
The sixth pyrolysis reaction furnace (1F) is a pyrolysis reactor by means of a residue discharge device 83 with a built-in transfer screw for discharging a trace amount of carbon black and slag, which are solid residues inside, and a stored database. PLC control device that controls the temperature of the pyrolysis reaction furnace in connection with the electronic sensitized thermometer and pressure gauge and heating furnace installed at the top, and controls the rotation of the pyrolysis reaction furnace screw and the connecting pipe screw to demonstrate automatic operation of the pyrolysis and emulsification device PLC Control Cabinet).
제1항에 있어서,
수평으로 나란히 설치된 모듈(Module)화된 6개의 열분해반응로(1A, 1B, 1C, 1D, 1E, 1F)에는, 두개의 인접한 열분해반응로(1A-1B, 1B-1C, 1C-1D, 1D-1E, 1E-1F) 사이에 연결관(81A, 81B, 81C, 81D, 81E)이 설치되며, 상술한 연결관 내부에는 열분해 물질을 첫 번째 열분해반응로(1A)에서 동일한 속도로 끊김 없이 그에 인접한 다음 열분해반응로(1A→1B→1C→1D→1E→1F)로 보내는데 사용하는 연결관스크루(82)가 포함되고, 가열로에서 형성된 열풍이 통과하는 열분해반응로의 단열벽(32)과 내벽 사이에 설치된 열풍관로(28) 및 열풍관로를 상부와 하부로 나누는 차단날개(27)에 의해 열풍이 열풍관로의 하부의 열풍관로에서 상부의 열풍관로를 형으로 이동후 배기가스배출구(29)를 통해 외부로 배출되는 구조로 열분해반응로의 상부와 하부를 고르게 가열함으로써 높은 열효율를 갖는 폐플라스틱 열분해 유화장치.
The method of claim 1,
In the six pyrolysis reactors (1A, 1B, 1C, 1D, 1E, 1F) installed horizontally and side by side, two adjacent pyrolysis reactors (1A-1B, 1B-1C, 1C-1D, 1D-) 1E, 1E-1F) are installed between the connecting pipes (81A, 81B, 81C, 81D, 81E), and in the above-described connecting pipe, the pyrolysis material is continuously adjoined at the same speed in the first pyrolysis reactor (1A). The connecting pipe screw 82 used to send to the next pyrolysis reactor (1A→1B→1C→1D→1E→1F) is included, and the insulation wall 32 and the inner wall of the pyrolysis reactor through which the hot air formed in the heating furnace passes. With the hot air pipe path 28 installed between the hot air pipe path and the blocking blade 27 that divides the hot air pipe path into the upper and lower parts, the hot air moves from the hot air pipe path at the bottom of the hot air pipe path to the type, and then the exhaust gas outlet 29 is opened. Waste plastic pyrolysis emulsification device with high thermal efficiency by evenly heating the top and bottom of the pyrolysis reactor with a structure that is discharged to the outside through the structure.
제1항에 있어서,
상기 열분해유화장치는 동일한 규격인 6개의 열분해반응로 모듈(Module)을 수평으로 나란히 조립하여 만들어지며, 모듈을 추가함으로써 생산능력을 증대시키는 폐플라스틱 열분해유화장치
The method of claim 1,
The pyrolysis and emulsification device is made by assembling six pyrolysis reactor modules of the same standard horizontally side by side, and is a waste plastic pyrolysis and emulsification device that increases production capacity by adding modules.
제1항에 있어서,
상기 연결관(81A, 81B, 81C, 81D, 81E)은, 첫 번째 연결관(81A)이 첫번째 열분해반응로(1A)의 열분해 물질의 배출구(35)와 두번 째 열분해반응로(1B)의 열분해 물질의 진입구(33)를 연결하고, 두 번째 연결관(81B)은 두 번째 열분해반응로(1B)의 열분해 물질의 배출구(36)와 세 번째 열분해반응로(1C)의 열분해 물질의 진입구(34)를 연결하며, 세 번째 연결관(81C)은 세 번째 열분해반응로(1C)의 열분해 물질의 배출구(35)와 네 번째 열분해반응로(1D)의 열분해 물질의 진입구(33)를 연결하고, 네 번째 연결관(81E)은 네 번째 열분해반응로(1D)의 열분해 물질의 배출구(36)와 다섯 번째 열분해반응로(1E)의 열분해 물질의 진입구(34)를 연결하며, 다섯 번째 연결관(81E)은 다섯 번째 열분해반응로(1E)의 열분해 물질의 배출구(35)와 여섯 번째 열분해반응로(1F)의 열분해 물질의 진입구(33)를 연결함과 동시에 모든 연결관은 열분해반응로와 직각으로 연결됨으로써, 6개의 열분해반응로가 지그재그형식으로 연결되어 유화장치 설치면적을 줄이고, 장치의 설치기간을 단축하며, 운전과 유지보수의 편리함 및 열분해반응로의 열 표면적(Heat Surface)을 넓혀 열분해 효율을 높임으로써 정제유의 생산수율을 높이는 특징을 지닌 폐플라스틱 열분해 유화장치
The method of claim 1,
In the connection pipes 81A, 81B, 81C, 81D, and 81E, the first connection pipe 81A is the outlet 35 of the pyrolysis material of the first pyrolysis reactor 1A and the pyrolysis of the second pyrolysis reactor 1B. The material inlet 33 is connected, and the second connection pipe 81B is the outlet 36 of the pyrolysis material in the second pyrolysis reactor 1B and the inlet 34 of the pyrolysis material in the third pyrolysis reactor 1C. ), and the third connector 81C connects the outlet 35 of the pyrolysis material of the third pyrolysis reactor 1C and the inlet 33 of the pyrolysis material of the fourth pyrolysis reactor 1D, The fourth connector 81E connects the outlet 36 of the pyrolysis material of the fourth pyrolysis reactor 1D and the inlet 34 of the pyrolysis material of the fifth pyrolysis reactor 1E, and the fifth connector ( 81E) connects the pyrolysis material outlet 35 of the fifth pyrolysis reactor 1E and the pyrolysis material inlet 33 of the sixth pyrolysis reactor 1F, and at the same time, all the connecting pipes are perpendicular to the pyrolysis reactor. As a result, 6 pyrolysis reactors are connected in a zigzag manner, reducing the installation area of the emulsifying device, shortening the installation period of the device, convenient operation and maintenance, and widening the heat surface area of the pyrolysis reactor. Waste plastic pyrolysis and emulsification equipment with the characteristics of increasing the production yield of refined oil by increasing the efficiency.
제1항에 있어서,
상기 6개의 열분해반응로 중, 홀수 번호의 열분해반응로(1A, 1C, 1E) 내부의 열분해반응로스크루(2)의 회전날개(Screw Fin)(21)의 경사각과 짝수번호의 열분해반응로(1B, 1D, 1F) 내부의 열분해반응로스크루의 회전날개(Screw Fin)의 경사각은 서로 반대방향이며, 모든 열분해반응로 스크루(2)는 동일하게 시계방향으로 회전함으로, 인접한 열분해반응로 (1A-1B, 1B-1C, 1C-1D, 1D-1E, 1E-1F)의 열분해 물질의 이동방향이 서로 상반되게 되고, 이에 따라 첫 번째부터 마지막 열분해반응로에 이르기까지 내부의 열분해 물질이 연결관과 연계하여 지그재그형태로 균일한 속도로 이동함으로써 열분해반응로 내벽의 코크스(Cokes)부착을 방지하여, 생산수율을 높이고 양질의 정제유를 생산하며, 좁은 면적에 생산능력이 높은 유화장치의 설치를 가능하게 함을 특징으로하는 폐플라스틱 열분해 유화장치
The method of claim 1,
Of the six pyrolysis reactors, the inclination angle of the screw fin 21 of the pyrolysis reactors 1A, 1C, and 1E with odd numbers and the even number of pyrolysis reactors ( 1B, 1D, 1F) The inclination angles of the screw fins of the pyrolysis reactor screws inside are opposite to each other, and all pyrolysis reactor screws 2 rotate in the same clockwise direction, so the adjacent pyrolysis reactor (1A) -1B, 1B-1C, 1C-1D, 1D-1E, 1E-1F) of the pyrolysis materials are in opposite directions, and accordingly, the pyrolysis materials inside from the first to the last pyrolysis reactor are connected. By moving at a uniform speed in a zigzag form in connection with the Pyrolysis Reactor, it prevents coke from adhering to the inner wall of the pyrolysis reactor, thereby increasing the production yield and producing high quality refined oil, and enabling the installation of an emulsifier with high production capacity in a small area. Waste plastic pyrolysis emulsification device characterized in that
삭제delete 제1항에 있어서,
상기 열분해반응로스크루(2)는 열분해반응로스크루의 회전을 구동시키는 구동연결부품과 연결되어있으며, 구동연결부품은 열분해반응로스크루모터(3)와 연결된 감속기, 감속기와 연결된 구동축(31), 구동축과 연결된 두 번째 결합장치(7), 이것과 연결된 회전자축(5), 회전자축과 연결된 연결축(4), 연결축과 열분해반응로스크루 (2) 사이에 설치된 첫 번째 결합장치(6)에 의해 안정적인 동축도를 갖으며, 안정적인 동축도가 구동축(31)의 마모를 줄여 장치의 사용수명을 연장시키고 에너지손실을 줄여주는 폐플라스틱 열분해유화장치
The method of claim 1,
The pyrolysis reactor screw 2 is connected to a drive connecting part that drives the rotation of the pyrolysis reactor screw, and the drive connecting part is a reducer connected to the pyrolysis reactor screw motor 3, a drive shaft 31 connected to the reducer, The second coupling device (7) connected to the drive shaft, the rotor shaft connected thereto (5), the coupling shaft connected to the rotor shaft (4), the first coupling device (6) installed between the coupling shaft and the pyrolysis reactor screw (2) Waste plastic pyrolysis and emulsification device that has a stable coaxiality by means of a stable coaxiality, and extends the service life of the device and reduces energy loss by reducing the wear of the drive shaft 31
제7항에 있어서,
상기 첫 번째 결합장치(6)와 두 번째 결합장치(7)는 플랜지결합방식(Flange fitting), 걸쇠식(Plugging), 멀티-조(Multi-jaw)방식, 체인연결방식중 임의의 몇개의 방식으로 구성되는 폐플라스틱 열분해유화장치
The method of claim 7,
The first coupling device 6 and the second coupling device 7 are any of several methods among flange fitting, plugging, multi-jaw, and chain connection methods. Waste plastic pyrolysis and emulsification device consisting of
제7항에 있어서,
상기 열분해반응로스크루(2)와 연결축(4)이 연결된 곳에는 씰(Seal)구조물이 설치되며, 씰구조물은 첫 번째 결합장치(6)를 덮고 있는 첫 번째 씰덮개(9)와 연결축을 덮고 있는 두 번째 결합장치(7)를 포함하고, 첫 번째 씰덮개(9)와 두 번째 씰덮개(10)는 열분해반응로(1A, 1B, 1C, 1D, 1E, 1F)의 열분해반응로스크루 구동부분에 강한 밀봉을 실현하며, 두 번째 씰덮개(10) 내부의 내열팩킹충전제(101)는 열분해반응로의 구동축에 유연한 밀봉을 실현하여, 강한 밀봉과 유연한 밀봉의 상호 결합으로 열분해반응로의 유화가스가 외부로 유출되지 않는 강력한 밀봉효과를 갖는 폐플라스틱 열분해유화장치
The method of claim 7,
A seal structure is installed where the pyrolysis reactor screw 2 and the connection shaft 4 are connected, and the seal structure connects the first seal cover 9 covering the first coupling device 6 and the connection shaft. Including a second coupling device (7) covering, the first seal cover (9) and the second seal cover (10) is a pyrolysis reactor screw of the pyrolysis reactor (1A, 1B, 1C, 1D, 1E, 1F) It realizes a strong sealing on the driving part, and the heat-resistant packing filler 101 inside the second seal cover 10 realizes a flexible sealing on the drive shaft of the pyrolysis reactor. Waste plastic pyrolysis emulsifier with strong sealing effect that emulsified gas does not leak to the outside
제1항 내지 제5항 및 제7항 내지 제9항중 어느 한 항의 장치를 사용하는 코크스생성을 방지하여 생산수율을 높이는 폐플라스틱 열분해유화방법에 있어서,
첫 번째의 열분해반응로(1A) 내부의 온도를 150-200℃(반응로 내부의 공기온도)로 제어하여, 폐플라스틱에 함유된 대부분의 수분을 증발시켜 외부로 배출시킴으로써 전체 열분해반응로(1A, 1B, 1C, 1D, 1E, 1F)의 내부압력을 대폭 낮추어 열분해반응로의 유화가스의 외부유출을 방지함과 동시에 열분해 물질의 열분해반응로 간 이송을 원활하게 하고 ;
두 번째 열분해반응로(1B) 내부의 온도를 200-250℃로 제어하여, 폐플라스틱은 비등점이 낮은 납사(Naphtha) 유분이 일부 기화되기 시작하면서 상부에 있는 제1촉매탑으로 보내지고, 남은 열분해 물질은 페이스트(Paste)형태로 변형되어 세 번째 열분해반응로(1C)로 보내지며;
세 번째 열분해반응로(1C) 내부의 온도를 280-350℃로 제어하여, 대부분의 납사(Naphtha) 와 일부 경유(Diesel) 유분이 기화된 유화가스는 제1촉매탑(14A)으로 보내지며 남은 페이스트(Paste)는 가소성 물질로 변형되어 네 번째 열분해반응로(1D)로 이송되고;
네 번째 열분해반응로(1D) 내부의 온도를 350-400℃로 제어하여, 경유 유분이 기화된 유화가스는 제2촉매탑(14B)으로 보내지며, 남은 페이스트는 다섯 번째 열분해반응로(1E)로 이송되고;
다섯 번째 열분해반응로(1E) 내부의 온도를 380-420℃로 제어하여, 남아있는 열분해 물질중 대부분의 경유 유분의 기화가 이루어지며 기화된 유화가스는 제2촉매탑(14B)으로 보내지고, 동시에 미량의 카본블랙과 슬래그로 형성된 열분해반응로 내부에 남아있는 약간의 잔사물은 열분해 물질과 함께 여섯 번째 열분해반응로(1F)로 이송되며;
여섯 번째 열분해반응로(1F) 내부의 온도를 300-350℃로 낮게 제어하여, 모든 액상의 열분해 물질은 전량 기화되어 제2촉매탑으로 이송되고, 여섯 번째 열분해반응로 (1F)내부의 고형 잔사물인 미량의 카본블랙과 슬래그는 하부에 설치된 잔사물 배출장치(83)를 통해 외부로 배출시키는 유화방법으로 그 특징을 요약하면, 첫 번째 열분해반응로에서 발생하는 다량의 수증기를 외부로 배출시켜 전체 열분해반응로의 내부압력을 낮춤과 동시에 각각의 열분해반응로의 설정온도 차이를 이용해 열분해반응로 간의 열 저항을 줄여 열분해 물질의 열분해반응로 간 이송을 원활하게 함으로써 열분해반응로 내부의 코크스생성을 방지하여 양질의 폐플라스틱 정제유를 생산하는 열분해유화방법
In the pyrolysis and emulsification method of waste plastics that increases production yield by preventing coke generation using the device of any one of claims 1 to 5 and 7 to 9,
The temperature inside the first pyrolysis reactor (1A) is controlled at 150-200℃ (air temperature inside the reactor), and most of the moisture contained in the waste plastic is evaporated and discharged to the outside. , 1B, 1C, 1D, 1E, 1F) drastically lowers the internal pressure to prevent the outflow of emulsified gas to the pyrolysis reactor, and at the same time facilitate the transfer of pyrolysis materials between the pyrolysis reactors;
By controlling the temperature inside the second pyrolysis reactor (1B) to 200-250℃, the waste plastic is sent to the first catalyst tower at the top as part of the naphtha fraction with a low boiling point begins to evaporate, and the remaining pyrolysis The material is transformed into a paste and sent to the third pyrolysis reactor 1C;
The temperature inside the third pyrolysis reactor (1C) is controlled at 280-350℃, so that most of the naphtha and some diesel oils are vaporized and the emulsified gas is sent to the first catalyst tower (14A). Paste is transformed into a plastic material and transferred to the fourth pyrolysis reactor 1D;
The temperature inside the fourth pyrolysis reactor (1D) is controlled at 350-400℃, and the emulsified gas from which the gas oil is vaporized is sent to the second catalyst tower (14B), and the remaining paste is transferred to the fifth pyrolysis reactor (1E). Transferred to;
By controlling the temperature inside the fifth pyrolysis reactor (1E) at 380-420°C, most of the gas oil fractions of the remaining pyrolysis materials are vaporized, and the vaporized emulsified gas is sent to the second catalyst tower 14B, At the same time, some residues remaining inside the pyrolysis reactor formed of trace amounts of carbon black and slag are transferred to the sixth pyrolysis reactor 1F together with the pyrolysis material;
By controlling the temperature inside the sixth pyrolysis reactor (1F) to a low level of 300-350℃, all of the liquid pyrolysis materials are vaporized and transferred to the second catalyst tower, and the solid residue inside the sixth pyrolysis reactor (1F) An emulsification method in which trace amounts of carbon black and slag, which are objects, are discharged to the outside through the residue discharge device 83 installed at the bottom. Summarizing its characteristics, a large amount of water vapor generated in the first pyrolysis reactor is discharged to the outside. By lowering the internal pressure of the entire pyrolysis reactor and at the same time reducing the thermal resistance between the pyrolysis reactors by using the difference in set temperature of each pyrolysis reactor, it facilitates the transfer of pyrolysis materials between the pyrolysis reactors, thereby reducing the generation of coke inside the pyrolysis reactor. Pyrolysis and emulsification method to produce high quality waste plastic refined oil by preventing
제1항 내지 제5항 및 제7항 내지 제9항중 어느 한 항의 장치를 사용하는 금속패킹과 개질촉매인 3A 분자체(MOLECULAR SIEVE : AlO3, SiO2, FeO3를 함유한 나노금속으로 표면 개질 한 세라믹 펠릿)에 의한 폐플라스틱 열분해 유화방법에 있어서,
상기 제1촉매탑(14A)과 제2촉매탑(14B)의 내부는 다층구조로 되어 있으며, 제1촉매탑은 두 번째(1B)와 세 번째 열분해반응로(1C)로부터 기화된 비등점이 낮은 폐플라스틱 유화가스를 납사 유분으로 개질 시키고, 제2촉매탑(14B)은 네 번째(1D), 다섯 번째(1E), 여섯 번째 (1F)열분해반응로로부터 기화된 비교적 비등점이 높은 폐플라스틱 유화가스를 경유 유분으로 개질 시키는 유화방법 중, 제1촉매탑과 제2촉매탑 하단에는 금속패킹이 장착되고, 이것은 폐플라스틱 유화가스의 유속을 낮추어 상단에 장착된 개질촉매인 3A 분자체(MOLECULAR SIEVE)의 개질 효율을 높여줌과 동시에 폐플라스틱 유화가스중에 포함된 왁스(Wax)성분의 통과를 지연시켜 누적되는 왁스성분을 두 번째, 세 번째, 네 번째 다섯 번째 및 여섯 번째 열분해반응로(1B, 1C, 1D, 1E, 1F)로 반복해서 환원시키고, 이들 열분해반응로에서 반복적인 열분해를 거치게 함으로써, 유화가스의 왁스성분을 감소시켜 정제유 생산수율을 높이며, 개질촉매인 3A 분자체가 장착된 상단에서는 고분자구조인 폐플라스틱 유화가스의 탄소와 수소분자를 크래킹(Cracking)하여 양질의 저분자화합물인 정제유로 개질 시키는 폐플라스틱 열분해유화방법
3A molecular sieve (MOLECULAR SIEVE: A ceramic surface-modified with nanometals containing AlO3, SiO2, FeO3), which is a metal packing and modification catalyst using the device of any one of claims 1 to 5 and 7 to 9 In the waste plastic pyrolysis and emulsification method using pellets),
The first catalyst tower 14A and the second catalyst tower 14B have a multi-layered structure, and the first catalyst tower has a low boiling point vaporized from the second (1B) and third pyrolysis reactors (1C). Waste plastic emulsified gas is reformed into naphtha oil, and the second catalyst tower (14B) is a waste plastic emulsified gas with a relatively high boiling point vaporized from the fourth (1D), fifth (1E), and sixth (1F) pyrolysis reactors. Among the emulsification methods of reforming the gas oil into gas oil, metal packing is installed at the bottom of the first and second catalyst towers, which lowers the flow rate of the waste plastic emulsified gas and is a reforming catalyst, 3A molecular sieve (MOLECULAR SIEVE) installed at the top. The second, third, fourth, fifth and sixth pyrolysis reactors (1B, 1C, and 6) increase the efficiency of reforming and delay the passage of the wax component contained in the waste plastic emulsion gas. 1D, 1E, 1F), and by repeatedly undergoing thermal decomposition in these pyrolysis reactors, the wax component of the emulsified gas is reduced to increase the production yield of refined oil, and the polymer at the top where the reforming catalyst 3A molecular sieve is mounted A waste plastic pyrolysis and emulsification method that cracks the carbon and hydrogen molecules of the structured waste plastic sulfide gas and transforms it into refined oil, a high-quality low molecular compound.
제10항에 있어서,
상기 잔사물 배출장치(83)의 외부는 고온의 잔사물을 냉각시키기 위한 수냉식 재킷(Jacket)으로 감싸여있고, 내부는 슬래그 이송스크류가 장착되어 화재위험성이 없는 저온의 잔사물을 배출하는 폐플라스틱 열분해 유화방법.
The method of claim 10,
The outside of the residue discharge device 83 is wrapped with a water-cooled jacket for cooling the high-temperature residue, and the inside is equipped with a slag transfer screw to discharge low-temperature residue without a fire risk. Thermal decomposition and emulsification method.
제1항에 있어서,
상기 6개의 열분해반응로의 열분해반응로스크류(2) 회전속도는 동일하게 분당 1-2회전, 열분해반응로와 연결된 연결관의 연결관스크류 (82)의 회전속도는 동일하게 5-10회전으로 제어하여, 열분해물질이 6개의 열분해반응로를 균일한 속도로 끊김없이 이동함으로써 코킹(Cocking)현상이 거의 없는 열분해를 일으키는 것을 특징으로 하는 폐플라스틱 열분해유화장치.












The method of claim 1,
The rotational speed of the pyrolysis reactor screws (2) of the six pyrolysis reactors is equal to 1-2 revolutions per minute, and the rotational speed of the connecting pipe screw (82) of the connecting pipe connected to the pyrolysis reactor is equal to 5-10 revolutions. A waste plastic pyrolysis and emulsification apparatus, characterized in that by controlling the pyrolysis material to move seamlessly through the six pyrolysis reactors at a uniform speed, thereby causing pyrolysis with almost no caulking phenomenon.












KR1020200054923A 2020-05-08 2020-05-08 Continuous operation type waste plastic emulsifying device and emulsifying process by module assembly method with rotating screw mounted inside KR102166530B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020200054923A KR102166530B1 (en) 2020-05-08 2020-05-08 Continuous operation type waste plastic emulsifying device and emulsifying process by module assembly method with rotating screw mounted inside

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020200054923A KR102166530B1 (en) 2020-05-08 2020-05-08 Continuous operation type waste plastic emulsifying device and emulsifying process by module assembly method with rotating screw mounted inside

Publications (1)

Publication Number Publication Date
KR102166530B1 true KR102166530B1 (en) 2020-10-16

Family

ID=73035434

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020200054923A KR102166530B1 (en) 2020-05-08 2020-05-08 Continuous operation type waste plastic emulsifying device and emulsifying process by module assembly method with rotating screw mounted inside

Country Status (1)

Country Link
KR (1) KR102166530B1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR200421124Y1 (en) * 2006-04-25 2006-07-07 (유)금강농산 Apparatus for producing refined oil using used plastic
KR20060096256A (en) * 2005-03-03 2006-09-11 (주)이오스시스템 Pyrolysis device for high molecule waste materials
KR20090105580A (en) * 2008-04-03 2009-10-07 김기석 The Refined Oil Manufacturing Device for Coking Prevention
KR101815917B1 (en) * 2017-08-23 2018-01-08 (주)이엔비에스 Equipment and method for producing refined oil using used polymers and titanium refining

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060096256A (en) * 2005-03-03 2006-09-11 (주)이오스시스템 Pyrolysis device for high molecule waste materials
KR200421124Y1 (en) * 2006-04-25 2006-07-07 (유)금강농산 Apparatus for producing refined oil using used plastic
KR20090105580A (en) * 2008-04-03 2009-10-07 김기석 The Refined Oil Manufacturing Device for Coking Prevention
KR101815917B1 (en) * 2017-08-23 2018-01-08 (주)이엔비에스 Equipment and method for producing refined oil using used polymers and titanium refining

Similar Documents

Publication Publication Date Title
Campuzano et al. Auger reactors for pyrolysis of biomass and wastes
CN113412394A (en) Pyrolysis apparatus
EP1538191B1 (en) Diesel oil from residual materials by catalytic depolymerisation comprising energy input by means of a pump-stirrer system
US9080116B2 (en) System and method for processing material to generate syngas using water injection
EP3894516B1 (en) Plastic-to-oil plant for converting plastic waste into petrochemical products
RU2763026C2 (en) Furnace
EA016049B1 (en) Method and device for processing domestic and industrial organic waste
BR112020002113A2 (en) thermochemical treatment system for plastic and/or elastomeric waste
CN1923957A (en) Device and technology method of preparing diesel oil by thermo-cracking waste plastics
EP4038163B1 (en) Installation for the production and a method of producing oil, gas and char for a coal black from elastomers, especially rubber waste, in the process of continuous pyrolysis
CN101646752A (en) The method and apparatus that is used for the variable-power gasification of combustible matl
CN1250677C (en) Waste plastic oiling device for continuous industrial production at large scale
KR102166530B1 (en) Continuous operation type waste plastic emulsifying device and emulsifying process by module assembly method with rotating screw mounted inside
EP1077248B1 (en) Process and plant for the production of combustible gases from a feedstock rich in organic material
WO2013119187A2 (en) Method for thermal decomposition of organic material and equipment for implementation of this method
PL205461B1 (en) Method for processing hydrocarbon raw materials using thermal or catalylitic cracking process and installation for processing hydrocarbon raw materials by thermal or catalytic cracking
WO2014090574A1 (en) Thermal processing system having an auger arrangement and method using it
CA2969070C (en) Method and apparatus for utilization of plastic and other waste materials
WO2013088105A1 (en) Thermal processing system
US11712682B2 (en) Catalyst, pyrolysis device and pyrolysis method
JP6369694B2 (en) Method for reducing molecular weight of organic substance and facility for reducing molecular weight
JP2023540691A (en) plastic conversion supply system
DE102015000357B4 (en) Apparatus and method for generating product gas from hydrocarbon-containing gasification material
RU2817493C1 (en) Device for processing carbon-containing wastes
CA1181024A (en) Electric arc heating of gaseous fluids

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant