KR102152882B1 - Cathode active material and lithium secondary batteries comprising the same - Google Patents

Cathode active material and lithium secondary batteries comprising the same Download PDF

Info

Publication number
KR102152882B1
KR102152882B1 KR1020130155630A KR20130155630A KR102152882B1 KR 102152882 B1 KR102152882 B1 KR 102152882B1 KR 1020130155630 A KR1020130155630 A KR 1020130155630A KR 20130155630 A KR20130155630 A KR 20130155630A KR 102152882 B1 KR102152882 B1 KR 102152882B1
Authority
KR
South Korea
Prior art keywords
active material
positive electrode
lithium
electrode active
lithium secondary
Prior art date
Application number
KR1020130155630A
Other languages
Korean (ko)
Other versions
KR20150069336A (en
Inventor
최신정
문종석
이미선
Original Assignee
삼성에스디아이 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성에스디아이 주식회사 filed Critical 삼성에스디아이 주식회사
Priority to KR1020130155630A priority Critical patent/KR102152882B1/en
Publication of KR20150069336A publication Critical patent/KR20150069336A/en
Application granted granted Critical
Publication of KR102152882B1 publication Critical patent/KR102152882B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

본 발명은 리튬-과잉 층상계 산화물(overlithiated oxide: OLO)을 포함하는 양극 활물질 및 이를 포함하는 리튬 이차전지에 관한 것으로, 상기 리튬 금속 복합산화물은 CuKα선을 사용한 X-선 회절(XRD) 패턴에서 2θ값이 20 ~ 22°인 범위에서 21°를 기준으로 좌우에 각각 피크를 갖는 양극 활물질이다. 본 발명에 따른 양극 활물질은 220 mAh/g 이상의 고용량을 갖는 리튬 이차전지를 제조할 수 있다.The present invention relates to a positive electrode active material containing lithium-overlithiated oxide (OLO) and a lithium secondary battery containing the same, wherein the lithium metal composite oxide is in an X-ray diffraction (XRD) pattern using CuKα rays. It is a positive electrode active material having peaks on the left and right sides based on 21° in the range of 2θ value of 20 to 22°. The positive electrode active material according to the present invention can manufacture a lithium secondary battery having a high capacity of 220 mAh/g or more.

Description

양극 활물질 및 이를 포함하는 리튬이차전지{Cathode active material and lithium secondary batteries comprising the same}Cathode active material and lithium secondary batteries comprising the same

본 발명은 양극 활물질 및 이를 포함하는 리튬 이차전지에 관한 것으로, 보다 상세하게는 특정 X-선 회절(X-ray diffraction: XRD) 패턴을 갖는 리튬-과잉 층상계 산화물(overlithiated oxide: OLO)을 이용하여 고용량 발현이 가능한 양극 활물질 및 이를 포함하는 리튬 이차전지에 관한 것이다.
The present invention relates to a positive electrode active material and a lithium secondary battery including the same, and more particularly, a lithium-overlithiated oxide (OLO) having a specific X-ray diffraction (XRD) pattern is used. Thus, it relates to a positive electrode active material capable of expressing high capacity and a lithium secondary battery including the same.

리튬 이차전지는 고용량, 고출력 및 장수명 등의 우수한 성능을 가진 이차전지로서 전자기기, 휴대용 컴퓨터, 휴대폰 등의 소형 전자제품에 광범위하게 활용되고 있다. Lithium secondary batteries are widely used in small electronic products such as electronic devices, portable computers, and mobile phones as secondary batteries with excellent performance such as high capacity, high power and long life.

특히, 환경문제에 대한 관심이 커짐에 따라 대기 오염의 주요 원인 중 하나인 가솔린 차량, 디젤 차량 등 화석연료를 사용하는 차량을 대체할 수 있는 전기자동차의 구동원으로서 높은 에너지 밀도와 방전 전압을 갖는 리튬 이차전지에 대한 연구가 활발히 진행되고 있다.In particular, lithium with high energy density and discharge voltage as a driving source for electric vehicles that can replace vehicles that use fossil fuels such as gasoline vehicles and diesel vehicles, which are one of the main causes of air pollution, as interest in environmental issues grows. Research on secondary batteries is being actively conducted.

현재, 리튬 이차 전지용의 양극 활물질로는, 스피넬 구조를 갖는 리튬 망간계 복합 산화물, 층상(層狀) 구조를 갖는 리튬 니켈계 복합 산화물, 층상 구조를 갖는 리튬 코발트계 복합 산화물 등이 실용화되어 있다. 이들 리튬 함유 복합 산화물을 사용한 리튬 이차 전지는, 어느 것이나 특성면에서 이점과 결점을 갖는다. Currently, as positive electrode active materials for lithium secondary batteries, lithium manganese-based composite oxides having a spinel structure, lithium nickel-based composite oxides having a layered structure, lithium cobalt-based composite oxides having a layered structure, and the like have been put into practical use. Any lithium secondary battery using these lithium-containing composite oxides has advantages and disadvantages in terms of characteristics.

구체적으로, 스피넬 구조를 갖는 리튬 망간계 복합 산화물은, 저렴하고 합성이 비교적 용이하며, 전지로 했을 때의 안전성이 우수한 한편, 용량이 낮고, 고온에서의 사이클 특성 및 보존성이 떨어진다. 층상 구조를 갖는 리튬 니켈계 복합 산화물은, 용량이 높고, 고온 특성이 우수한 반면, 합성이 어렵고, 전지로 했을 때의 안전성이 떨어지며, 보관에도 주의를 필요로 하는 등의 결점을 안고 있다. 층상 구조를 갖는 리튬 코발트계 복합 산화물은, 합성이 용이하고 또한 전지 성능 밸런스가 우수하기 때문에 휴대 기기용 전원으로서 널리 사용되고 있으나, 안전성이 불충분하고 고비용이라는 큰 결점을 가지고 있다.Specifically, the lithium manganese composite oxide having a spinel structure is inexpensive, relatively easy to synthesize, and has excellent safety when used as a battery, while its capacity is low, and its cycle characteristics and storage at high temperatures are inferior. The lithium-nickel-based composite oxide having a layered structure has high capacity and excellent high-temperature characteristics, but is difficult to synthesize, has poor safety when used as a battery, and requires attention in storage. A lithium cobalt-based composite oxide having a layered structure is widely used as a power source for portable devices because it is easy to synthesize and has excellent battery performance balance, but has a large disadvantage of insufficient safety and high cost.

상기한 바와 같은 결점들을 최대한 저감시키고 우수한 전지성능 밸런스를 갖도록 하는 양극 활물질의 유력 후보로서, 층상 구조를 갖는 리튬 니켈 망간 코발트계 복합 산화물(LiNixCoyMnzO2, 이하 NCM)이 제안되어 있다. Lithium nickel manganese cobalt-based composite oxide (LiNixCoyMnzO2, hereinafter referred to as NCM) having a layered structure has been proposed as a potential candidate for a positive electrode active material that minimizes the above-described defects and has an excellent battery performance balance.

특히 최근에는 저비용화, 고전압화 및 안전화 요구가 높아짐에 따라 망간/니켈 원자비를 대략 1 이상으로 하거나, 코발트 비율을 저감시키는 등 NCM의 조성비를 변화시키는 것에 대한 연구가 진행되어 왔다. 그러나, 이와 같은 조성 범위의 NCM을 양극 활물질로 사용한 리튬 이차전지의 경우, 레이트ㆍ출력 특성과 같은 부하 특성이나 저온 출력 특성이 저하된다는 문제가 있었다.In particular, in recent years, research has been conducted on changing the composition ratio of NCM, such as increasing the manganese/nickel atomic ratio of about 1 or more or reducing the cobalt ratio as demands for lower cost, higher voltage and higher safety. However, in the case of a lithium secondary battery using NCM having such a composition range as a positive electrode active material, there is a problem that load characteristics such as rate/output characteristics and low-temperature output characteristics are deteriorated.

이와 같은 문제를 해결하기 위하여, 결정성이 높은 다공질 입자를 얻는 것이 중요하다는 고려하에 특허문헌 1(PCT/JP2011/050210)은, X-선 회절 측정시 회절각(2θ)이 64.5°부근에 존재하는 회절 피크의 반가폭을 FWHM으로 했을 때에, 0.01 ≤ FWHM ≤ 0.5 의 관계를 만족하는 리튬 전이금속계 복합 산화물에 대해 개시하고 있다. 이 방법에 따라 제조된 복합산화물을 리튬 이차전지 양극 재료로서 사용한 경우, 저비용화, 고안전성화 및 고부하 특성과 함께, 부피 밀도 향상에 의한 분체 취급성의 향상을 도모할 수는 있지만, 전지 용량 및 용량 유지율 면에서는 개선이 필요하였다.In order to solve such a problem, Patent Document 1 (PCT/JP2011/050210), under consideration that it is important to obtain porous particles with high crystallinity, has a diffraction angle (2θ) around 64.5° during X-ray diffraction measurement. A lithium transition metal-based composite oxide that satisfies the relationship of 0.01≦FWHM≦0.5 is disclosed when the half width of the diffraction peak is FWHM. When the composite oxide prepared according to this method is used as a cathode material for a lithium secondary battery, it is possible to reduce the cost, increase the safety, and improve the powder handling property by improving the bulk density, along with the characteristics of low cost, high safety, and high load, but the battery capacity and capacity In terms of retention rate, improvement was needed.

이 밖에도, 특허문헌 2(국내 특허출원공개 제2013-0078571호)는 XRD 회절패턴의 003 및 104 peak 간의 intensity 비 I003/I104가 1.5이상으로 제어된 것을 특징으로 하는 리튬이차전지 양극 활물질용 니켈계 금속 산화물에 대해 개시하고 있다. 그러나, 이 방법에 의하면 peak들 간의 intensity비(I003/I104)를 제어함으로써, 이를 전극 활물질로 사용하는 리튬 이차전지에서의 전지 특성을 개선시킬 수 있다는 점은 알 수 있지만, 그 실시예에 따라 제조된 리튬 이차전지의 경우 방전용량은 200mAh/g 미만으로 여전히 전지용량에 대한 개선이 필요하였다.
In addition, Patent Document 2 (Korean Patent Application Publication No. 2013-0078571) discloses that the intensity ratio I 003 /I 104 between 003 and 104 peaks of the XRD diffraction pattern is controlled to be 1.5 or more. Disclosed is a nickel-based metal oxide. However, according to this method, it can be seen that by controlling the intensity ratio (I 003 /I 104 ) between peaks, it is possible to improve the battery characteristics in a lithium secondary battery using this as an electrode active material. In the case of the lithium secondary battery manufactured accordingly, the discharge capacity was less than 200mAh/g, and there was still a need for improvement in battery capacity.

PCT/JP2011/050210PCT/JP2011/050210 KRKR 2013-00785712013-0078571 AA

본 발명에서는, 위와 같은 선행 기술의 문제점을 해결하기 위하여, 특정 X-선 회절(X-ray diffraction: XRD) 패턴을 갖는 리튬-과잉 층상계 산화물(overlithiated oxide: OLO)을 이용하여 고용량 발현이 가능한 양극 활물질을 제공하는 것을 그 목적으로 한다.In the present invention, in order to solve the problems of the prior art as described above, high capacity expression is possible by using a lithium-overlithiated oxide (OLO) having a specific X-ray diffraction (XRD) pattern. Its purpose is to provide a positive electrode active material.

본 발명의 다른 목적은 상기 양극 활물질을 포함하는 리튬 이차전지를 제공하는 것이다.
Another object of the present invention is to provide a lithium secondary battery including the positive electrode active material.

상기와 같은 과제를 해결하기 위하여 본 발명은, 하기의 화학식 1로 표현되는 리튬 금속 복합산화물을 포함하고, 상기 리튬 금속 복합산화물은 X-선 회절(XRD) 패턴에서 2θ값이 20 ~ 22°인 범위에서 21°를 기준으로 좌우에 각각 피크를 갖는 양극 활물질을 제공한다.In order to solve the above problems, the present invention includes a lithium metal composite oxide represented by Formula 1 below, and the lithium metal composite oxide has a 2θ value of 20 to 22° in an X-ray diffraction (XRD) pattern. A positive electrode active material having peaks on the left and right sides based on 21° in the range is provided.

화학식 1Formula 1

Li1 + xNiaCobMncO2 +d Li 1 + x Ni a Co b Mn c O 2 +d

(여기서, 0.1 < x < 0.33, 0 < a < 0.4, 0 < b < 0.4, 0.4 < c < 0.9, -0.5 < d < 0.5, x + a + b + c = 1)(Where, 0.1 <x <0.33, 0 <a <0.4, 0 <b <0.4, 0.4 <c <0.9, -0.5 <d <0.5, x + a + b + c = 1)

상기 2θ값이 20 ~ 21°인 범위에 존재하는 피크의 반치폭(FWHM, Full Width at Half Maximum)은 0.2° < FWHM < 0.3°인 것이 바람직하며, 상기 2θ 값이 21 ~ 22°인 범위에 존재하는 피크 강도(IR)에 대한 20 ~ 21°인 범위에 존재하는 피크 강도(IL)의 비는 1.5 < IL/IR < 3 인 것이 바람직하다.It is preferable that the full width at half maximum (FWHM) of the peak present in the range of the 2θ value of 20 to 21° is 0.2° <FWHM <0.3°, and the 2θ value is in the range of 21 to 22° It is preferable that the ratio of the peak intensity (I L ) present in the range of 20 to 21° to the peak intensity (I R ) is 1.5 <I L /I R <3.

또한, 본 발명은 상기 양극 활물질을 포함하는 양극; 음극 활물질을 포함하는 음극; 및 상기 양극과 상기 음극 사이에 존재하는 전해질을 포함하는 리튬 이차 전지를 제공한다.
In addition, the present invention is a positive electrode including the positive electrode active material; A negative electrode including a negative active material; And it provides a lithium secondary battery comprising an electrolyte present between the positive electrode and the negative electrode.

본 발명에 따르면 220 mAh/g 이상의 고용량을 갖는 리튬 이차전지용 양극 활물질을 제공할 수 있다.
According to the present invention, a positive active material for a lithium secondary battery having a high capacity of 220 mAh/g or more can be provided.

도 1은 실시예 1에 따라 제조된 리튬 이차전지용 양극 활물질의 XRD 데이터를 나타낸 그래프이다.
도 2는 도 1에서 2θ값이 19 ~ 23°인 부분을 확대하여 나타낸 그래프이다.
도 3은 비교예 1에 따라 제조된 리튬 이차전지용 양극 활물질의 XRD 데이터를 나타낸 그래프이다.
1 is a graph showing XRD data of a positive active material for a lithium secondary battery prepared according to Example 1.
FIG. 2 is a graph showing an enlarged portion of the 2θ value of 19 to 23° in FIG. 1.
3 is a graph showing XRD data of a positive active material for a lithium secondary battery prepared according to Comparative Example 1.

<양극 활물질><Anode active material>

본 발명의 양극 활물질은 하기의 화학식 1로 표현되는 리튬 금속 복합산화물을 포함하고, 상기 리튬 금속 복합산화물은 X-선 회절(XRD) 패턴에서 2θ값이 20 ~ 22°인 범위에서 21°를 기준으로 좌우에 각각 피크를 갖는다.The positive electrode active material of the present invention includes a lithium metal composite oxide represented by Formula 1 below, and the lithium metal composite oxide is based on 21° in a range of 20 to 22° in a 2θ value in an X-ray diffraction (XRD) pattern. Each has a peak on the left and right.

화학식 1Formula 1

Li1 + xNiaCobMncO2 +d Li 1 + x Ni a Co b Mn c O 2 +d

(여기서, 0.1 < x < 0.33, 0 < a < 0.4, 0 < b < 0.4, 0.4 < c < 0.9, -0.5 < d < 0.5, x + a + b + c = 1)(Where, 0.1 <x <0.33, 0 <a <0.4, 0 <b <0.4, 0.4 <c <0.9, -0.5 <d <0.5, x + a + b + c = 1)

상기 리튬 금속 복합산화물은 상기 x의 범위에 해당하는 몰수만큼 과잉의 리튬이 전이금속의 양이온층에 혼재되어 있는 층상 결정구조를 가지는 리튬-과잉 층상계 복합산화물이며, 리튬을 제외한 금속 중 망간을 다른 금속에 비해 과량 포함한다. 상기 리튬 금속 복합산화물은 과량의 리튬으로 인하여 층상구조의 리튬 전이금속산화물인 LiMO2(여기서, M은 Ni, Co 및 Mn)과 층상구조의 Li2MnO3로 표현되는 두 가지 상을 포함한다.The lithium metal composite oxide is a lithium-excessive layered composite oxide having a layered crystal structure in which an excess of lithium is mixed in the cation layer of the transition metal by the number of moles corresponding to the range of x, and manganese is different among metals excluding lithium. Contains excess compared to metal. The lithium metal composite oxide includes two phases represented by LiMO 2 (here, M is Ni, Co, and Mn), which is a layered structure lithium transition metal oxide due to an excess of lithium, and Li 2 MnO 3 in a layered structure.

이와 같이 양극 활물질에 Li2MnO3 구조가 존재하면 XRD 데이터에서 2θ값이 20 ~ 22° 범위인 구간에서 작은 피크가 나타나는데, 상기 피크의 특징에 의해 양극 활물질의 성능이 좌우된다. As described above, when the Li 2 MnO 3 structure is present in the positive electrode active material, a small peak appears in a section in which the 2θ value is in the range of 20 to 22° in the XRD data, and the performance of the positive active material depends on the characteristics of the peak.

도 1을 살펴보면, 본 발명에 따른 양극 활물질의 경우 20 ~ 22°의 2θ 값에서 피크가 나타난다는 것을 알 수 있고, 상기 범위를 확대한 그래프인 도 2를 살펴보면 피크의 존재에 대해 더욱 명확히 알 수 있다.1, in the case of the positive electrode active material according to the present invention, it can be seen that a peak appears at a 2θ value of 20 to 22°, and the existence of the peak is more clearly seen by looking at FIG. 2, which is an enlarged graph. have.

본 발명에서 구현하고자 하는 고용량의 리튬 이차전지용 양극 활물질의 경우, 2θ 값이 20 ~ 21°인 범위에 존재하는 피크 강도(IL) 가 21 ~ 22°인 범위에 존재하는 피크 강도(IR) 보다 크고 예리하다. 따라서, 크고 예리한 피크로부터 반치폭을 계산하는 것이 편리하므로, 반치폭 측정의 대상을 21도 이하의 피크로 정했다. X-선 회절 분석은 X-선 회절 광원으로 CuKα 선을 이용하여 실시하였으며, X-선 회절 패턴의 특정 2θ 값 부근에 존재하는 회절 피크의 반치폭의 값에 따라 전지의 성능이 좌우될 수 있다.In the case of the positive active material for a high-capacity lithium secondary battery to be implemented in the present invention, the peak intensity (I L ) present in the range of 20 to 21° with a 2θ value of 20 to 21° is the peak intensity (I R ) present in the range of 21 to 22° Bigger and sharper Therefore, since it is convenient to calculate the half width from a large and sharp peak, the target of the half width measurement was set to a peak of 21 degrees or less. X-ray diffraction analysis was performed using a CuKα ray as an X-ray diffraction light source, and the performance of the battery may be influenced by the value of the half width of the diffraction peak present near a specific 2θ value of the X-ray diffraction pattern.

상기 2θ 값이 20 ~ 21°인 범위에 존재하는 피크의 반치폭(FWHM, Full Width at Half Maximum)은, 0.2° < FWHM < 0.3°인 것이 바람직하다. 상기 FWHM이 0.3°이상인 경우는 Li2MnO3의 함량이 적거나 결정 크기가 작다는 것을 의미하므로 이차전지의 용량을 향상시키기에 어려움이 있고, 반면 0.2°이하인 경우는 Li2MnO3의 함량이 많거나 결정 크기가 크다는 것을 의미하므로 양극 활물질의 임피던스가 높아져 전지 용량 및 율특성의 감소 우려가 있다.It is preferable that the full width at half maximum (FWHM) of the peak existing in the range of the 2θ value of 20 to 21° is 0.2° <FWHM <0.3°. When the FWHM is 0.3° or more, it is difficult to improve the capacity of the secondary battery because it means that the content of Li 2 MnO 3 is small or the crystal size is small, whereas when the FWHM is less than 0.2°, the content of Li 2 MnO 3 Since it means that the crystal size is large or the crystal size is large, the impedance of the positive electrode active material increases, and there is a concern that the battery capacity and rate characteristics are reduced.

또한, 상기 2θ 값이 『21 ~ 22°인 범위에 존재하는 피크 강도(IR)』에 대한 『20 ~ 21°인 범위에 존재하는 피크 강도(IL)』의 비는, 1.5 < IL/IR < 3 인 것이 바람직하다. 상기 강도비(IL/IR)가 3이상인 경우는 결정화도가 높아져 Li2MnO3의 활성화가 잘 일어나지 않으므로 이차전지의 용량을 향상시키기에 어려움이 있고, 반면 1.5 이하인 경우는 Li2MnO3의 함량이 많거나 결정 크기가 크다는 것을 의미하므로 양극 활물질의 임피던스가 높아 전지 용량 및 율특성의 감소 우려가 있다.Incidentally, the ratio of "20 ~ (I L) peak intensity existing in the 21 ° range" for "peak intensity (I R) present in the 21 ~ 22 ° range" is the 2θ value, 1.5 <I L It is preferred that /I R <3. When the intensity ratio (I L / I R ) is 3 or more, it is difficult to improve the capacity of the secondary battery because the crystallinity is high and the activation of Li 2 MnO 3 does not occur. On the other hand, in the case of 1.5 or less, Li 2 MnO 3 Since it means that the content is large or the crystal size is large, the impedance of the positive electrode active material is high, so there is a concern that the battery capacity and rate characteristics are reduced.

요컨대, Li2MnO3의 함량이 많거나 결정 크기가 커지면 반치폭의 감소와 함께 IL / IR 이 감소한다. 이러한 양극 활물질은 임피던스가 높아서 전지 성능에서 용량 및 율특성 감소로 이어진다. 반대로 Li2MnO3의 함량이 적으면 2θ값이 20 ~ 22°인 범위에서 봉우리가 관찰되지 않거나 미미하게 나타나고, 반치폭이 0.3 이상으로 커진다. 이러한 경우 고용량 구현을 위한 근본 물질의 함량 미달로 인해 전지의 용량 감소로 이어진다.
In short, if the content of Li 2 MnO 3 is large or the crystal size increases, the half width decreases and I L / I R This decreases. Such a positive electrode active material has a high impedance, leading to a decrease in capacity and rate characteristics in battery performance. Conversely, when the content of Li 2 MnO 3 is small, peaks are not observed or appear insignificant in the range of 2θ value of 20 to 22°, and the half width increases to 0.3 or more. In this case, it leads to a decrease in the capacity of the battery due to insufficient content of the fundamental material for realizing high capacity.

<양극 활물질의 제조방법><Method of manufacturing positive electrode active material>

본 발명에 따른 양극 활물질 제조방법은, 전이금속 화합물 전구체를 합성하는 단계; 및 상기 전이금속 화합물 전구체와 Li공급원을 혼합한 후 600 ~ 1000 ℃에서 열처리하는 단계를 포함한다.The method for preparing a positive electrode active material according to the present invention comprises: synthesizing a transition metal compound precursor; And mixing the transition metal compound precursor and the Li source, followed by heat treatment at 600 to 1000°C.

상기 리튬 공급원은 Li2CO3, LiOH, LiNO3 및 LiCH3COO로 이루어진 군에서 선택된 1종 이상일 수 있으며, 바람직하게는 Li2CO3 및 LiOH 중 선택하여 사용할 수 있다.The lithium source may be one or more selected from the group consisting of Li 2 CO 3 , LiOH, LiNO 3 and LiCH 3 COO, preferably Li 2 CO 3 And LiOH may be selected and used.

먼저, 전이금속 수산화물 형태의 전구체 합성을 위해서는, 물에 용해되는 염의 형태로, 니켈 황산염, 니켈 질산염 및 니켈 탄산염으로 이루어진 군에서 선택된 1종; 코발트 황산염, 코발트 질산염 및 코발트 탄산염으로 이루어진 그룹에서 선택된 1종; 그리고 망간 황산염, 망간 질산염 및 망간 탄산염으로 이루어진 그룹에서 선택된 1 종을 일정 몰농도로 녹여서 수용액을 제조한 후, NaOH, NH4OH 및 KOH로 이루어진 그룹에서 선택된 1종 이상의 염기를 이용하여 pH 10 ~ 12범위에서 수산화물의 형태로 침전시킨다.First, for the synthesis of a precursor in the form of a transition metal hydroxide, in the form of a salt soluble in water, one selected from the group consisting of nickel sulfate, nickel nitrate, and nickel carbonate; One selected from the group consisting of cobalt sulfate, cobalt nitrate and cobalt carbonate; And after preparing an aqueous solution by dissolving one selected from the group consisting of manganese sulfate, manganese nitrate and manganese carbonate at a certain molar concentration, pH 10 ~ using at least one base selected from the group consisting of NaOH, NH 4 OH and KOH It precipitates in the form of hydroxide in the range of 12.

이때, 상기pH가 10보다 낮은 경우에는 입자의 핵 생성속도보다 입자 응집속도가 더 커서 입자의 크기가 3㎛ 이상으로 성장할 수 있고, pH가 12보다 높은 경우에는 입자의 핵 생성속도가 입자 응집속도보다 커서 입자의 응집이 되지 않아 Ni, Co, Mn등의 전이금속 각 성분이 균질하게 혼합된 전이금속 수산화물을 얻기 어렵다는 문제가 생길 수 있다. In this case, when the pH is lower than 10, the particle agglomeration rate is higher than the nucleation rate of the particles, so that the size of the particles can grow to 3 μm or more. Since it is larger than that of particles, there may be a problem that it is difficult to obtain a transition metal hydroxide in which each component of the transition metal such as Ni, Co, and Mn is homogeneously mixed.

이렇게 침전된 분말의 표면에 흡착되어 있는 SO4 2 -, NH4 +, NO3 -, Na+, K+ 등을 증류수를 이용하여 수 차례 세정하여 고순도의 전이금속 수산화물 전구체를 합성한다. 이렇게 합성된 전이금속 수산화물 전구체를 150 ℃의 오븐에서 24시간 이상 건조하여 수분 함유량이 0.1 wt% 이하가 되도록 한다.That is thus adsorbed on the surface of the precipitated powder SO 4 2 -, NH 4 + , NO 3 -, washed several times with distilled water to Na +, K +, etc. to synthesize a high-purity transition metal hydroxide precursor. The thus synthesized transition metal hydroxide precursor is dried in an oven at 150° C. for 24 hours or more so that the moisture content is less than 0.1 wt%.

이렇게 제조된 상기 전이금속 화합물 전구체는 화학식 NiaCobMnc(OH)2 (0.1 ≤ a < 0.5, 0 ≤ b < 0.7, 0.2 ≤ c < 0.9, a + b + c = 1)로 표시되는 전이금속 수산화물 형태인 것이 바람직하다.The transition metal compound precursor thus prepared is represented by the formula Ni a Co b Mn c (OH) 2 (0.1 ≤ a <0.5, 0 ≤ b <0.7, 0.2 ≤ c <0.9, a + b + c = 1) It is preferably in the form of a transition metal hydroxide.

건조가 완료된 전이금속 수산화물 전구체와 Li 공급원을 균질하게 혼합한 후, 600 ~ 1000 ℃ 온도 범위에서 5 ~ 30 시간 동안 열처리하여 리튬 금속 복합산화물 양극 활물질을 얻는다.After drying the transition metal hydroxide precursor and the Li source are homogeneously mixed, heat treatment at a temperature range of 600 to 1000° C. for 5 to 30 hours to obtain a lithium metal composite oxide positive electrode active material.

상기 열처리 온도가 600 ℃ 미만일 경우 Li 공급원과 전이금속 수산화물 전구체 간의 반응이 잘 이루어지지 않고, 반면 1000 ℃를 초과할 경우 활물질의 입자 사이즈가 너무 증가하여 전지 특성이 감소할 수 있다.
When the heat treatment temperature is less than 600° C., the reaction between the Li source and the transition metal hydroxide precursor is not well performed. On the other hand, when the heat treatment temperature exceeds 1000° C., the particle size of the active material increases too much, resulting in a decrease in battery characteristics.

<양극 활물질을 포함하는 리튬 이차 전지><Lithium secondary battery containing positive electrode active material>

본 발명에 따른 양극 활물질은, 리튬 이차 전지의 양극 소재로서 활용될 수 있고, 양극 활물질 조성 및 결정 구조 등을 제외하고는 공지의 이차 전지와 동일한 구조를 갖고, 공지의 동일한 제조방법에 의하여 제조될 수 있다.The positive electrode active material according to the present invention can be used as a positive electrode material for a lithium secondary battery, has the same structure as a known secondary battery, except for the composition and crystal structure of the positive electrode active material, and can be manufactured by the same known manufacturing method. I can.

바람직하게는, 리튬 이차 전지는 현재 본 기술 분야에서 널리 알려져 있는 통상적인 방법으로서, 양극과 음극 사이에 다공성 분리막을 넣고 전해질을 투입하여 제조할 수 있다. 음극으로는 리튬 메탈, 분리막은 다공성 PE 재질의 분리막, 전해질로는 1.3M LiPF6 EC(ethylene carbonate) : DMC(dimethyl carbonate) : EC이 5 : 3 : 2의 중량비로 혼합된 용액을 사용하여 제조한다.
Preferably, the lithium secondary battery is a conventional method widely known in the art, and can be manufactured by inserting a porous separator between a positive electrode and a negative electrode and introducing an electrolyte. Manufactured using a solution in which lithium metal is used for the cathode, the separator is made of porous PE, and the electrolyte is 1.3M LiPF 6 EC (ethylene carbonate): DMC (dimethyl carbonate): EC in a weight ratio of 5:3:2 do.

이하에서는, 본 발명에 따른 양극 활물질의 제조방법 및 이에 의해 제조된 양극 활물질을 포함하는 리튬 이차 전지에 대하여, 바람직한 실시예 및 비교예를 통하여 상세히 설명한다. 그러나, 이러한 실시예는 본 발명의 바람직한 일 실시예에 불과할 뿐, 본 발명이 이러한 실시예에 의하여 한정되는 것으로 해석되어서는 아니된다.
Hereinafter, a method of manufacturing a positive electrode active material according to the present invention and a lithium secondary battery including the positive electrode active material manufactured thereby will be described in detail through preferred examples and comparative examples. However, these examples are only preferred examples of the present invention, and the present invention should not be construed as being limited by these examples.

실시예Example 1 One

① 전이 금속 수산화물 전구체 합성① Synthesis of transition metal hydroxide precursor

황산니켈 (NiSO4), 황산코발트 (CoSO4), 황산망간 (MnSO4)을 2 : 2 : 6의 몰비로 혼합하여 2M의 금속염 수용액을 제조하였다. 제조된 금속염 수용액을 10L 연속 반응기에 0.5L/h의 속도로 투입하였다. Nickel sulfate (NiSO 4 ), cobalt sulfate (CoSO 4 ), and manganese sulfate (MnSO 4 ) were mixed at a molar ratio of 2:2:6 to prepare a 2M aqueous metal salt solution. The prepared aqueous metal salt solution was added to a 10 L continuous reactor at a rate of 0.5 L/h.

2M 농도의 암모니아수(NH4OH)를 상기 반응기의 암모니아수 공급부를 통하여 0.5L/hr의 속도로 투입하고, 여기에 2M 농도의 수산화나트륨(NaOH) 수용액을 반응기의 수산화나트륨 수용액 공급부를 통하여 자동 투입하면서, pH미터와 제어부를 통해 pH 10.8이 유지되도록 하였다. 반응기의 온도는 50℃로 하고, 체류시간(RT)은 10시간으로 조절하였으며, 500rpm의 속도로 교반하였다.2M aqueous ammonia (NH 4 OH) is added through the ammonia water supply of the reactor at a rate of 0.5L/hr, and a 2M aqueous sodium hydroxide (NaOH) solution is automatically added through the supply of sodium hydroxide aqueous solution of the reactor. , pH 10.8 was maintained through a pH meter and a control unit. The temperature of the reactor was set at 50°C, the residence time (RT) was adjusted to 10 hours, and the mixture was stirred at a speed of 500 rpm.

이렇게 얻어진 반응 용액을 필터를 통해 여과하고 증류수로 정제한 후, 120℃의 오븐에서 24시간 건조하여 전이 금속 수산화물 전구체 Ni0 .2Co0 .2Mn0 .6(OH)2 를 합성했다.
So then the resultant reaction solution was filtered through a filter and purified by distilled water, and dried for 24 hours in an oven of 120 ℃ to synthesize a transition metal hydroxide precursor Ni 0 .2 Co 0 .2 Mn 0 .6 (OH) 2.

② 양극 활물질 합성② Positive active material synthesis

상기 ①에서 합성한 전이 금속 수산화물 전구체 0.8몰 당량에 Li 당량이 1.2몰이 되도록 Li공급원인 탄산리튬(Li2CO3)을 혼합한 후, 900 ℃에서 10시간 동안 열처리하여 양극 활물질 분말을 얻었다.
Lithium carbonate (Li 2 CO 3 ), which is a Li supply source, was mixed with 0.8 mole equivalent of the transition metal hydroxide precursor synthesized in ① above so that the equivalent of Li was 1.2 moles, and then heat-treated at 900° C. for 10 hours to obtain a positive electrode active material powder.

실시예Example 2 2

전이 금속 수산화물 전구체 0.85몰 당량에 Li 당량이 1.15몰이 되도록 Li 공급원인 탄산리튬(Li2CO3)을 혼합한 것을 제외하고는, 실시예 1과 동일한 방법으로 양극 활물질 분말을 얻었다.
A cathode active material powder was obtained in the same manner as in Example 1, except that lithium carbonate (Li 2 CO 3 ) as a source of Li was mixed so that the transition metal hydroxide precursor was 0.85 molar equivalent and the Li equivalent was 1.15 mol.

비교예Comparative example 1 One

전이 금속 수산화물 전구체 1.0몰 당량에 Li 당량이 1.0몰이 되도록 Li 공급원인 탄산리튬(Li2CO3)을 혼합한 것을 제외하고는, 실시예 1과 동일한 방법으로 양극 활물질 분말을 얻었다.
A cathode active material powder was obtained in the same manner as in Example 1, except that lithium carbonate (Li 2 CO 3 ) as a source of Li was mixed so that 1.0 mol equivalent of the transition metal hydroxide precursor was 1.0 mol equivalent of Li.

비교예Comparative example 2 2

전이 금속 수산화물 전구체 0.95몰 당량에 Li 당량이 1.05몰이 되도록 Li 공급원인 탄산리튬(Li2CO3)을 혼합한 것을 제외하고는, 실시예 1과 동일한 방법으로 양극 활물질 분말을 얻었다.
A cathode active material powder was obtained in the same manner as in Example 1, except that lithium carbonate (Li 2 CO 3 ) as a source of Li was mixed so that the transition metal hydroxide precursor was 0.95 mol equivalent and the Li equivalent was 1.05 mol.

비교예Comparative example 3 3

전이 금속 수산화물 전구체 0.90몰 당량에 Li 당량이 1.1몰이 되도록 Li 공급원인 탄산리튬(Li2CO3)을 혼합한 것을 제외하고는, 실시예 1과 동일한 방법으로 양극 활물질 분말을 얻었다.
A cathode active material powder was obtained in the same manner as in Example 1, except that lithium carbonate (Li 2 CO 3 ), which is a source of Li, was mixed so that the transition metal hydroxide precursor was 0.90 molar equivalent and the Li equivalent was 1.1 mol.

비교예Comparative example 4 4

전이 금속 수산화물 전구체 0.70몰 당량에 Li 당량이 1.3몰이 되도록 Li 공급원인 탄산리튬(Li2CO3)을 혼합한 것을 제외하고는, 실시예 1과 동일한 방법으로 양극 활물질 분말을 얻었다.
A cathode active material powder was obtained in the same manner as in Example 1, except that lithium carbonate (Li 2 CO 3 ), which is a source of Li, was mixed so that the transition metal hydroxide precursor was 0.70 molar equivalent and the Li equivalent was 1.3 molar.

<전지용량 및 수명특성 평가><Evaluation of battery capacity and life characteristics>

실시예 1, 2 및 비교예 1 내지 4에서 합성된 양극 활물질과, 도전재인 Denka Black, 바인더인 폴리비닐리덴 플루오라이드 (PVDF) 를 92 : 4 : 4의 중량비로 혼합하여 슬러리를 제조하였다. 상기 슬러리를 알루미늄 (Al) 호일 위에 균일하게 코팅하여 양극 전극 극판을 제작하였다.A slurry was prepared by mixing the positive electrode active material synthesized in Examples 1 and 2 and Comparative Examples 1 to 4, Denka Black as a conductive material, and polyvinylidene fluoride (PVDF) as a binder in a weight ratio of 92:4:4. The slurry was uniformly coated on an aluminum (Al) foil to prepare a positive electrode plate.

음극으로는 리튬 메탈, 분리막으로는 다공성 PE 재질의 분리막, 전해질로는, 1.3M LiPF6 EC : DMC : EC이 5 : 3 : 2의 중량비로 혼합된 용액을 사용하여 코인 셀 타입의 리튬 이차전지를 제작하였다.
Lithium metal as a negative electrode, a porous PE separator as an electrolyte, and a solution of 1.3M LiPF 6 EC: DMC: EC in a weight ratio of 5: 3: 2 as an electrolyte, and a coin cell type lithium secondary battery Was produced.

양극 활물질의 Positive active material XRDXRD 분석 analysis

X-선 회절 분석은 X-선 회절 광원으로 Cu Kα 선(ray)을 이용하였다. 15°에서 70°의 범위의 2θ값 범위에서, 1°/min의 스캔속도(scan rate)에서 실시하였고, 19°에서 23°의 범위의 2θ값 범위에서, 0.2°/min의 스캔속도에서 실시하였다.
X-ray diffraction analysis was performed using a Cu Kα ray as an X-ray diffraction light source. Conducted at a 2θ value range of 15° to 70°, a scan rate of 1°/min, and a 2θ value range of 19° to 23°, a scan rate of 0.2°/min I did.

반치폭(Half width ( FWHMFWHM , , FullFull WidthWidth atat HalfHalf MaximumMaximum ))

X-선 회절 패턴에서 2θ 값이 20 ~ 21°인 범위에서 나타나는 피크의 반치폭을 측정하였다.
In the X-ray diffraction pattern, the half width of the peak appearing in the range of 20 to 21° with a 2θ value was measured.

II LL // II RR

X-선 회절 패턴에서 2θ 값이 21 ~ 22°인 범위에 존재하는 피크 강도(IR)에 대한 20 ~ 21°인 범위에 존재하는 피크 강도(IL)의 비를 계산하여 나타내었다.
In the X-ray diffraction pattern, the ratio of the peak intensity (I L ) present in the range of 20 to 21° to the peak intensity (I R ) present in the range of 21 to 22° in the 2θ value was calculated and shown.

전지 용량Battery capacity

제작한 코인셀은 25℃ 항온에 24시간 방치한 후, 리튬이차전지 충·방전 시험장치(Toyo System사)를 사용하고, 테스트 셀의 전압영역을 3.0 ~ 4.6V로 설정, CC(Constant Current)/CV(Constant Voltage) 모드로 0.2C로 충·방전을 진행하고 방전용량을 구했다.
The produced coin cell is left at a constant temperature of 25℃ for 24 hours, and then a lithium secondary battery charging/discharging test device (Toyo System) is used, and the voltage range of the test cell is set to 3.0 ~ 4.6V, CC (Constant Current) In the /CV (Constant Voltage) mode, charging and discharging was performed at 0.2C and the discharge capacity was calculated.

상기 평가방법에 따라, 실시예 1, 실시예 2 및 비교예 1 내지 4에서 제조된 양극 활물질을 포함하는 리튬 이차전지에 대한 방전 용량 및 용량 유지율을 하기 표 1에 나타내었다.
According to the evaluation method, the discharge capacity and capacity retention rate of the lithium secondary batteries including the positive electrode active materials prepared in Examples 1 and 2 and Comparative Examples 1 to 4 are shown in Table 1 below.

피크유무* Peak presence * FWHMFWHM IL / IR I L / I R 용량 (mAh/g)Capacity (mAh/g) 실시예 1Example 1 0.240.24 2.22.2 228228 실시예 2Example 2 0.280.28 1.71.7 242242 비교예 1Comparative Example 1 ×× -- -- 185185 비교예 2Comparative Example 2 ×× -- -- 197197 비교예 3Comparative Example 3 0.350.35 33 210210 비교예 4Comparative Example 4 0.20.2 1.11.1 125125

(* X-선 회절 패턴에서 2θ값이 20~22°인 범위에 피크가 존재하는지 유무를 ○/×로 나타내었다.)(* In the X-ray diffraction pattern, the presence or absence of a peak in the range where the 2θ value is 20 to 22° is represented by ○/×.)

상기 표 1로부터 알 수 있듯이, 본 발명에 따른 XRD 패턴을 갖는 양극 활물질을 이용하여 제조된 이차전지의 경우 비교예들에 따른 양극 활물질을 이용하여 제조된 이차전지에 비하여 전지 용량이 월등히 향상되었음을 알 수 있다. As can be seen from Table 1, in the case of a secondary battery manufactured using a positive electrode active material having an XRD pattern according to the present invention, it was found that the battery capacity was significantly improved compared to a secondary battery manufactured using the positive electrode active material according to Comparative Examples. I can.

도 1 내지 3을 참고하면, 실시예 1에 따라 제조된 리튬 이차 전지용 양극 활물질의 XRD 데이터를 나타낸 그래프인 도 1 및 2에서는 20° 내지 22°의 2θ 값에서 피크가 검출됨을 확인할 수 있는 반면, 비교예 1에 따라 제조된 리튬 이차 전지용 양극 활물질의 XRD 데이터를 나타낸 그래프인 도 3에서는 상기 범위의 2θ 값에서 피크가 검출되지 않았으며, 이 경우 리튬 이차전지의 초기 방전용량도 185 mAh/g로 가장 열악했다.
1 to 3, in FIGS. 1 and 2, which are graphs showing XRD data of the positive electrode active material for a lithium secondary battery prepared according to Example 1, it can be seen that a peak is detected at a 2θ value of 20° to 22°. In FIG. 3, which is a graph showing the XRD data of the positive active material for a lithium secondary battery prepared according to Comparative Example 1, no peak was detected at the 2θ value in the above range, and in this case, the initial discharge capacity of the lithium secondary battery was also 185 mAh/g. It was the worst.

Claims (4)

하기의 화학식 1로 표현되는 리튬 금속 복합산화물을 포함하고,
상기 리튬 금속 복합산화물은 X-선 회절(XRD) 패턴에서 2θ값이 20 ~ 22°인 범위에서 21°를 기준으로 좌우에 각각 피크를 갖고,
상기 2θ 값이 21 ~ 22°인 범위에 존재하는 피크 강도(IR)에 대한 20 ~ 21°인 범위에 존재하는 피크 강도(IL)의 비는, 1.5 < IL/IR < 3 인 것을 특징으로 하는 양극 활물질:
화학식 1
Li1+xNiaCobMncO2+d
(여기서, 0.1 < x < 0.33, 0 < a < 0.4, 0 < b < 0.4, 0.4 < c < 0.9, -0.5 < d < 0.5, x + a + b + c = 1).
It includes a lithium metal composite oxide represented by the following formula (1),
The lithium metal composite oxide has peaks on the left and right sides based on 21° in the range of 20 to 22° in the 2θ value in the X-ray diffraction (XRD) pattern,
The ratio of the peak intensity (I L ) present in the range of 20 to 21° to the peak intensity (I R ) present in the range of the 2θ value is 21 to 22° is 1.5 <I L /I R <3 A positive electrode active material characterized in that:
Formula 1
Li 1+x Ni a Co b Mn c O 2+d
(Where, 0.1 <x <0.33, 0 <a <0.4, 0 <b <0.4, 0.4 <c <0.9, -0.5 <d <0.5, x + a + b + c = 1).
제 1 항에 있어서,
상기 2θ 값이 20 ~ 21°인 범위에 존재하는 피크의 반치폭(FWHM, Full Width at Half Maximum)은, 0.2° < FWHM < 0.3°인 것을 특징으로 하는 양극 활물질.
The method of claim 1,
The positive electrode active material, wherein the 2θ value is a full width at half maximum (FWHM) in the range of 20 to 21° is 0.2° <FWHM <0.3°.
삭제delete 제 1 항 및 제 2 항 중 어느 한 항의 양극 활물질을 포함하는 양극;
음극 활물질을 포함하는 음극; 및
상기 양극과 상기 음극 사이에 존재하는 전해질을 포함하는 리튬 이차 전지.
A positive electrode comprising the positive active material of any one of claims 1 and 2;
A negative electrode including a negative active material; And
A lithium secondary battery comprising an electrolyte present between the positive electrode and the negative electrode.
KR1020130155630A 2013-12-13 2013-12-13 Cathode active material and lithium secondary batteries comprising the same KR102152882B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020130155630A KR102152882B1 (en) 2013-12-13 2013-12-13 Cathode active material and lithium secondary batteries comprising the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020130155630A KR102152882B1 (en) 2013-12-13 2013-12-13 Cathode active material and lithium secondary batteries comprising the same

Publications (2)

Publication Number Publication Date
KR20150069336A KR20150069336A (en) 2015-06-23
KR102152882B1 true KR102152882B1 (en) 2020-09-07

Family

ID=53516489

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020130155630A KR102152882B1 (en) 2013-12-13 2013-12-13 Cathode active material and lithium secondary batteries comprising the same

Country Status (1)

Country Link
KR (1) KR102152882B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102478973B1 (en) * 2020-08-25 2022-12-16 포항공과대학교 산학협력단 Composite positive electrode active material with strong superstructure, preparing method for the same, positive electrtode including the same, and lithium ion battery including the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012057289A1 (en) * 2010-10-29 2012-05-03 旭硝子株式会社 Positive electrode active material, positive electrode, battery, and production method for lithium ion secondary battery

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130033154A (en) * 2011-09-26 2013-04-03 전자부품연구원 Positive active material, preparation method thereof and lithium secondary battery comprising the same
KR101914560B1 (en) 2011-12-30 2018-11-05 삼성에스디아이 주식회사 Nickel-contained metal oxide for cathode active materials of lithium secondary batteries with enhanced properties and cathodes of lithium secondary batteries containing the same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012057289A1 (en) * 2010-10-29 2012-05-03 旭硝子株式会社 Positive electrode active material, positive electrode, battery, and production method for lithium ion secondary battery

Also Published As

Publication number Publication date
KR20150069336A (en) 2015-06-23

Similar Documents

Publication Publication Date Title
EP2918545B1 (en) Polycrystalline lithium manganese oxide particles, method for preparing same, and anode active material containing polycrystalline lithium manganese oxide particles
KR101762980B1 (en) Positive electrode active material powder, method for producing same, and nonaqueous electrolyte secondary battery
KR101989632B1 (en) Positive electrode active material granular powder and method for producing same, and nonaqueous electrolyte secondary battery
KR100430938B1 (en) Cathode material for lithium secondary battery and mathod for manufacturing the same
KR102210892B1 (en) Cathode active material, method for preparing the same, and lithium secondary batteries comprising the same
KR101470092B1 (en) Cathode active material, method for preparing the same, and lithium secondary batteries comprising the same
KR102357836B1 (en) Cathode active material for lithium secondary and lithium secondary batteries comprising the same
KR101335460B1 (en) Cathode Active Material Comprising Lithium Manganese-Based Oxide and Non Aqueous Electrolyte Secondary Battery Based upon the Same
JP6226430B2 (en) Positive electrode active material, lithium secondary battery for controlling impurities or swelling, and method for producing positive electrode active material with improved productivity
KR20150080390A (en) Positive electrode active material with improved energy density
CN104134797B (en) A kind of high-capacity lithium-rich cathode material and preparation method thereof
JP2012234772A (en) Lithium-transition metal-based compound powder for lithium secondary battery positive electrode material, and manufacturing method thereof, positive electrode for lithium secondary battery using the same, and lithium secondary battery
KR102152370B1 (en) Cathode active material and lithium secondary batteries comprising the same
JP6343951B2 (en) Positive electrode active material particle powder, method for producing the same, and nonaqueous electrolyte secondary battery
US20150030927A1 (en) Polycrystalline lithium manganese oxide particles, preparation method thereof, and cathode active material including the same
CN109360984B (en) Preparation method of layered positive electrode material hybrid surface of lithium ion battery
KR101449811B1 (en) Cathode active material, method for preparing the same, and lithium secondary batteries comprising the same
KR20080088177A (en) Spinel type cathode active material for lithium secondary batteries and manufacturing method for the same
KR101991254B1 (en) Positive Active material with high Power density and longevity
KR100557240B1 (en) Cathode active material for lithium secondary btteries prepared by coprecipitation method, method for preparing the same, and lithium secondary batteries using the same
KR20160076037A (en) Process for the production of lithium complex oxide and lithium complex oxide made by the same, and lithium ion batteries comprising the same
KR102152882B1 (en) Cathode active material and lithium secondary batteries comprising the same
KR20150059820A (en) Manufacturing method of cathod active material for lithium rechargible battery by coprecipitation, and cathod active material for lithium rechargeable battery made by the same
KR102381520B1 (en) Positive active material for lithium rechargeable battery, lithium rechargeable battery including the same, and manufacturing method for the same
KR102161288B1 (en) Method for preparing Cathode active material, cathode active material prepared by the same, and lithium secondary batteries comprising the same

Legal Events

Date Code Title Description
N231 Notification of change of applicant
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant