KR102152685B1 - 프레임 일체형 마스크의 제조 방법 - Google Patents

프레임 일체형 마스크의 제조 방법 Download PDF

Info

Publication number
KR102152685B1
KR102152685B1 KR1020180028024A KR20180028024A KR102152685B1 KR 102152685 B1 KR102152685 B1 KR 102152685B1 KR 1020180028024 A KR1020180028024 A KR 1020180028024A KR 20180028024 A KR20180028024 A KR 20180028024A KR 102152685 B1 KR102152685 B1 KR 102152685B1
Authority
KR
South Korea
Prior art keywords
mask
frame
manufacturing
tray
integrated
Prior art date
Application number
KR1020180028024A
Other languages
English (en)
Other versions
KR20190106477A (ko
Inventor
이유진
Original Assignee
주식회사 오럼머티리얼
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 오럼머티리얼 filed Critical 주식회사 오럼머티리얼
Priority to KR1020180028024A priority Critical patent/KR102152685B1/ko
Publication of KR20190106477A publication Critical patent/KR20190106477A/ko
Application granted granted Critical
Publication of KR102152685B1 publication Critical patent/KR102152685B1/ko

Links

Images

Classifications

    • H01L51/56
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/033Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers
    • H01L21/0334Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers characterised by their size, orientation, disposition, behaviour, shape, in horizontal or vertical plane
    • H01L21/0337Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers characterised by their size, orientation, disposition, behaviour, shape, in horizontal or vertical plane characterised by the process involved to create the mask, e.g. lift-off masks, sidewalls, or to modify the mask, e.g. pre-treatment, post-treatment
    • H01L51/0018
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/20Changing the shape of the active layer in the devices, e.g. patterning
    • H10K71/231Changing the shape of the active layer in the devices, e.g. patterning by etching of existing layers
    • H10K71/233Changing the shape of the active layer in the devices, e.g. patterning by etching of existing layers by photolithographic etching

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

본 발명은 프레임 일체형 마스크의 제조 방법에 관한 것이다. 본 발명에 따른 프레임 일체형 마스크의 제조방법은, 적어도 하나의 마스크(100)와 마스크(100)를 지지하는 프레임(200)이 일체로 형성된 프레임 일체형 마스크의 제조 방법으로서, (a) 적어도 하나의 마스크 셀 영역(CR)을 구비한 프레임(200)을 제공하는 단계, (b) 패턴화된 절연부(45)가 일면에 형성된 전도성 기재(41)를 제공하는 단계; (c) 전주 도금으로 전도성 기재(41) 상에 마스크(100)를 형성하는 단계; (d) 제1 접착제(61)가 일면에 배치된 버퍼 트레이(60)를 마스크(100)에 접촉시키고, 전도성 기재(41)로부터 마스크(100)를 분리하는 단계; (e) 제2 접착제(51)가 일면에 배치된 트레이(50)를 마스크(100)에 접촉시키고, 버퍼 트레이(60)로부터 마스크(100)를 분리하는 단계; (f) 프레임(200) 상에 트레이(50)를 로딩하여 마스크(100)를 프레임(200)의 마스크 셀 영역(CR)에 대응하는 단계, 및 (g) 마스크(100)의 테두리의 적어도 일부를 프레임(200)에 접착하는 단계를 포함하는 것을 특징으로 한다.

Description

프레임 일체형 마스크의 제조 방법 {PRODUCING METHOD OF MASK INTEGRATED FRAME}
본 발명은 프레임 일체형 마스크의 제조 방법에 관한 것이다. 보다 상세하게는, 마스크를 프레임과 일체를 이루도록 할 수 있고, 각 마스크 간의 얼라인(align)을 명확하게 할 수 있는 프레임 일체형 마스크의 제조 방법에 관한 것이다.
최근에 박판 제조에 있어서 전주 도금(Electroforming) 방법에 대한 연구가 진행되고 있다. 전주 도금 방법은 전해액에 양극체, 음극체를 침지하고, 전원을 인가하여 음극체의 표면상에 금속박판을 전착시키므로, 극박판을 제조할 수 있으며, 대량 생산을 기대할 수 있는 방법이다.
한편, OLED 제조 공정에서 화소를 형성하는 기술로, 박막의 금속 마스크(Shadow Mask)를 기판에 밀착시켜서 원하는 위치에 유기물을 증착하는 FMM(Fine Metal Mask) 법이 주로 사용된다.
기존의 OLED 제조 공정에서는 마스크를 스틱 형태, 플레이트 형태 등으로 제조한 후, 마스크를 OLED 화소 증착 프레임에 용접 고정시켜 사용한다. 마스크 하나에는 디스플레이 하나에 대응하는 셀이 여러개 구비될 수 있다. 또한, 대면적 OLED 제조를 위해서 여러 개의 마스크를 OLED 화소 증착 프레임에 고정시킬 수 있는데, 프레임에 고정하는 과정에서 각 마스크가 평평하게 되도록 인장을 하게 된다. 마스크의 전체 부분이 평평하게 되도록 인장력을 조절하는 것은 매우 어려운 작업이다. 특히, 각 셀들을 모두 평평하게 하면서, 크기가 수 내지 수십 ㎛에 불과한 마스크 패턴을 정렬하기 위해서는, 마스크의 각 측에 가하는 인장력을 미세하게 조절하면서, 정렬 상태를 실시간으로 확인하는 고도의 작업이 요구된다.
그럼에도 불구하고, 여러 개의 마스크를 하나의 프레임에 고정시키는 과정에서 마스크 상호간에, 그리고 마스크 셀들의 상호간에 정렬이 잘 되지 않는 문제점이 있었다. 또한, 마스크를 프레임에 용접 고정하는 과정에서 마스크 막의 두께가 너무 얇고 대면적이기 때문에 하중에 의해 마스크가 쳐지거나 뒤틀어지는 문제점이 있었다.
초고화질의 OLED의 경우, 현재 QHD 화질은 500~600 PPI(pixel per inch)로 화소의 크기가 약 30~50㎛에 이르며, 4K UHD, 8K UHD 고화질은 이보다 높은 ~860 PPI, ~1600 PPI 등의 해상도를 가지게 된다. 이렇듯 초고화질의 OLED의 화소 크기를 고려하여 각 셀들간의 정렬 오차를 수 ㎛ 정도로 감축시켜야 하며, 이를 벗어나는 오차는 제품의 실패로 이어지게 되므로 수율이 매우 낮아지게 될 수 있다. 그러므로, 마스크가 쳐지거나 뒤틀리는 등의 변형을 방지하고, 정렬을 명확하게 할 수 있는 기술, 마스크를 프레임에 고정하는 기술 등의 개발이 필요한 실정이다.
따라서, 본 발명은 상기와 같은 종래 기술의 제반 문제점을 해결하기 위하여 안출된 것으로서, 마스크와 프레임이 일체형 구조를 이룰 수 있는 프레임 일체형 마스크의 제조 방법을 제공하는 것을 그 목적으로 한다.
또한, 본 발명은 마스크가 쳐지거나 뒤틀리는 등의 변형을 방지하고 정렬을 명확하게 할 수 있는 프레임 일체형 마스크의 제조 방법을 제공하는 것을 그 목적으로 한다.
또한, 본 발명은 제조시간을 현저하게 감축시키고, 수율을 현저하게 상승시킨 프레임 일체형 마스크의 제조 방법을 제공하는 것을 그 목적으로 한다.
본 발명의 상기의 목적은, 적어도 하나의 마스크와 마스크를 지지하는 프레임이 일체로 형성된 프레임 일체형 마스크의 제조 방법으로서, (a) 적어도 하나의 마스크 셀 영역을 구비한 프레임을 제공하는 단계; (b) 패턴화된 절연부가 일면에 형성된 전도성 기재를 제공하는 단계; (c) 전주 도금으로 전도성 기재 상에 마스크를 형성하는 단계; (d) 제1 접착제가 일면에 배치된 버퍼 트레이를 마스크에 접촉시키고, 전도성 기재로부터 마스크를 분리하는 단계; (e) 제2 접착제가 일면에 배치된 트레이를 마스크에 접촉시키고, 버퍼 트레이로부터 마스크를 분리하는 단계; (f) 프레임 상에 트레이를 로딩하여 마스크를 프레임의 마스크 셀 영역에 대응하는 단계; 및 (g) 마스크의 테두리의 적어도 일부를 프레임에 접착하는 단계를 포함하는, 프레임 일체형 마스크의 제조 방법에 의해 달성된다.
(a) 단계는, (a1) 중공 영역을 포함하는 테두리 프레임부를 제공하는 단계; 및 (a2) 적어도 하나의 마스크 셀 영역을 구비하는 마스크 셀 시트부를 테두리 프레임부에 연결하여 프레임을 제조하는 단계를 포함할 수 있다.
(a) 단계는, (a1) 중공 영역을 포함하는 테두리 프레임부를 제공하는 단계; (a2) 평면의 마스크 셀 시트부를 테두리 프레임부에 연결하는 단계; 및 (a3) 마스크 셀 시트부에 적어도 하나의 마스크 셀 영역을 형성하여 프레임을 제조하는 단계를 포함할 수 있다.
(d) 단계는, 마스크의 테두리의 적어도 일부를 마스크 셀 시트부에 접착하여 마스크를 프레임에 접착하는 단계일 수 있다.
(d) 단계에서, 전도성 기재와 마스크 사이의 부착력보다 버퍼 트레이와 마스크 사이의 부착력이 더 강할 수 있다.
(d) 단계에서, 제1 접착제는 마스크의 테두리에 대응하는 버퍼 트레이의 일면에 배치될 수 있다.
(e) 단계에서, 버퍼 트레이와 마스크 사이의 부착력보다 트레이와 마스크 사이의 부착력이 더 강할 수 있다.
(e) 단계에서, 제2 접착제는 마스크의 테두리에 대응하는 트레이의 일면에 배치될 수 있다.
트레이는 평판 형상이고, 레이저 광이 투과하는 재질을 포함할 수 있다.
트레이 상부에서 레이저를 조사하는 레이저 용접으로 마스크를 프레임에 접착할 수 있다.
레이저는 트레이의 제2 접착제가 배치된 영역, 또는, 제2 접착제가 배치된 영역보다 적어도 내측에 조사할 수 있다.
레이저 용접 후에 레이저 조사 영역보다 외측의 마스크 부분을 절단하여 제거할 수 있다.
버퍼 트레이는 평판 형상 또는 중공 영역을 포함하는 틀 형상일 수 있다.
버퍼 트레이가 중공 영역을 포함하는 틀 형상인 경우, (d) 단계와 (e) 단계 사이에, (d') 마스크의 표면에 부식 방지 코팅막을 형성하는 단계를 더 포함할 수 있다.
부식 방지 코팅막은 Cr, NiP, 크로메이트(chromate) 중 적어도 어느 하나를 포함할 수 있다.
마스크를 마스크 셀 영역에 대응하기 전, 또는, 대응한 후에 프레임이 포함된 공정 영역의 온도를 제1 온도로 상승시키고, 마스크를 프레임에 접착한 후에 프레임이 포함된 공정 영역의 온도를 제2 온도로 하강시킬 수 있다.
제1 온도는 OLED 화소 증착 공정 온도보다 같거나 높은 온도이고, 제2 온도는 적어도 제1 온도보다 낮은 온도일 수 있다.
제1 온도는 25℃ 내지 60℃ 중 어느 하나의 온도이고, 제2 온도는 제1 온도보다 낮은 20℃ 내지 30℃ 중 어느 하나의 온도이며, OLED 화소 증착 공정 온도는 25℃ 내지 45℃ 중 어느 하나의 온도일 수 있다.
마스크를 마스크 셀 영역에 대응할 때, 마스크에 인장을 가하지 않을 수 있다.
마스크 셀 시트부는, 제1 방향, 제1 방향에 수직인 제2 방향 중 적어도 하나의 방향을 따라 복수의 마스크 셀 영역을 구비할 수 있다.
마스크는 하나의 마스크 셀을 포함하고, 하나의 마스크 셀이 하나의 마스크 셀 영역 내에 위치할 수 있다.
마스크는 복수의 마스크 셀을 포함하고, 복수의 마스크 셀이 하나의 마스크 셀 영역 내에 위치할 수 있다.
마스크 및 프레임은 인바(invar), 슈퍼 인바(super invar), 니켈, 니켈-코발트 중 어느 하나의 재질일 수 있다.
하나의 마스크 셀 영역에 접착된 마스크와 이에 이웃하는 마스크 셀 영역에 접착된 마스크 사이의 PPA(pixel position accuracy)는 3㎛를 초과하지 않을 수 있다.
상기와 같이 구성된 본 발명에 따르면, 마스크와 프레임이 일체형 구조를 이룰 수 있는 효과가 있다.
또한, 본 발명에 따르면, 마스크가 쳐지거나 뒤틀리는 등의 변형을 방지하고 정렬을 명확하게 할 수 있는 효과가 있다.
또한, 본 발명에 따르면, 제조시간을 현저하게 감축시키고, 수율을 현저하게 상승시킬 수 있는 효과가 있다.
도 1은 종래의 OLED 화소 증착용 마스크를 나타내는 개략도이다.
도 2는 종래의 마스크를 프레임에 접착하는 과정을 나타내는 개략도이다.
도 3은 종래의 마스크를 인장하는 과정에서 셀들간의 정렬 오차가 발생하는 것을 나타내는 개략도이다.
도 4는 본 발명의 일 실시예에 따른 프레임 일체형 마스크를 나타내는 정면도 및 측단면도이다.
도 5는 본 발명의 일 실시예에 따른 프레임을 나타내는 정면도 및 측단면도이다.
도 6은 본 발명의 일 실시예에 따른 프레임의 제조 과정을 나타내는 개략도이다.
도 7은 본 발명의 다른 실시예에 따른 프레임의 제조 과정을 나타내는 개략도이다.
도 8은 본 발명의 일 실시예에 따른 모판 상에 마스크를 형성하는 과정을 나타내는 개략도이다.
도 9는 본 발명의 일 실시예에 따른 모판 상의 마스크를 버퍼 트레이로 이동시키는 과정을 나타내는 개략도이다.
도 10은 본 발명의 일 실시예에 따른 버퍼 트레이 상의 마스크를 트레이로 이동시키는 과정을 나타내는 개략도이다.
도 11은 본 발명의 다른 실시예에 따른 버퍼 트레이를 이용하여 마스크에 부식 방지 코팅을 수행하는 개략도이다.
도 12는 본 발명의 일 실시예에 따른 트레이를 프레임 상에 로딩하여 마스크를 프레임의 셀 영역에 대응시키는 상태를 나타내는 개략도이다.
도 13은 본 발명의 일 실시예에 따른 마스크를 프레임의 셀 영역에 접착하는 과정을 나타내는 개략도이다.
도 14는 본 발명의 일 실시예에 따른 마스크를 순차적으로 셀 영역에 접착하는 과정을 나타내는 개략도이다.
도 15는 본 발명의 일 실시예에 따른 마스크를 프레임의 셀 영역에 접착한 후 공정 영역의 온도를 하강시키는 과정을 나타내는 개략도이다.
도 16은 본 발명의 일 실시예에 따른 프레임 일체형 마스크를 이용한 OLED 화소 증착 장치를 나타내는 개략도이다.
후술하는 본 발명에 대한 상세한 설명은, 본 발명이 실시될 수 있는 특정 실시예를 예시로서 도시하는 첨부 도면을 참조한다. 이들 실시예는 당업자가 본 발명을 실시할 수 있기에 충분하도록 상세히 설명된다. 본 발명의 다양한 실시예는 서로 다르지만 상호 배타적일 필요는 없음이 이해되어야 한다. 예를 들어, 여기에 기재되어 있는 특정 형상, 구조 및 특성은 일 실시예에 관련하여 본 발명의 정신 및 범위를 벗어나지 않으면서 다른 실시예로 구현될 수 있다. 또한, 각각의 개시된 실시예 내의 개별 구성요소의 위치 또는 배치는 본 발명의 정신 및 범위를 벗어나지 않으면서 변경될 수 있음이 이해되어야 한다. 따라서, 후술하는 상세한 설명은 한정적인 의미로서 취하려는 것이 아니며, 본 발명의 범위는, 적절하게 설명된다면, 그 청구항들이 주장하는 것과 균등한 모든 범위와 더불어 첨부된 청구항에 의해서만 한정된다. 도면에서 유사한 참조부호는 여러 측면에 걸쳐서 동일하거나 유사한 기능을 지칭하며, 길이 및 면적, 두께 등과 그 형태는 편의를 위하여 과장되어 표현될 수도 있다.
이하에서는, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 본 발명을 용이하게 실시할 수 있도록 하기 위하여, 본 발명의 바람직한 실시예들에 관하여 첨부된 도면을 참조하여 상세히 설명하기로 한다.
도 1은 종래의 OLED 화소 증착용 마스크(10)를 나타내는 개략도이다.
도 1을 참조하면, 종래의 마스크(10)는 스틱형(Stick-Type) 또는 판형(Plate-Type)으로 제조될 수 있다. 도 1의 (a)에 도시된 마스크(10)는 스틱형 마스크로서, 스틱의 양측을 OLED 화소 증착 프레임에 용접 고정시켜 사용할 수 있다. 도 1의 (b)에 도시된 마스크(100)는 판형(Plate-Type) 마스크로서, 넓은 면적의 화소 형성 공정에서 사용될 수 있다.
마스크(10)의 바디(Body)[또는, 마스크 막(11)]에는 복수의 디스플레이 셀(C)이 구비된다. 하나의 셀(C)은 스마트폰 등의 디스플레이 하나에 대응한다. 셀(C)에는 디스플레이의 각 화소에 대응하도록 화소 패턴(P)이 형성된다. 셀(C)을 확대하면 R, G, B에 대응하는 복수의 화소 패턴(P)이 나타난다. 일 예로, 셀(C)에는 70 X 140의 해상도를 가지도록 화소 패턴(P)이 형성된다. 즉, 수많은 화소 패턴(P)들은 군집을 이루어 셀(C) 하나를 구성하며, 복수의 셀(C)들이 마스크(10)에 형성될 수 있다.
도 2는 종래의 마스크(10)를 프레임(20)에 접착하는 과정을 나타내는 개략도이다. 도 3은 종래의 마스크(10)를 인장(F1~F2)하는 과정에서 셀들간의 정렬 오차가 발생하는 것을 나타내는 개략도이다. 도 1의 (a)에 도시된 6개의 셀(C: C1~C6)을 구비하는 스틱 마스크(10)를 예로 들어 설명한다.
도 2의 (a)를 참조하면, 먼저, 스틱 마스크(10)를 평평하게 펴야한다. 스틱 마스크(10)의 장축 방향으로 인장력(F1~F2)을 가하여 당김에 따라 스틱 마스크(10)가 펴지게 된다. 그 상태로 사각틀 형태의 프레임(20) 상에 스틱 마스크(10)를 로딩한다. 스틱 마스크(10)의 셀(C1~C6)들은 프레임(20)의 틀 내부 빈 영역 부분에 위치하게 된다. 프레임(20)은 하나의 스틱 마스크(10)의 셀(C1~C6)들이 틀 내부 빈 영역에 위치할 정도의 크기일 수 있고, 복수의 스틱 마스크(10)의 셀(C1~C6)들이 틀 내부 빈 영역에 위치할 정도의 크기일 수도 있다.
도 2의 (b)를 참조하면, 스틱 마스크(10)의 각 측에 가하는 인장력(F1~F2)을 미세하게 조절하면서 정렬을 시킨 후, 스틱 마스크(10) 측면의 일부를 용접(W)함에 따라 스틱 마스크(10)와 프레임(20)을 상호 연결한다. 도 2의 (c)는 상호 연결된 스틱 마스크(10)와 프레임의 측단면을 나타낸다.
도 3을 참조하면, 스틱 마스크(10)의 각 측에 가하는 인장력(F1~F2)을 미세하게 조절함에도 불구하고, 마스크 셀(C1~C3)들의 상호간에 정렬이 잘 되지 않는 문제점이 나타난다. 가령, 셀(C1~C3)들의 패턴(P)간에 거리(D1~D1", D2~D2")가 상호 다르게 되거나, 패턴(P)들이 비뚤어지는 것이 그 예이다. 스틱 마스크(10)는 복수(일 예로, 6개)의 셀(C1~C6)을 포함하는 대면적이고, 수십 ㎛ 수준의 매우 얇은 두께를 가지기 때문에, 하중에 의해 쉽게 쳐지거나 뒤틀어지게 된다. 또한, 각 셀(C1~C6)들을 모두 평평하게 하도록 인장력(F1~F2)을 조절하면서, 각 셀(C1~C6)들간의 정렬 상태를 현미경을 통해 실시간으로 확인하는 것은 매우 어려운 작업이다.
따라서, 인장력(F1~F2)의 미세한 오차는 스틱 마스크(10) 각 셀(C1~C3)들이 늘어나거나, 펴지는 정도에 오차를 발생시킬 수 있고, 그에 따라 마스크 패턴(P)간에 거리(D1~D1", D2~D2")가 상이해지게 되는 문제점을 발생시킨다. 물론, 완벽하게 오차가 0이 되도록 정렬하는 것은 어려운 것이지만, 크기가 수 내지 수십 ㎛인 마스크 패턴(P)이 초고화질 OLED의 화소 공정에 악영향을 미치지 않도록 하기 위해서는, 정렬 오차가 3㎛를 초과하지 않는 것이 바람직하다. 이렇게 인접하는 셀 사이의 정렬 오차를 PPA(pixel position accuracy)라 지칭한다.
이에 더하여, 대략 6~20개 정도의 복수의 스틱 마스크(10)들을 프레임(20) 하나에 각각 연결하면서, 복수의 스틱 마스크(10)들간에, 그리고 스틱 마스크(10)의 복수의 셀(C~C6)들간에 정렬 상태를 명확히 하는 것도 매우 어려운 작업이고, 정렬에 따른 공정 시간이 증가할 수밖에 없게 되어 생산성을 감축시키는 중대한 이유가 된다.
한편, 스틱 마스크(10)를 프레임(20)에 연결 고정시킨 후에는, 스틱 마스크(10)에 가해졌던 인장력(F1~F2)이 프레임(20)에 역으로 작용할 수 있다. 즉, 인장력(F1~F2)에 의해 팽팽히 늘어났던 스틱 마스크(10)가 프레임(20)에 연결된 후에 프레임(20)에 장력(tension)을 작용할 수 있다. 보통 이 장력이 크지 않아서 프레임(20)에 큰 영향을 미치지 않을 수 있으나, 프레임(20)의 크기가 소형화되고 강성이 낮아지는 경우에는 이러한 장력이 프레임(20)을 미세하게 변형시킬 수 있다. 그리하면 복수의 셀(C~C6)들간에 정렬 상태가 틀어지는 문제가 발생할 수 있다.
이에, 본 발명은 마스크(100)가 프레임(200)과 일체형 구조를 이룰 수 있게 하는 프레임(200) 및 프레임 일체형 마스크를 제안한다. 프레임(200)에 일체로 형성되는 마스크(100)는 쳐지거나 뒤틀리는 등의 변형이 방지되고, 프레임(200)에 명확히 정렬될 수 있다. 마스크(100)가 프레임(200)에 연결될 때 마스크(100)에 어떠한 인장력도 가하지 않으므로, 마스크(100)가 프레임(200)에 연결된 후 프레임(200)이 변형될 정도의 장력을 가하지 않을 수 있다. 그리고, 마스크(100)를 프레임(200)에 일체로 연결하는 제조시간을 현저하게 감축시키고, 수율을 현저하게 상승시킬 수 있는 이점을 가진다.
도 4는 본 발명의 일 실시예에 따른 프레임 일체형 마스크를 나타내는 정면도[도 4의 (a)] 및 측단면도[도 4의 (b)]이고, 도 5는 본 발명의 일 실시예에 따른 프레임을 나타내는 정면도[도 5의 (a)] 및 측단면도[도 5의 (b)]이다.
도 4 및 도 5를 참조하면, 프레임 일체형 마스크는, 복수의 마스크(100) 및 하나의 프레임(200)을 포함할 수 있다. 다시 말해, 복수의 마스크(100)들을 각각 하나씩 프레임(200)에 접착한 형태이다. 이하에서는, 설명의 편의상 사각 형태의 마스크(100)를 예로 들어 설명하나, 마스크(100)들은 프레임(200)에 접착되기 전에는 양측에 클램핑되는 돌출부를 구비한 스틱 마스크 형태일 수 있으며, 프레임(200)에 접착된 후에 돌출부가 제거될 수 있다.
각각의 마스크(100)에는 복수의 마스크 패턴(P)이 형성되며, 하나의 마스크(100)에는 하나의 셀(C)이 형성될 수 있다. 하나의 마스크 셀(C)은 스마트폰 등의 디스플레이 하나에 대응할 수 있다. 얇은 두께로 형성할 수 있도록, 마스크(100)는 전주도금(electroforming)으로 형성될 수 있다. 마스크(100)는 열팽창계수가 약 1.0 X 10-6/℃인 인바(invar), 약 1.0 X 10-7/℃ 인 슈퍼 인바(super invar) 재질일 수 있다. 이 재질의 마스크(100)는 열팽창계수가 매우 낮기 때문에 열에너지에 의해 마스크의 패턴 형상이 변형될 우려가 적어 고해상도 OLED 제조에서 있어서 FMM(Fine Metal Mask), 새도우 마스크(Shadow Mask)로 사용될 수 있다. 이 외에, 최근에 온도 변화값이 크지 않은 범위에서 화소 증착 공정을 수행하는 기술들이 개발되는 것을 고려하면, 마스크(100)는 이보다 열팽창계수가 약간 큰 니켈(Ni), 니켈-코발트(Ni-Co) 등의 재질일 수도 있다. 마스크의 두께는 약 2㎛ 내지 50㎛ 정도로 형성될 수 있다.
프레임(200)은 복수의 마스크(100)를 접착시킬 수 있도록 형성된다. 프레임(200)은 최외곽 테두리를 포함해 제1 방향(예를 들어, 가로 방향), 제2 방향(예를 들어, 세로 방향)으로 형성되는 여러 모서리를 포함할 수 있다. 이러한 여러 모서리들은 프레임(200) 상에 마스크(100)가 접착될 구역을 구획할 수 있다.
프레임(200)은 대략 사각 형상, 사각틀 형상의 테두리 프레임부(210)를 포함할 수 있다. 테두리 프레임부(210)의 내부는 중공 형태일 수 있다. 즉, 테두리 프레임부(210)는 중공 영역(R)을 포함할 수 있다. 프레임(200)은 인바, 슈퍼인바, 알루미늄, 티타늄 등의 금속 재질로 구성될 수 있으며, 열변형을 고려하여 마스크와 동일한 열팽창계수를 가지는 인바, 슈퍼 인바, 니켈, 니켈-코발트 등의 재질로 구성되는 것이 바람직하고, 이 재질들은 프레임(200)의 구성요소인 테두리 프레임부(210), 마스크 셀 시트부(220)에 모두 적용될 수 있다.
이에 더하여, 프레임(200)은 복수의 마스크 셀 영역(CR)을 구비하며, 테두리 프레임부(210)에 연결되는 마스크 셀 시트부(220)를 포함할 수 있다. 마스크 셀 시트부(220)는 마스크(100)와 마찬가지로 전주도금으로 형성되거나, 그 외의 막 형성 공정을 사용하여 형성될 수 있다. 또한, 마스크 셀 시트부(220)는 평면의 시트(sheet)에 레이저 스크라이빙, 에칭 등을 통해 복수의 마스크 셀 영역(CR)을 형성한 후, 테두리 프레임부(210)에 연결할 수 있다. 또는, 마스크 셀 시트부(220)는 평면의 시트를 테두리 프레임부(210)에 연결한 후, 레이저 스크라이빙, 에칭 등을 통해 복수의 마스크 셀 영역(CR)을 형성할 수 있다. 본 명세서에서는 마스크 셀 시트부(220)에 먼저 복수의 마스크 셀 영역(CR)을 형성한 후, 테두리 프레임부(210)에 연결한 것을 주로 상정하여 설명한다.
마스크 셀 시트부(220)는 테두리 시트부(221) 및 제1, 2 그리드 시트부(223, 225) 중 적어도 하나를 포함하여 구성될 수 있다. 테두리 시트부(221) 및 제1, 2 그리드 시트부(223, 225)는 동일한 시트에서 구획된 각 부분을 지칭하며, 이들은 상호간에 일체로 형성된다.
테두리 시트부(221)가 실질적으로 테두리 프레임부(210)에 연결될 수 있다. 따라서, 테두리 시트부(221)는 테두리 프레임부(210)와 대응하는 대략 사각 형상, 사각틀 형상을 가질 수 있다.
또한, 제1 그리드 시트부(223)는 제1 방향(가로 방향)으로 연장 형성될 수 있다. 제1 그리드 시트부(223)는 직선 형태로 형성되어 양단이 테두리 시트부(221)에 연결될 수 있다. 마스크 셀 시트부(220)가 복수의 제1 그리드 시트부(223)를 포함하는 경우, 각각의 제1 그리드 시트부(223)는 동등한 간격을 이루는 것이 바람직하다.
또한, 이에 더하여, 제2 그리드 시트부(225)가 제2 방향(세로 방향)으로 연장 형성될 수 있다. 제2 그리드 시트부(225)는 직선 형태로 형성되어 양단이 테두리 시트부(221)에 연결될 수 있다. 제1 그리드 시트부(223)와 제2 그리드 시트부(225)는 서로 수직 교차될 수 있다. 마스크 셀 시트부(220)가 복수의 제2 그리드 시트부(225)를 포함하는 경우, 각각의 제2 그리드 시트부(225)는 동등한 간격을 이루는 것이 바람직하다.
한편, 제1 그리드 시트부(223)들 간의 간격과, 제2 그리드 시트부(225)들 간의 간격은 마스크 셀(C)의 크기에 따라서 동일하거나 상이할 수 있다.
제1 그리드 시트부(223) 및 제2 그리드 시트부(225)는 박막 형태의 얇은 두께를 가지지만, 길이 방향에 수직하는 단면의 형상은 직사각형, 평행사변형과 같은 사각형 형상, 삼각형 형상 등일 수 있고, 변, 모서리 부분이 일부 라운딩 될 수도 있다. 단면 형상은 레이저 스크라이빙, 에칭 등의 과정에서 조절 가능하다.
테두리 프레임부(210)의 두께는 마스크 셀 시트부(220)의 두께보다 두꺼울 수 있다. 테두리 프레임부(210)는 프레임(200)의 전체 강성을 담당하기 때문에 수mm 내지 수cm의 두께로 형성될 수 있다.
마스크 셀 시트부(220)의 경우는, 실질적으로 두꺼운 시트를 제조하는 공정이 어렵고, 너무 두꺼우면 OLED 화소 증착 공정에서 유기물 소스(600)[도 16 참조]가 마스크(100)를 통과하는 경로를 막는 문제를 발생시킬 수 있다. 반대로, 두께가 너무 얇아지면 마스크(100)를 지지할 정도의 강성 확보가 어려울 수 있다. 이에 따라, 마스크 셀 시트부(220)는 테두리 프레임부(210)의 두께보다는 얇지만, 마스크(100)보다는 두꺼운 것이 바람직하다. 마스크 셀 시트부(220)의 두께는, 약 0.1mm 내지 1mm 정도로 형성될 수 있다. 그리고, 제1, 2 그리드 시트부(223, 225)의 폭은 약 1~5mm 정도로 형성될 수 있다.
평면의 시트에서 테두리 시트부(221), 제1, 2 그리드 시트부(223, 225)가 점유하는 영역을 제외하여, 복수의 마스크 셀 영역(CR: CR11~CR56)이 제공될 수 있다. 다른 관점에서, 마스크 셀 영역(CR)이라 함은, 테두리 프레임부(210)의 중공 영역(R)에서 테두리 시트부(221), 제1, 2 그리드 시트부(223, 225)가 점유하는 영역을 제외한, 빈 영역을 의미할 수 있다.
이 마스크 셀 영역(CR)에 마스크(100)의 셀(C)이 대응됨에 따라, 실질적으로 마스크 패턴(P)을 통해 OLED의 화소가 증착되는 통로로 이용될 수 있게 된다. 전술하였듯이 하나의 마스크 셀(C)은 스마트폰 등의 디스플레이 하나에 대응한다. 하나의 마스크(100)에는 하나의 셀(C)을 구성하는 마스크 패턴(P)들이 형성될 수 있다. 또는, 하나의 마스크(100)가 복수의 셀(C)을 구비하고 각각의 셀(C)이 프레임(200)의 각각의 셀 영역(CR)에 대응할 수도 있으나, 마스크(100)의 명확한 정렬을 위해서는 대면적 마스크(100)를 지양할 필요가 있고, 하나의 셀(C)을 구비하는 소면적 마스크(100)가 바람직하다. 또는, 프레임(200)의 하나의 셀 영역(CR)에 복수의 셀(C)을 가지는 하나의 마스크(100)가 대응할 수도 있다. 이 경우, 명확한 정렬을 위해서는 2-3개 정도의 소수의 셀(C)을 가지는 마스크(100)를 대응하는 것을 고려할 수 있다.
프레임(200)은 복수의 마스크 셀 영역(CR)을 구비하고, 각각의 마스크(100)는 각각 하나의 마스크 셀(C)이 마스크 셀 영역(CR)에 대응되도록 접착될 수 있다. 각각의 마스크(100)는 복수의 마스크 패턴(P)이 형성된 마스크 셀(C) 및 마스크 셀(C) 주변의 더미[셀(C)을 제외한 마스크 막(110) 부분에 대응]를 포함할 수 있다. 더미는 마스크 막(110)만을 포함하거나, 마스크 패턴(P)과 유사한 형태의 소정의 더미 패턴이 형성된 마스크 막(110)을 포함할 수 있다. 마스크 셀(C)은 프레임(200)의 마스크 셀 영역(CR)에 대응하고, 더미의 일부 또는 전부가 프레임(200)[마스크 셀 시트부(220)]에 접착될 수 있다. 이에 따라, 마스크(100)와 프레임(200)이 일체형 구조를 이룰 수 있게 된다.
한편, 다른 실시예에 따르면, 프레임은 테두리 프레임부(210)에 마스크 셀 시트부(220)를 접착하여 제조하지 않고, 테두리 프레임부(210)의 중공 영역(R) 부분에 테두리 프레임부(210)와 일체인 그리드 프레임[그리드 시트부(223, 225)에 대응]을 곧바로 형성한 프레임을 사용할 수도 있다. 이러한 형태의 프레임도 적어도 하나의 마스크 셀 영역(CR)을 포함하며, 마스크 셀 영역(CR)에 마스크(100)를 대응시켜 프레임 일체형 마스크를 제조할 수 있게 된다.
이하에서는, 프레임 일체형 마스크를 제조하는 과정에 대해 설명한다.
먼저, 도 4 및 도 5에서 상술한 프레임(200)을 제공할 수 있다. 도 6은 본 발명의 일 실시예에 따른 프레임(200)의 제조 과정을 나타내는 개략도이다.
도 6의 (a)를 참조하면, 테두리 프레임부(210)를 제공한다. 테두리 프레임부(210)는 중공 영역(R)을 포함한 사각 틀 형상일 수 있다.
다음으로, 도 6의 (b)를 참조하면, 마스크 셀 시트부(220)를 제조한다. 마스크 셀 시트부(220)는 전주도금 또는 그 외의 막 형성 공정을 사용하여 평면의 시트를 제조한 후, 레이저 스크라이빙, 에칭 등을 통해 마스크 셀 영역(CR) 부분을 제거함에 따라 제조할 수 있다. 본 명세서에서는 6 X 5의 마스크 셀 영역(CR: CR11~CR56)을 형성한 것을 예로 들어 설명한다. 5개의 제1 그리드 시트부(223) 및 4개의 제2 그리드 시트부(225)가 존재할 수 있다.
다음으로, 마스크 셀 시트부(220)를 테두리 프레임부(210)에 대응할 수 있다. 대응시키는 과정에서, 마스크 셀 시트부(220)의 모든 측을 인장(F1~F4)하여 마스크 셀 시트부(220)를 평평하게 편 상태로 테두리 시트부(221)를 테두리 프레임부(210)에 대응할 수 있다. 한 측에서도 여러 포인트[도 6의 (b)의 예로, 1~3포인트]로 마스크 셀 시트부(220)를 잡고 인장할 수 있다. 한편, 모든 측이 아니라, 일부 측 방향을 따라 마스크 셀 시트부(220)를 인장(F1, F2) 할 수도 있다.
다음으로, 마스크 셀 시트부(220)를 테두리 프레임부(210)에 대응하면, 마스크 셀 시트부(220)의 테두리 시트부(221)를 용접(W)하여 접착할 수 있다. 마스크 셀 시트부(220)가 테두리 프레임부(220)에 견고하게 접착될 수 있도록, 모든 측을 용접(W)하는 것이 바람직하다. 용접(W)은 테두리 프레임부(210)의 모서리쪽에 최대한 가깝게 수행하여야 테두리 프레임부(210)와 마스크 셀 시트부(220) 사이의 들뜬 공간을 최대한 줄이고 밀착성을 높일 수 있게 된다. 용접(W) 부분은 라인(line) 또는 스팟(spot) 형태로 생성될 수 있으며, 마스크 셀 시트부(220)와 동일한 재질을 가지고 테두리 프레임부(210)와 마스크 셀 시트부(220)를 일체로 연결하는 매개체가 될 수 있다.
도 7은 본 발명의 다른 실시예에 따른 프레임의 제조 과정을 나타내는 개략도이다. 도 6의 실시예는 마스크 셀 영역(CR)을 구비한 마스크 셀 시트부(220)를 먼저 제조하고 테두리 프레임부(210)에 접착하였으나, 도 7의 실시예는 평면의 시트를 테두리 프레임부(210)에 접착한 후에, 마스크 셀 영역(CR) 부분을 형성한다.
먼저, 도 6의 (a)처럼, 중공 영역(R)을 포함한 테두리 프레임부(210)를 제공한다.
다음으로, 도 7의 (a)를 참조하면, 테두리 프레임부(210)에 평면의 시트[평면의 마스크 셀 시트부(220')]를 대응할 수 있다. 마스크 셀 시트부(220')는 아직 마스크 셀 영역(CR)이 형성되지 않은 평면 상태이다. 대응시키는 과정에서, 마스크 셀 시트부(220')의 모든 측을 인장(F1~F4)하여 마스크 셀 시트부(220')를 평평하게 편 상태로 테두리 프레임부(210)에 대응할 수 있다. 한 측에서도 여러 포인트[도 7의 (a)의 예로, 1~3포인트]로 마스크 셀 시트부(220')를 잡고 인장할 수 있다. 한편, 모든 측이 아니라, 일부 측 방향을 따라 마스크 셀 시트부(220')를 인장(F1, F2) 할 수도 있다.
다음으로, 마스크 셀 시트부(220')를 테두리 프레임부(210)에 대응하면, 마스크 셀 시트부(220')의 테두리 부분을 용접(W)하여 접착할 수 있다. 마스크 셀 시트부(220')가 테두리 프레임부(220)에 견고하게 접착될 수 있도록, 모든 측을 용접(W)하는 것이 바람직하다. 용접(W)은 테두리 프레임부(210)의 모서리쪽에 최대한 가깝게 수행하여야 테두리 프레임부(210)와 마스크 셀 시트부(220') 사이의 들뜬 공간을 최대한 줄이고 밀착성을 높일 수 있게 된다. 용접(W) 부분은 라인(line) 또는 스팟(spot) 형태로 생성될 수 있으며, 마스크 셀 시트부(220')와 동일한 재질을 가지고 테두리 프레임부(210)와 마스크 셀 시트부(220')를 일체로 연결하는 매개체가 될 수 있다.
다음으로, 도 7의 (b)를 참조하면, 평면의 시트[평면의 마스크 셀 시트부(220')]에 마스크 셀 영역(CR)을 형성한다. 레이저 스크라이빙, 에칭 등을 통해 마스크 셀 영역(CR) 부분의 시트를 제거함에 따라 마스크 셀 영역(CR)을 형성할 수 있다. 본 명세서에서는 6 X 5의 마스크 셀 영역(CR: CR11~CR56)을 형성한 것을 예로 들어 설명한다. 마스크 셀 영역(CR)을 형성하게 되면, 테두리 프레임부(210)와 용접(W)된 부분이 테두리 시트부(221)가 되고, 5개의 제1 그리드 시트부(223) 및 4개의 제2 그리드 시트부(225)를 구비하는 마스크 셀 시트부(220)가 구성될 수 있다.
도 8은 본 발명의 일 실시예에 따른 모판(40) 상에 마스크(100)를 형성하는 과정을 나타내는 개략도이다. 이하에서는, 본 발명의 실시예에 따라, 마스크(100)를 제조하고, 프레임(200)에 마스크(100)를 접착하는 일련의 과정에 대해서 설명한다.
도 8의 (a)를 참조하면, 모판(mother plate; 40)을 제조한다. 전주 도금에서 음극체(cathode)로 사용하는 모판(40)은 전도성 재질을 사용한다. 즉, 모판(40)의 기재(41)는 전도성 재질일 수 있다.
전도성 재질로서, 메탈의 경우에는 표면에 메탈 옥사이드들이 생성되어 있을 수 있고, 메탈 제조 과정에서 불순물이 유입될 수 있으며, 다결정 실리콘 기재의 경우에는 개재물 또는 결정립계(Grain Boundary)가 존재할 수 있으며, 전도성 고분자 기재의 경우에는 불순물이 함유될 가능성이 높고, 강도. 내산성 등이 취약할 수 있다. 메탈 옥사이드, 불순물, 개재물, 결정립계 등과 같이 모판(또는, 음극체)의 표면에 전기장이 균일하게 형성되는 것을 방해하는 요소를 "결함"(Defect)으로 지칭한다. 결함(Defect)에 의해, 상술한 재질의 음극체에는 균일한 전기장이 인가되지 못하여 도금막[마스크(100)]의 일부가 불균일하게 형성될 수 있다.
UHD 급 이상의 초고화질 화소를 구현하는데 있어서 도금막 및 도금막 패턴[마스크 패턴(P)]의 불균일은 화소의 형성에 악영향을 미칠 수 있다. FMM, 새도우 마스크의 패턴 폭은 수 내지 수십㎛의 크기, 바람직하게는 30㎛보다 작은 크기로 형성될 수 있으므로, 수㎛ 크기의 결함조차 마스크의 패턴 사이즈에서 큰 비중을 차지할 정도의 크기이다.
또한, 상술한 재질의 음극체에서의 결함을 제거하기 위해서는 메탈 옥사이드, 불순물 등을 제거하기 위한 추가적인 공정이 수행될 수 있으며, 이 과정에서 음극체 재료가 식각되는 등의 또 다른 결함이 유발될 수도 있다.
따라서, 본 발명은 단결정 실리콘 재질의 기재(41)를 사용할 수 있다. 전도성을 가지도록, 기재(41)는 1019 이상의 고농도 도핑이 수행될 수 있다. 도핑은 기재(41)의 전체에 수행될 수도 있으며, 기재(41)의 표면 부분에만 수행될 수도 있다.
도핑된 단결정 실리콘의 경우는 결함이 없기 때문에, 전주 도금 시에 표면 전부에서 균일한 전기장 형성으로 인한 균일한 도금막[마스크(100)]이 생성될 수 있는 이점이 있다. 균일한 도금막을 통해 제조하는 프레임 일체형 마스크(100, 200)는 OLED 화소의 화질 수준을 더욱 개선할 수 있다. 그리고, 결함을 제거, 해소하는 추가 공정이 수행될 필요가 없으므로, 공정비용이 감축되고, 생산성이 향상되는 이점이 있다.
또한, 실리콘 재질의 기재(41)를 사용함에 따라서, 필요에 따라 기재(41)의 표면을 산화(Oxidation), 질화(Nitridation)하는 과정만으로 절연부(45)를 형성할 수 있는 이점이 있다. 절연부(45)는 포토레지스트를 사용하여 형성할 수도 있다. 절연부(45)가 형성된 부분에서는 도금막[마스크(100)]의 전착이 방지되어, 도금막에 패턴[마스크 패턴(P)]을 형성하게 된다.
기재(41)의 적어도 일면 상에 절연부(45)가 형성될 수 있다. 절연부(45)는 패턴을 가지고 형성될 수 있고, 테이퍼 또는 역테이퍼 형상의 음각 패턴(46)에 의해 패턴을 가질 수 있다. 절연부(45)는 기재(41)의 일면 상에 돌출되도록(양각으로) 형성한 부분으로서, 도금막(100)의 생성을 방지하도록, 절연 특성을 가질 수 있다. 이에 따라, 절연부(45)는 포토레지스트, 실리콘 산화물, 실리콘 질화물 중 어느 하나의 재질로 형성될 수 있다. 절연부(45)는 기재(41) 상에 증착 등의 방법으로 실리콘 산화물, 실리콘 질화물을 형성할 수 있고, 기재(41)를 베이스로 하여 산화(Thermal Oxidation), 열 질화(Thermal Nitiridation) 방법을 사용할 수도 있다. 프린팅 방법 등을 이용하여 포토레지스트를 형성할 수도 있다. 포토레지스트를 사용하여 패턴을 형성할 때에는 다중 노광 방법, 영역마다 노광 강도를 다르게 하는 방법 등을 사용할 수 있다. 절연부(45)는 도금막(100)보다는 두꺼운 두께를 가질 수 있다. 이에 따라, 모판(40)이 제조될 수 있다.
다음으로, 도 8의 (b)를 참조하면, 모판(40) 상에 마스크(100)[또는, 도금막(100)]을 전주 도금으로 형성할 수 있다. 모판(40)[또는, 음극체(40)]과 대향하는 양극체(미도시)를 준비한다. 양극체(미도시)는 도금액(미도시)에 침지되어 있고, 모판(40)은 전부 또는 일부가 도금액(미도시)에 침지되어 있을 수 있다. 모판(40)[또는, 음극체(40)]과 대향하는 양극체 사이에 형성된 전기장으로 인해 도금막(100)이 모판(40)의 표면에서 전착되어 생성될 수 있다. 다만, 전도성 기재(41)의 노출된 표면(46)에서만 도금막(100)이 생성되며, 절연부(45) 표면에서는 도금막(100)이 생성되지 않으므로, 도금막(100)에 패턴(P)[도 8의 (c) 참조]이 형성될 수 있다.
기재(41) 표면으로부터 도금막(100)이 전착되면서 두꺼워지기 때문에, 절연부(45)의 상단을 넘기 전까지만 도금막(100)을 형성하는 것이 바람직하다. 즉, 절연부(45)의 두께보다 도금막(100)의 두께가 더 작을 수 있다. 도금막(100)은 절연부(45)의 패턴 공간에 채워지며 전착되므로, 절연부(45)의 패턴과 역상을 가지는 형상을 가지며 생성될 수 있다. 절연부(45)의 측단면 형상은 테이퍼, 역테이퍼, 수직 형상 등의 다양한 형상을 가질 수 있지만, 대략 역테이퍼 형상으로 기울어지게 형성되는 것이 바람직하다. 그리하여, 마스크(100)의 패턴(P)도 역테이퍼 형상을 가지게 되고, 이를 뒤집어서 OLED 화소 증착 장치(1000)[도 16 참조]에 배치했을때, 테이퍼 형상으로 측면이 경사지게 형성(S)됨에 따라 새도우 이펙트를 방지할 수 있다. 게다가, 기재(41)의 표면에 대응하는 마스크(100)의 하부면이, OLED 화소 증착 장치(1000)에서 대상 기판(900)에 맞닿게 되므로, 패턴의 정렬도가 명확해질 수 있게 된다.
절연부(45)가 절연 특성을 가지므로, 절연부(45)와 양극체 사이에서는 전기장이 형성되지 않거나, 도금이 수행되기 어려운 정도의 미약한 전기장만이 형성된다. 따라서, 모판(40)에서 도금막(100)이 생성되지 않는, 절연부(45)에 대응하는 부분은 도금막(100)의 패턴, 홀(Hole) 등을 구성한다.
다음으로, 도 8의 (c)를 참조하면, 절연부(45)를 제거할 수 있다. 전주 도금시에 패턴화(46)된 절연부(45) 각각은 마스크(100)의 R, G, B에 대응하는 마스크 패턴(P)을 형성할 수 있으므로, 마스크 패턴(P)의 측단면은 기울어지게 형성될 수 있고, 기울어진 각도는 약 45° 내지 65°일 수 있다.
마스크 패턴(P)의 폭은 40㎛보다 작게 형성될 수 있고, 마스크(100)의 두께는 약 2~50㎛로 형성될 수 있다. 상술한 바와 같이, 하나의 마스크(100)는 하나의 (C)을 가질 수 있고, 프레임(200)이 복수의 마스크 셀 영역(CR: CR11~CR56)을 구비하므로, 각각의 마스크 셀 영역(CR: CR11~CR56)에 대응하는 마스크 셀(C: C11~C56)을 가지는 마스크(100)도 복수개 구비할 수 있다.
도 9는 본 발명의 일 실시예에 따른 모판(40) 상의 마스크(100)를 버퍼 트레이(60)로 이동시키는 과정을 나타내는 개략도, 도 10은 본 발명의 일 실시예에 따른 버퍼 트레이(60) 상의 마스크(100)를 트레이(50)로 이동시키는 과정을 나타내는 개략도이다.
다음으로, 트레이(tray; 50)를 통해 마스크(100)를 셀 영역(CR)에 대응시키기 위해서, 마스크(100)를 트레이(50) 상에 부착해야 한다. 다만, 마스크(100)는 매우 얇은 금속박으로서, 마스크(100)를 트레이(50) 상에 올려놓는 로딩 과정만으로는 마스크(100)가 트레이(50)의 일면(상면)에 잘 부착되지 않는다. 게다가, 마스크(100)가 평평하게 부착되는 것은 더 기대하기 어렵다. 특별한 방법 없이 마스크(100)를 모판(40)에서 떼어내는 과정에서 마스크(100)에 주름, 구김이 생길 가능성이 있고, 떼어낸 마스크(100)가 완전히 평평한 상태가 아니므로, 트레이(50) 상에 부착되지 않는다.
따라서, 본 발명은 버퍼 트레이(60)를 더 사용하고, 버퍼 트레이(60) 및 트레이(50)에 접착제를 배치하여 마스크(100)의 형태를 유지하면서 이동시키는 것을 특징으로 한다. 마스크(100)가 평평한 상태를 유지하면서 이동하고, 접착제의 부착력에 의해 부착이 원활히 수행될 수 있다.
도 9의 (a)를 참조하면, 버퍼 트레이(60)를 준비하고, 마스크(100)와 소정 간격 이격되도록 위치시킬 수 있다. 버퍼 트레이(60)는 마스크(100)를 평평하게 부착할 수 있도록, 평판 형상인 것이 바람직하다. 마스크(100)가 전체적으로 평평하게 부착될 수 있도록 버퍼 트레이(60)의 크기는 마스크(100)보다 큰 평판 형상일 수 있다.
버퍼 트레이(60)의 일면에는 제1 접착제(61)가 배치될 수 있다. 제1 접착제(61)는 유/무기 접착제, 에폭시 수지계 접착제 등을 사용할 수 있다. 제1 접착제(61)는 버퍼 트레이(60)의 일면 상의 전체에 코팅될 필요는 없고, 마스크(100)의 테두리에 대응하는 부분에 코팅되는 것이 바람직하다. 일 예로, 제1 접착제(61)는 마스크(100)의 테두리 형상에 대응하는, 사각 틀 형상과 같이 버퍼 트레이(60)의 일면 상에 코팅될 수 있다. 제1 접착제(61)의 접착력은 전도성 기재(41)와 마스크(100) 사이의 부착력보다는 강해야 한다. 다시 말해, 전도성 기재(41)와 마스크(100) 사이의 부착력보다 버퍼 트레이(60)와 마스크(100) 사이의 부착력이 더 강하도록 제1 접착제(61)를 사용할 수 있다.
다음으로, 도 9의 (b)를 참조하면, 버퍼 트레이(60)를 마스크(100)에 접촉시킬 수 있다. 버퍼 트레이(60)를 마스크(100)에 접촉시킬때, 제1 접착제(61)의 부분이 마스크(100)의 테두리에 대응하도록 정렬시킬 수 있다. 마스크(100)가 버퍼 트레이(60)에 접촉되면, 마스크(100)는 제1 접착제(61)에 의해 버퍼 트레이(60)의 일면 상에 부착될 수 있다.
다음으로, 도 9의 (c)를 참조하면, 버퍼 트레이(60)와 모판(40)[또는, 전도성 기재(41)]를 상호 분리할 수 있다. 버퍼 트레이(60)를 들어올리면, 마스크(100)가 제1 접착제(61)에 의해 버퍼 트레이(60)의 일면 상에 부착된 상태로 같이 들어올려질 수 있다. 마스크(100)의 테두리 부분이 버퍼 트레이(60)에 부착되기 때문에 마스크(100) 전체가 평평한 상태를 유지하며 버퍼 트레이(60)의 일면 상에 부착될 수 있고, 마스크(100)에 주름이나 구김이 생기지 않는다.
다음으로, 도 10의 (a)를 참조하면, 트레이(50)를 준비하고, 마스크(100)가 부착된 버퍼 트레이(60)와 소정 간격 이격되도록 위치시킬 수 있다. 트레이(50)는 마스크(100)를 평평하게 부착할 수 있도록, 평판 형상인 것이 바람직하다. 마스크(100)가 전체적으로 평평하게 부착될 수 있도록 트레이(60)의 크기는 마스크(100)보다 큰 평판 형상일 수 있다.
트레이(50)는 레이저 광(L)이 투과할 수 있는 재질일 수 있다. 트레이(50)는 글래스(glass), 실리카(silica), 내열유리, 석영(quartz), 알루미나(Al2O3) 등의 레이저 광이 투과하는 재질을 포함하여, 트레이(50) 상부에서 레이저(L)를 조사하여 레이저 용접(LW) 방식으로 마스크(100)를 프레임(200)에 접착시킬 수 있게 된다.
트레이(50)의 일면에는 제2 접착제(51)가 배치될 수 있다. 제2 접착제(51)는 유/무기 접착제, 에폭시 수지계 접착제 등을 사용할 수 있다. 제2 접착제(51)는 트레이(50)의 일면 상의 전체에 코팅될 필요는 없고, 마스크(100)의 테두리에 대응하는 부분에 코팅되는 것이 바람직하다. 일 예로, 제2 접착제(51)는 마스크(100)의 테두리 형상에 대응하는, 사각 틀 형상과 같이 트레이(50)의 일면 상에 코팅될 수 있다. 제2 접착제(51)의 접착력은 제1 접착제(61)의 접착력보다 더 강할 수 있다. 다시 말해, 버퍼 트레이(60)와 마스크(100) 사이의 부착력보다 트레이(50)와 마스크(100) 사이의 부착력이 더 강하도록 제2 접착제(51)를 사용할 수 있다.
다음으로, 도 10의 (b)를 참조하면, 트레이(50)를 마스크(100)에 접촉시킬 수 있다. 트레이(50)를 마스크(100)에 접촉시킬때, 제2 접착제(51)의 부분이 마스크(100)의 테두리에 대응하도록 정렬시킬 수 있다. 마스크(100)가 트레이(50)에 접촉되면, 마스크(100)는 제2 접착제(51)에 의해 트레이(50)의 일면 상에 부착될 수 있다. 다시 말해, 마스크(100)의 일면(상면)은 버퍼 트레이(60)에 부착된 상태이고, 타면(하면)은 트레이(50)에 부착된 상태를 가질 수 있다.
다음으로, 도 10의 (c)를 참조하면, 트레이(50)와 버퍼 트레이(60)를 상호 분리할 수 있다. 버퍼 트레이(60)를 들어올리면, 마스크(100)가 제2 접착제(51)에 의해 트레이(50)의 일면 상에 부착되고, 버퍼 트레이(60)는 마스크(100)가 분리된 상태로 들어올려질 수 있다. 제2 접착제(51)가 제1 접착제(61)보다 접착력이 강하므로, 마스크(100)가 버퍼 트레이(60)로부터 탈착되고 트레이(50)에 부착되는 결과이다. 마스크(100)의 테두리 부분이 트레이(50)에 부착되기 때문에, 마스크(100) 전체가 버퍼 트레이(60)에 부착되었던 상태와 마찬가지로 평평한 상태를 유지하며 트레이(50)의 일면 상에 부착될 수 있고, 마스크(100)에 주름이나 구김이 생기지 않는다. 따라서, 마스크(100)가 트레이(50)의 일면 상에 부착됨과 동시에 평평하게 잘 펴져서 부착되므로, 마스크 패턴(P)의 정렬이 어긋나지 않게 되는 이점이 있다. 게다가, 마스크(100)가 버퍼 트레이(60)에 옮겨진 후 다시 트레이(50)로 옮겨지므로, 기재(41)의 표면에 대응하는 마스크(100)의 하부면이 다시 트레이(50)에 부착될 수 있다. 그리하여 표면이 더욱 매끄러운 마스크(100)의 면이 트레이(50)의 일면에 부착되므로, 패턴의 정렬도가 더욱 명확해지는 이점이 있다.
도 11은 본 발명의 다른 실시예에 따른 버퍼 트레이(60')를 이용하여 마스크(100)에 부식 방지 코팅을 수행하는 개략도이다. 도 11의 (a) 내지 (c)는 도 9의 (a) 내지 (c)와 차이점에 대해서만 설명한다.
버퍼 트레이(60')는 평판 형상이 아니고, 가운데 부분에 중공 영역(65)이 형성된 틀 형상을 가질 수 있다. 바람직하게는, 마스크(100)의 형상에 대응하는 사각 틀 형상일 수 있다. 버퍼 트레이(60')의 일면에는 사각 틀 내측 테두리에 인접하게 제1 접착제(61)가 배치될 수 있다.
도 11의 (a)를 참조하면, 버퍼 트레이(60')를 준비하고, 마스크(100)와 소정 간격 이격되도록 위치시킬 수 있다.
다음으로, 도 11의 (b)를 참조하면, 버퍼 트레이(60')를 마스크(100)에 접촉시킬 수 있다. 마스크(100)가 버퍼 트레이(60')에 접촉되면, 마스크(100)는 제1 접착제(61)에 의해 버퍼 트레이(60')의 일면 상에 부착될 수 있다.
다음으로, 도 11의 (c)를 참조하면, 버퍼 트레이(60')와 모판(40)[또는, 전도성 기재(41)]를 상호 분리할 수 있다. 버퍼 트레이(60')를 들어올리면, 마스크(100)가 제1 접착제(61)에 의해 버퍼 트레이(60')의 일면 상에 부착된 상태로 같이 들어올려질 수 있다. 마스크(100)의 테두리 부분이 버퍼 트레이(60')에 부착되기 때문에 마스크(100) 전체가 평평한 상태를 유지하며 버퍼 트레이(60')의 일면 상에 부착될 수 있고, 마스크(100)에 주름이나 구김이 생기지 않는다.
다음으로, 도 11의 (d)를 참조하면, 마스크(100)의 표면에 부식 방지 코팅막을 형성하는 공정을 더 수행할 수 있다. 부식 방지 코팅 공정은 무전해도금, 크로메이트(chromate) 처리 등의 코팅 방법을 사용할 수 있다. 버퍼 트레이(60')와 마스크(100)가 부착된 구조체를 부식 방지 코팅액(CS) 등에 침적하여 부식 방지 코팅 공정을 수행할 수 있다. 이때, 버퍼 트레이(60')는 가운데에 중공 영역(65)이 형성되어 있으므로, 이 중공 영역(65)을 통해 코팅액(CS)이 침투하여 마스크(100)의 전체 표면에 대하여 부식 방지 코팅 공정을 수행할 수 있다.
다음으로, 도 11의 (e)를 참조하면, 버퍼 트레이(60')와 마스크(100)가 부착된 구조체를 부식 방지 코팅액(CS) 등으로부터 꺼내면, 표면에 부식 방지 코팅막(120)이 형성된 마스크(100)가 준비될 수 있다. 부식 방지 코팅막(120)은 Cr, NiP, 크로메이트(chromate) 등의 재질일 수 있다. 부식 방지 코팅막(120)을 마스크(100)의 표면에 형성함으로써, 화소 증착 공정에서 내구성과 수명이 향상된 프레임 일체형 마스크를 제공할 수 있게 되는 이점이 있다.
도 12는 본 발명의 일 실시예에 따른 트레이(50)를 프레임(200) 상에 로딩하여 마스크(100)를 프레임(200)의 셀 영역(CR)에 대응시키는 상태의 평면도[도 12의 (a)] 및 측단면도[도 12의 (b)]를 나타낸다.
다음으로, 도 12의 (a) 및 (b)를 참조하면, 마스크(100)를 프레임(200)의 하나의 마스크 셀 영역(CR)에 대응할 수 있다. 마스크(100)가 상부에 부착된 트레이(50)를 뒤집고, 트레이(50)를 프레임(200)[또는, 마스크 셀 시트부(220)] 상에 로딩하는 것으로 마스크(100)를 마스크 셀 영역(CR)에 대응시킬 수 있다. 트레이(50)의 위치를 제어하면서, 현미경을 통해 마스크(100)가 마스크 셀 영역(CR)에 대응하는지 살펴볼 수 있다. 트레이(50)가 프레임(200)[또는, 마스크 셀 시트부(220)] 상에 로딩되면, 마스크(100)는 트레이(50)와 프레임(200)[또는, 마스크 셀 시트부(220)] 사이에 배치되면서, 트레이(50)에 의해 압착될 수 있다.
한편, 하부 지지체(70)를 프레임(200) 하부에 더 배치할 수도 있다. 하부 지지체(70)는 프레임 테두리부(210)의 중공 영역(R) 내에 들어갈 정도의 크기를 가지고 평판 형상일 수 있다. 또한, 하부 지지체(70)의 상부면에는 마스크 셀 시트부(220)의 형상에 대응하는 소정의 지지홈(미도시)이 형성될 수도 있다. 이 경우 테두리 시트부(221) 및 제1, 2 그리드 시트부(223, 225)가 지지홈에 끼워지게 되어, 마스크 셀 시트부(220)가 더욱 잘 고정될 수 있다.
하부 지지체(70)는 마스크(100)가 접촉하는 마스크 셀 영역(CR)의 반대면을 압착할 수 있다. 즉, 하부 지지체(70)는 마스크 셀 시트부(220)를 상부 방향으로 지지하여 마스크(100)의 접착과정에서 마스크 셀 시트부(220)가 하부 방향으로 처지는 것을 방지할 수 있다. 이와 동시에, 하부 지지체(70)와 트레이(50)가 상호 반대되는 방향으로 마스크(100)의 테두리 및 프레임(200)[또는, 마스크 셀 시트부(220)]를 압착하게 되므로, 마스크(100)의 정렬 상태가 흐트러지지 않고 유지될 수 있게 된다.
본 발명은 트레이(50) 상에 마스크(100)를 부착하고, 트레이(50)를 프레임(200) 상에 로딩하는 것만으로 마스크(100)를 프레임(200)의 마스크 셀 영역(CR)에 대응하는 과정이 완료되므로, 이 과정에서 마스크(100)에 어떠한 인장력도 가하지 않는 것을 특징으로 한다.
프레임(200)의 마스크 셀 시트부(220)는 얇은 두께를 가지기 때문에, 마스크(100)에 인장력이 가해진 채로 마스크 셀 시트부(220)에 접착이 되면, 마스크(100)에 잔존하는 인장력이 마스크 셀 시트부(220) 및 마스크 셀 영역(CR)에 작용하게 되어 이들을 변형시킬 수도 있다. 따라서, 마스크(100)에 인장력을 가하지 않은 채로 마스크 셀 시트부(220)에 마스크(100)의 접착을 수행해야 한다. 그리하여, 마스크(100)에 가해진 인장력이 반대로 프레임(200)에 장력(tension)으로 작용하여 프레임(200)[또는, 마스크 셀 시트부(220)]을 변형시키는 것을 방지할 수 있게 된다.
다만, 마스크(100)에 인장력을 가하지 않고 프레임(200)[또는, 마스크 셀 시트부(220)]에 접착시켜 프레임 일체형 마스크를 제조하고, 이 프레임 일체형 마스크를 화소 증착 공정에 사용할 때 한가지 문제가 발생할 수 있다. 약 25~45℃ 정도에서 수행되는 화소 증착 공정에서 마스크(100)가 소정 길이만큼 열팽창 하는 것이다. 인바 재질의 마스크(100)라고 하더라도, 화소 증착 공정 분위기를 형성하기 위한 10℃ 정도의 온도 상승에 따라 약 1~3 ppm 만큼의 길이가 변할 수 있다. 예를 들어, 마스크(100)의 총 길이가 500 mm 경우, 약 5~15㎛만큼의 길이가 늘어날 수 있다. 그러면, 마스크(100)가 자중에 의해 쳐지거나, 프레임(200)에서 고정된 상태에서 늘어나 뒤틀리는 등의 변형을 일으키면서 패턴(P)들의 정렬 오차가 커지는 문제점이 발생하게 된다.
따라서, 본 발명은 상온이 아닌 이보다 높은 온도 상에서, 마스크(100)에 인장력을 가하지 않은 채로, 프레임(200)의 마스크 셀 영역(CR)에 대응하고 접착할 수 있다. 본 명세서에서는 공정 영역의 온도를 제1 온도로 상승(ET)시킨 후에 마스크(100)를 프레임(200)에 대응하고 접착한다고 표현한다.
"공정 영역"이라 함은 마스크(100), 프레임(200) 등의 구성 요소들이 위치하고, 마스크(100)의 접착 공정 등이 수행되는 공간을 의미할 수 있다. 공정 영역은 폐쇄된 챔버 내에 공간일 수도 있고, 개방된 공간일 수도 있다. 또한, "제1 온도"라 함은 프레임 일체형 마스크를 OLED 화소 증착 공정에 사용할 때, 화소 증착 공정 온도보다는 높거나 같은 온도를 의미할 수 있다. 화소 증착 공정 온도가 약 25~45℃인 것을 고려하면, 제1 온도는 약 25℃ 내지 60℃일 수 있다. 공정 영역의 온도 상승은, 챔버에 가열 수단을 설치하거나, 공정 영역 주변에 가열 수단을 설치하는 방법 등으로 수행할 수 있다.
다시, 도 12를 참조하면, 마스크(100)를 마스크 셀 영역(CR)에 대응한 후에, 프레임(200)이 포함된 공정 영역의 온도를 제1 온도로 상승(ET)시킬 수 있다. 또는, 프레임(200)이 포함된 공정 영역의 온도를 제1 온도로 상승(ET)시킨 후에, 마스크(100)를 마스크 셀 영역(CR)에 대응시킬 수도 있다. 도면에는 하나의 마스크(100)만을 하나의 마스크 셀 영역(CR)에 대응시킨 것이 도시되어 있지만, 마스크 셀 영역(CR)마다 마스크(100)들을 대응시킨 후에 공정 영역의 온도를 제1 온도로 상승(ET)시킬 수도 있다.
종래의 도 1의 마스크(10)는 셀 6개(C1~C6)를 포함하므로 긴 길이를 가지는데 반해, 본 발명의 마스크(100)는 셀 1개(C)를 포함하여 짧은 길이를 가지므로 PPA(pixel position accuracy)가 틀어지는 정도가 작아질 수 있다. 예를 들어, 복수의 셀(C1~C6, ...)들을 포함하는 마스크(10)의 길이가 1m이고, 1m 전체에서 10㎛의 PPA 오차가 발생한다고 가정하면, 본 발명의 마스크(100)는 상대적인 길이의 감축[셀(C) 개수 감축에 대응]에 따라 위 오차 범위를 1/n 할 수 있다. 예를 들어, 본 발명의 마스크(100)의 길이가 100mm라면, 종래 마스크(10)의 1m에서 1/10로 감축된 길이를 가지므로, 100mm 길이의 전체에서 1㎛의 PPA 오차가 발생하게 되며, 정렬 오차가 현저히 감소하게 되는 효과가 있다.
한편, 마스크(100)가 복수의 셀(C)을 구비하고, 각각의 셀(C)이 프레임(200)의 각각의 셀 영역(CR)에 대응하여도 정렬 오차가 최소화되는 범위 내에서라면, 마스크(100)는 프레임(200)의 복수의 마스크 셀 영역(CR)에 대응할 수도 있다. 또는, 복수의 셀(C)을 가지는 마스크(100)가 하나의 마스크 셀 영역(CR)에 대응할 수도 있다. 이 경우에도, 정렬에 따른 공정 시간과 생산성을 고려하여, 마스크(100)는 가급적 적은 수의 셀(C)을 구비하는 것이 바람직하다.
본 발명의 경우는, 마스크(100)의 하나의 셀(C)을 대응시키고 정렬 상태를 확인하기만 하면 되므로, 복수의 셀(C: C1~C6)을 동시에 대응시키고 정렬 상태를 모두 확인하여야 하는 종래의 방법[도 2 참조]보다, 제조시간을 현저하게 감축시킬 수 있다.
즉, 본 발명의 프레임 일체형 마스크 제조 방법은, 6개의 마스크(100)에 포함되는 각각의 셀(C11~C16)을 각각 하나의 셀 영역(CR11~CR16)에 대응시키고 각각 정렬 상태를 확인하는 6번의 과정을 통해, 6개의 셀(C1~C6)을 동시에 대응시키고 6개 셀(C1~C6)의 정렬 상태를 동시에 모두 확인해야 하는 종래의 방법보다 훨씬 시간이 단축될 수 있다.
또한, 본 발명의 프레임 일체형 마스크 제조 방법은, 30개의 셀 영역(CR: CR11~CR56)에 30개의 마스크(100)를 각각 대응시키고 정렬하는 30번의 과정에서의 제품 수득률이, 6개의 셀(C1~C6)을 각각 포함하는 5개의 마스크(10)[도 2의 (a) 참조]를 프레임(20)에 대응시키고 정렬하는 5번의 과정에서의 종래의 제품 수득률보다 훨씬 높게 나타날 수 있다. 한번에 6개씩의 셀(C)이 대응하는 영역에 6개의 셀(C1~C6)을 정렬하는 종래의 방법이 훨씬 번거롭고 어려운 작업이므로 제품 수율이 낮게 나타나는 것이다.
한편, 마스크(100)를 프레임(200)에 대응한 후, 프레임(200)에 소정의 접착제를 개재하여 마스크(100)를 임시로 고정할 수도 있다. 이후에, 마스크(100)의 접착 단계를 진행할 수 있다.
도 13은 본 발명의 일 실시예에 따른 마스크(100)를 프레임(200)의 셀 영역(CR)에 대응하여 접착하는 과정을 나타내는 측단면도[도 13의 (a)] 및 E의 확대 측단면도[도 13의 (b)]이다. 도 13의 (c)는 도 13의 (b)의 비교예를 나타낸다.
다음으로, 도 13을 참조하면, 마스크(100)의 테두리의 일부 또는 전부를 프레임(200)에 접착할 수 있다. 접착은 용접으로 수행될 수 있고, 바람직하게는 레이저 용접(LW)으로 수행될 수 있다. 레이저 용접(LW)된 부분은 마스크(100)/프레임(200)과 동일한 재질을 가지고 일체로 연결될 수 있다.
트레이(50)의 상부에서 레이저(L)를 마스크(100)의 테두리 부분[또는, 더미]의 상부에 조사하면, 레이저(L)가 트레이(50)를 투과하여 마스크(100)의 일부를 용융시킬 수 있다. 그리하여, 마스크(100)가 프레임(200)과 레이저 용접(LW)될 수 있다. 레이저 용접(LW)은 프레임(200)의 모서리쪽에 최대한 가깝게 수행하여야 마스크(100)와 프레임(200) 사이의 들뜬 공간을 최대한 줄이고 밀착성을 높일 수 있게 된다. 레이저 용접(LW) 부분은 라인(line) 또는 스팟(spot) 형태로 생성될 수 있으며, 마스크(100)와 동일한 재질을 가지고 마스크(100)와 프레임(200)을 일체로 연결하는 매개체가 될 수 있다.
한편, 도 13의 (c)를 참조하면, 마스크(100')의 상부 및 하부를 압착하지 않은 채로 레이저 용접(LW')을 수행하는 경우, 레이저가 조사된 부분의 마스크(100')가 랜덤한 방향으로 용융될 수 있다. 그러면, 균일하지 않은 두께로 레이저 용접(LW')이 수행되며, 마스크(100')의 표면에 구김 또는 주름진 형태의 용접 비드(101')가 형성되어 결국 마스크 패턴(P) 및 셀(C)들간의 정렬 상태가 틀어질 수 있게 된다.
따라서, 본 발명은 트레이(50)와 하부 지지체(70)가 마스크(100)를 압착하므로, 레이저 용접(LW) 시에 용접 비드(bead; 101')가 형성되는 것을 방지할 수 있다. 트레이(50)와 하부 지지체(70)가 평평한 형태로 마스크(100)를 압착하므로, 레이저 용접(LW) 시에 레이저(L)가 조사된 부분의 마스크(100)가 균일하게 용융되어, 균일한 두께로 레이저 용접(LW)이 수행될 수 있다. 이에 따라, 접착 과정에서 마스크 패턴(P) 및 셀(C)들간의 정렬 상태를 유지할 수 있게 된다.
한편, 레이저(L)는 트레이(50)의 제2 접착제(51)가 배치된 영역, 또는, 제2 접착제(51)가 배치된 영역보다 적어도 내측에 조사될 수도 있다. 특히, 제2 접착제(51)가 배치된 영역보다 적어도 내측에 레이저를 조사하는 것이 바람직하다. 그리하여, 레이저 용접(LW)을 마치고, 트레이(50)를 분리한 후에, 제2 접착제(51)가 묻어있는 마스크(100)의 부분을 절단하여 제거할 수 있게 된다. 혹은 제2 접착제(51)를 세정하는 공정을 더 수행할 수도 있다.
도 14는 본 발명의 일 실시예에 따른 마스크(100)를 순차적으로 셀 영역(CR: CR11~CR56)에 접착하는 과정을 나타내는 평면도[도 14의 (a)] 및 측단면도[도 14의 (b)] 이다.
도 14를 참조하면, 마스크 셀 영역(CR11)에 마스크(100)를 대응하여 접착한 후, 이에 이웃하는 마스크 셀 영역(CR12)에 마스크(100)를 대응하여 접착할 수 있다. 도 14에는 2개의 마스크(100)만 접착한 것이 도시되어 있으나, 모든 마스크 셀 영역(CR)에 마스크(100)를 대응하여 접착할 수 있다.
제1 그리드 시트부(223)[또는, 제2 그리드 시트부(225)]의 상면에 두 개의 이웃하는 마스크(100)의 일 테두리가 각각 접착(LW)된 형태가 나타난다. 제1 그리드 시트부(223)[또는, 제2 그리드 시트부(225)]의 폭, 두께는 약 1~5mm 정도로 형성될 수 있고, 제품 생산성 향상을 위해, 제1 그리드 시트부(223)[또는, 제2 그리드 시트부(225)]와 마스크(100)의 테두리가 겹치는 폭을 약 0.1~2.5mm 정도로 최대한 감축시킬 필요가 있다.
마스크(100)에 인장력을 가하지 않은 채로 마스크 셀 시트부(220) 상에 용접(LW)을 수행하므로, 마스크 셀 시트부(220)[또는, 테두리 시트부(221), 제1, 2 그리드 시트부(223, 225)]에는 장력이 가해지지 않는다.
하나의 마스크(100)를 프레임(200)에 접착한 후, 나머지 마스크(100)들을 나머지 마스크 셀(C)에 순차적으로 대응시키고, 프레임(200)에 접착하는 과정을 반복할 수 있다. 이미 프레임(200)에 접착된 마스크(100)가 기준 위치를 제시할 수 있으므로, 나머지 마스크(100)들을 셀 영역(CR)에 순차적으로 대응시키고 정렬 상태를 확인하는 과정에서의 시간이 현저하게 감축될 수 있는 이점이 있다. 그리고, 하나의 마스크 셀 영역에 접착된 마스크(100)와 이에 이웃하는 마스크 셀 영역에 접착된 마스크(100) 사이의 PPA(pixel position accuracy)가 3㎛를 초과하지 않게 되어, 정렬이 명확한 초고화질 OLED 화소 형성용 마스크를 제공할 수 있는 이점이 있다.
도 15는 본 발명의 일 실시예에 따른 마스크(100)를 프레임(200)의 셀 영역(CR)에 접착한 후 공정 영역의 온도를 하강(LT)시키는 과정을 나타내는 개략도이다.
다음으로, 도 15를 참조하면, 공정 영역의 온도를 제2 온도로 하강(LT)시킬 수 있다. "제2 온도"라 함은 제1 온도보다 낮은 온도를 의미할 수 있다. 제1 온도가 약 25℃ 내지 60℃인 것을 고려하면, 제2 온도는 제1 온도보다 낮은 것을 전제로 약 20℃ 내지 30℃일 수 있고, 바람직하게, 제2 온도는 상온일 수 있다. 공정 영역의 온도 하강은, 챔버에 냉각 수단을 설치하거나, 공정 영역 주변에 냉각 수단을 설치하는 방법, 상온으로 자연 냉각하는 방법 등으로 수행할 수 있다.
공정 영역의 온도가 제2 온도로 하강(LT)되면, 마스크(100)는 소정 길이만큼 열수축 할 수 있다. 마스크(100)는 모든 측면 방향을 따라 등방성으로 열수축 할 수 있다. 다만, 마스크(100)는 프레임(200)[또는, 마스크 셀 시트부(220)]에 용접(LW)으로 고정 연결되어 있으므로, 마스크(100)의 열수축은 주변의 마스크 셀 시트부(220)에 자체적으로 장력(TS)을 인가하게 된다. 마스크(100)의 자체적인 장력(TS) 인가에 의해 마스크(100)는 더욱 팽팽하게 프레임(200) 상에 접착될 수 있다.
또한, 각각의 마스크(100)들이 모두 대응되는 마스크 셀 영역(CR) 상에 접착된 후에 공정 영역의 온도가 제2 온도로 하강(LT)되므로, 모든 마스크(100)들이 동시에 열수축을 일으키게 되어 프레임(200)이 변형되거나 패턴(P)들이 정렬 오차가 커지는 문제가 방지될 수 있다. 더 설명하면, 장력(TS)이 마스크 셀 시트부(220)에 인가된다고 해도, 복수의 마스크(100)들이 상호 반대방향으로 장력(TS)을 인가하기 때문에, 그 힘이 상쇄되어 마스크 셀 시트부(220)에는 변형이 일어나지 않게 된다. 예를 들어, CR11 셀 영역에 부착된 마스크(100)와 CR12 셀 영역에 부착된 마스크(100) 사이의 제1 그리드 시트부(223)는 CR11 셀 영역에 부착된 마스크(100)의 우측 방향으로 작용하는 장력(TS)과 CR12 셀 영역에 부착된 마스크(100)의 좌측 방향으로 작용하는 장력(TS)이 상쇄될 수 있다. 그리하여, 장력(TS)에 의한 프레임(200)[또는, 마스크 셀 시트부(220)]에는 변형이 최소화되어 마스크(100)[또는, 마스크 패턴(P)]의 정렬 오차가 최소화 될 수 있는 이점이 있다.
도 16은 본 발명의 일 실시예에 따른 프레임 일체형 마스크(100, 200)를 이용한 OLED 화소 증착 장치(1000)를 나타내는 개략도이다.
도 16을 참조하면, OLED 화소 증착 장치(1000)는, 마그넷(310)이 수용되고, 냉각수 라인(350)이 배설된 마그넷 플레이트(300)와, 마그넷 플레이트(300)의 하부로부터 유기물 소스(600)를 공급하는 증착 소스 공급부(500)를 포함한다.
마그넷 플레이트(300)와 소스 증착부(500) 사이에는 유기물 소스(600)가 증착되는 유리 등의 대상 기판(900)이 개재될 수 있다. 대상 기판(900)에는 유기물 소스(600)가 화소별로 증착되게 하는 프레임 일체형 마스크(100, 200)[또는, FMM]이 밀착되거나 매우 근접하도록 배치될 수 있다. 마그넷(310)이 자기장을 발생시키고 자기장에 의해 대상 기판(900)에 밀착될 수 있다.
증착 소스 공급부(500)는 좌우 경로를 왕복하며 유기물 소스(600)를 공급할 수 있고, 증착 소스 공급부(500)에서 공급되는 유기물 소스(600)들은 프레임 일체형 마스크(100, 200)에 형성된 패턴(P)을 통과하여 대상 기판(900)의 일측에 증착될 수 있다. 프레임 일체형 마스크(100, 200)의 패턴(P)을 통과한 증착된 유기물 소스(600)는 OLED의 화소(700)로서 작용할 수 있다.
새도우 이펙트(Shadow Effect)에 의한 화소(700)의 불균일 증착을 방지하기 위해, 프레임 일체형 마스크(100, 200)의 패턴은 경사지게 형성(S)[또는, 테이퍼 형상(S)으로 형성]될 수 있다. 경사진 면을 따라서 대각선 방향으로 패턴을 통과하는 유기물 소스(600)들도 화소(700)의 형성에 기여할 수 있으므로, 화소(700)는 전체적으로 두께가 균일하게 증착될 수 있다.
마스크(100)는 화소 증착 공정 온도보다 높은 제1 온도 상에서 프레임(200)에 접착 고정되므로, 화소 증착을 위한 공정 온도로 상승시킨다고 하더라도, 마스크 패턴(P)의 위치에는 영향이 거의 없게 되며, 마스크(100)와 이에 이웃하는 마스크(100) 사이의 PPA는 3㎛를 초과하지 않도록 유지될 수 있다.
본 발명은 상술한 바와 같이 바람직한 실시예를 들어 도시하고 설명하였으나, 상기 실시예에 한정되지 아니하며 본 발명의 정신을 벗어나지 않는 범위 내에서 당해 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 다양한 변형과 변경이 가능하다. 그러한 변형예 및 변경예는 본 발명과 첨부된 특허청구범위의 범위 내에 속하는 것으로 보아야 한다.
40: 모판(mother plate), 음극체(cathode)
41: 전도성 기재
45: 절연부
50: 트레이(tray)
51: 제2 접착제
60: 버퍼 트레이
61: 제1 접착제
65: 버퍼 트레이의 중공 영역
70: 하부 지지체
100: 마스크
110: 마스크 막
120: 부식 방지 코팅막
200: 프레임
210: 테두리 프레임부
220: 마스크 셀 시트부
221: 테두리 시트부
223: 제1 그리드 시트부
225: 제2 그리드 시트부
1000: OLED 화소 증착 장치
C: 셀, 마스크 셀
CR: 마스크 셀 영역
ET: 공정 영역의 온도를 제1 온도로 상승
L: 레이저
LT: 공정 영역의 온도를 제2 온도로 하강
LW: 레이저 용접
R: 테두리 프레임부의 중공 영역
P: 마스크 패턴
TS: 장력
W: 용접

Claims (24)

  1. 적어도 하나의 마스크와 마스크를 지지하는 프레임이 일체로 형성된 프레임 일체형 마스크의 제조 방법으로서,
    (a) 적어도 하나의 마스크 셀 영역을 구비한 프레임을 제공하는 단계;
    (b) 패턴화된 절연부가 일면에 형성된 전도성 기재를 제공하는 단계;
    (c) 전주 도금으로 전도성 기재 상에 마스크를 형성하는 단계;
    (d) 제1 접착제가 일면에 배치된 버퍼 트레이를 마스크에 접촉시키고, 전도성 기재로부터 마스크를 분리하는 단계;
    (e) 제2 접착제가 일면에 배치된 트레이를 마스크에 접촉시키고, 버퍼 트레이로부터 마스크를 분리하는 단계;
    (f) 프레임 상에 트레이를 로딩하여 마스크를 프레임의 마스크 셀 영역에 대응하는 단계; 및
    (g) 마스크의 테두리의 적어도 일부를 프레임에 접착하는 단계
    를 포함하는, 프레임 일체형 마스크의 제조 방법.
  2. 제1항에 있어서,
    (a) 단계는,
    (a1) 중공 영역을 포함하는 테두리 프레임부를 제공하는 단계; 및
    (a2) 적어도 하나의 마스크 셀 영역을 구비하는 마스크 셀 시트부를 테두리 프레임부에 연결하여 프레임을 제조하는 단계
    를 포함하는, 프레임 일체형 마스크의 제조 방법.
  3. 제1항에 있어서,
    (a) 단계는,
    (a1) 중공 영역을 포함하는 테두리 프레임부를 제공하는 단계;
    (a2) 평면의 마스크 셀 시트부를 테두리 프레임부에 연결하는 단계; 및
    (a3) 마스크 셀 시트부에 적어도 하나의 마스크 셀 영역을 형성하여 프레임을 제조하는 단계
    를 포함하는, 프레임 일체형 마스크의 제조 방법.
  4. 제2항 또는 제3항에 있어서,
    (d) 단계는, 마스크의 테두리의 적어도 일부를 마스크 셀 시트부에 접착하여 마스크를 프레임에 접착하는 단계인, 프레임 일체형 마스크의 제조 방법.
  5. 제1항에 있어서,
    (d) 단계에서, 전도성 기재와 마스크 사이의 부착력보다 버퍼 트레이와 마스크 사이의 부착력이 더 강한, 프레임 일체형 마스크의 제조 방법.
  6. 제1항에 있어서,
    (d) 단계에서, 제1 접착제는 마스크의 테두리에 대응하는 버퍼 트레이의 일면에 배치되는, 프레임 일체형 마스크의 제조 방법.
  7. 제1항에 있어서,
    (e) 단계에서, 버퍼 트레이와 마스크 사이의 부착력보다 트레이와 마스크 사이의 부착력이 더 강한, 프레임 일체형 마스크의 제조 방법.
  8. 제1항에 있어서,
    (e) 단계에서, 제2 접착제는 마스크의 테두리에 대응하는 트레이의 일면에 배치되는, 프레임 일체형 마스크의 제조 방법.
  9. 제1항에 있어서,
    트레이는 평판 형상이고, 레이저 광이 투과하는 재질을 포함하는, 프레임 일체형 마스크의 제조 방법.
  10. 제1항에 있어서,
    트레이 상부에서 레이저를 조사하는 레이저 용접으로 마스크를 프레임에 접착하는, 프레임 일체형 마스크의 제조 방법.
  11. 제10항에 있어서,
    레이저는 트레이의 제2 접착제가 배치된 영역, 또는, 제2 접착제가 배치된 영역보다 적어도 내측에 조사하는, 프레임 일체형 마스크의 제조 방법.
  12. 제11항에 있어서,
    레이저 용접 후에 레이저 조사 영역보다 외측의 마스크 부분을 절단하여 제거하는, 프레임 일체형 마스크의 제조 방법.
  13. 제1항에 있어서,
    버퍼 트레이는 평판 형상 또는 중공 영역을 포함하는 틀 형상인, 프레임 일체형 마스크의 제조 방법.
  14. 제13항에 있어서,
    버퍼 트레이가 중공 영역을 포함하는 틀 형상인 경우, (d) 단계와 (e) 단계 사이에,
    (d') 마스크의 표면에 부식 방지 코팅막을 형성하는 단계
    를 더 포함하는, 프레임 일체형 마스크의 제조 방법.
  15. 제14항에 있어서,
    부식 방지 코팅막은 Cr, NiP, 크로메이트(chromate) 중 적어도 어느 하나를 포함하는, 프레임 일체형 마스크의 제조 방법.
  16. 제1항에 있어서,
    마스크를 마스크 셀 영역에 대응하기 전, 또는, 대응한 후에 프레임이 포함된 공정 영역의 온도를 제1 온도로 상승시키고,
    마스크를 프레임에 접착한 후에 프레임이 포함된 공정 영역의 온도를 제2 온도로 하강시키는, 프레임 일체형 마스크의 제조 방법.
  17. 제16항에 있어서,
    제1 온도는 OLED 화소 증착 공정 온도보다 같거나 높은 온도이고,
    제2 온도는 적어도 제1 온도보다 낮은 온도인, 프레임 일체형 마스크의 제조 방법.
  18. 제17항에 있어서,
    제1 온도는 25℃ 내지 60℃ 중 어느 하나의 온도이고,
    제2 온도는 제1 온도보다 낮은 20℃ 내지 30℃ 중 어느 하나의 온도이며,
    OLED 화소 증착 공정 온도는 25℃ 내지 45℃ 중 어느 하나의 온도인, 프레임 일체형 마스크의 제조 방법.
  19. 제16항에 있어서,
    마스크를 마스크 셀 영역에 대응할 때, 마스크에 인장을 가하지 않는, 프레임 일체형 마스크의 제조 방법.
  20. 제2항 또는 제3항에 있어서,
    마스크 셀 시트부는, 제1 방향, 제1 방향에 수직인 제2 방향 중 적어도 하나의 방향을 따라 복수의 마스크 셀 영역을 구비하는, 프레임 일체형 마스크의 제조 방법.
  21. 제1항에 있어서,
    마스크는 하나의 마스크 셀을 포함하고, 하나의 마스크 셀이 하나의 마스크 셀 영역 내에 위치하는, 프레임 일체형 마스크의 제조 방법.
  22. 제1항에 있어서,
    마스크는 복수의 마스크 셀을 포함하고, 복수의 마스크 셀이 하나의 마스크 셀 영역 내에 위치하는, 프레임 일체형 마스크의 제조 방법.
  23. 제1항에 있어서,
    마스크 및 프레임은 인바(invar), 슈퍼 인바(super invar), 니켈, 니켈-코발트 중 어느 하나의 재질인, 프레임 일체형 마스크의 제조 방법.
  24. 제1항에 있어서,
    하나의 마스크 셀 영역에 접착된 마스크와 이에 이웃하는 마스크 셀 영역에 접착된 마스크 사이의 PPA(pixel position accuracy)는 3㎛를 초과하지 않는, 프레임 일체형 마스크의 제조 방법.
KR1020180028024A 2018-03-09 2018-03-09 프레임 일체형 마스크의 제조 방법 KR102152685B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020180028024A KR102152685B1 (ko) 2018-03-09 2018-03-09 프레임 일체형 마스크의 제조 방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020180028024A KR102152685B1 (ko) 2018-03-09 2018-03-09 프레임 일체형 마스크의 제조 방법

Publications (2)

Publication Number Publication Date
KR20190106477A KR20190106477A (ko) 2019-09-18
KR102152685B1 true KR102152685B1 (ko) 2020-09-07

Family

ID=68071337

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020180028024A KR102152685B1 (ko) 2018-03-09 2018-03-09 프레임 일체형 마스크의 제조 방법

Country Status (1)

Country Link
KR (1) KR102152685B1 (ko)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006152396A (ja) 2004-11-30 2006-06-15 Sony Corp メタルマスク、電鋳用マスク原版及びマスター原版の製造方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100534580B1 (ko) * 2003-03-27 2005-12-07 삼성에스디아이 주식회사 표시장치용 증착 마스크 및 그의 제조방법
KR100671975B1 (ko) * 2004-06-30 2007-01-19 주식회사 멤스웨어 대면적의 유기전계발광소자 제조용 섀도우 마스크 및 그제조방법
KR101689153B1 (ko) * 2015-01-28 2016-12-23 한국산업기술대학교 산학협력단 집속이온빔 적용 재전사가 가능한 나노 패턴 쉐도우 마스크 제조 방법 및 나노 패턴 쉐도우 마스크를 재사용하는 패턴 전사 방법

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006152396A (ja) 2004-11-30 2006-06-15 Sony Corp メタルマスク、電鋳用マスク原版及びマスター原版の製造方法

Also Published As

Publication number Publication date
KR20190106477A (ko) 2019-09-18

Similar Documents

Publication Publication Date Title
KR102236538B1 (ko) 마스크의 제조 방법 및 프레임 일체형 마스크의 제조 방법
KR102196796B1 (ko) 마스크 지지 템플릿과 그의 제조 방법 및 프레임 일체형 마스크의 제조 방법
KR102342736B1 (ko) 프레임 일체형 마스크의 제조 방법
KR102101257B1 (ko) 프레임 일체형 마스크의 제조 방법
KR102337004B1 (ko) Oled 화소 형성용 마스크 및 프레임 일체형 마스크의 제조 방법
KR102217811B1 (ko) 마스크 지지 템플릿의 제조 방법 및 프레임 일체형 마스크의 제조 방법
KR102202531B1 (ko) 프레임 일체형 마스크 및 그 제조방법
KR102241769B1 (ko) 프레임 일체형 마스크의 제조 방법
KR102241770B1 (ko) 프레임 일체형 마스크의 제조 방법
KR20190105977A (ko) 프레임 일체형 마스크의 제조 방법
KR102152685B1 (ko) 프레임 일체형 마스크의 제조 방법
KR102236539B1 (ko) 프레임 일체형 마스크의 제조 방법
KR102314853B1 (ko) Oled 화소 형성용 마스크 및 마스크 지지 트레이
KR102254375B1 (ko) 프레임 일체형 마스크의 제조 방법
KR102314856B1 (ko) 프레임 일체형 마스크의 제조 방법
KR102071487B1 (ko) 마스크의 제조 방법 및 마스크
KR102236540B1 (ko) 마스크의 이송 시스템 및 프레임 일체형 마스크의 제조 방법
KR102358266B1 (ko) 프레임 일체형 마스크의 제조 방법
KR102152688B1 (ko) 프레임 일체형 마스크의 제조 방법
KR20200044747A (ko) 마스크의 제조 방법 및 프레임 일체형 마스크의 제조 방법
KR102202528B1 (ko) 프레임 일체형 마스크의 제조 방법
KR101986530B1 (ko) 프레임 일체형 마스크의 제조 방법
KR102217813B1 (ko) Oled 화소 형성용 마스크와 그 제조 방법 및 프레임 일체형 마스크의 제조 방법
KR102342735B1 (ko) 프레임 일체형 마스크의 제조 방법 및 마스크 지지에 사용되는 트레이
KR102501249B1 (ko) 스틱 마스크, 프레임 일체형 마스크 및 이들의 제조 방법

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant