KR102150352B1 - 저인화점 연료용 연료 분사 시스템 및 이를 위한 연료 밸브를 갖춘 대형 2행정 압축 점화 내연기관 - Google Patents

저인화점 연료용 연료 분사 시스템 및 이를 위한 연료 밸브를 갖춘 대형 2행정 압축 점화 내연기관 Download PDF

Info

Publication number
KR102150352B1
KR102150352B1 KR1020190160591A KR20190160591A KR102150352B1 KR 102150352 B1 KR102150352 B1 KR 102150352B1 KR 1020190160591 A KR1020190160591 A KR 1020190160591A KR 20190160591 A KR20190160591 A KR 20190160591A KR 102150352 B1 KR102150352 B1 KR 102150352B1
Authority
KR
South Korea
Prior art keywords
fuel
valve
flash point
liquid
chamber
Prior art date
Application number
KR1020190160591A
Other languages
English (en)
Other versions
KR20200072409A (ko
Inventor
하겐 피터
Original Assignee
만 에너지 솔루션즈, 필리알 아프 만 에너지 솔루션즈 에스이, 티스크란드
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 만 에너지 솔루션즈, 필리알 아프 만 에너지 솔루션즈 에스이, 티스크란드 filed Critical 만 에너지 솔루션즈, 필리알 아프 만 에너지 솔루션즈 에스이, 티스크란드
Publication of KR20200072409A publication Critical patent/KR20200072409A/ko
Application granted granted Critical
Publication of KR102150352B1 publication Critical patent/KR102150352B1/ko

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M21/00Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form
    • F02M21/02Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels
    • F02M21/0218Details on the gaseous fuel supply system, e.g. tanks, valves, pipes, pumps, rails, injectors or mixers
    • F02M21/023Valves; Pressure or flow regulators in the fuel supply or return system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M57/00Fuel-injectors combined or associated with other devices
    • F02M57/02Injectors structurally combined with fuel-injection pumps
    • F02M57/022Injectors structurally combined with fuel-injection pumps characterised by the pump drive
    • F02M57/025Injectors structurally combined with fuel-injection pumps characterised by the pump drive hydraulic, e.g. with pressure amplification
    • F02M57/026Construction details of pressure amplifiers, e.g. fuel passages or check valves arranged in the intensifier piston or head, particular diameter relationships, stop members, arrangement of ports or conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/04Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00 having valves, e.g. having a plurality of valves in series
    • F02M61/10Other injectors with elongated valve bodies, i.e. of needle-valve type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B25/00Engines characterised by using fresh charge for scavenging cylinders
    • F02B25/02Engines characterised by using fresh charge for scavenging cylinders using unidirectional scavenging
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B43/00Engines characterised by operating on gaseous fuels; Plants including such engines
    • F02B43/02Engines characterised by means for increasing operating efficiency
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B43/00Engines characterised by operating on gaseous fuels; Plants including such engines
    • F02B43/10Engines or plants characterised by use of other specific gases, e.g. acetylene, oxyhydrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/06Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M21/00Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form
    • F02M21/02Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M21/00Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form
    • F02M21/02Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels
    • F02M21/0218Details on the gaseous fuel supply system, e.g. tanks, valves, pipes, pumps, rails, injectors or mixers
    • F02M21/0248Injectors
    • F02M21/0257Details of the valve closing elements, e.g. valve seats, stems or arrangement of flow passages
    • F02M21/026Lift valves, i.e. stem operated valves
    • F02M21/0263Inwardly opening single or multi nozzle valves, e.g. needle valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M43/00Fuel-injection apparatus operating simultaneously on two or more fuels, or on a liquid fuel and another liquid, e.g. the other liquid being an anti-knock additive
    • F02M43/04Injectors peculiar thereto
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M57/00Fuel-injectors combined or associated with other devices
    • F02M57/02Injectors structurally combined with fuel-injection pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/18Injection nozzles, e.g. having valve seats; Details of valve member seated ends, not otherwise provided for
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/02Engines characterised by their cycles, e.g. six-stroke
    • F02B2075/022Engines characterised by their cycles, e.g. six-stroke having less than six strokes per cycle
    • F02B2075/025Engines characterised by their cycles, e.g. six-stroke having less than six strokes per cycle two

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel-Injection Apparatus (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Abstract

대형 2행정 엔진의 연소실에 저인화점 액체 연료를 분사하는 연료 밸브(50). 연료 밸브(50)는 밸브 하우징(52), 노즐(54), 가압된 저인화점 연료의 공급원에 연결하는 연료 입구 포트(76), 작동 유체 공급원에 연결하는 작동 유체 포트(78), 밸브 니들(61)이 개방 위치에 있을 때 연료 캐비티(58)로부터 노즐(54)로 연료의 유동을 허용하는 연료 밸브(50)의 종 방향 보어 내의 밸브 니들(61), 작동 피스톤(83)에 연결된 펌프 피스톤(80), 작동 유체 포트(78)에 연결된 작동 챔버(85), 연료 캐비티(58)에 유체 연결되고 연료 입구 포트(76)에 유체 연결된 펌프 챔버(82), 가압된 밀봉 액체 공급원(Ps)에 연결하는 밀봉 액체 입구 포트(70), 밀봉 액체 입구 포트(70)를 종 방향 보어에 연결하는 밀봉 액체 유로(93,96,97,99), 가압된 점화 액체 공급원(Pi)에 연결하는 점화 액체 입구 포트(92), 제1 보어(81) 내에 펌프 피스톤(80)을 밀봉하고 일정한 점화 액체의 양을 펌프 챔버(82)에 전달하기 위해 점화 액체 입구 포트(92)로부터 제1 보어(81)와 펌프 피스톤(80) 사이 간극(91)으로 연장되는 점화 액체 도관(94)을 포함한다.

Description

저인화점 연료용 연료 분사 시스템 및 이를 위한 연료 밸브를 갖춘 대형 2행정 압축 점화 내연기관{A LARGE TWO-STROKE COMPRESSION-IGNITED INTERNAL COMBUSTION ENGINE WITH FUEL INJECTION SYSTEM FOR A LOW FLASHPOINT FUEL AND A FUEL VALVE THEREFORE}
본 발명은 저인화점 연료를 연소실 내로 분사하기 위한 연료 분사 시스템을 구비한 대형 저속 2행정 압축 점화 내연 크로스헤드 엔진에 관한 것이다.
대형 2행정 단류(uniflow) 터보 차징 압축 점화 내연 크로스헤드 엔진은 통상적으로 대형 선박의 추진 시스템이나 발전소의 원동기로 사용되고 있다.
엄청난 크기, 무게 및 동력 출력으로 이 엔진은 일반 연소 엔진과 완전히 다르며, 대형 2행정 터보 차징 압축 내연기관은 그 자체가 하나의 클래스로 분류된다.
대형 2행정 압축 점화 내연기관은 전통적으로 연료유나 중유와 같은 액체 연료로 작동하고 있지만, 환경 측면에 대한 관심이 증가함에 따라 가스, 메탄올, 석탄 슬러리, 석유 코크스 등과 같은 대체 유형의 연료를 사용하는 방향으로 발전하고 있다. 저인화점 연료는 수요가 증가하고 있는 연료 그룹 중 하나이다.
메탄올, 에탄올, LPG, DME 또는 바이오 연료, 나프타, 가솔린(휘발유),크루드 가솔린, 원유와 같은 다수의 저인화점 연료는 대형 저속 단류 터보 차징 2행정 내연기관용 연료로 사용하면 중유 등을 연료로 사용할 때와 비교하여 상대적으로 청정 연료로서 배기가스 내 아황산 성분, NOx 및 CO2가 상당히 낮은 수준이다.
그러나 저인화점 연료를 대형 저속 단류 터보 차징 2행정 내연기관에서 사용할 경우 몇 가지 문제가 있다. 이러한 문제 중 하나는 낮은 인화점으로서, 저인화점 연료가 엔진의 다른 장치 중 하나로 누출되어 윤활유 시스템 등의 다른 유체와 혼합될 경우 심각한 문제를 일으킨다. 저인화점 연료는 본질적으로 점화되기 쉽고 그 증기는 쉽게 폭발성 혼합물을 형성할 수 있다. 따라서, 저인화점 연료가 엔진의 다른 장치로 들어가게 되면 안전상의 이유로 엔진 작동을 중지하고 해당 장치의 모든 액체를 청소하거나 교체해야 하므로 엔진 사용자에게는 비용이 많이 들고 번거로운 일이 된다.
통상적으로 수백 바(저인화점 연료 유형과 엔진 요구 사항에 따라)가 필요한 분사 압력에서, 어큐뮬레이터를 연료 밸브 가까이에 구비한 채, 저인화점 연료를 저장하고 분배하는 커먼 레일식 시스템을 갖춘 대형 2행정 압축 점화 내연기관을 제공하는 것이 당 업계에 공지되어 있다. 커먼 레일식 시스템은 각 실린더의 실린더 커버에 있는 두 개 또는 세 개의 연료 분사 밸브에 연결되어 있다. 연료 분사 밸브는 전자 제어되며, 연료 분사는 연료 분사 밸브가 열리는 시간을 전자 제어함으로써(엔진 사이클에 대해) 시간이 조절된다(신호는 전자제어장치에서 발생하지만, 연료 밸브로의 실제 신호는 일반적으로 유압 신호이다. 즉, 전자 신호는 전자제어장치와 연료 분사 밸브 간의 유압 신호로 변환된다).
대형 2행정 압축 점화 내연기관에 대해 공지된 커먼 레일식 가스 연료 공급 시스템은 압축성이 비교적 높은 LPG 또는 다른 유사한 저인화점 연료로 작동할 때 단점이 있다. LPG의 분사 압력은 600바 정도로 높아야 한다. 이것은 모든 밸브, 어큐뮬레이터, 파이프 등이 포함된 커먼 레일 시스템이 이 높은 압력을 고려하여 배치될 필요가 있음을 의미한다. 또한, 윈도우 밸브의 안전 개념은 LPG와 같은 고밀도 가스에 잘 맞지 않는다. 왜냐하면, 첫째, 윈도우 밸브와 연료 밸브 사이의 가스 채널은 체적이 아주 적어야 하고, 둘째, 누출의 검출을 보장하는 데 필요한 가스 채널 압력 모니터링이 윈도우 밸브의 폐쇄로 인해 촉발된 고주파 발진에 의해 누출이 매우 어려워지기 때문이다.
LPG 등과 같은 액체 가스를 분사하기 위해 부스터 펌프와 연료 압력 제어 연료 밸브를 사용하는 것 또한 당 업계에 공지되어 있다. 이 개념에는 LPG의 압축성이 다소 크고, 압력과 온도 및 가스 조성에 의존하는 것과 관련된 문제점이 있다. 따라서, 압력 부스터의 작동과 실제 가스 분사의 지연은 엔진 제어, 즉 분사량과 특히 분사 타이밍을 매우 어렵게 하는 파라미터에 의존한다. 압축 점화 엔진은 분사 타이밍이 중요하기 때문에 이것은 중요한 문제이다.
EP3252291호는 압력 부스터를 사용하여 저인화점 연료(및 연료에 비해 더 압축성 있는)의 정확한 분사 타이밍을 가능하게 하는 청구항 1의 전제부에 따른 연료 공급 시스템을 개시한다.
그러나 많은 저인화점 연료는 점화 특성이 양호하지 않아 저인화점 연료와 함께 또는 직전에 연소실 내로 분사 액체가 분사되지 않으면 신뢰할 수 없는 점화를 초래한다.
따라서, 안전하고 저렴하며, 실린더 내로 연료 유입 타이밍을 정확하게 제어하고 안정적인 점화를 제공하는, LPG 및 유사 저인화점 연료용 연료 공급 시스템을 제공할 필요가 있다.
연소실 내로 점화 액체를 분사하기 위해 별도의 밸브를 사용하는 것이 공지되어 있다. 그러나 저인화점 연료로 작동하는 엔진은 일반적으로 연료유 또는 중유와 같은 종래의 연료에서도 작동할 수 있는 이중 연료 엔진이며, 실린더의 실린더 커버에는 종래 연료용의 2개 또는 3개의 연료 밸브 및 저인화점 연료용의 2개 또는 3개의 연료 밸브가 제공된다. 따라서, 4개 내지 6개의 연료 밸브가 이미 존재하면, 실린더 커버는 점화 액체를 분사하기 위한 추가 밸브가 없더라도 이미 혼잡한 상태이다. 또한, 분사되는 점화 액체의 양은 저인화점 연료의 양에 비해 일반적으로 매우 적다. 점화 액체 연료 양의 일반적인 범위는 중량 기준으로 저인화점 연료의 1.5 내지 5%이다. 따라서, 점화 액체 분사용의 이들 밸브는 저인화점 연료 분사용의 연료 밸브보다 훨씬 작으며, 이 작은 밸브는 일반적으로 열악한 환경에서 지속 되기에는 너무 약하다.
본 발명의 목적은 전술한 문제를 극복하거나 적어도 감소시키는 대형 2 행정 터보 차징 압축 점화 내연 크로스헤드 엔진을 제공하는 것이다.
전술한 목적과 다른 목적은 독립항의 특징에 의해 달성된다. 추가 구현 형태는 종속항과 상세한 설명과 도면을 보면 명백하다.
본 발명의 제1 양태에 따르면, 대형 2행정 터보 차징 압축 점화 내연기관의 연소실 내로 저인화점 액체 연료를 분사하는 연료 밸브가 제공되며, 상기 연료 밸브에는 다음이 포함된다.
후단과 전단을 갖는 세장형 밸브 하우징,
노즐 구멍이 복수인 노즐로서, 상기 세장형 밸브 하우징의 전단에 배치되는 노즐,
가압된 저인화점 연료의 공급원에 연결하는 세장형 밸브 하우징 내의 연료 입구 포트,
작동 유체 공급원에 연결하는 세장형 밸브 하우징 내의 작동 유체 포트,
연료 밸브의 종 방향 보어에 슬라이딩이 가능하게 수용되고 축 방향으로 변위 가능한 밸브 니들로서, 폐쇄 위치와 개방 위치가 있고 폐쇄 위치를 향해 편향되어 있는 밸브 니들,
밸브 니들은 밸브 니들이 개방 위치에 있을 때 연료 캐비티로부터 복수의 노즐 구멍으로 연료의 유동을 허용하고, 밸브 니들은 밸브 니들이 폐쇄 위치에 있을 때 연료 캐비티로부터 복수의 노즐 구멍으로 연료의 유동을 방지하는 밸브 니들,
펌프 피스톤의 일측 상에 제1 보어 내의 펌프 챔버와 함께 세장형 밸브 하우징 내의 제1 보어에 수용되는 펌프 피스톤,
펌프 피스톤은 펌프 피스톤과 제1 보어 사이의 간극과 함께 제1 보어에 슬라이딩 가능하게 수용되는 펌프 피스톤,
작동 피스톤의 일측 상에 제2 보어 내의 작동 챔버와 함께 밸브 하우징 내의 제2 보어에 수용되는 작동 피스톤으로, 펌프 피스톤이 작동 피스톤에 작동 가능하게 연결되는 작동 피스톤,
작동 챔버는 작동 유체 포트에 유체로 연결되는 작동 챔버,
연료 캐비티에 유체로 연결된 출구(66) 및 연료 입구 포트에 유체로 연결된 입구를 갖는 펌프 챔버,
가압된 밀봉 액체 공급원에 연결하는 밀봉 액체 입구 포트,
밸브 니들을 종 방향 보어에 밀봉하기 위해 밀봉 액체 입구 포트를 종 방향 보어에 연결하는 밀봉 오일 유로,
가압된 밀봉 액체 공급원에 연결하는 점화 액체 입구 포트,
제1 보어 내에서 펌프 피스톤을 밀봉하고 점화 액체를 펌프 챔버로 전달하기 위해 점화 액체 입구 포트로부터 간극까지 연장되는 점화 액체 도관.
점화 액체용의 입구 포트를 제공하고, 과압으로 제1 보어 내의 펌프 피스톤을 밀봉하기 위해 점화 액체를 제1 보어로 운반하는 도관을 제공함으로써, 점화 액체는 펌프 피스톤을 밀봉하고 점화 액체는 펌프 챔버에 도달한다. 왜냐하면, 간극이 펌프 챔버로 개방되기 때문이다. 따라서, 소량의 점화 액체가 펌프 챔버에 도달하여 저인화점 연료와 혼합된다. 유동 인화점 연료와 혼합된 소량의 점화 액체는 노즐로 펌핑되어 연소실 내로 분사된다. 저인화점 연료와 혼합된 점화 액체의 존재는 안정적으로 점화를 향상시킨다.
제1 양태의 가능한 제1 실시예에 따르면, 펌프 피스톤은 점화 액체 도관을 통해 간극으로 전달되는 점화 액체에 의해 제1 보어에 밀봉된다.
제1 양태의 가능한 제2 실시예에 따르면, 간극은 펌프 챔버로 개방되고 점화 액체는 간극을 통해 펌프 챔버로 전달된다.
제1 양태의 가능한 제3 실시예에 따르면, 유로는 밀봉 액체 입구 포트에 연결된 밸브 하우징 내 도관 및/또는 밸브 니들을 밸브 시트 및/또는 밸브 니들 내 축 방향 보어 및/또는 밸브 니들 내 횡 방향 보어로 편향시키는 스프링의 스프링 챔버를 포함한다.
제1 양태의 가능한 제4 실시예에 따르면, 밀봉 오일의 유동 경로는 밸브 니들을 종 방향 보어에 밀봉하기 위해 종 방향 보어의 길이를 따라 제1 위치에서 밀봉액 입구 포트를 종 방향 보어에 연결한다.
제1 양태의 가능한 제5 실시예에 따르면, 저압 도관은 저인화점 연료의 입구 포트를 종 방향 보어의 길이를 따라 제2 위치에서 종 방향 보어에 연결하며, 제2 위치는 제1 위치보다 연료 캐비티에 더 가깝다. 저압 도관 내 압력은 분사 압력보다 현저히 낮으므로, 저압 도관에 대한 연결은 연료 캐비티에서 나오는 고압을 "천공"하고, 그에 따라 밀봉 오일은 저압 도관 내 낮은 연료 압력에 대한 밸브 니들과 종 방향 보어 사이 간극만 밀봉하면 된다.
제1 양태의 가능한 제6 실시예에 따르면, 밸브 니들은 폐쇄 위치에서 밸브 시트 상에 놓이고 개방 위치에서 밸브 시트로부터 들어올린다.
제1 양태의 가능한 제7 실시예에 따르면, 노즐은 세장형 밸브 하우징의 전방에 고정된 노즐 몸체를 갖는다.
제1 양태의 가능한 제8 실시예에 따르면, 밸브 시트는 노즐 끝에 있다.
제1 양태의 가능한 제9 실시예에 따르면, 종 방향 보어는 노즐 몸체에 적어도 일부가 형성된다.
제1 양태의 가능한 제10 실시예에 따르면, 노즐은 세장형 밸브 하우징의 전방에 고정된 노즐 몸체를 갖는다.
제1 양태의 가능한 제11 실시예에 따르면, 밸브 니들은 연료 밸브에서 니들 작동 피스톤의 압력 표면이 니들 작동 챔버를 향하도록 니들 작동 피스톤에 작동 가능하게 연결되고, 니들 작동 챔버는 제어 가능한 제어 유체 공급원에 연결을 위해 연료 밸브의 제어 포트에 유체로 연결된다.
제1 양태의 가능한 제12 실시예에 따르면, 연료 밸브에는 연료 밸브 노즐의 노즐 구멍으로 연료의 유동을 제어하는 밸브 니들이 제공되며, 밸브 니들의 위치는 바람직하게는 연료 압력이 아닌 제어 신호에 의해 제어된다.
제1 양태의 가능한 제13 실시예에 따르면, 펌프 챔버는 제1 일방향 밸브를 통해 연료 입구 포트에 유체로 연결되는 입구를 갖는다.
제1 양태의 가능한 제14 실시예에 따르면, 펌프 챔버는 제2 일방향 밸브를 통해 연료 캐비티에 유체로 연결된 출구를 갖는다.
제1 양태의 가능한 제15 실시예에 따르면, 펌프 피스톤의 유효 압력 영역은 작동 피스톤의 유효 압력 영역보다 작다.
제1 양태의 가능한 제16 실시예에 따르면, 노즐은 세장형 밸브 하우징의 전방에 고정된 노즐 몸체의 일부이다.
제1 양태의 가능한 제17 실시예에 따르면, 출구는 펌프 피스톤에 있다.
제1 양태의 가능한 제18 실시예에 따르면, 제1 일방향 밸브는 입구에 제공되고, 제1 일방향 밸브는 입구를 통해 펌프 챔버 내로 저인화점 연료의 유동을 허용하고 펌프 챔버로부터 입구 내로 유동을 방지하도록 구성된다.
제1 양태의 가능한 제19 실시예에 따르면, 펌프 챔버의 출구는 하나 이상의 연료 채널에 의해 연료 캐비티에 연결이 된다.
제1 양태의 가능한 제20 실시예에 따르면, 제2 일방향 밸브에는 하나 이상의 연료 채널이 제공되며, 제2 일방향 밸브는 펌프 챔버로부터 연료 캐비티로 저인화점 연료의 유동을 허용하고 연료 캐비티로부터 펌프 챔버로 유동을 방지하도록 구성된다.
제1 양태의 가능한 제21 실시예에 따르면, 펌프 피스톤은 작동 피스톤에 작동 가능하게 연결되어 그와 함께 일제히 움직인다.
제2 양태에 따르면, 다음을 포함하는 대형 2행정 터보 차징 압축 점화식 내연 크로스헤드 엔진이 제공된다.
복수의 실린더,
제1 양태에 따르거나 각각의 실린더에 배치된 임의의 가능한 실시예에 따른 2개 이상의 연료 밸브, 연료 밸브는 가압 점화 액체의 공급원(Pi), 가압 밀봉 오일 공급원(Ps) 및 저인화점 연료 공급 시스템에 연결되는 연료 밸브.
제2 양태의 가능한 제1 실시예에 따르면, 가압 점화 액체 공급원의 압력은 전자적으로 제어 가능하고, 엔진은 가압 점화 액체 공급원의 압력을 제어하도록 구성된 전자제어장치를 포함한다.
제2 양태의 가능한 제2 실시예에 따르면, 엔진에는 비-저인화점 연료 공급 시스템이 제공되며, 실린더에는 비-저인화점 연료를 실린더 내로 분사하는 2개 이상의 연료 밸브가 제공된다.
본 발명의 이들 및 다른 양태는 하기 실시예로부터 명백해질 것이다.
본 개시의 다음과 같은 상세한 부분에서, 본 발명은 도면에 도시된 예시적인 실시예를 참조하여 더 상세하게 설명한다.
도 1은 예시적인 실시예에 따른 대형 2행정 디젤 엔진의 상승 정면도이다.
도 2는 도 1 대형 2행정 엔진의 상승 측면도이다.
도 3은 도 1에 따른 대형 2행정 엔진의 개략도이다.
도 4a는도 1 및 도 2의 엔진에 저인화점 연료를 분사하기 위한 연료 분사 시스템의 개략도이다.
도 4b는도 1 및 도 2의 엔진에 사용하기 위한 연료 밸브 실시예로서 연료 밸브에 연결된 액체 공급원을 도시하는 개략도이다.
도 5는 일 실시예에 따른 연료 밸브의 사시도이다.
도 6 내지 도 9는 도 5 연료 밸브의 다른 단면도이다.
도 10은 도 5의 연료 밸브용 대안 노즐의 도면이다.
하기의 상세한 설명에서, 내연기관은 예시적인 실시예들에서 크로스헤드를 포함하는 대형 2행정 저속 단류 터보 차징 압축 점화 내연기관을 참조하여 설명될 것이지만, 상기 내연기관은 2행정 오토(Otto), 4행정 오토 또는 디젤 등의 다른 유형일 수 있으며, 터보 차징과 배기가스 재순환 모두 있을 수도 있고 없을 수도 있는 것으로 이해해야 한다.
도 1, 도 2 및 도 3은 크랭크샤프트(8)와 크로스헤드(9)가 구비된 대형 저속 터보 차징 2행정 압축 점화 엔진을 도시한다. 도 3은 흡기 및 배기 시스템을 갖춘 대형 저속 터보 차징 2행정 디젤 엔진의 개략도를 도시한다. 이 예시적인 실시예에서, 엔진은 여섯 개의 실린더를 열을 지어 구비한다. 대형 저속 터보 차징 2행정 디젤 엔진은 통상적으로 엔진 프레임(11)에 의해 지지가 되는 실린더 프레임(23)에 의해 지지가 되며, 열을 지어 4개 내지 14개의 실린더를 갖는다. 이 엔진은, 예컨대 선박의 주 엔진이나 발전소의 발전기를 작동하는 고정식 엔진으로 사용될 수 있다. 이 엔진의 총 출력은, 예를 들면, 1,000 내지 110,000kW 범위일 수 있다.
이 엔진은, 이 예시적인 실시예에서, 실린더 라이너(1) 하부 영역에 소기 포트(18) 및 실린더 라이너(1) 상단에 중앙 배기밸브(4)가 구비된 2행정 단류 유형의 압축 점화 엔진이다. 상기 소기는 소기 수용부(2)로부터 개별 실린더(1)의 소기 포트(18)로 통과한다. 실린더 라이너의 피스톤(10)은 소기를 압축한다. 실린더 커버(22)의 연료 분사 밸브들(50)을 통해 연료가 분사된다. 이어 연소가 진행되고 배기가스가 생성된다. 이 연료 밸브(50)는 연소실 내로 저인화점 연료를 분사하기에 적합하다. 일 실시예에서, 엔진에는 종래의 (저인화점 연료, 예컨대 연료유 또는 중유) 연료를 연소실 내로 분사하기에 적합한 연료 밸브(51)가 추가로 제공된다.
배기밸브(4)가 열리면 배기가스는 실린더(1)와 결합된 배기 덕트를 통해 배기가스 수용부(3)로 유동하고, 계속해서 제1 배기 도관(19)을 통해 터보차저(5)의 터빈(6)으로 유동한 후, 이 배기가스는 제2 배기 도관을 통해 이코노마이저(20)를 경유하여 출구(21)와 대기 중으로 배출된다. 터빈(6)은 샤프트를 통해 흡기구(12)를 경유하여 신선한 공기가 공급되는 압축기(7)를 구동한다. 이 압축기(7)는 소기 수용부(2)에 이르는 소기 도관(13)에 가압된 소기를 전달한다. 이 소기 도관(13) 내 소기는 소기의 냉각을 위해 인터쿨러(14)를 통과한다.
터보차저(5)의 압축기(7)가 소기 수용부(2)에 충분한 압력을 전달하지 않으면, 즉 엔진의 낮은 부하 조건 또는 부분 부하 조건에서는, 냉각된 소기는 소기 유동을 가압하는 전기 모터(17)에 의해 구동되는 보조 송풍기(16)를 경유하여 통과한다. 더 높은 엔진 부하에서, 터보차저 압축기(7)가 충분히 가압된 소기를 전달한 다음, 보조 송풍기(16)가 역류방지밸브(15)를 경유하여 바이패스 된다.
상기 엔진은, 예컨대 LPG, 메탄올 또는 나프타와 같은 저인화점 연료로 작동되며, 상당히 안정된 압력과 온도에서 액체 형태 또는 초임계 형태로 저인화점 연료 공급 시스템(30)에 의해 공급된다. 그러나 저인화점 연료 공급 시스템의 세부 사항과 공급되는 가스 유형에 따라 온도와 압력에 약간의 변화가 불가피하다. 또한, 저인화점 연료의 성분에 약간의 변화가 발생할 수도 있다. 일 실시예에서, 엔진에는 이중 연료 엔진이고, 예컨대, 연료유 또는 중유 등과 같은 비-저인화점 연료를 공급하는 종래의 연료 공급 시스템(미도시)이 제공된다.
저인화점 연료 공급 시스템(30)은 공급 도관(31)을 통해 비교적 낮은 공급 압력(예: 8 내지 100bar 압력)에서 저인화점 연료를 연료 분사 밸브(50)에 공급한다.
도 4a는 공급 도관(31)을 경유하여 저인화점 연료를 수용하는 연료 분사 시스템을 도시하는 도면이다. 이 연료 분사 시스템은 연료를 분사 압력으로 가압하기 위한 압력 부스터(40)를 포함한다. 압력 부스터(40)는 제1 제어 밸브(41)의 제어에 따라 유압으로 작동한다.
연료 밸브(50)는 제2 제어 밸브(45)의 제어에 따라 유압으로 작동한다.
도 4a의 다이어그램은 한 개의 압력 부스터(40)와 세 개의 연료 분사 밸브(50)를 갖춘 단일 실린더(1)에 대한 연료 분사 시스템을 도시한다. 각각의 실린더(1)에 대해 세 개 대신에 두 개의 연료 분사 밸브(50)가 있을 수도 있다. 각각의 실린더(1)에는 두 개 또는 세 개의 연료 분사 밸브(50)에 공급하는 압력 부스터(40)가 필요하다.
압력 부스터(40)는 소구경 플런저에 연결되어 그와 함께 일제히 움직이는 대구경 플런저를 포함한다. 대구경 플런저와 소구경 플런저는 압력 부스터(40)의 하우징 내에 맞는 각각의 보어에 수용된다. 대구경 플런저는 고압 유압유 또는 제1 제어 밸브(41) 제어에 따른 탱크가 공급되는 작동 챔버와 마주한다.
소구경 플런저는 일방향 밸브를 경유하여 연료 공급 도관(31)에 연결되고 고압 연료를 연료 밸브(50)에 전달하는 고압 연료 공급 라인(35)에 연결되는 펌프 챔버와 마주한다. 일방향 밸브는 고압 연료 공급 라인(35)에서 펌프 챔버로 연료의 역류를 방지한다. 공급 도관(31) 내 연료 압력은 작동 챔버가 탱크에 연결될 때 압력 부스터(40)가 귀환 행정을 하도록 하기에 충분하다. 위치 센서(34)는 대구경 플런저와 소구경 플런저의 위치를 감지한다.
본 실시예에서, 제1 제어 밸브(41)는 바람직하게는 비례적인 제1 유압 제어식 삼방향 밸브(42)를 포함한다. 제1 삼방향 밸브(42)는 작동 도관(44)을 통해 작동 챔버, 고압 유압 유체 공급원 및 탱크에 연결된다. 제1 삼방향 밸브(42)는 작동 챔버를 탱크 또는 고압 유압 유체 공급원에 선택적으로 연결하도록 구성된다. 제1 유압 제어식 삼방향 밸브(42)는, 일 실시예에서, 비례 밸브이므로 고압 유압 유체 공급원과 탱크 연결 사이의 임의의 중간 위치를 가정할 수 있다. 제1 삼방향 밸브(42)의 위치는 제1 소형 이방향 밸브(43)에 의해 제어되고, 제1 소형 이방향 밸브(43)의 위치는 전자적으로 제어된다. 제1 소형 이방향 밸브(43)는 제1 신호 케이블(26)을 통해 전자제어장치(25)에 연결된다. 일 실시예에서, 제1 제어 밸브(41)는 안전을 유지하도록 주로 구성되는 별도의 전자제어장치의 명령을 따르고, 예컨대 가스 누출과 같은 안전 문제가 감지되면 압력 부스터를 정지시킨다. 또는, 제1 제어 밸브는 엔진 안전 시스템에 의해 제어되는 고압 유압유 공급원에 연결된다.
고압 연료 공급 라인(35)은 세 개의 고압 연료 공급 라인(35-1, 35-2, 35-3), 즉, 각 연료 밸브(50)에 고압의 저인화점 연료를 공급하기 위한 하나의 고압 연료 공급 라인으로 분할된다. 실린더마다 두 개의 연료 밸브(50)가 포함된 일 실시예에서, 고압 연료 공급 라인(35)은 두 개의 라인으로 분할된다.
도 4b에 도시된 바와 같이, 각각의 연료 밸브(50)는 밀봉 오일 공급 라인(36)을 통해 그리고 밀봉 오일 복귀 라인과 함께 가압 밀봉 오일 공급원(Ps)에 연결된다. 연료 밸브(50)를 통한 유동 밀봉 오일은 일 실시예에서 비교적 대량이므로, 밀봉 오일 또한 연료 밸브(50)를 위한 냉각 매체로 작용한다.
각각의 연료 밸브(50)는 연료 밸브 작동 신호 도관(48)에 연결된다. 연료 밸브 작동 신호 도관(48)의 압력은 일 실시예에서 제2 유압 제어식 비례 삼방향 밸브(46) 및 제2 소형 전자 제어식 이방향 밸브(47)를 포함하는 제2 제어 밸브(45)에 의해 제어된다. 제2 유압 제어식 삼방향 밸브(46)는 바람직하게는 비례 밸브이고, 작동 신호 도관(48)을 고압 유압 유체 공급원 또는 탱크에 연결하도록 구성된다. 제2 유압 제어식 삼방향 밸브(46)는, 일 실시예에서 비례 밸브이므로 고압 유압 유체 공급원과 탱크 연결 사이의 임의의 중간 위치를 가정할 수 있다. 제2 삼방향 밸브(46)의 위치는 제2 소형 이방향 밸브(47)에 의해 제어되고, 제2 소형 이방향 밸브(47)의 위치는 전자적으로 제어된다. 제2 소형 이방향 밸브(47)는 제3 신호 케이블(28)을 통해 전자제어장치(25)에 연결된다. 전자제어장치(25)는 제2 신호 케이블(27)을 통해 제2 삼방향 밸브(46)의 위치를 통지 받는다.
전자제어장치(25)는 도 4a에 점선으로 도시된 신호 케이블을 통해 각종 센서로부터 신호를 수신한다. 각종 센서로부터 신호들에는, 예컨대 소기 압력과 온도, 배기 압력과 온도, 크랭크 각도와 속도가 포함되지만, 이 목록이 전체는 아니며, 예컨대 배기가스 재순환을 포함하는지와 터보차저를 포함하는지 등의 엔진 구성에 따라 달라진다는 점에 유희해야 한다. 전자제어장치(25)는 연료 분사 밸브(50)를 제어한다. 즉, 전자제어장치는 연료 밸브(31)가 열릴 때를 결정하고 개방의 지속 시간을 결정한다. 전자제어장치(25)는 압력 부스터(40) 작동도 제어한다.
연료 분사 타이밍은 대형 2행정 터보 차징 디젤 엔진(압축 점화 엔진)의 연소 압력에 큰 영향을 미친다. 크랭크샤프트 앵글 또는 엔진 사이클에 대한 연료 밸브(50)의 개방 타이밍은 연소 압력의 대부분을 결정한다. 연료 밸브(50)의 개방 지속 시간은 실린더(1)로 주입되는 연료의 양을 결정하고, 지속 시간이 길어질수록 실린더(1)에 주입되는 연료의 양도 증가한다.
전자제어장치(25)는 제3 신호 케이블(28)을 경유하여 제2 제어 밸브(45)에 대한 전자 신호에 의해 연료 밸브의 개방 타이밍을 제어하도록 구성된다. 신호를 수신하면 전자 제어 밸브는 위치를 전환하고 작동 신호 도관(48)을 고압 유압유 공급원에 연결한다. 작동 신호 도관(48) 내의 높은 압력은 연료 밸브(50)를 개방한다.
상기 실시예에서, 압력 부스터(40)와 연료 밸브(50)는 별도의 물리적 장치이다. 일 실시예에서, 압력 부스터(40)는 연료 밸브(50)와 일체형 부품이다.
압력 부스터가 통합된 연료 밸브(50)의 실시 예가 도 5 내지 도9에 도시되어 있다.
도 5는 세장형 밸브 하우징(52)을 갖는 연료 밸브(50)의 사시도이고, 노즐(54)은 세장형 밸브 하우징(52)의 전단에 고정된다. 노즐(54)에는 연소실 내로 연료 분출구를 생성하기 위한 복수의 노즐 구멍(56)이 제공된다. 노즐(54)은 세장형 밸브 하우징(52)에 분리 가능하게 고정되므로, 노즐(54)이 고장 나거나 마모되면 쉽게 교체할 수 있다.
도 6, 7, 8, 9는 서로 다른 연료 밸브(50)의 단면도를 도시한다. 연료 밸브(50)는 최후방 단부와 그 전방 단부에 노즐(54)이 포함된 세장형 밸브 하우징(52)을 갖는다. 노즐(54)은 밸브 하우징(52)의 전방 단부에 부착된 별도의 몸체이다. 밸브 하우징(52)의 최후방 단부에는 제어 포트(86), 작동 유체 포트(78) 및 가스 누출 검출 포트(미도시)를 포함하는 복수의 포트가 제공된다. 최후방 단부는 연료 밸브(50)가 실린더 커버에 장착될 때 실린더 커버에서 돌출하는 헤드를 형성하도록 확대된다. 본 실시예에서, 연료 밸브(50)는 중앙 배기 밸브(4) 주위에, 즉 실린더 라이너의 벽에 상대적으로 가깝게 배치된다. 노즐뿐만 아니라 세장형 밸브 하우징(52)과 연료 분사 밸브(50)의 다른 구성 요소는 일 실시예에서 예컨대, 공구강 또는 스테인리스강이다.
노즐(54)에는 노즐(54)의 내부에 연결되는 노즐 구멍이 제공되고, 노즐 구멍은 연소실 내에 연료를 분배하기 위해 서로 다른 방향으로 배치된다. 노즐 구멍은 실린더 헤드에서 연료 밸브(50)의 위치로 인해 비교적 가까운 실린더 라이너로부터 멀리 지향한다. 노즐 구멍은 노즐(54)의 팁(56)에 배치된다. 또한, 노즐 구멍은 소기 포트의 구성에 의해 연소실에서 소기의 소용돌이 방향과 대략 동일한 방향으로 향하도록 지향된다(이 소용돌이는 단류형 대형 2행정 터보 차징 내연기관의 공지된 특징이다).
노즐(54)은 중간 섹션(53)을 둘러싸고 세장형 밸브 하우징(52)의 원위 부분을 둘러싸는 노즐 몸체(55)의 부분을 고정하고 둘러싸는 유니온 너트(57)로 밸브 하우징(52)의 전방 단부에 연결된다. 노즐 몸체(55)에는 밸브 니들(61)이 수용되는 종 방향 보어가 제공된다. 종 방향 보어는 팁(56)에 가장 가까운 종 방향 보어 부분에서 밸브 니들(61)의 지름보다 지름이 더 길다. 종 방향 보어와 밸브 니들(61) 사이의 공간은 연료 캐비티(58)를 형성한다. 종 방향 보어의 중간 섹션에는 밸브 니들(61)과 작은 간극이 있다. 노즐(54)의 팁(56)으로부터 가장 먼 노즐 몸체(55)의 종 방향 보어 부분에는 밸브 니들(61)의 확대된 지름 일치 및 확대된 지름 부분이 있다. 밸브 니들(61)의 확대된 지름 부분은 니들 작동 피스톤(62)의 압력 표면이 노즐(54)의 니들 작동 챔버(88)를 향하는 니들 작동 피스톤(62)을 형성한다. 니들 작동 챔버(88)는 제어 도관(87)을 경유하여 제어 포트(86)에 연결된다. 제어 포트(86)는 제어 오일 소스(Pc)에 연결된다.
종 방향 보어의 확대된 지름 섹션은 중간 섹션(53)의 스프링 챔버(96)와 정렬된다. 스프링 챔버(96)는 세장형 밸브 하우징(52)의 종 방향 보어와 정렬된다. 세장형 밸브 하우징(52)의 원위 단부에 가장 가까운 세장형 밸브 하우징(52) 내 종 방향 보어의 원위 섹션은 그 지름과 스프링 챔버(96)에 대응한다. 나선형 와이어 스프링(68)은 세장형 밸브 하우징(52) 내 종 방향의 원위 섹션과 밸브 니들(61)의 확대된 지름 섹션(62) 사이로 연장된다. 밸브 니들(61)은 선인장(pre-tensioned) 나선형 와이어 스프링(68)에 의해 폐쇄 위치를 향해 탄성적으로 편향된다. 나선형 와이어 스프링(68)은 세장형 연료 밸브 하우징(52) 내의 스프링 챔버(96)에 수용되는 나선형 와이어 스프링이다. 나선형 와이어 스프링(68)은 밸브 니들(61)을 노즐(54)의 팁(56)을 향해, 즉 폐쇄 위치로 편향시킨다. 밸브 니들(61)의 폐쇄 위치에서, 바람직하게는 밸브 니들(61)의 원추형 팁은 노즐(54) 내부의 팁(56)에서 원추형 밸브 시트(63)와 인접하고 연료 캐비티(58)와 노즐 구멍들 사이의 유체 연결을 폐쇄한다. 연료 캐비티(58)와 노즐 구멍 사이의 유체 연결은, 밸브 니들(61)이 들어 올려질 때, 즉 밸브 니들(61)이 나선형 스프링(68)의 편향에 대해 연료 밸브(50)의 근위 단부로 향할 때, 이루어진다. 밸브 니들(61)은 니들 작동 챔버(88)가 가압될 때 들어 올려진다.
스프링 가이드(69)는 나선형 와이어 스프링(68)을 안내하기 위해 스프링 챔버(96) 내에 동심으로 연장된다. 스프링 가이드(69)의 근위 단부는 세장형 밸브 하우징(52)의 종 방향 보어에 밀봉식으로 수용된다.
축 방향으로 변위가 가능한 밸브 니들(61)은 노즐 몸체(55)의 종 방향 보어에 좁은 간극을 가지고 슬라이딩 가능하게 수용되며, 축 방향으로 변위가 가능한 밸브 니들(61)과 종 방향 보어 사이의 윤활이 중요하다. 이를 위해, 가압된 밀봉 액체는 도관(채널)(93)을 경유하여 밸브 니들의 종 방향 보어 사이의 좁은 간극에 전달된다. 채널(93)은 밸브 니들(61)과 종 방향 보어 사이의 간극을 밀봉 액체 입구 포트(70)에 연결하고, 이어서 가압된 밀봉 액체의 공급원에 연결될 수 있다. 좁은 간극과 채널(93) 사이의 연결은 밸브 니들(61) 내의 횡 방향 보어(99)(도 8)를 포함하며, 이 보어는 니들 작동 피스톤(62)을 스프링 챔버(96)에 형성하는 확대된 지름 섹션을 통해 내내 연장되는 밸브 니들(61) 내의 축 방향 보어(97)(도 8)에 연결된다. 채널(93)은 스프링 챔버(96)에 연결되고 스프링 챔버(96)에 가압된 밀봉 액체를 공급한다. 밀봉 유체가 냉각 매체로 작용할 수 있도록 스프링 챔버(96)를 통한 밀봉 액체의 실질적인 흐름을 가능하게 하기 위해, 스프링 챔버(96)는 보어를 경유하여 밀봉 액체 출구 포트(95)에 연결된다. 밀봉 액체는 밸브 니들(61)과 축 방향 보어 사이의 간극을 통해 저인화점 연료의 누출을 방지하고 연료 밸브(50)에 냉각을 제공한다. 또한, 밀봉 유체는(바람직하게는 오일) 밸브 니들(61)과 종 방향 보어 사이에 윤활을 제공한다.
세장형 밸브 하우징(52)에는, 예컨대 저인화점 액체 연료 공급 도관(31)을 경유하여 가압된 저인화점 액체 연료(60)의 공급원에 연결하기 위한 연료 입구 포트(76)가 제공된다. 연료 입구 포트(76)는 펌프 피스톤(80) 내의 도관(73)과 일방향 밸브(89), 바람직하게는 스프링 장착 포핏 밸브를 경유하여 밸브 하우징(52) 내의 펌프 챔버(82)에 연결된다. 일방향 밸브(89)(흡입 밸브)는 도관(73) 입구(71)의 펌프 피스톤 내에 제공된다. 일방향 밸브(89)는 액체 저인화점 연료가 연료 입구 포트(76)로부터 도관(73)을 경유하여 펌프 챔버(82)로 유동하지만 반대 방향으로는 유동하지 않도록 하는 스프링 장착 포핏 밸브이다. 펌프 피스톤(80)의 도관(73)과 세장형 하우징(52)의 연료 입구 포트(76) 사이의 유체 연결은 펌프 피스톤(80)의 들어간 부분(74)에 의해 이루어지며, 이 부분은 연료 입구 포트(76)를 형성하는 세장형 밸브 하우징(52) 내 보어와 축 방향으로 중첩된다.
펌프 피스톤(80)은 펌프 피스톤(80)의 일측 상의 제1 보어(81) 내에 펌프 챔버(82)를 구비한 세장형 연료 밸브 하우징(52)의 제1 보어(81)에 슬라이딩 가능하게 밀봉식으로 수용된다. 작동 피스톤(83)은 작동 피스톤(83)의 일측 상의 제2 보어(84) 내의 작동 챔버(85)를 구비한 세장형 연료 밸브 하우징(52)의 제2 보어(84)에 슬라이딩 가능하게 밀봉식으로 수용된다. 펌프 피스톤(80)은 작동 피스톤(83)에 연결되어 함께 일제히 움직인다. 즉, 펌프 피스톤(80)과 작동 피스톤(83)이 각각의 보어(81, 84)와 일제히 슬라이딩할 수 있다. 본 실시예에서 펌프 피스톤(80)과 작동 피스톤(83)은 단일 몸체로 형성된다. 그러나 펌프 피스톤(80)과 작동 피스톤(83)은 상호 연결된 별도의 몸체일 수 있음을 알아야 한다.
작동 챔버(85)는 작동 유체 포트(78)에 유체로 연결된다. 제1 제어 밸브(41)는 작동 유체 포트(78)로 그리고 그로부터 가압되고, 그렇게 함으로써 작동 챔버(85)로 그리고 그로부터 가압된 유동을 제어한다.
분사 이벤트 시작 전 리드 타임 동안, 전자제어장치(25)는 제1 제어 밸브(41)에 명령하여 작동 챔버(85) 내로 고압 작동 액체가 유동할 수 있게 한다. 이 순간에 작동 피스톤(83)과 펌프 피스톤(80)의 결합은 도 6에 도시한 위치에 있다. 작동 챔버(85) 내에서 가압된 작동 액체는 작동 피스톤(83)에 작용함으로써, 펌프 피스톤(80)을 펌프 챔버(82) 내로 가압하는 힘을 생성한다. 이에 따라, 펌프 챔버(82) 내의 저인화점 액체 연료의 압력이 증가한다. 일 실시예에서, 작동 피스톤(83)의 지름은 펌프 피스톤(80)의 지름보다 크며, 따라서 펌프 챔버(82) 내 압력은 그에 상응하여 작동 챔버(85) 내 압력보다 높고, 작동 피스톤(83)과 펌프 피스톤(80)의 결합은 압력 부스터로 작용한다.
하나 이상의 연료 채널(79)은 펌프 챔버(82)를 연료 캐비티(58)에 유체로 연결하고, 그렇게 함으로써 연료 캐비티(58)의 바닥에 위치한 밸브 시트에 유체로 연결된다. 일방향 밸브(90)는 연료 채널(79)과 펌프 챔버(82) 사이에 배치된다. 펌프 챔버(82)의 출구(66)는 일방향 밸브(90)의 입구에 연결된다. 일방향 밸브(90)는 세장형 밸브 하우징(52) 내의 축 방향 보어에 슬라이딩 가능하게 수용되는 밸브 부재를 포함하고, 이 밸브 부재는 그 시트, 즉 폐쇄된 위치를 향하여 탄성적으로 편향되고, 연료 채널(79)로부터 펌프 챔버(82)로의 연료 역류를 방지한다.
작동 챔버(85) 내의 가압 유체는 작동 피스톤(83)과 펌프 피스톤(80)이 도 7에 도시된 바와 같이 아래쪽으로(도 6 내지 도 9와 같이 아래쪽으로) 이동하게 한다. 짧은 압축 단계 후에 펌프 챔버(82)의 압력은 펌프 피스톤(80)의 유효 압력 면적과 작동 피스톤(83)의 유효 압력 면적 및 작동 챔버(85) 내 압력 사이 비율의 곱이다. 이 순간에 작동 챔버(85) 내 압력은 고압 유체 공급원의 압력과 실질적으로 동일하다. 유효 압력 표면 비율이, 예컨대 2.5:1이고 유압 시스템의 공급 압력이 200bar인 경우, 펌프 챔버 내 연료 압력은 압축 단계가 끝날 때 약 500bar가 된다. 따라서, 작동 피스톤(83)과 펌프 피스톤(80)의 결합은 압력 부스터로 작용한다.
전자제어장치(25)는 펌프 챔버(82) 내 압력이 필요한 분사 압력, 예컨대 500bar에 도달하도록 보장하기에 충분한 리드 타임 동안 연료 분사 시작 전에 작동 챔버(85)를 가압한다. 전자제어장치(25)는 밸브 니들(61)이 들어 올려질 필요가 있을 때를 결정하고, 그에 따라 연료 분사가 시작될 때를 결정한다. 밸브 니들(61)은 들어올리는 힘을 얻기 위해 노즐(54)로부터 멀어지는 방향으로 이동하고 들어 올리는 힘을 줄이기 위해 노즐(54)을 향해 이동하도록 구성된다. 밸브 니들(61)은 니들 작동 챔버(88)가 가압될 때 들어올려진다. 전자제어장치(25)는 연료 분사가 시작되어야 하는 엔진 사이클 순간에 연료 밸브 작동 신호 도관(48)을 고압 작동 유체의 공급원에 연결하도록 제2 제어 밸브(45)에 지시한다. 연료 밸브 작동 신호 도관(48)은 제어 포트(86)에 연결되고, 고압 유체는 제어 도관(87)을 경유하여 니들 작동 챔버(88)에 도달한다. 밸브 니들(61)이 그 시트로부터 들어올려지면 저인화점 액체 연료를 노즐 구멍을 통해 연료 공동(58)으로부터 연소실 내로 유동하게 한다.
전자제어장치(25)는 제2 제어 밸브(45)에 니들 작동 챔버(88)를 탱크에 연결하도록 지시함으로써 분사 이벤트를 끝내고, 그로 인해 밸브 니들(61)은 그 시트로 복귀하여 연료의 추가 분사를 방지한다. 그와 동시에 또는 바로 그 직후에, 전자제어장치(25)는 제1 제어 밸브(41)에 작동 챔버(85)를 탱크에 연결하도록 지시한다. 펌프 챔버(82)는 저인화점 연료의 가압된 공급원(30)에 연결되고, 일방향 밸브(89)를 경유하여 유동하는 저인화점 액체 연료의 공급 압력은 작동 피스톤(83)이, 펌프 챔버(82)가 저인화점 액체 연료로 완전히 채워져 연료 밸브(50)가 다음 분사 이벤트를 위해 준비된 상태의, 도 6에 도시된 위치에 도달할 때까지 작동 챔버(85) 내로 작동 피스톤(83)을 가압한다. 도 8은 펌프 챔버(80)의 주요 부분에서 저인화점 연료가 고갈된 분사 이벤트의 종료 근처에 펌프 피스톤(80)과 작동 피스톤(83)의 위치를 도시한다.
저인화점 연료의 분사 이벤트는 밸브 니들(61)의 리프트 타이밍과 지속 시간에 의해 전자제어장치(25)에 의해 제어된다. 전자제어장치는 또한 분사율 형성을 수행하기 위해 작동 챔버(85)에 공급되는 압력을 조절함으로써 분사 이벤트를 제어할 수 있다.
연료 밸브(50)에는 가압된 밀봉 액체 공급원(Ps)에 연결하는 밀봉 액체 입구 포트(70)가 제공된다. 일 실시예에서, 밀봉 액체 공급원의 압력은 분사 이벤트 동안 적어도 펌프 챔버(82) 내의 최대 압력보다 높다. 다른 실시예에서, 밀봉 액체 공급원의 압력은 적어도 저인화점 연료의 공급 압력보다 높다.
밀봉 액체는 종 방향 보어와 밸브 니들(61) 사이의 좁은 간극에 횡 방향 보어(99)를 경유하여 제공되며, 연료의 공급 압력을 밀봉하는 데만 필요하다. 왜냐하면, 연료 입구 포트(76)가 연료 입구 포트(76)로부터 세장형 밸브 하우징(52)과 중간 섹션(53)을 통해 밸브 니들(61)이 슬라이딩 가능하게 수용되는 노즐 몸체(55) 내와 종 방향 보어로 연장되는 저압 연료 도관(98)에 연결되기 때문이다. 저압 연료 도관(98)이 종 방향 보어에 연결되는 위치는 연료 채널(79)이 종 방향 보어에 연결되는 위치와 횡 방향 보어(99)가 종 방향 보어에 연결되는 위치 사이에 축 방향으로 있다. 따라서 분사 이벤트 동안 고압 연료 캐비티(58)로부터 종 방향 보어와 밸브 니들(61) 사이의 간극을 통해 위쪽으로(도 6 내지 도 9와 같이 위쪽으로) 누출되는 저인화점 연료는 저압 연료 도관(98)이 종 방향 보어에 연결되는 위치에 도달할 때 그 압력이 훨씬 터 낮은 연료 공급 압력으로 감소할 것이다. 따라서, 저압 연료 도관(98) 내의 저압은 밸브 니들(61)과 종 방향 보어 사이의 좁은 간극 내 연료의 압력을 "천공(puncture)"하므로, 횡 방향 보어(99)의 밀봉 액체는 저인화점 연료의 공급 압력에 대해서만 밀봉이 필요하고 분사 압력에 대해서는 필요하지 않다. 따라서, 밀봉 오일의 압력은 저인화점 연료의 공급 압력보다 약간만 높아야 하며, 연료의 분사 압력만큼 높거나 더 높을 필요는 없다.
각각의 연료 밸브(50)는 가압 점화 액체(파일럿 오일이라고도 함) 공급원(Pi)에 연결된다. 점화 액체는 특성이 주 연료의 점화를 개시하기에 적합한 액체이다. 연료유(예: 해양 디젤)은 적합한 점화 액체의 예이다. 그러나 바이오 디젤, 윤활유, 중유 또는 디메틸 에테르(DME)와 같은 발화성이 우수한 다른 액체도 사용할 수 있다.
밸브 하우징(52)에는 가압된 점화 액체의 공급원(Pi)에 연결하는 점화 액체 입구 포트(92)가 제공된다. 밸브 하우징(52)에는 제1 보어(81) 내 펌프 피스톤을 밀봉하기 위해 펌프 피스톤(80)과 제1 구멍(81) 사이의 간극(91)까지 연장되는 점화 액체 구멍(94)이 제공되어, 펌프 챔버(82) 내의 고압 연료가 작동 피스톤(83) 아래의 공간으로 누출되는 것을 방지한다. 펌프 피스톤(80)은 펌프 피스톤(80)과 제1 보어(81) 사이에 바람직하게는 보정된 간극(91)으로 제1 보어(81)에 슬라이딩 가능하게 수용되고, 간극(91)이 펌프 챔버(82)로 개방되기 때문에, 소량의 점화 액체가 펌프 피스톤(80)과 제1 보어(81) 사이의 간극(91)을 통한 각각의 분사 이벤트에 대해 펌프 챔버(82)에 도달한다. 각각의 분사 이벤트에 대해 펌프 챔버에 도달할 점화 액체의 양은 점화 액체 공급원(Pi)의 압력과 간극(91)의 치수에 의존한다. 펌프 챔버에 도달하는 점화 액체는 연료와 혼합되어 노즐(54)로 전달되어 연료와 함께 연소실로 분사된다. 주 연료와 혼합된 소량의 점화 액체는 연소실에서 주 연료를 안정적으로 점화하는 것을 돕는다.
연소실에서 주 연료를 안정적으로 점화하는 데 필요한 점화 액체의 양(각 분사 이벤트에 대한)은 예컨대 주 연료의 유형, 점화 액체의 유형, 연소실의 구조적 세부 사항, 노즐(54)의 구조적 세부 사항, 연료 분사 타이밍, 압축 압력, 소기 공기의 온도 및 재순환된 배기가스의 비율 등의 상황 수에 의존한다. 그러나 이것이 주 연료의 점화에 영향을 미치는 측면의 전체 목록은 아니다. 당업자는 간단한 시행 착오를 통해 필요한 양을 결정할 수 있다.
일 실시예에서, 펌프 챔버(82)로 전달되는 점화 액체의 양을 조정하기 위해 점화 액체 공급원의 압력이 조정된다. 즉, 점화 액체의 양이 증가할 필요가 있을 때 점화 액체 공급원(Pi)의 압력이 증가하고, 점화 액체의 양이 감소할 필요가 있을 때 점화 액체 공급원의 압력이 감소한다.
점화 액체 공급원(Pi)의 압력은 주 연료가 연료 입구 포트(76)로 전달되는 압력보다 항상 높다. 점화 액체가 전달되는 압력(Pi)은 펌프 챔버(82)의 최대 압력보다 높을 수 있지만, 이는 일부 주 연료가 펌프 행정 중에 펌프 피스톤(80)과 제1 보어(81) 사이의 간극(91)으로 들어가는 것이 허용되기 때문에 일반적으로 필요하지 않다.
도 10은 도 5 내지 도 9를 참조하여 전술한 연료 밸브(50)와 함께 사용하기 위한 대안 유형의 노즐(54)을 도시한다. 이 실시예에서, 노즐(54)은 밸브 시트(63)가 노즐(54) 팁(56)으로부터 거리를 두고 배치되는 소위 슬라이더 유형이고, 이 실시 예에서 노즐 팁(56)은 폐쇄된다. 즉, 팁(56)은 노즐 구멍이 없다. 대신에, 노즐 구멍은 팁(56)에 근접한 위치에서 시작하여 노즐의 길이를 따라 배열된다(도 10의 방향과 같이 위로). 밸브 니들(61)에는 밸브 시트(63)와 협동하는 원추형 섹션 및 밸브 니들(61)의 원추형 섹션에서 밸브 니들(61)의 팁을 향해 연장되는 슬라이더 섹션이 제공된다. 폐쇄 팁이 포함된 이러한 유형의 노즐 및 노즐(54) 내부에서 팁(56)을 향해 연장되는 밸브 니들(61)의 슬라이더는 당 업계에 공지되어 있으므로 더 상세히 설명하지 않는다.
일 실시예(미도시)에서, 가압 점화 액체 공급원의 압력(Pi)은 전자적으로 제어 가능하고, 전자제어장치(25)는 상기 가압 점화 액체 공급원의 압력(Pi)을 제어하도록 구성된다. 따라서, 간극(91)을 통해 펌프 챔버(82)로 전달되는 점화 액체의 양은 가압된 점화 액체 공급원의 압력(Pi)을 조정함으로써 전자제어장치로 제어할 수 있다.
일 실시예에서, 엔진에는 비-저인화점 연료 공급 시스템이 제공되며(미도시), 실린더에는 상기 비-저인화점 연료를 상기 실린더 내로 분사하는 2개 이상의 연료 밸브가 제공된다.
본 발명의 개념은 고압축성 연료와 저인화점 연료로 제한되지 않는다.
본 발명은 본 명세서의 다양한 실시예와 관련하여 설명했다. 그러나 개시된 실시예에 대한 다른 변형은 도면, 개시 및 첨부한 청구 범위의 연구로 청구된 발명을 실시할 때 당업자가 이해하고 수행할 수 있다. 청구 범위에서, "포함하는"이라는 단어는 다른 요소 또는 단계를 배제하지 않으며, 부정 관사 "하나” 또는 “한”은 복수를 배제하지 않는다. 특정 조치가 서로 다른 종속항에 인용되어 있다는 사실은 이들 측정된 이들 조합이 유리하게 사용될 수 없다는 것을 나타내지 않는다. 청구 범위에 사용된 참조 부호는 범위를 제한하는 것으로 해석하지 않아야 한다.

Claims (15)

  1. 대형 저속 2행정 터보 차징 압축 점화 내연기관의 연소실 내로 저인화점 액체 연료를 분사하는 연료 밸브(50)에 있어서,
    후단과 전단을 갖는 세장형 밸브 하우징(52);
    노즐 구멍이 복수인 노즐(54)로서, 상기 세장형 밸브 하우(52)징의 전단에 배치되는 노즐(54);
    가압된 저인화점 연료의 공급원에 연결하는 상기 세장형 밸브 하우징(52)의 연료 입구 포트(76);
    작동 유체 공급원에 연결하는 상기 세장형 밸브 하우징(52)의 작동 유체 포트(78);
    상기 연료 밸브(50)의 종 방향 보어에 슬라이딩 가능하게 수용되고 축 방향으로 변위 가능한 밸브 니들(61)로서, 상기 밸브 니들(61)에는 폐쇄 위치와 개방 위치가 있고 상기 폐쇄 위치를 향해 편향되어 있는 상기 밸브 니들(61);
    상기 밸브 니들(61)은 상기 밸브 니들(61)이 개방 위치에 있을 때 연료 캐비티(58)로부터 상기 복수의 노즐 구멍으로 연료의 유동을 허용하고, 상기 밸브 니들(61)이 폐쇄 위치에 있을 때 상기 연료 캐비티(58)로부터 상기 복수의 노즐 구멍으로 연료의 유동을 방지하는 상기 밸브 니들(61);
    펌프 피스톤(80)의 일측 상에 제1 보어(81)의 펌프 챔버(82)와 함께 상기 세장형 밸브 하우징(52)의 제1 보어(81)에 수용되는 상기 펌프 피스톤(80);
    상기 펌프 피스톤(80)은 상기 펌프 피스톤(80)과 상기 제1 보어(81) 사이 간극(91)으로 상기 제1 보어(81)에 슬라이딩 가능하게 수용되는 상기 펌프 피스톤(80);
    작동 피스톤(83)의 일측 상에 제2 보어(84)의 작동 챔버(85)와 함께 상기 밸브 하우징(52)의 상기 제2 보어(84)에 수용되는 상기 작동 피스톤(83)으로서, 상기 펌프 피스톤(80)이 상기 작동 피스톤(83)에 작동 가능하게 연결되는 상기 작동 피스톤(83);
    상기 작동 챔버(85)는 상기 작동 유체 포트(78)에 유체로 연결되는 상기 작동 챔버(85);
    상기 연료 캐비티(58)에 유체로 연결된 출구(66) 및 상기 연료 입구 포트(76)에 유체로 연결된 입구(71)를 갖는 상기 펌프 챔버(82);
    가압된 밀봉 액체 공급원(Ps)에 연결하는 밀봉 액체 입구 포트(70);
    상기 밸브 니들(61)을 상기 종 방향 보어에 밀봉하기 위해 상기 밀봉 액체 입구 포트(70)를 상기 종 방향 보어에 연결하는 밀봉 오일 유로(93, 96, 97, 99); 및
    가압된 점화 액체 공급원(Pi)에 연결하는 점화 액체 입구 포트(92);를 포함하며,
    점화 액체 도관(94)은 상기 펌프 피스톤(80)을 상기 제1 보어(81)에 밀봉하고 점화 액체를 상기 펌프 챔버(82)로 전달하기 위해 상기 점화 액체 입구 포트(92)로부터 상기 간극(91)까지 연장되는 것을 특징으로 하는, 대형 저속 2행정 터보 차징 압축 점화 내연기관의 연소실 내로 저인화점 액체 연료를 분사하는 연료 밸브(50).
  2. 제1항에 있어서,
    상기 펌프 피스톤(80)은 상기 점화 액체 도관(94)을 경유하여 상기 간극(91)으로 전달되는 상기 점화 액체에 의해 상기 제1 보어에 밀봉되는, 대형 저속 2행정 터보 차징 압축 점화 내연기관의 연소실 내로 저인화점 액체 연료를 분사하는 연료 밸브(50).
  3. 제2항에 있어서,
    상기 간극은 상기 펌프 챔버(82)로 개방되고, 상기 점화 액체는 상기 간극(91)을 통해 상기 펌프 챔버(82)로 전달되는, 대형 저속 2행정 터보 차징 압축 점화 내연기관의 연소실 내로 저인화점 액체 연료를 분사하는 연료 밸브(50).
  4. 제1항에 있어서,
    상기 유로는 상기 밀봉 액체 입구 포트(70) 또는 상기 밸브 니들(61)을 밸브 시트(63) 또는 상기 밸브 니들(61) 내의 축 방향 보어(97) 또는 횡 방향 보어(99)에 편향시키는 스프링(96)의 스프링 챔버를 포함하는, 대형 저속 2행정 터보 차징 압축 점화 내연기관의 연소실 내로 저인화점 액체 연료를 분사하는 연료 밸브(50).
  5. 제1항에 있어서,
    상기 밀봉 오일 유로(93,96,97,99)는 상기 밀봉 액체 입구 포트(70)를 상기 밸브 니들(61)을 상기 종 방향 보어에 밀봉하기 위해 상기 종 방향 보어의 길이를 따라 제1 위치에서 상기 종 방향 보어에 연결하는, 대형 저속 2행정 터보 차징 압축 점화 내연기관의 연소실 내로 저인화점 액체 연료를 분사하는 연료 밸브(50).
  6. 제5항에 있어서,
    도관(98)은 상기 종 방향 보어의 길이를 따라 제2 위치에서 상기 저인화점 연료 입구 포트(76)를 상기 종 방향 보어에 연결하며, 상기 제2 위치는 상기 제1 위치보다 상기 연료 캐비티(58)에 더 가까운, 대형 저속 2행정 터보 차징 압축 점화 내연기관의 연소실 내로 저인화점 액체 연료를 분사하는 연료 밸브(50).
  7. 제1항에 있어서,
    상기 밸브 니들(61)은 상기 폐쇄 위치에서 밸브 시트(63) 상에 놓이고, 상기 개방 위치에서 상기 밸브 시트(63)로부터 들어올려지는, 대형 저속 2행정 터보 차징 압축 점화 내연기관의 연소실 내로 저인화점 액체 연료를 분사하는 연료 밸브(50).
  8. 제1항에 있어서,
    상기 노즐(54)은 노즐 몸체(55)가 상기 세장형 밸브 하우징(52)의 전방에 고정되는, 대형 저속 2행정 터보 차징 압축 점화 내연기관의 연소실 내로 저인화점 액체 연료를 분사하는 연료 밸브(50).
  9. 제1항에 있어서,
    밸브 시트(63)는 상기 노즐(54)의 팁(56)에 위치하는, 대형 저속 2행정 터보 차징 압축 점화 내연기관의 연소실 내로 저인화점 액체 연료를 분사하는 연료 밸브(50).
  10. 제1항에 있어서,
    상기 종 방향 보어는 노즐 몸체(55)에 적어도 일부가 형성되는, 대형 저속 2행정 터보 차징 압축 점화 내연기관의 연소실 내로 저인화점 액체 연료를 분사하는 연료 밸브(50).
  11. 제1항에 있어서,
    상기 밸브 니들(61)의 리프트는 상기 연료 캐비티(58) 내의 연료 압력에 의해 제어되는, 대형 저속 2행정 터보 차징 압축 점화 내연기관의 연소실 내로 저인화점 액체 연료를 분사하는 연료 밸브(50).
  12. 제1항에 있어서,
    상기 밸브 니들(61)은 상기 니들 작동 피스톤(62)의 압력 표면이 상기 연료 밸브(50)의 니들 작동 챔버(88)를 향하는 상기 니들 작동 피스톤(62)에 작동 가능하게 연결되며, 상기 니들 작동 챔버(88)는 제어 가능한 제어 유체 공급원(Pc)에 연결하는 상기 연료 밸브(50)의 제어 포트(86)에 유체 연결되는, 대형 저속 2행정 터보 차징 압축 점화 내연기관의 연소실 내로 저인화점 액체 연료를 분사하는 연료 밸브(50).
  13. 대형 2행정 터보 차징 압축 점화 내연 크로스헤드 엔진에 있어서,
    복수의 실린더(1); 및
    각각의 실린더(1)에 배열된 제1항 내지 제12항 중 어느 한 항에 따른 2개 이상의 연료 밸브(50)로서, 상기 연료 밸브(50)는 가압된 점화 액체 공급원(Pi), 가압된 밀봉 오일 공급원(Ps) 및 저인화점 연료 공급 시스템에 연결되는 2개 이상의 연료 밸브;를 포함하는, 대형 2행정 터보 차징 압축 점화 내연 크로스헤드 엔진.
  14. 제13항에 있어서,
    상기 가압된 점화 액체 공급원(Pi)의 압력은 전자적으로 제어 가능하며, 상기 엔진은 상기 가압된 점화 액체 공급원(Pi)의 압력을 제어하도록 구성된 전자제어장치를 포함하는, 대형 2행정 터보 차징 압축 점화 내연 크로스헤드 엔진.
  15. 제13항에 있어서,
    상기 엔진에는 비-저인화점 연료 공급 시스템이 제공되며, 상기 실린더(1)에는 상기 비-저인화점 연료를 분사하는 2개 이상의 연료 밸브(51)가 제공되는, 대형 2행정 터보 차징 압축 점화 내연 크로스헤드 엔진.
KR1020190160591A 2018-12-11 2019-12-05 저인화점 연료용 연료 분사 시스템 및 이를 위한 연료 밸브를 갖춘 대형 2행정 압축 점화 내연기관 KR102150352B1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DKPA201870807 2018-12-11
DKPA201870807A DK180001B1 (en) 2018-12-11 2018-12-11 A LARGE TWO-STROKE COMPRESSION-IGNITED INTERNAL COMBUSTION ENGINE WITH FUEL INJECTION SYSTEM FOR A LOW FLASHPOINT FUEL AND A FUEL VALVE THEREFORE

Publications (2)

Publication Number Publication Date
KR20200072409A KR20200072409A (ko) 2020-06-22
KR102150352B1 true KR102150352B1 (ko) 2020-09-02

Family

ID=68806623

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020190160591A KR102150352B1 (ko) 2018-12-11 2019-12-05 저인화점 연료용 연료 분사 시스템 및 이를 위한 연료 밸브를 갖춘 대형 2행정 압축 점화 내연기관

Country Status (5)

Country Link
EP (1) EP3667059B1 (ko)
JP (1) JP6745394B2 (ko)
KR (1) KR102150352B1 (ko)
CN (1) CN111305990B (ko)
DK (1) DK180001B1 (ko)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK178149B1 (en) * 2013-10-30 2015-06-29 Man Diesel & Turbo Deutschland A Fuel Valve for Pilot Oil Injection and for Injecting Gaseous Fuel into the Combustion Chamber of a Self-Igniting Internal Combustion Engine
DK178656B1 (en) * 2015-03-20 2016-10-17 Man Diesel & Turbo Filial Af Man Diesel & Turbo Se Tyskland Fuel valve for injecting a low flashpoint fuel into a combustion chamber of a large self-igniting turbocharged two-stroke internal combustion engine
DK178674B1 (en) * 2015-03-20 2016-10-24 Man Diesel & Turbo Filial Af Man Diesel & Turbo Se Tyskland Fuel valve for injecting a low flashpoint fuel into a combustion chamber of a large self-igniting turbocharged two-stroke internal combustion engine
DK179161B1 (en) * 2016-05-26 2017-12-18 Man Diesel & Turbo Filial Af Man Diesel & Turbo Se Tyskland A large two-stroke compression-ignited internal combustion engine with fuel injection system for low flashpoint fuel and a fuel valve therefore
DK179213B9 (en) * 2016-12-01 2018-04-16 Man Diesel & Turbo Filial Af Man Diesel & Turbo Se Tyskland A fuel valve for injecting a liquid fuel into a combustion chamber of a large compression-igniting turbocharged two-stroke internal combustion engine

Also Published As

Publication number Publication date
EP3667059A1 (en) 2020-06-17
DK201870807A1 (en) 2020-01-15
EP3667059B1 (en) 2021-07-28
CN111305990B (zh) 2021-05-25
JP2020094583A (ja) 2020-06-18
JP6745394B2 (ja) 2020-08-26
KR20200072409A (ko) 2020-06-22
DK180001B1 (en) 2020-01-15
CN111305990A (zh) 2020-06-19

Similar Documents

Publication Publication Date Title
US9909546B2 (en) Fuel valve for injecting gaseous fuel into a combustion chamber of a self-igniting internal combustion engine, engine, method and use
KR101998282B1 (ko) 저인화점 연료용 분사 시스템 및 이를 위한 연료 밸브를 갖춘 대형 2 행정 압축 점화 내연기관
EP3009628B1 (en) A fuel valve and method for injecting gaseous fuel into a combustion chamber of an internal combustion engine
EP3330526B1 (en) A fuel valve and method for injecting a liquid fuel into a combustion chamber of a large compression-igniting turbocharged two-stroke internal combustion engine field
KR102033173B1 (ko) 대형 2 행정 터보차징 압축 점화 내연기관의 연소실에 기체 연료를 분사하기 위한 연료 밸브 및 방법
KR102150352B1 (ko) 저인화점 연료용 연료 분사 시스템 및 이를 위한 연료 밸브를 갖춘 대형 2행정 압축 점화 내연기관

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant