KR102145870B1 - One body type driving spindle shaft for semiconductor deposition ald appratus and manufacturing method thereof - Google Patents

One body type driving spindle shaft for semiconductor deposition ald appratus and manufacturing method thereof Download PDF

Info

Publication number
KR102145870B1
KR102145870B1 KR1020190142880A KR20190142880A KR102145870B1 KR 102145870 B1 KR102145870 B1 KR 102145870B1 KR 1020190142880 A KR1020190142880 A KR 1020190142880A KR 20190142880 A KR20190142880 A KR 20190142880A KR 102145870 B1 KR102145870 B1 KR 102145870B1
Authority
KR
South Korea
Prior art keywords
driving spindle
spindle shaft
processing
shaft
shape
Prior art date
Application number
KR1020190142880A
Other languages
Korean (ko)
Inventor
손재천
김준현
이재학
Original Assignee
김준현
(주)케이디엠씨
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 김준현, (주)케이디엠씨 filed Critical 김준현
Priority to KR1020190142880A priority Critical patent/KR102145870B1/en
Application granted granted Critical
Publication of KR102145870B1 publication Critical patent/KR102145870B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/687Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
    • H01L21/68714Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support
    • H01L21/68792Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support characterised by the construction of the shaft
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/458Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for supporting substrates in the reaction chamber
    • C23C16/4582Rigid and flat substrates, e.g. plates or discs
    • C23C16/4583Rigid and flat substrates, e.g. plates or discs the substrate being supported substantially horizontally
    • C23C16/4584Rigid and flat substrates, e.g. plates or discs the substrate being supported substantially horizontally the substrate being rotated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/458Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for supporting substrates in the reaction chamber
    • C23C16/4582Rigid and flat substrates, e.g. plates or discs
    • C23C16/4583Rigid and flat substrates, e.g. plates or discs the substrate being supported substantially horizontally
    • C23C16/4585Devices at or outside the perimeter of the substrate support, e.g. clamping rings, shrouds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • H01L21/0228Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition deposition by cyclic CVD, e.g. ALD, ALE, pulsed CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/687Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
    • H01L21/68714Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support
    • H01L21/68757Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support characterised by a coating or a hardness or a material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/687Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
    • H01L21/68714Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support
    • H01L21/68764Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support characterised by a movable susceptor, stage or support, others than those only rotating on their own vertical axis, e.g. susceptors on a rotating caroussel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/687Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
    • H01L21/68714Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support
    • H01L21/68785Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support characterised by the mechanical construction of the susceptor, stage or support

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Abstract

The present invention relates to an integrated driving spindle shaft for a semiconductor deposition ALD apparatus, and a manufacturing method thereof. The integrated driving spindle shaft includes a disk-shaped plate part coupled to a side of a susceptor for a semiconductor deposition ALD apparatus and a cylinder-shaped shaft part extended from the center of a lower surface of the plate part to be integrally formed, wherein the disk-shaped plate part and the cylinder-shaped shaft part are made of a silicon carbide (SiC) material. The plate part is processed and formed in a pentagon type, and the plate part and the shaft part are configured in an integrated type having one body using a sintering bonding technology under high temperature. The present invention can provide the driving spindle shaft with structural stability by changing the materials and having an improved integrated structure as compared with a prior art, increase productivity, also improve quality of a semiconductor product, save unit cost in manufacturing the semiconductor, and extend the service lifespan and an exchange period to enhance operation efficiency of the semiconductor deposition ALD apparatus.

Description

반도체 증착 ALD 장비용 일체형 드라이빙 스핀들 샤프트 및 그 제조방법{ONE BODY TYPE DRIVING SPINDLE SHAFT FOR SEMICONDUCTOR DEPOSITION ALD APPRATUS AND MANUFACTURING METHOD THEREOF}Integrated driving spindle shaft for semiconductor deposition ALD equipment and its manufacturing method {ONE BODY TYPE DRIVING SPINDLE SHAFT FOR SEMICONDUCTOR DEPOSITION ALD APPRATUS AND MANUFACTURING METHOD THEREOF}

본 발명은 반도체 증착 ALD 장비용 일체형 드라이빙 스핀들 샤프트 및 그 제조방법에 관한 것으로서, 더욱 상세하게는 소재 변경과 일체형 구조로의 개선을 통해 종래에 비해 생산성을 증대시킬 수 있도록 함과 더불어 제조되는 반도체 제품의 품질 향상을 유도할 수 있도록 하고 반도체 제조단가를 절감할 수 있도록 하며, 사용수명과 교체주기를 연장할 수 있도록 하며, 반도체 증착 ALD 장비의 향상된 운전효율을 구현할 수 있도록 한 반도체 증착 ALD 장비용 일체형 드라이빙 스핀들 샤프트 및 그 제조방법에 관한 것이다.The present invention relates to an integrated driving spindle shaft for semiconductor deposition ALD equipment and a method of manufacturing the same, and more particularly, a semiconductor product manufactured while improving productivity compared to the prior art through material change and improvement to an integrated structure. All-in-one type for semiconductor deposition ALD equipment that can induce quality improvement of the product, reduce the manufacturing cost of semiconductors, extend the service life and replacement cycle, and realize improved operation efficiency of the semiconductor deposition ALD equipment. It relates to a driving spindle shaft and a manufacturing method thereof.

ALD(Atomic Layer Deposition; 원자층 증착)는 반도체 제조공정 중 화학적으로 달라붙는 단원자층의 현상을 이용한 나노 박막 증착기술로서, 복잡한 3차원 구조에서도 뛰어난 두께 균일도를 가지는 나노 두께의 박막 증착이 가능한 나노급 반도체 소자 제조에 사용되는 필수 증착기술이다.ALD (Atomic Layer Deposition) is a nano-thin film deposition technology that uses the phenomenon of a chemically sticking single-atomic layer during the semiconductor manufacturing process.It is a nano-level film capable of depositing a nano-thick film with excellent thickness uniformity even in a complex three-dimensional structure. It is an essential deposition technology used in semiconductor device manufacturing.

상기 ALD(원자층 증착)는 아르곤(Ar)이나 질소(N2) 등의 불활성 기체에 의해서 분리되어진 각각의 반응물을 웨이퍼 위에 공급함으로써 하나의 원자층을 증착하되 증착층이 원하는 두께가 될 때까지 반복적으로 층간 증착하는 방법이다.In the ALD (Atomic Layer Deposition), one atomic layer is deposited by supplying each reactant separated by an inert gas such as argon (Ar) or nitrogen (N 2 ) on the wafer, but until the deposited layer reaches the desired thickness. It is a method of repeatedly interlayer deposition.

이와 같은 ALD(원자층 증착)는 물리적 기상증착(PVD)나 화학적 기상증착(CVD)이 갖는 문제점들을 모두 보완할 수 있는 장점을 가지고 있으나 생산성이 낮은 단점이 있다.Such ALD (atomic layer deposition) has the advantage of compensating for all the problems of physical vapor deposition (PVD) or chemical vapor deposition (CVD), but has a disadvantage of low productivity.

이에, 이러한 생산성이 낮은 단점을 극복하면서 매우 균일한 초박막 증착을 위해 ALD 장비를 운전함에 있어 반도체 기판을 지지하고 있는 서스셉터(susceptor)를 약 30,000rpm 이상의 속도로 고속 회전시키는 작업을 수행하고 있는데, 이에 따라 고속의 회전력을 생성하는 구동장치로부터 구동력을 서스셉터(susceptor)에 전달하는 드라이빙 스핀들 샤프트(Driving Spindle Shaft)의 역할이 매우 중요하다.Accordingly, in operating ALD equipment for very uniform ultra-thin film deposition while overcoming the disadvantages of low productivity, the susceptor supporting the semiconductor substrate is rotating at high speed at a speed of about 30,000 rpm or more. Accordingly, the role of the driving spindle shaft that transmits the driving force to the susceptor from the driving device that generates high-speed rotational force is very important.

또한, 종래 생산성 저하의 문제점을 극복하기 위해 증착용 가스의 주입 방식이 수평 방식에서 수직 방식으로 변화됨에 따라 구동 방식도 변화하는 추세에 있다.In addition, in order to overcome the problem of lowering productivity in the related art, as the injection method of the deposition gas is changed from the horizontal method to the vertical method, the driving method also tends to change.

부연하여, 종래 ALD 장비에 있어 서스셉터에 동력을 전달하는 역할을 수행하는 드라이빙 스핀들 샤프트(Driving Spindle Shaft)에는 초고속 회전과 더불어 파티클(Particle)의 유입을 예방하기 위한 기술이 요구되고 있다.In addition, in the conventional ALD equipment, a driving spindle shaft that performs a role of transmitting power to a susceptor is required to rotate at an ultra-high speed and prevent the inflow of particles.

이를 위해, 드라이빙 스핀들 샤프트 측 응력 집중을 피하기 위한 설계가 매우 중요하다 할 수 있는데, 이는 서스셉터(susceptor)와 동력 전달을 최대화하고 체결핀을 최소화하기 위한 형상 개발이 우선되어야 한다.To this end, it can be said that a design to avoid stress concentration on the driving spindle shaft side is very important, which should be prioritized to develop a shape for maximizing power transmission with a susceptor and minimizing fastening pins.

또한, ALD 공정에 이용되는 ALD 장비 측 드라이빙 스핀들 샤프트(Driving Spindle Shaft)는 종래 고순도 산화알루미늄(Al2O3) 소재로 제작되고 있는데, 이는 소재의 특성상 두께를 두껍게 처리하는 소결 수행이 어렵고 가공 난이도가 매우 높은 관계로 인하여 지지대 역할을 하는 플레이트(드라이빙 스핀들 샤프트의 상측에 위치하면서 서스셉터(susceptor)와 직접적으로 접촉하는 부분)와 축 역할을 담당하는 부분(드라이빙 스핀들 샤프트의 메인바디 부분)을 따로 제작하여 결합하는 형식으로 사용되고 있다.In addition, the Driving Spindle Shaft on the ALD equipment side used in the ALD process is conventionally made of high-purity aluminum oxide (Al 2 O 3 ) material, which is difficult to perform sintering to thicken the thickness due to the nature of the material and the difficulty of processing. Because of the very high relationship, the plate serving as a support (the portion positioned above the driving spindle shaft and in direct contact with the susceptor) and the portion serving as the shaft (the main body portion of the driving spindle shaft) are separated. It is used in the form of manufacturing and combining.

하지만, 이와 같이 부품을 따로 제작하고 결합핀을 이용하여 결합하는 형식으로 제조되는 드라이빙 스핀들 샤프트(Driving Spindle Shaft)는 고속 회전 중에 상호간 체결력을 제공하는 결합부 측 마모로 인해 파티클을 유발할 수 있는 문제점이 있으며, 유발되는 파티클은 웨이퍼 등 반도체 기판에 큰 손상을 줄 수 있고 제품 불량을 야기하게 되며, 이에 따라 제품 불량률을 증가시키는 요인이 된다.However, the Driving Spindle Shaft manufactured in such a manner that the parts are separately manufactured and coupled using a coupling pin has a problem that may cause particles due to wear on the coupling portion that provides mutual clamping force during high-speed rotation. In addition, the generated particles can cause great damage to semiconductor substrates such as wafers and cause product defects, thereby increasing the product defect rate.

더불어, 드라이빙 스핀들 샤프트 측 플레이트와 서스셉터를 체결하여 사용하는데, 종래에는 체결핀만을 이용한 동력전달이 이루어짐에 따라 체결부 측 응력이 집중되어 칩핑(chipping)이 발생하거나 파손되는 위험이 있었으며, 이로 인해 잦은 부품 교체작업이 수행되어야 하므로 생산성을 저하시키게 된다.In addition, the driving spindle shaft side plate and the susceptor are connected to each other, and conventionally, as power transmission using only the fastening pin is performed, the stress on the fastening part is concentrated and there is a risk of chipping or damage. Since frequent parts replacement work must be performed, productivity is lowered.

대한민국 공개특허공보 제10-1998-0066357호Republic of Korea Patent Publication No. 10-1998-0066357 대한민국 공개특허공보 제10-2001-0017385호Korean Patent Application Publication No. 10-2001-0017385 대한민국 공개특허공보 제10-2006-0089896호Korean Patent Application Publication No. 10-2006-0089896

본 발명은 상술한 종래의 문제점을 해소 및 이를 감안하여 안출된 것으로서, 소재 변경과 일체형 구조로 개선하여 구조적인 안정성을 갖는 드라이빙 스핀들 샤프트를 제공함으로써 생산성을 증대시킬 수 있도록 함과 더불어 반도체 제품의 품질 향상을 유도할 수 있도록 하고 반도체 제조단가를 절감할 수 있도록 하며, 사용수명과 교체주기를 연장할 수 있도록 한 반도체 증착 ALD 장비용 일체형 드라이빙 스핀들 샤프트 및 그 제조방법을 제공하는데 그 목적이 있다.The present invention has been devised in consideration of and solving the above-described conventional problems, and improves the material change and the integrated structure to provide a driving spindle shaft having structural stability, thereby increasing productivity and improving the quality of semiconductor products. Its purpose is to provide an integrated driving spindle shaft for semiconductor deposition ALD equipment and a method of manufacturing the same, which can induce improvement, reduce semiconductor manufacturing cost, and extend service life and replacement cycle.

본 발명은 플레이트부와 샤프트부를 일체형으로 하는 구조 개선을 통해 드라이빙 스핀들 샤프트 측 구성요소간 결합부 마모 및 플레이트부와 서스셉터간의 체결부 마모를 최소화함은 물론 파티클 유발을 방지할 수 있도록 하고, 고속 회전시 드라이빙 스핀들 샤프트 측 플레이트부와 서스셉터간의 체결부 측 응력이 집중되는 현상을 방지함으로써 칩핑(chipping)이 발생하거나 파손되는 위험을 제거할 수 있도록 하며 잦은 부품 교체에 의한 생산성 저하를 방지할 수 있도록 한 반도체 증착 ALD 장비용 일체형 드라이빙 스핀들 샤프트 및 그 제조방법을 제공하는데 그 목적이 있다.The present invention minimizes the wear of the coupling part between the components on the driving spindle shaft and the wear of the joint part between the plate part and the susceptor through the improvement of the structure in which the plate part and the shaft part are integrated, as well as preventing particle induction. By preventing the concentration of stress on the coupling part between the plate part of the driving spindle shaft and the susceptor during rotation, the risk of chipping or damage can be eliminated, and productivity degradation due to frequent parts replacement can be prevented. An object thereof is to provide an integrated driving spindle shaft for semiconductor deposition ALD equipment and a method of manufacturing the same.

본 발명은 반도체 증착 ALD 장비의 향상된 운전효율을 구현할 수 있도록 한 반도체 증착 ALD 장비용 일체형 드라이빙 스핀들 샤프트 및 그 제조방법을 제공하는데 그 목적이 있다.An object of the present invention is to provide an integrated driving spindle shaft for semiconductor deposition ALD equipment and a method of manufacturing the same, which enables improved operation efficiency of semiconductor deposition ALD equipment.

상기의 목적을 달성하기 위한 본 발명에 따른 반도체 증착 ALD 장비용 일체형 드라이빙 스핀들 샤프트는, 탄화규소(SiC) 소재로 이루어지되, 반도체 증착 ALD 장비용 서스셉터 측에 결합되는 원판 형상의 플레이트부와 상기 플레이트부의 하면 중앙에서 연장되어 일체로 형성되는 원기둥 형상의 샤프트부를 포함하며; 상기 플레이트부는 펜타곤 타입으로 형성시킨 것을 특징으로 한다.The integrated driving spindle shaft for semiconductor deposition ALD equipment according to the present invention for achieving the above object is made of a silicon carbide (SiC) material, and a disk-shaped plate portion coupled to the susceptor side for semiconductor deposition ALD equipment and the above And a cylindrical shaft portion extending from the center of the lower surface of the plate portion and integrally formed; The plate portion is characterized in that it is formed in a pentagon type.

여기에서, 상기 탄화규소(SiC)는 탄성계수 393GPa 이상, 프아송비 0.19 이상, 항복강도 307MPa 이상, 밀도 3100kg/㎥ 이상의 물성치를 갖는 RB-SiC(Reaction Bonded Silicon Carbide)이며; 상기 플레이트부는 고속 회전에 따른 응력 발생을 최소화하도록 곡률 반경 R125~R130의 범위로 형성하고, 상기 샤프트부는 외경 70~75mm로 형성하며; 상기 일체형 드라이빙 스핀들 샤프트는 ALD 증착시 증착속도와 증착막의 균질성을 동시에 만족하기 위해 전체 길이를 60~65mm로 구비할 수 있다.Here, the silicon carbide (SiC) is RB-SiC (Reaction Bonded Silicon Carbide) having a physical property value of 393 GPa or more, a Poisson's ratio of 0.19 or more, a yield strength of 307 MPa or more, and a density of 3100 kg/m 3 or more; The plate portion is formed in a radius of curvature in the range of R125 ~ R130 to minimize the generation of stress caused by high-speed rotation, and the shaft portion is formed in an outer diameter of 70 ~ 75mm; The integrated driving spindle shaft may have a total length of 60 to 65 mm in order to simultaneously satisfy the deposition rate and homogeneity of the deposition film during ALD deposition.

여기에서, 상기 플레이트부는 서스셉터의 하면 중앙에 음각부를 형성한 후, 상기 음각부에 삽입 배치 및 체결핀 결합에 의해 서스셉터 측에 고정 장착하되 비돌출 구조로 고정 결합하여 사용하도록 구성할 수 있다.Herein, the plate portion may be configured to be fixedly mounted on the susceptor side by forming an intaglio portion at the center of the lower surface of the susceptor, and then inserting and placing the intaglio portion and coupling a fastening pin into the intaglio portion, but using a non-protruding structure. .

또한, 상기의 목적을 달성하기 위한 본 발명에 따른 반도체 증착 ALD 장비용 일체형 드라이빙 스핀들 샤프트 제조방법은, (A) 탄화규소(SiC) 소재를 기계 가공하여 원판 형상의 플레이트부와 원기둥 형상의 샤프트부를 구비하는 단계; (B) 상기 플레이트부의 하면 중앙에 샤프트부를 수직 배치한 후 탄화규소(SiC) 분말을 플레이트부와 샤프트부가 맞닿는 부분에 주입하고 고온에서 소결하여 접합함에 의해 일체형 몸체로 드라이빙 스핀들 샤프트의 외형을 갖게 하는 단계; (C) 상기 소결 접합된 일체형 몸체의 드라이빙 스핀들 샤프트에 대해 외형 형상을 가공하여 펜타곤 타입 일체형 드라이빙 스핀들 샤프트를 구현하는 단계; (D) 상기 외형 형상의 가공이 완료된 펜타곤 타입 일체형 드라이빙 스핀들 샤프트에 대해 3차원 측정기를 활용하여 외형 형상의 가공상태를 측정하여 치수를 관리하는 단계;를 포함하는 것을 특징으로 한다.In addition, the method for manufacturing an integrated driving spindle shaft for semiconductor deposition ALD equipment according to the present invention for achieving the above object includes (A) a disk-shaped plate portion and a cylindrical shaft portion by machining a silicon carbide (SiC) material. Providing; (B) After arranging the shaft part vertically in the center of the lower surface of the plate part, silicon carbide (SiC) powder is injected into the part where the plate part and the shaft part abut and sintered at a high temperature to bond the driving spindle shaft to an integral body. step; (C) processing an external shape of the driving spindle shaft of the sintered-joined integrated body to implement a pentagon-type integrated driving spindle shaft; (D) measuring the processing state of the external shape using a three-dimensional measuring machine for the pentagon-type integrated driving spindle shaft for which the external shape has been processed and managing the dimensions; characterized in that it comprises.

여기에서, 상기 (B)단계에서는, (a) 상온(20℃ 기준)에서 500℃까지 승온 처리 후, 500℃에서 6시간 유지되게 하는 단계; (b) 500℃에서 1100℃까지 승온 처리 후, 1100℃에서 6시간 유지되게 하는 단계; (c) 1100℃에서 1,650℃까지 승온 처리 후, 1,650℃에서 4시간 유지되게 하는 단계; (d) 1,650℃에서 상온(20℃ 기준)까지 강온 처리하는 단계; 로 실시하여 소결 접합 중 플레이트부와 샤프트부 측 두 접합체 간의 수축율 차이에 의한 크랙이나 직각도 불량 발생을 방지하도록 구성할 수 있다.Here, in the (B) step, (a) after a temperature increase treatment from room temperature (20°C basis) to 500°C, maintaining at 500°C for 6 hours; (b) heating the temperature from 500°C to 1100°C, and then maintaining the temperature at 1100°C for 6 hours; (c) heating treatment from 1100° C. to 1,650° C. and then maintaining at 1,650° C. for 4 hours; (d) a step of reducing the temperature from 1,650 ℃ to room temperature (20 ℃ standard); It can be configured to prevent occurrence of cracks or defects in squareness due to the difference in shrinkage between the plate part and the shaft part side during sintering bonding.

여기에서, 상기 (C)단계에서는, (a) 가공효율을 높이기 위해 외형 형상의 분석을 통한 가공 공정순서와 가공내용 및 주요 관리 치수표를 작성하는 단계; (b) 상기 작성된 가공 공정순서와 가공내용 및 주요 관리 치수표를 기준으로 외형 형상을 순차 가공하는 단계;를 포함하되, 상기 (b)단계에서는, (1) 플레이트부와 샤프트부의 두께 및 평행도를 위해 평면연삭기를 사용하여 일체형 드라이빙 스핀들 샤프트 측 양측면을 황삭 가공하되, 절입량 0.01~0.02mm와 피드 10~15m/min의 연삭 조건으로 가공하는 단계; (2) 평면연삭기를 사용하여 플레이트부의 앞면과 샤프트부의 윗면을 평면 연삭하되, 절입량 0.01~0.02mm와 피드 10~15m/min의 연삭 조건으로 가공하는 단계; (3) 원통연삭기를 사용하여 플레이트부와 샤프트부의 접합부를 연삭 가공함과 더불어 샤프트부의 원통도를 위해 직경을 연삭 가공하되, 절입량 0.010~0.020mm와 피드 0.5~1.5m/min의 연삭 조건으로 가공하는 단계; (4) 와이어커팅기를 사용하여 플레이트부 측 외형에 대해 펜타곤 형상을 갖도록 황삭 가공하는 단계; (5) MCT장비를 사용하여 플레이트부 측 외형을 펜타곤 형상으로 정삭 가공하되, 절입량 0.01~0.02mm와 피드 0.02~0.03m/sec의 조건으로 가공하는 단계; (6) MCT장비를 사용하여 플레이트부 측 홀과 샤프트부 측 외면 돌출 양각부 모양 및 외곽 모깎기 가공을 수행하되, 절입량 0.01~0.02mm와 피드 0.02~0.03m/sec의 조건으로 가공하는 단계; (7) 호리젠탈 연삭기를 사용하여 평행도와 표면조도를 위해 플레이트부의 윗면을 정삭 가공함과 더불어 전체 높이를 위해 정삭 가공으로 마무리하되, 절입량 0.005~0.01mm와 피드 0.2~0.3m/min의 조건으로 가공하는 단계;를 포함하도록 구성할 수 있다.Here, in the step (C), (a) creating a processing sequence, processing contents, and major management dimension tables through analysis of an external shape to increase processing efficiency; (b) sequentially processing the external shape based on the created processing sequence, processing content, and main management dimension table; including, in the step (b), (1) the thickness and parallelism of the plate portion and the shaft portion For roughing the both sides of the integral driving spindle shaft side using a flat grinding machine, processing the cutting conditions in the grinding conditions of 0.01 ~ 0.02mm and feed 10 ~ 15m / min; (2) surface grinding the front surface of the plate portion and the upper surface of the shaft portion using a flat grinding machine, but processing the cutting conditions in a grinding condition of 0.01 to 0.02 mm and a feed of 10 to 15 m/min; (3) A cylindrical grinder is used to grind the joint part of the plate part and the shaft part and grind the diameter for the cylindricalness of the shaft part, but with a cutting condition of 0.010 to 0.020 mm and a feed of 0.5 to 1.5 m/min. Processing; (4) roughing processing to have a pentagon shape with respect to the outer shape of the plate portion side using a wire cutter; (5) Finishing the outer shape of the plate portion in the shape of a pentagon using MCT equipment, but processing under the conditions of a cut amount of 0.01 to 0.02 mm and a feed of 0.02 to 0.03 m/sec; (6) Using MCT equipment, perform processing of the shape of the protruding embossed part of the plate part side and the outer surface of the shaft part side, and the outer filleting, but processing under the conditions of 0.01~0.02mm depth of cut and 0.02~0.03m/sec feed. ; (7) Using a horizontal grinding machine, finish the top surface of the plate for parallelism and surface roughness, and finish with a finishing process for the overall height, but with a depth of cut of 0.005~0.01mm and feed 0.2~0.3m/min. Processing conditions; can be configured to include.

여기에서, 상기 탄화규소(SiC)는 탄성계수 393GPa 이상, 프아송비 0.19 이상, 항복강도 307MPa 이상, 밀도 3100kg/㎥ 이상의 물성치를 갖는 RB-SiC(Reaction Bonded Silicon Carbide)를 사용하며; 상기 플레이트부는 고속 회전에 따른 응력 발생을 최소화하도록 곡률 반경 R125~R130의 범위로 가공하고, 상기 샤프트부는 외경 70~75mm로 가공하며; 상기 일체형 드라이빙 스핀들 샤프트는 ALD 증착시 증착속도와 증착막의 균질성을 동시에 만족하기 위해 전체 길이를 60~65mm로 가공할 수 있다.In this case, the silicon carbide (SiC) uses RB-SiC (Reaction Bonded Silicon Carbide) having physical properties of 393 GPa or more, Poisson's ratio of 0.19 or more, yield strength of 307 MPa or more, and density of 3100 kg/m 3 or more; The plate part is processed to have a radius of curvature in the range of R125 to R130 to minimize the occurrence of stress due to high-speed rotation, and the shaft part is processed to have an outer diameter of 70 to 75mm; The integrated driving spindle shaft may have a total length of 60 to 65 mm in order to simultaneously satisfy the deposition rate and homogeneity of the deposition film during ALD deposition.

여기에서, 상기 (A)단계 이전에 3D 모델링을 통한 형상 설계 및 ANSYS 프로그램을 이용한 설계된 형상의 유한요소 해석을 수행하여 최적의 형상 및 구조적 수치를 갖는 일체형 구조의 드라이빙 스핀들 샤프트를 도출해내는 단계;를 더 포함하여 구성할 수 있다.Here, prior to step (A), the step of deriving a driving spindle shaft of an integrated structure having an optimal shape and structural values by performing a shape design through 3D modeling and a finite element analysis of the designed shape using an ANSYS program; It can be configured to include more.

본 발명에 따르면, 기존에 비해 소재를 변경함과 더불어 일체형 구조로 개선함에 의해 구조적인 안정성을 갖는 드라이빙 스핀들 샤프트를 제공할 수 있으며, 생산성 증대는 물론 반도체 제품의 품질 향상을 기대할 수 있고 반도체 제조단가를 절감할 수 있으며, 사용수명과 교체주기를 연장할 수 있으므로 반도체 증착 ALD 장비의 향상된 운전효율을 구현할 수 있는 유용한 효과를 달성할 수 있다.According to the present invention, it is possible to provide a driving spindle shaft having structural stability by changing a material and improving it to an integrated structure compared to the existing one, and it is possible to increase productivity as well as improve the quality of semiconductor products, and semiconductor manufacturing cost It is possible to reduce the service life and extend the replacement cycle, thereby achieving a useful effect of implementing the improved operation efficiency of the semiconductor deposition ALD equipment.

본 발명에 따르면, 플레이트부와 샤프트부를 일체형으로 하는 구조 개선에 의해 드라이빙 스핀들 샤프트 측 구성요소간 결합부 마모 및 플레이트부와 서스셉터간의 체결부 마모를 최소화할 수 있을 뿐만아니라 파티클 유발을 방지할 수 있고, 고속 회전시 드라이빙 스핀들 샤프트 측 플레이트부와 서스셉터간의 체결부 측 응력이 집중되는 현상을 방지할 수 있어 칩핑(chipping)이 발생하거나 파손되는 위험을 제거할 수 있으며 잦은 부품 교체에 의한 생산성 저하를 방지할 수 있는 유용한 효과를 달성할 수 있다.According to the present invention, by improving the structure in which the plate part and the shaft part are integrated, it is possible to minimize the wear of the coupling part between the components on the driving spindle shaft side and the coupling part between the plate part and the susceptor, as well as prevent particle induction. In addition, it is possible to prevent the phenomenon that the stress on the coupling part between the plate part of the driving spindle shaft and the susceptor is concentrated during high-speed rotation, thereby eliminating the risk of chipping or damage, and decreases productivity due to frequent parts replacement. It is possible to achieve a useful effect that can prevent.

도 1은 본 발명의 실시예에 따른 일체형 드라이빙 스핀들 샤프트를 포함하는 반도체 증착 ALD 장비를 나타낸 개략적 단면 구성도이다.
도 2는 본 발명의 실시예에 따른 일체형 드라이빙 스핀들 샤프트를 나타낸 정면 사시도이다.
도 3은 본 발명의 실시예에 따른 일체형 드라이빙 스핀들 샤프트를 나타낸 배면 사시도이다.
도 4는 본 발명의 실시예에 따른 일체형 드라이빙 스핀들 샤프트를 나타낸 측단면도이다.
도 5은 본 발명에 있어 펜타곤 형상과 곡률 반경 형성 및 길이 형성에 따른 일체형 드라이빙 스핀들 샤프트에 대해 진동 특성 분석 및 응답 해석을 수행한 결과를 나타낸 일 예시도이다.
도 6은 본 발명의 실시예에 따른 일체형 드라이빙 스핀들 샤프트 제조방법을 나타낸 공정도이다.
도 7은 본 발명의 실시예에 따른 일체형 드라이빙 스핀들 샤프트 제조방법에 있어 외형 형상 가공단계를 나타낸 세부 공정도이다.
도 8은 본 발명의 제조방법에 있어 외형 형상 가공단계의 세부적인 공정순서 및 치수관리표를 나타낸 일 예시도이다.
도 9는 본 발명의 제조방법에 있어 소결 접합단계시 소결 불량 발생을 보여주는 일 예시를 나타낸 사진이다.
도 10은 본 발명의 실시예에 따른 일체형 드라이빙 스핀들 샤프트 제조방법에 의해 완성된 실제품을 나타낸 사진이다.
1 is a schematic cross-sectional configuration diagram showing a semiconductor deposition ALD equipment including an integrated driving spindle shaft according to an embodiment of the present invention.
2 is a front perspective view showing an integrated driving spindle shaft according to an embodiment of the present invention.
3 is a rear perspective view showing an integrated driving spindle shaft according to an embodiment of the present invention.
4 is a side cross-sectional view showing an integrated driving spindle shaft according to an embodiment of the present invention.
5 is an exemplary view showing a result of performing vibration characteristic analysis and response analysis on an integral driving spindle shaft according to a pentagon shape, a radius of curvature, and a length formation in the present invention.
6 is a process chart showing a method of manufacturing an integrated driving spindle shaft according to an embodiment of the present invention.
7 is a detailed process diagram showing an external shape processing step in a method for manufacturing an integrated driving spindle shaft according to an embodiment of the present invention.
8 is an exemplary view showing a detailed process sequence and a dimension control table of the external shape processing step in the manufacturing method of the present invention.
9 is a photograph showing an example showing the occurrence of sintering failure during the sintering bonding step in the manufacturing method of the present invention.
10 is a photograph showing an actual product completed by the method of manufacturing an integrated driving spindle shaft according to an embodiment of the present invention.

본 발명에 대해 첨부한 도면을 참조하여 바람직한 실시예를 설명하면 다음과 같으며, 이와 같은 상세한 설명을 통해서 본 발명의 목적과 구성 및 그에 따른 특징들을 보다 잘 이해할 수 있게 될 것이다.A preferred embodiment of the present invention will be described with reference to the accompanying drawings, and it will be possible to better understand the objects and configurations of the present invention, and features thereof, through such detailed description.

본 발명의 실시예에 따른 반도체 증착 ALD 장비용 일체형 드라이빙 스핀들 샤프트(100)는 도 1에 나타낸 바와 같이, 원자층 증착을 위한 ALD 장비(1)에 사용되는 구성요소의 하나로서, 증착챔버(2)의 내부에 배치되고 웨이퍼 등의 반도체 기판을 지지하도록 구비된 서스셉터(susceptor)(3)에 구동장치로부터 발생된 회전 구동력을 전달하는 역할을 담당하며, 서스셉터(3)에 결합되어 사용된다.The integrated driving spindle shaft 100 for semiconductor deposition ALD equipment according to an embodiment of the present invention is one of the components used in the ALD equipment 1 for atomic layer deposition, as shown in FIG. 1, and is a deposition chamber 2 ), and is used to transmit the rotational driving force generated from the driving device to a susceptor 3 provided to support a semiconductor substrate such as a wafer, and is used by being coupled to the susceptor 3. .

이와 같은 반도체 증착 ALD 장비용 일체형 드라이빙 스핀들 샤프트(100)는 도 2 내지 도 4에 나타낸 바와 같이, 반도체 증착 ALD 장비용 서스셉터 측에 결합되는 원판 형상의 플레이트부(110)와 상기 플레이트부(110)의 하면 중앙에서 연장되어 일체로 형성되는 원기둥 형상의 샤프트부(120)로 이루어진다.As shown in FIGS. 2 to 4, the integrated driving spindle shaft 100 for semiconductor deposition ALD equipment includes a disk-shaped plate portion 110 and the plate portion 110 coupled to the susceptor side for semiconductor deposition ALD equipment. ) Consists of a cylindrical shaft portion 120 extending from the center and integrally formed.

상기 일체형 드라이빙 스핀들 샤프트(100)를 구성하는 플레이트부(110)와 샤프트부(120)는 ALD 증착 공정중 드라이빙 스핀들 샤프트로서 역할을 충분히 수행하기 위해 우수한 경도와 강성을 구비하고, 내마모성과 내열성이 우수한 특성을 발휘할 수 있는 탄화규소(SiC) 소재로 구비된다.The plate portion 110 and the shaft portion 120 constituting the integrated driving spindle shaft 100 have excellent hardness and stiffness to sufficiently perform a role as a driving spindle shaft during the ALD deposition process, and have excellent wear resistance and heat resistance. It is provided with a silicon carbide (SiC) material that can exhibit properties.

특히, 상기 일체형 드라이빙 스핀들 샤프트(100)는 탄화규소 중에서도 기계적, 열적, 전기적 성질이 우수한 RB-SiC(Reaction Bonded Silicon Carbide)를 사용함이 바람직하다.In particular, it is preferable that the integrated driving spindle shaft 100 uses RB-SiC (Reaction Bonded Silicon Carbide) excellent in mechanical, thermal, and electrical properties among silicon carbide.

여기에서, 상기 RB-SiC는 탄성계수 393GPa 이상, 프아송비 0.19 이상, 항복강도 307MPa 이상, 밀도 3100kg/㎥ 이상의 물성조건을 만족하는 것이 바람직하다.Here, it is preferable that the RB-SiC satisfies the physical property conditions of an elastic modulus of 393 GPa or more, a Poisson's ratio of 0.19 or more, a yield strength of 307 MPa or more, and a density of 3100 kg/m 3 or more.

상기 플레이트부(110)는 서스셉터와의 접촉면적을 최대화할 수 있으면서도 고속 회전에 따른 응력 발생을 최소화하도록 펜타곤 타입으로 형성하되, 응력 발생으로 인한 칩핑 발생을 피하면서 회전에 따른 진동을 최소화함은 물론 파티클 발생 및 유입을 예방하도록 하기 위하여 곡률 반경 R125~R130의 범위로 형성함이 바람직하다.The plate part 110 is formed in a pentagon type to maximize the contact area with the susceptor and to minimize the generation of stress due to high-speed rotation, but minimizes vibration due to rotation while avoiding chipping due to stress generation. Of course, it is preferable to form in the range of the radius of curvature R125 to R130 in order to prevent particle generation and inflow.

이러한 펜타곤 형상 및 곡률 반경의 수치는 3D 모델링을 통한 형상 설계를 수행하고 이러한 형상 설계를 통한 유한요소 해석에 따른 결과와 더불어 형상별 및 길이별 진동 특성 분석을 통해 도출되었다.The figures of the shape and radius of curvature of these pentagons were derived through analysis of vibration characteristics for each shape and length, as well as the results of the finite element analysis through 3D modeling and the finite element analysis.

이때, 유한요소 생성은 ANSYS 프로그램에서 제공하는 요소생성기를 이용하였으며, 유한요소는 mesh sizing control을 이용하여 한 변의 길이를 1.0mm가 기본이 되도록 설정하였고, 라운드 부분은 mesh size를 3mm로 설정하였으며, 유한요소 생성은 각 면의 경계부분 node가 일치되도록 mesh 조건을 부여하였다.At this time, the element generator provided by ANSYS program was used to generate the finite element, and the length of one side was set to be 1.0mm as the default using the mesh sizing control for the finite element, and the mesh size was set to 3mm for the round part. In the finite element generation, mesh conditions were assigned so that the nodes at the boundary of each face coincide.

도 5은 펜타곤 형상을 갖되 곡률 반경 R128로 형성하고 전체 길이를 65mm로 하였을 때, 진동 특성 분석 결과 및 응답 해석 결과를 나타낸 일 예시를 보여주고 있다.5 shows an example of a vibration characteristic analysis result and a response analysis result when the pentagon shape is formed with a radius of curvature R128 and the total length is 65mm.

이에 따라, 상기 플레이트부(110)는 펜타곤 형상 및 곡률 반경 R125~R130의 범위 내에서 두께 7~8mm로 형성하고, 상기 샤프트부(120)는 외경에 대해 70~75mm로 형성하는 것이 최적의 조건으로 도출되었다.Accordingly, the plate portion 110 is formed to have a thickness of 7 to 8 mm within a range of a pentagon shape and a radius of curvature R125 to R130, and the shaft part 120 is formed to have an outer diameter of 70 to 75 mm. Was derived.

또한, 상기 일체형 드라이빙 스핀들 샤프트(100)는 ALD 증착시 증착속도와 증착막의 균질성을 동시에 만족하기 위해 전체 길이를 60~65mm로 구비함이 바람직하다.In addition, it is preferable that the integrated driving spindle shaft 100 has a total length of 60 to 65 mm in order to simultaneously satisfy the deposition rate and homogeneity of the deposition film during ALD deposition.

더불어, 상기 플레이트부(110)는 서스셉터(3)의 하면 중앙에 음각부(3a)를 형성한 후, 상기 음각부에 맞춤 끼움하여 삽입 배치 및 체결핀에 의한 결합을 갖게 하여 서스셉터(3) 측에 고정 장착하되, 음각부(3a)에 대해 플레이트부(110)의 두께와 동일한 규격으로 형성함으로써 비돌출 구조로 고정 결합하여 사용토록 함이 바람직하다.In addition, the plate portion 110 has an intaglio portion 3a formed in the center of the lower surface of the susceptor 3, and then fits into the intaglio portion to have an insertion arrangement and a coupling by a fastening pin, so that the susceptor 3 ) But fixed to the side, it is preferable to use the intaglio portion 3a to be fixedly coupled with a non-protruding structure by forming the same standard as the thickness of the plate portion 110.

이를 통해, 고속 회전이 이루어질 때, 서스셉터(3)와 플레이트부(110) 간 결합부위에서의 마모를 방지하므로 파티클 발생을 예방할 수 있고, 기존에 자주 발생되는 칩핑(chipping) 및 부품 파손을 방지할 수 있으며, 수명 연장과 더불어 ALD 장비의 안정된 운전을 가능하게 하는 장점을 제공할 수 있다.Through this, when a high-speed rotation is made, it prevents abrasion at the bonding site between the susceptor 3 and the plate part 110, so that the generation of particles can be prevented, and the conventional chipping and component damage that often occur can be prevented. In addition to extending the lifespan, it can provide the advantage of enabling stable operation of ALD equipment.

한편, 상술한 바와 같은 형상 구조를 갖는 본 발명에 따른 반도체 증착 ALD 장비용 일체형 드라이빙 스핀들 샤프트의 제조방법을 설명하면 다음과 같다.Meanwhile, a method of manufacturing an integrated driving spindle shaft for semiconductor deposition ALD equipment according to the present invention having the above-described shape structure will be described as follows.

본 발명의 실시예에 따른 반도체 증착 ALD 장비용 일체형 드라이빙 스핀들 샤프트는 도 6에 나타낸 바와 같이, 형상 설계 및 유한요소 해석단계(S10), 부품 구비단계(S20), 소결 접합단계(S30), 외형 형상 가공단계(S40), 형상 치수 관리단계(S50)를 포함하는 구성으로 이루어진다.In the integrated driving spindle shaft for semiconductor deposition ALD equipment according to an embodiment of the present invention, as shown in FIG. 6, shape design and finite element analysis step (S10), component preparation step (S20), sintering bonding step (S30), appearance Consists of a configuration including a shape processing step (S40) and a shape dimension management step (S50).

상기 형성 설계 및 유한요소 해석단계(S10)는 컴퓨터 3D 모델링을 통한 형상 설계 및 ANSYS 프로그램을 이용한 설계된 형상의 유한요소 해석을 수행하여 최적의 형상 및 구조적 수치를 갖는 일체형 구조의 드라이빙 스핀들 샤프트를 도출해내는 단계이다.In the formation design and finite element analysis step (S10), a driving spindle shaft of an integrated structure having an optimal shape and structural values is derived by performing a shape design through computer 3D modeling and a finite element analysis of the designed shape using an ANSYS program. Step.

부연하면, 3D 모델링을 통한 형상 설계를 수행하고 이러한 형상 설계를 통한 유한요소 해석에 따른 결과와 더불어 형상별 및 길이별 진동 특성 분석을 통해 일체형 구조의 드라이빙 스핀들 샤프트를 도출해낸다.In addition, the shape design through 3D modeling is performed, and the driving spindle shaft of an integrated structure is derived through the analysis of vibration characteristics for each shape and length along with the result of the finite element analysis through this shape design.

이때, 유한요소 생성은 ANSYS 프로그램에서 제공하는 요소생성기를 이용하였으며, 유한요소는 mesh sizing control을 이용하여 한 변의 길이를 1.0mm가 기본이 되도록 설정하였고, 라운드 부분은 mesh size를 3mm로 설정하였으며, 유한요소 생성은 각 면의 경계부분 node가 일치되도록 mesh 조건을 부여하였다.At this time, the element generator provided by ANSYS program was used to generate the finite element, and the length of one side was set to be 1.0mm as the default using the mesh sizing control for the finite element, and the mesh size was set to 3mm for the round part. In the finite element generation, mesh conditions were assigned so that the nodes at the boundary of each face coincide.

이에 따라, 상기 플레이트부(110)에 대해서는 펜타곤 형상 및 곡률 반경 R125~R130의 범위 내에서 두께 7~8mm로 형성하고, 상기 샤프트부(120)는 외경에 대해 70~75mm로 형성하는 것이 최적의 조건으로 도출되었으며, 상기 일체형 드라이빙 스핀들 샤프트(100)는 ALD 증착시 증착속도와 증착막의 균질성을 동시에 만족하기 위해 전체 길이를 60~65mm로 구비하는 것이 최적으로 도출되었다.Accordingly, it is optimal to form the plate part 110 with a thickness of 7 to 8 mm within the range of a pentagon shape and a radius of curvature R125 to R130, and the shaft part 120 to be formed to have an outer diameter of 70 to 75 mm. Conditions were derived, and it was optimally derived that the integrated driving spindle shaft 100 has a total length of 60 to 65 mm in order to simultaneously satisfy the deposition rate and homogeneity of the deposition film during ALD deposition.

이미 앞서 설명한 바와 같이, 도 5에서는 펜타곤 형상을 갖되 곡률 반경 R128로 형성하고 전체 길이를 65mm로 하였을 때, 진동 특성 분석 결과 및 응답 해석 결과를 나타낸 일 예시를 보여주고 있다.As already described above, FIG. 5 shows an example of a vibration characteristic analysis result and a response analysis result when the pentagon shape is formed with a radius of curvature R128 and the total length is 65mm.

상기 부품 구비단계(S20)는 탄화규소(SiC) 소재를 기계 가공하여 원판 형상의 플레이트부(110)와 원기둥 형상의 샤프트부(120)를 구비하는 단계이다.The component providing step (S20) is a step of machining a silicon carbide (SiC) material to provide a disk-shaped plate portion 110 and a cylindrical shaft portion 120.

또한, 상기 부품 구비단계(S20)는 상기와 같은 형상 설계 및 유한요소 해석단계(S10)를 통해 도출된 형상으로 가공하기 위해 탄화규소(SiC) 소재를 기계 가공하여 원판 형상의 플레이트부(110)와 원기둥 형상의 샤프트부(120)를 구비하는 단계로 구성할 수 있다.In addition, in the component provision step (S20), the plate portion 110 in the form of a disk is machined by machining a silicon carbide (SiC) material to form the shape derived through the shape design and finite element analysis step (S10) as described above. And it can be configured in the step of providing a cylindrical shaft portion 120.

여기에서, 탄화규소를 소재로 사용함은 ALD 증착 공정중 드라이빙 스핀들 샤프트로서 역할을 충분히 수행하기 위해 우수한 경도와 강성을 구비하고, 내마모성과 내열성이 우수한 특성을 활용하기 위함이며, 특히 탄화규소 중에서도 기계적, 열적, 전기적 성질이 우수한 RB-SiC(Reaction Bonded Silicon Carbide)를 사용함이 바람직하다.Here, the use of silicon carbide as a material is to provide excellent hardness and rigidity in order to sufficiently perform the role as a driving spindle shaft during the ALD deposition process, and to utilize the characteristics of excellent wear resistance and heat resistance. It is preferable to use RB-SiC (Reaction Bonded Silicon Carbide) with excellent thermal and electrical properties.

여기에서, 상기 RB-SiC는 탄성계수 393GPa 이상, 프아송비 0.19 이상, 항복강도 307MPa 이상, 밀도 3100kg/㎥ 이상의 물성조건을 만족하는 것이 바람직하다.Here, it is preferable that the RB-SiC satisfies the physical property conditions of an elastic modulus of 393 GPa or more, a Poisson's ratio of 0.19 or more, a yield strength of 307 MPa or more, and a density of 3100 kg/m 3 or more.

상기 소결 접합단계(S30)는 상기 플레이트부(110)의 하면 중앙에 샤프트부(120)를 수직 배치한 후 탄화규소(SiC) 분말, 특히 RB-SiC 분말을 플레이트부(110)와 샤프트부(120)가 맞닿는 부분에 주입하고 고온에서 소결하여 접합함에 의해 일체형 몸체로 드라이빙 스핀들 샤프트(100)의 외형을 갖게 하는 단계이다.In the sintering bonding step (S30), after vertically arranging the shaft part 120 at the center of the lower surface of the plate part 110, silicon carbide (SiC) powder, especially RB-SiC powder, is mixed with the plate part 110 and the shaft part ( 120) is injected into the abutting portion, sintered at a high temperature, and bonded together to give the driving spindle shaft 100 an external shape as an integral body.

이때, 상기 소결 접합단계(S30)에서는 RB-SiC 소재를 소결하는 경우 18% 정도의 소결 수축율을 갖게 되는데, RB-SiC 분말과 RB-SiC 소결체 간의 접합 시 두 물질 간의 균일한 수축을 유도할 수 있는 소결 접합 기술이 요구된다. 두 물질이 동일한 소재이지만 이미 소결된 가공체(접합을 위해 재소결시 더 이상 수축하지 않음)와 분말(소결시 18%의 수축 발생) 간의 접합이므로 수축율 차이에 의한 소결 접합 불량이 반드시 발생하게 되어 있으므로 이를 해결하기 위한 소결 접합 기술이 요구된다.At this time, in the sintering bonding step (S30), when the RB-SiC material is sintered, the sintering shrinkage rate is about 18%.When bonding the RB-SiC powder and the RB-SiC sintered body, uniform shrinkage between the two materials can be induced. A good sintering bonding technique is required. Although the two materials are the same material, since the sintered workpiece (no longer shrinks when resintered for bonding) and powder (18% shrinkage occurs when sintering), a sintered joint failure due to the difference in shrinkage will necessarily occur. Therefore, a sintering bonding technique is required to solve this problem.

이에, 소결 접합 중 플레이트부(110)와 샤프트부(120) 측 소결 접합시 RB-SiC 분말과 RB-SiC 소결체 간의 수축율 차이에 의한 크랙이나 직각도 불량 발생을 방지 및 상호간 접합력 저하를 방지하도록 다단계로 나누어 소결 접합 처리하는 조건을 확립하였다.Thus, during the sintering of the plate part 110 and the shaft part 120 side sintering, it is possible to prevent the occurrence of cracks or perpendicularity defects due to the difference in the shrinkage rate between the RB-SiC powder and the RB-SiC sintered body, and to prevent reduction of mutual bonding strength. Divided by and established conditions for sintering bonding treatment.

이를 위해, 상기 소결 접합단계(S30)는 상온(20℃ 기준)에서 500℃까지 승온 처리한 후 500℃에서 6시간 유지되게 하고, 500℃에서 1100℃까지 승온 처리한 ㅎ후 1100℃에서 6시간 유지되게 하고, 1100℃에서 1,650℃까지 승온 처리한 후 1,650℃에서 4시간 유지되게 하며, 1,650℃에서 상온(20℃ 기준)까지 강온 처리하는 형태로 나누어 소결 접합하는 것이 바람직하다.To this end, in the sintering bonding step (S30), the temperature was raised from room temperature (at 20℃) to 500℃ and then maintained at 500℃ for 6 hours, and the temperature was raised from 500℃ to 1100℃, and then maintained at 1100℃ for 6 hours. It is preferable to perform sintering and joining by dividing the temperature from 1100°C to 1,650°C and maintaining the temperature at 1,650°C for 4 hours, and reducing the temperature from 1,650°C to room temperature (at 20°C).

이와 같은 최적의 소결 접합 조건을 확립하기 위하여 소결 온도 및 시간 조건을 변경해가면서 소결 접합 test를 실시하였고, 다수개의 소결 접합 조건을 선정하여 각 조건 당 5개의 Driving Sipndle Shaft 소결 접합을 시도하였으며, 접합된 모든 샘플에 대해 3차원 측정기를 이용하여 직각도를 조사하였고 육안검사를 통해 Crack 및 기공 발생 여부를 체크하였다. In order to establish the optimum sintering bonding conditions, a sintering bonding test was conducted while changing the sintering temperature and time conditions, and five Driving Sipndle Shaft sintered bonding was attempted for each condition by selecting a number of sintering bonding conditions. All samples were examined for perpendicularity using a three-dimensional measuring machine, and cracks and pores were checked through visual inspection.

여기에서, 소결 온도 및 시간을 변경하는 스케줄에서 승온 구간 내에 온도 유지 구간을 추가하는 방식이 수축에 의한 크랙이나 휨 발생을 최소화시킴을 확인하였으며, 온도 유지 구간을 3회 추가 시 이전에 비해 직진도가 향상되어 기준 직진도 스펙을 만족시킴을 확인하였다.Here, in the schedule of changing the sintering temperature and time, it was confirmed that the method of adding a temperature maintenance section within the heating section minimizes the occurrence of cracks or warpage due to shrinkage. It was confirmed that was improved and satisfies the standard straightness specification.

또한, 온도 유지 구간을 4회 추가 시에는 3회 추가하는 경우 대비 직진도는 비슷하나 소결 평균 온도가 저하되므로 인해 도 9에서 보여주는 바와 같이, 미소결로 인한 기공 형성 및 크랙 불량이 발생하는 것을 확인하였다.In addition, when the temperature maintenance section is added 4 times, the straightness is similar compared to the case of adding 3 times, but since the average sintering temperature is lowered, as shown in FIG. 9, it was confirmed that pore formation and crack failure due to unsintering occurred. .

상기 외형 형상 가공단계(S40)는 상기 소결 접합된 일체형 몸체의 드라이빙 스핀들 샤프트에 대해 외형 형상을 가공하여 펜타곤 타입의 일체형 드라이빙 스핀들 샤프트를 구현하는 단계이다.The outer shape processing step (S40) is a step of implementing an integral driving spindle shaft of a pentagon type by processing an outer shape of the driving spindle shaft of the sintered integral body.

이를 위해, 상기 외형 형상 가공단계(S40)에서는 도 7에서와 같이, 가공효율을 높이기 위해 외형 형상의 분석을 통한 가공 공정순서와 가공내용 및 주요 관리 치수표를 작성하는 단계(S41)와, 상기 작성된 가공 공정순서와 가공내용 및 주요 관리 치수표를 기준으로 외형 형상을 순차 가공하는 단계(S42)를 포함한다.To this end, in the external shape processing step (S40), as shown in FIG. 7, a step (S41) of creating a processing process sequence, processing contents, and main management dimension tables through analysis of the external shape in order to increase processing efficiency, and It includes a step (S42) of sequentially processing the external shape based on the created processing process sequence, processing content, and main management dimension table.

상기 S41단계에서는 도 8에서 보여주는 바와 같이, 외형 형상에 대한 가공 효율을 높이기 위해 형상 분석을 통한 가공 공정 순서를 정하였으며, 그에 따른 주요 관리 치수표를 작성하여 일체형 드라이빙 스핀들 샤프트의 세부적인 가공 공정을 도출하였다.In the step S41, as shown in FIG. 8, in order to increase the processing efficiency for the external shape, the order of the processing process was determined through shape analysis, and the main management dimension table was prepared accordingly to determine the detailed processing process of the integrated driving spindle shaft. Was derived.

상기 S42단계에서는 상기 작성된 가공 공정순서와 가공내용 및 주요 관리 치수표를 기준으로 1차 평면 연삭단계(S42a), 2차 평면 연삭단계(S42b), 원통 연삭단계(S42c), 와이어 커팅단계(S42d), 1차 MCT 가공단계(S42e), 2차 MCT 가공단계(S42f), 및 호리젠탈 연삭단계(S42g)를 순차 실시하도록 한다.In the step S42, the first plane grinding step (S42a), the second plane grinding step (S42b), the cylindrical grinding step (S42c), and the wire cutting step (S42d) are based on the created processing process sequence, processing content and main management dimension table. ), the first MCT processing step (S42e), the second MCT processing step (S42f), and the horizontal grinding step (S42g) are sequentially performed.

상기 1차 평면 연삭단계(S42a)는 소결 접합에 의해 일체로 된 플레이트부(110)와 샤프트부(120)의 두께 및 평행도를 위해 평면연삭기를 사용하여 일체형 드라이빙 스핀들 샤프트(100) 측 양측면을 황삭 가공하되, 절입량 0.01~0.02mm와 피드 10~15m/min의 연삭 조건으로 가공하는 단계이다.In the first plane grinding step (S42a), both sides of the integrated driving spindle shaft 100 are roughened using a plane grinder for the thickness and parallelism of the plate part 110 and the shaft part 120 integrated by sintering bonding. It is a step of processing, but the cutting conditions are 0.01~0.02mm and the feed is 10~15m/min.

이때, 상기 절입량 및 피드의 연삭 조건은 소재로 사용한 RB-SiC 소재가 갖는 연삭 특성 분석 테스트를 진행하여 도출한 것이며, 상기한 연삭 조건으로 가공시 평면 연삭기가 갖는 다이아몬드 레진 휠 측 다이아몬드 입자 마모에 의한 Grinding Burn 현상 및 Chattering 현상이 발생하지 않는 것을 확인하였으며, 연삭 품질이 높은 평면 연삭 가공을 수행할 수 있었다.At this time, the cutting amount and the grinding conditions of the feed were derived by conducting a grinding characteristic analysis test of the RB-SiC material used as the material, and the diamond particle abrasion on the diamond resin wheel side of the surface grinder when machining under the above-described grinding conditions It was confirmed that the Grinding Burn phenomenon and Chattering phenomenon did not occur, and the surface grinding processing with high grinding quality could be performed.

상기 2차 평면 연삭단계(S42b)는 평면연삭기를 사용하여 플레이트부(110)의 앞면과 샤프트부(120)의 윗면을 평면 연삭하되, 절입량 0.01~0.02mm와 피드 10~15m/min의 연삭 조건으로 가공하는 단계이다.In the second plane grinding step (S42b), the front surface of the plate part 110 and the upper surface of the shaft part 120 are ground in a plane using a plane grinding machine, with a cut-off amount of 0.01 to 0.02 mm and a feed of 10 to 15 m/min. It is a step of processing conditions.

이때에도, 상기 연삭 조건으로 가공시 1차 평면 연삭 가공 때와 같이 평면 연삭기가 갖는 다이아몬드 레진 휠 측 다이아몬드 입자 마모에 의한 Grinding Burn 현상 및 Chattering 현상이 발생하지 않는 것을 확인하였다.Even at this time, it was confirmed that grinding burn and chattering phenomena did not occur due to abrasion of diamond particles on the diamond resin wheel side of the surface grinder as in the case of the primary surface grinding when processing under the above grinding conditions.

상기 원통 연삭단계(S42c)는 원통연삭기를 사용하여 플레이트부(110)와 샤프트부(120)의 접합부를 연삭 가공함과 더불어 샤프트부(120)의 원통도를 위해 직경을 연삭 가공하되, 절입량 0.010~0.020mm와 피드 0.5~1.5m/min의 연삭 조건으로 가공하는 단계이다.In the cylindrical grinding step (S42c), the joint portion between the plate portion 110 and the shaft portion 120 is ground using a cylindrical grinding machine, and the diameter is ground for the cylindrical degree of the shaft portion 120, but the cut amount This is the step of machining under the grinding conditions of 0.010~0.020mm and feed 0.5~1.5m/min.

상기 와이어 커팅단계(S42d)는 와이어커팅기를 사용하여 플레이트부(110) 측 외형에 대해 펜타곤 형상을 갖도록 황삭 가공하는 단계이다.The wire cutting step (S42d) is a step of roughing the outer shape of the plate portion 110 to have a pentagon shape using a wire cutter.

이때, 상기 와이어 커팅단계(S42d)를 수행함으로써 MCT장비만을 이용한 MCT가공을 수행하는 것에 비해 와이어 커팅 후 MCT 가공을 수행하는 것이 가공시간 및 가공비용을 크게 절감할 수 있었다.At this time, by performing the wire cutting step (S42d), compared to performing MCT processing using only MCT equipment, performing MCT processing after wire cutting can significantly reduce processing time and processing cost.

상기 1차 MCT 가공단계(S42e)는 MCT장비를 사용하여 플레이트부(110) 측 외형을 펜타곤 형상으로 정삭 가공하되, 절입량 0.01~0.02mm와 피드 0.02~0.03m/sec의 조건으로 가공하는 단계이다.The first MCT processing step (S42e) is a step of finishing the outer shape of the plate part 110 in a pentagon shape using MCT equipment, but processing under the conditions of a depth of cut of 0.01 to 0.02 mm and a feed of 0.02 to 0.03 m/sec. to be.

상기 2차 MCT 가공단계(S42f)는 MCT장비를 사용하여 플레이트부(110) 측 홀과 샤프트부(120) 측 외면 돌출 양각부(121) 모양 및 외곽 모깎기 가공을 수행하되, 절입량 0.01~0.02mm와 피드 0.02~0.03m/sec의 조건으로 가공하는 단계; In the second MCT processing step (S42f), the hole on the plate portion 110 and the outer surface protruding embossed portion 121 on the shaft portion 120 side are formed using MCT equipment, and the depth of cut is 0.01~ Processing under the conditions of 0.02mm and feed 0.02~0.03m/sec;

상기 호리젠탈 연삭단계(S42g)는 호리젠탈 연삭기를 사용하여 평행도와 표면조도를 위해 플레이트부(110)의 윗면을 정삭 가공함과 더불어 전체 높이를 위해 정삭 가공으로 마무리하되, 절입량 0.005~0.01mm와 피드 0.2~0.3m/min의 조건으로 가공하는 단계이다.In the horizontal grinding step (S42g), the upper surface of the plate portion 110 is finished for parallelism and surface roughness using a horizontal grinding machine, and finished with a finishing process for the overall height, but the depth of cut is 0.005~ It is a step of processing under the conditions of 0.01mm and feed 0.2~0.3m/min.

상기 형상 치수 관리단계(S50)는 상술한 단계들의 순차 실시에 의해 외형 형상의 가공이 완료된 펜타곤 타입 일체형 드라이빙 스핀들 샤프트(100)에 대해 3차원 측정기를 활용하여 외형 형상의 가공상태를 측정하여 치수를 관리하는 단계이다.The shape dimension management step (S50) measures the processing state of the external shape using a 3D measuring machine for the pentagon-type integrated driving spindle shaft 100 on which the external shape has been processed by the sequential execution of the above-described steps. This is the management stage.

이때, 상기 형상 치수 관리단계(S50)에서는 3차원 측정기를 활용하여 가공상태를 측정하되, 측정 결과를 역추적하여 해당 가공공정에 피드백하는 단계이며, 측정 결과에 의한 피드백을 통해 보다 정밀한 형상으로 가공 처리하기 위한 단계이다.At this time, in the shape and dimension management step (S50), the processing state is measured using a three-dimensional measuring machine, and the measurement result is traced back to the processing process, and processed into a more precise shape through feedback based on the measurement result. This is the step to process.

즉, 이와 같은 상술한 단계로 이루어지는 제조방법에 의해 탄성계수 393GPa 이상, 프아송비 0.19 이상, 항복강도 307MPa 이상, 밀도 3100kg/㎥ 이상의 물성치를 갖는 RB-SiC(Reaction Bonded Silicon Carbide)로 이루어지되, 플레이트부(110)와 샤프트부(120)가 소결 접합에 의해 일체로 된 일체형 드라이빙 스핀들 샤프트(100)를 제조할 수 있으며, ALD 증착시 증착속도와 증착막의 균질성을 동시에 만족하기 위해 전체 길이를 60~65mm로 가공하고, 상기 플레이트부(110)에 대해서는 서스셉터(3)와의 접촉면적을 최대화할 수 있으면서도 고속 회전에 따른 응력 발생을 최소화하도록 펜타곤 타입으로 형성하며, 특히 응력 발생으로 인한 칩핑 발생을 피하면서 회전에 따른 진동을 최소화함은 물론 파티클 발생 및 유입을 예방하도록 하기 위하여 곡률 반경 R125~R130의 범위로 가공 형성되는 반도체 증착 ALD 장비용 일체형 드라이빙 스핀들 샤프트를 용이하게 제조하여 공급할 수 있다.That is, by the manufacturing method consisting of the above-described steps, it is made of RB-SiC (Reaction Bonded Silicon Carbide) having physical properties of 393 GPa or more, Poisson's ratio of 0.19 or more, yield strength of 307 MPa or more, and density of 3100 kg/m 3 or more, It is possible to manufacture an integrated driving spindle shaft 100 in which the part 110 and the shaft part 120 are integrated by sintering bonding, and the total length is 60~ in order to simultaneously satisfy the deposition rate and the homogeneity of the deposition film during ALD deposition. It is processed to be 65mm, and the plate part 110 is formed in a pentagon type to minimize the occurrence of stress due to high-speed rotation while maximizing the contact area with the susceptor 3, and in particular, chipping due to stress generation is avoided. While minimizing the vibration caused by rotation, as well as preventing the generation and inflow of particles, it is possible to easily manufacture and supply an integrated driving spindle shaft for semiconductor deposition ALD equipment that is processed and formed in the range of the radius of curvature R125 to R130.

도 10은 이와 같은 상술한 단계로 이루어지는 제조방법에 의해 완성된 펜타곤 타입 일체형 드라이빙 스핀들 샤프트를 나타낸 실제품 사진이다.10 is a photograph of an actual product showing a pentagon-type integrated driving spindle shaft completed by a manufacturing method comprising the above-described steps.

이상에서 설명한 실시예는 본 발명의 바람직한 실시예를 설명한 것에 불과하고 이러한 실시예에 극히 한정되는 것은 아니며, 본 발명의 기술적 사상과 청구범위 내에서 이 기술분야의 당해업자에 의하여 다양한 수정과 변형 또는 단계의 치환 등이 이루어질 수 있다 할 것이며, 이는 본 발명의 기술적 범위에 속한다 할 것이다.The above-described embodiments are merely describing preferred embodiments of the present invention, and are not limited to these embodiments, and various modifications and variations or modifications by those skilled in the art within the spirit and scope of the present invention It will be said that substitution of the steps can be made, and this will be said to be within the technical scope of the present invention.

1: ALD 장비 2: 증착챔버
3: 서스셉터 100: 일체형 드라이빙 스핀들 샤프트
110: 플레이트부 120: 샤프트부
1: ALD equipment 2: Evaporation chamber
3: Susceptor 100: integral driving spindle shaft
110: plate portion 120: shaft portion

Claims (8)

삭제delete 삭제delete 삭제delete (A) 탄화규소(SiC) 소재를 기계 가공하여 원판 형상의 플레이트부와 원기둥 형상의 샤프트부를 구비하는 단계;
(B) 상기 플레이트부의 하면 중앙에 샤프트부를 수직 배치한 후 탄화규소(SiC) 분말을 플레이트부와 샤프트부가 맞닿는 부분에 주입하고 고온에서 소결하여 접합함에 의해 일체형 몸체로 드라이빙 스핀들 샤프트의 외형을 갖게 하는 단계;
(C) 상기 소결 접합된 일체형 몸체의 드라이빙 스핀들 샤프트에 대해 외형 형상을 가공하여 펜타곤 타입 일체형 드라이빙 스핀들 샤프트를 구현하는 단계;
(D) 상기 외형 형상의 가공이 완료된 펜타곤 타입 일체형 드라이빙 스핀들 샤프트에 대해 3차원 측정기를 활용하여 외형 형상의 가공상태를 측정하여 치수를 관리하는 단계; 를 포함하며,
상기 (B)단계에서는,
(a) 상온(20℃ 기준)에서 500℃까지 승온 처리 후, 500℃에서 6시간 유지되게 하는 단계;
(b) 500℃에서 1100℃까지 승온 처리 후, 1100℃에서 6시간 유지되게 하는 단계;
(c) 1100℃에서 1,650℃까지 승온 처리 후, 1,650℃에서 4시간 유지되게 하는 단계;
(d) 1,650℃에서 상온(20℃ 기준)까지 강온 처리하는 단계; 로 실시하여 소결 접합 중 플레이트부와 샤프트부 측 두 접합체 간의 수축율 차이에 의한 크랙이나 직각도 불량 발생을 방지하도록 구성하는 것을 특징으로 하는 반도체 증착 ALD 장비용 일체형 드라이빙 스핀들 샤프트 제조방법.
(A) machining a silicon carbide (SiC) material to provide a disk-shaped plate portion and a cylindrical shaft portion;
(B) After arranging the shaft part vertically in the center of the lower surface of the plate part, silicon carbide (SiC) powder is injected into the part where the plate part and the shaft part abut, and sintered at high temperature to bond the driving spindle shaft to an integral body. step;
(C) processing an external shape of the driving spindle shaft of the sintered-joined integrated body to implement a pentagon-type integrated driving spindle shaft;
(D) managing dimensions by measuring the processing state of the external shape using a 3D measuring machine for the pentagon-type integrated driving spindle shaft on which the external shape has been processed; Including,
In step (B),
(a) after the temperature-raising treatment from room temperature (20°C basis) to 500°C, maintaining at 500°C for 6 hours;
(b) heating the temperature from 500°C to 1100°C, and then maintaining the temperature at 1100°C for 6 hours;
(c) heating treatment from 1100° C. to 1,650° C. and then maintaining at 1,650° C. for 4 hours;
(d) a step of reducing the temperature from 1,650 ℃ to room temperature (20 ℃ standard); A method for manufacturing an integrated driving spindle shaft for semiconductor deposition ALD equipment, characterized in that it is configured to prevent occurrence of cracks or defects in perpendicularity due to a difference in shrinkage between the plate part and the shaft part side during sintering bonding.
삭제delete 제 4항에 있어서,
상기 (C)단계에서는,
(a) 가공효율을 높이기 위해 외형 형상의 분석을 통한 가공 공정순서와 가공내용 및 주요 관리 치수표를 작성하는 단계;
(b) 상기 작성된 가공 공정순서와 가공내용 및 주요 관리 치수표를 기준으로 외형 형상을 순차 가공하는 단계; 를 포함하되,
상기 (b)단계에서는,
(1) 플레이트부와 샤프트부의 두께 및 평행도를 위해 평면연삭기를 사용하여 일체형 드라이빙 스핀들 샤프트 측 양측면을 황삭 가공하되, 절입량 0.01~0.02mm와 피드 10~15m/min의 연삭 조건으로 가공하는 단계;
(2) 평면연삭기를 사용하여 플레이트부의 앞면과 샤프트부의 윗면을 평면 연삭하되, 절입량 0.01~0.02mm와 피드 10~15m/min의 연삭 조건으로 가공하는 단계;
(3) 원통연삭기를 사용하여 플레이트부와 샤프트부의 접합부를 연삭 가공함과 더불어 샤프트부의 원통도를 위해 직경을 연삭 가공하되, 절입량 0.010~0.020mm와 피드 0.5~1.5m/min의 연삭 조건으로 가공하는 단계;
(4) 와이어커팅기를 사용하여 플레이트부 측 외형에 대해 펜타곤 형상을 갖도록 황삭 가공하는 단계;
(5) MCT장비를 사용하여 플레이트부 측 외형을 펜타곤 형상으로 정삭 가공하되, 절입량 0.01~0.02mm와 피드 0.02~0.03m/sec의 조건으로 가공하는 단계;
(6) MCT장비를 사용하여 플레이트부 측 홀과 샤프트부 측 외면 돌출 양각부 모양 및 외곽 모깎기 가공을 수행하되, 절입량 0.01~0.02mm와 피드 0.02~0.03m/sec의 조건으로 가공하는 단계;
(7) 호리젠탈 연삭기를 사용하여 평행도와 표면조도를 위해 플레이트부의 윗면을 정삭 가공함과 더불어 전체 높이를 위해 정삭 가공으로 마무리하되, 절입량 0.005~0.01mm와 피드 0.2~0.3m/min의 조건으로 가공하는 단계; 를 포함하는 것을 특징으로 하는 반도체 증착 ALD 장비용 일체형 드라이빙 스핀들 샤프트 제조방법.
The method of claim 4,
In step (C),
(a) preparing a processing sequence, processing details, and major management dimension tables through analysis of external shape to increase processing efficiency;
(b) sequentially processing the external shape based on the created processing order, processing details, and main management dimension table; Including,
In step (b),
(1) roughing both sides of the integral driving spindle shaft using a flat grinding machine for thickness and parallelism of the plate portion and the shaft portion, but processing under the conditions of grinding with a cutting amount of 0.01 to 0.02 mm and a feed of 10 to 15 m/min;
(2) surface grinding the front surface of the plate portion and the upper surface of the shaft portion using a flat grinding machine, but processing the cutting conditions in a grinding condition of 0.01 to 0.02 mm and a feed of 10 to 15 m/min;
(3) A cylindrical grinder is used to grind the joint part of the plate part and the shaft part and grind the diameter for the cylindricalness of the shaft part, but with a cutting condition of 0.010 to 0.020 mm and a feed of 0.5 to 1.5 m/min. Processing;
(4) roughing processing to have a pentagon shape with respect to the outer shape of the plate portion side using a wire cutter;
(5) Finishing the outer shape of the plate portion in the shape of a pentagon using MCT equipment, but processing under the conditions of a cut amount of 0.01 to 0.02 mm and a feed of 0.02 to 0.03 m/sec;
(6) Using MCT equipment, perform processing of the shape of the protruding embossed part of the plate part side and the outer surface of the shaft part side, and the outer filleting, but processing under the conditions of 0.01~0.02mm depth of cut and 0.02~0.03m/sec feed. ;
(7) Using a horizontal grinding machine, finish the top surface of the plate for parallelism and surface roughness, and finish with a finishing process for the overall height, but with a depth of cut of 0.005~0.01mm and feed 0.2~0.3m/min. Processing conditions; An integrated driving spindle shaft manufacturing method for semiconductor deposition ALD equipment comprising a.
제 4항에 있어서,
상기 탄화규소(SiC)는 탄성계수 393GPa 이상, 프아송비 0.19 이상, 항복강도 307MPa 이상, 밀도 3100kg/㎥ 이상의 물성치를 갖는 RB-SiC(Reaction Bonded Silicon Carbide)를 사용하며;
상기 플레이트부는 고속 회전에 따른 응력 발생을 최소화하도록 곡률 반경 R125~R130의 범위로 가공하고, 상기 샤프트부는 외경 70~75mm로 가공하며;
상기 일체형 드라이빙 스핀들 샤프트는 ALD 증착시 증착속도와 증착막의 균질성을 동시에 만족하기 위해 전체 길이를 60~65mm로 가공하는 것을 특징으로 하는 반도체 증착 ALD 장비용 일체형 드라이빙 스핀들 샤프트 제조방법.
The method of claim 4,
The silicon carbide (SiC) uses RB-SiC (Reaction Bonded Silicon Carbide) having physical properties of 393 GPa or more, Poisson's ratio of 0.19 or more, yield strength of 307 MPa or more, and density of 3100 kg/m 3 or more;
The plate part is processed to have a radius of curvature in the range of R125 to R130 to minimize the occurrence of stress due to high-speed rotation, and the shaft part is processed to have an outer diameter of 70 to 75mm;
The integrated driving spindle shaft manufacturing method for an integrated driving spindle shaft for semiconductor deposition ALD equipment, characterized in that the total length of the integrated driving spindle shaft is 60 ~ 65mm to satisfy the deposition rate and the homogeneity of the deposition film at the same time during ALD deposition.
제 4항에 있어서,
상기 (A)단계 이전에 3D 모델링을 통한 형상 설계 및 ANSYS 프로그램을 이용한 설계된 형상의 유한요소 해석을 수행하여 최적의 형상 및 구조적 수치를 갖는 일체형 구조의 드라이빙 스핀들 샤프트를 도출해내는 단계; 를 더 포함하는 것을 특징으로 하는 반도체 증착 ALD 장비용 일체형 드라이빙 스핀들 샤프트 제조방법.
The method of claim 4,
Prior to step (A), deriving a driving spindle shaft of an integrated structure having an optimal shape and structural values by performing a shape design through 3D modeling and a finite element analysis of the designed shape using an ANSYS program; An integrated driving spindle shaft manufacturing method for semiconductor deposition ALD equipment, characterized in that it further comprises.
KR1020190142880A 2019-11-08 2019-11-08 One body type driving spindle shaft for semiconductor deposition ald appratus and manufacturing method thereof KR102145870B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020190142880A KR102145870B1 (en) 2019-11-08 2019-11-08 One body type driving spindle shaft for semiconductor deposition ald appratus and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020190142880A KR102145870B1 (en) 2019-11-08 2019-11-08 One body type driving spindle shaft for semiconductor deposition ald appratus and manufacturing method thereof

Publications (1)

Publication Number Publication Date
KR102145870B1 true KR102145870B1 (en) 2020-08-19

Family

ID=72265481

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020190142880A KR102145870B1 (en) 2019-11-08 2019-11-08 One body type driving spindle shaft for semiconductor deposition ald appratus and manufacturing method thereof

Country Status (1)

Country Link
KR (1) KR102145870B1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19980066357A (en) 1997-01-23 1998-10-15 김광호 Spindle Shaft Structure of Plasma CVD System
KR20010017385A (en) 1999-08-11 2001-03-05 윤종용 Apparatus for chemical vapor deposition using spindle shaft
KR20030007929A (en) * 2001-04-12 2003-01-23 이비덴 가부시키가이샤 Ceramic bonded body and its producing method, and ceramic structure for semiconductor wafer
KR20060089896A (en) 2005-02-03 2006-08-10 삼성전자주식회사 Spindle unit for manufacturing semiconductor
KR20070063405A (en) * 2005-12-14 2007-06-19 주성엔지니어링(주) Thin film manufacturing apparatus
KR20110116591A (en) * 2010-04-19 2011-10-26 주성엔지니어링(주) Substrate processing apparatus

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19980066357A (en) 1997-01-23 1998-10-15 김광호 Spindle Shaft Structure of Plasma CVD System
KR20010017385A (en) 1999-08-11 2001-03-05 윤종용 Apparatus for chemical vapor deposition using spindle shaft
KR20030007929A (en) * 2001-04-12 2003-01-23 이비덴 가부시키가이샤 Ceramic bonded body and its producing method, and ceramic structure for semiconductor wafer
KR20060089896A (en) 2005-02-03 2006-08-10 삼성전자주식회사 Spindle unit for manufacturing semiconductor
KR20070063405A (en) * 2005-12-14 2007-06-19 주성엔지니어링(주) Thin film manufacturing apparatus
KR20110116591A (en) * 2010-04-19 2011-10-26 주성엔지니어링(주) Substrate processing apparatus

Similar Documents

Publication Publication Date Title
KR101291528B1 (en) Corrosion-resistant cmp conditioning tools and methods for making and using same
JP4816815B2 (en) Polishing apparatus for polygonal columnar member and polishing method thereof
CN109397549B (en) Diamond-coated silicon nitride ceramic integral cutter, preparation method thereof and application of cutter in graphite
CN105177392B (en) Gas turbine engine component and method for manufacturing gas turbine engine component
CN106663623B (en) The processing method of semiconductor crystal wafer
TWI520829B (en) A grinding member for a cylindrical member, a cylindrical member, and a cylindrical member
JPH1177408A (en) Ceramic tip clamp type cutting tool
KR20080014778A (en) Shower plate and method for manufacturing the same
EP2995400A1 (en) cBN CUTTING TOOL
CN101080296A (en) CBN cutting tool for high-grade, high-efficiency machining
TWI589398B (en) Columnar processing equipment
CN104057404A (en) Three-dimensional cooperative distribution method for various grinding materials for preparing superhard tool
JP4113509B2 (en) Carrier for holding an object to be polished
JP2014162206A (en) Scribing wheel, holder unit, scribe apparatus and method of producing scribing wheel
JPWO2017204141A1 (en) Coated cutting tool
KR102145870B1 (en) One body type driving spindle shaft for semiconductor deposition ald appratus and manufacturing method thereof
JP2016089181A (en) Cylindrical target material and method for manufacturing the same, and cylindrical sputtering target and method for manufacturing the same
CN106378709A (en) Clamp applied to plane polishing of front blade surfaces of hard alloy blades
JP5897028B2 (en) Full surface finishing press processing / full surface finishing sintered cutting insert and method of manufacturing the cutting insert
CN102612502A (en) Inert high hardness material for tool lens production in imaging applications
US20160361793A1 (en) Abrasive grindstone
KR101675649B1 (en) Cutting tool
JP5240623B2 (en) Blade-tip-exchangeable tip and method for manufacturing the same
WO2020062045A1 (en) Diamond-coated silicon nitride ceramic integral cutter and preparation method therefor, and application of cutter in graphite
JP3575540B2 (en) Numerical control polishing method

Legal Events

Date Code Title Description
GRNT Written decision to grant