KR102145295B1 - Process for producing Pre-Vulcanized latex foam with excellent processibility - Google Patents

Process for producing Pre-Vulcanized latex foam with excellent processibility Download PDF

Info

Publication number
KR102145295B1
KR102145295B1 KR1020190062909A KR20190062909A KR102145295B1 KR 102145295 B1 KR102145295 B1 KR 102145295B1 KR 1020190062909 A KR1020190062909 A KR 1020190062909A KR 20190062909 A KR20190062909 A KR 20190062909A KR 102145295 B1 KR102145295 B1 KR 102145295B1
Authority
KR
South Korea
Prior art keywords
latex
foam
crosslinking
stirring
foaming
Prior art date
Application number
KR1020190062909A
Other languages
Korean (ko)
Inventor
윤철원
윤동진
정숙경
오혜진
김동건
김효준
박건욱
유재근
Original Assignee
주식회사 정우
한국신발피혁연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 정우, 한국신발피혁연구원 filed Critical 주식회사 정우
Priority to KR1020190062909A priority Critical patent/KR102145295B1/en
Application granted granted Critical
Publication of KR102145295B1 publication Critical patent/KR102145295B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0066Use of inorganic compounding ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/24Crosslinking, e.g. vulcanising, of macromolecules
    • C08J3/26Crosslinking, e.g. vulcanising, of macromolecules of latex
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0014Use of organic additives
    • C08J9/0028Use of organic additives containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0014Use of organic additives
    • C08J9/0033Use of organic additives containing sulfur
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0014Use of organic additives
    • C08J9/0052Organo-metallic compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0061Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof characterized by the use of several polymeric components
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/06Sulfur
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/09Carboxylic acids; Metal salts thereof; Anhydrides thereof
    • C08K5/098Metal salts of carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/36Sulfur-, selenium-, or tellurium-containing compounds
    • C08K5/39Thiocarbamic acids; Derivatives thereof, e.g. dithiocarbamates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/36Sulfur-, selenium-, or tellurium-containing compounds
    • C08K5/45Heterocyclic compounds having sulfur in the ring
    • C08K5/46Heterocyclic compounds having sulfur in the ring with oxygen or nitrogen in the ring
    • C08K5/47Thiazoles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L21/00Compositions of unspecified rubbers
    • C08L21/02Latex
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L7/00Compositions of natural rubber
    • C08L7/02Latex

Abstract

The present invention relates to a method for preparing pre-vulcanized (PV) latex foam with excellent processability and, more particularly, to a method for preparing PV latex foam with excellent processability by crosslinking the inside of the latex in advance and then crosslinking the outside to make the crosslinking density uniform. The present invention comprises: an internal crosslinking step of crosslinking the inside of the latex to form PV latex; a PV/NR mixing step of primarily stirring PV latex, NR latex, and oleate; a foaming step of adding an additive containing sulfur during the primary stirring process and then foaming while secondarily stirring; a gelling step of inputting diphenylguanidine and sodium silicofluoride during the foaming process and then tertiarily stirring to form a foam material; and an external cross-linking step of inputting the foam material into a mold and curing at 90 to 100°C so as to form PV latex foam with the outside cross-linked.

Description

가공성이 우수한 PV 라텍스 폼의 제조방법{Process for producing Pre-Vulcanized latex foam with excellent processibility}Process for producing Pre-Vulcanized latex foam with excellent processibility}

본 발명은 가공성이 우수한 PV 라텍스 폼의 제조방법에 관한 것으로, 더욱 상세하게는 라텍스 내부를 미리 가교시킨 후 외부를 가교시켜 가교밀도가 향상되도록 하여 가공성이 우수한 PV 라텍스 폼의 제조방법에 관한 것이다.The present invention relates to a method of manufacturing a PV latex foam having excellent processability, and more particularly, to a method of manufacturing a PV latex foam having excellent processability by crosslinking the inside of the latex beforehand and then crosslinking the outside to improve the crosslinking density.

일반적으로 라텍스 폼(latex foam)은 고무성분을 주원료로 하여 통상의 첨가제를 첨가하고 발포한 후에 가교를 통하여 제조된다. 이러한 라텍스 폼의 주원료로 사용되는 고무성분은 천연소재, 합성소재이거나, 천연소재와 합성소재를 배합하여 사용하기도 한다.In general, latex foam is prepared by crosslinking after adding conventional additives and foaming with a rubber component as the main raw material. The rubber component used as the main raw material of such latex foam is natural or synthetic, or natural and synthetic materials are also used in combination.

라텍스 폼은 액상 발포과정에서 수천 개의 핀홀과 수백만 내지 수천만의 미세한 기포를 형성시켜 경화되므로 기공이 많고 탄력 및 복원력이 뛰어나 다양한 분야에서 광범위한 용도로 사용되고 있다.Latex foam is hardened by forming thousands of pinholes and millions to tens of thousands of fine bubbles in the liquid foaming process, so it has many pores and has excellent elasticity and resilience, so it is widely used in various fields.

예를 들면, 라텍스 폼은 가구, 매트리스 및 베개와 같은 커버 안에 넣어 충격이나 마찰을 완화시키는 완충재 등으로 사용될 수 있고, 틀에 넣어 얇게 성형된 라텍스 폼은 개스킷, 바람막이 및 진동감소재 등으로 사용될 수 있다. 특히, 라텍스 폼은 신발의 인솔로 생산되기도 한다.For example, latex foam can be used as a cushioning material that relieves shock or friction by putting it in covers such as furniture, mattresses and pillows, and latex foam formed thinly in a frame can be used as a gasket, windshield, and vibration-sensitive material. have. In particular, latex foam is sometimes produced as an insole for shoes.

이와 같은 종래의 라텍스 폼은 라텍스에 유화제, 가교제 및 점도조절제 등을 혼합하여 통상적으로 12~24시간 숙성한 후, 일정 온도 하에서 일정 속도로 교반하면서 발포를 시작한 후, 응집제를 넣어 안정화시킨 후 가교시켜 제조되고 있으나, 라텍스 폼 외부 표면에만 가교되어 라텍스 폼의 내외부에 균일한 가교가 이루어지지 않는 문제점이 있다.Such a conventional latex foam is mixed with an emulsifier, a crosslinking agent and a viscosity modifier in the latex and aged for 12 to 24 hours. After starting foaming while stirring at a constant speed at a constant temperature, a coagulant is added to stabilize and crosslinked. Although being manufactured, there is a problem that uniform crosslinking is not achieved on the inside and outside of the latex foam by crosslinking only on the outer surface of the latex foam.

다른 방식의 Post-cure type Dunlop법을 기반으로 한 라텍스 폼의 경우, 배합 숙성시 외부 환경 조건에 따라 배합의 균일성 확보가 어려워 제품 불량 및 품질 편차가 많이 발생하는 문제점이 있다.In the case of latex foam based on a different post-cure type Dunlop method, it is difficult to ensure uniformity of the formulation according to external environmental conditions during compound aging, resulting in a lot of product defects and quality deviations.

따라서 라텍스 폼의 내부 및 외부를 균일하게 가교함으로써 가교밀도를 향상시켜 우수한 품질을 얻을 수 있도록 하는 기술개발 연구가 절실히 요구되는 시점이다.Therefore, it is the time of urgent need for research on technology development to achieve excellent quality by improving the crosslinking density by uniformly crosslinking the interior and exterior of the latex foam.

국내 등록특허공보 제10-1378491호, 2014.03.20.자 등록.Registered Korean Patent Publication No. 10-1378491, as of March 20, 2014.

본 발명은 상기한 문제점을 해소하기 위하여 발명된 것으로, 라텍스 내부를 미리 가교시킨 후 외부를 가교시켜 가교밀도가 향상되도록 하여 가공성이 우수한 PV 라텍스 폼의 제조방법을 제공하는데 그 목적이 있다.The present invention was invented to solve the above problems, and an object of the present invention is to provide a method for producing a PV latex foam having excellent processability by crosslinking the inside of the latex beforehand and then crosslinking the outside to improve the crosslinking density.

상기의 목적을 달성하기 위한 본 발명은, 라텍스의 내부를 가교하여 PV 라텍스(Pre-Vulcanized latex)를 형성하는 내부가교단계; 상기 PV 라텍스, NR 라텍스 및 올레산염을 1차교반하는 PV/NR혼합단계; 상기 1차교반하는 과정에서 황을 포함하는 첨가제를 투입한 후 2차교반하면서 발포하는 발포단계; 상기 발포하는 과정에서 다이페닐구아니딘(Diphenylguanidine) 및 규불화나트륨(sodium silicofluoride)을 투입한 후 3차교반하여 폼원료을 형성하는 겔링단계; 및 상기 폼원료를 몰드에 투입한 후 90~100℃ 하에서 큐어링(curing)하여 외부가 가교된 PV 라텍스 폼(Pre-Vulcanized latex foam)을 형성하는 외부가교단계;를 포함하는 것을 특징으로 하는 가공성이 우수한 PV 라텍스 폼의 제조방법을 기술적 요지로 한다.The present invention for achieving the above object, the internal crosslinking step of forming a PV latex (Pre-Vulcanized latex) by crosslinking the inside of the latex; PV/NR mixing step of first stirring the PV latex, NR latex, and oleate; A foaming step of foaming while second stirring after adding an additive containing sulfur during the first stirring process; A gelling step of adding diphenylguanidine and sodium silicofluoride in the foaming process, followed by third stirring to form a foam material; And an external crosslinking step of forming a pre-Vulcanized latex foam crosslinked outside by curing at 90 to 100°C after putting the foam material into a mold. The technical gist of this excellent PV latex foam production method.

바람직하게는 상기 PV/NR혼합단계에서의 올레산염은, 포타슘 올레이트(K-Oleate)인 것을 특징으로 한다.Preferably, the oleate in the PV/NR mixing step is potassium oleate (K-Oleate).

바람직하게는 상기 발포단계에서의 첨가제는, 아연 디에틸디티오카바메이트(Zinc diethyldithiocarbamate, ZDEC), 아연 2-메르캅토벤조티아졸(Zinc 2-mercaptobenzothiazole, ZMBT) 및 산화아연 중 어느 하나 이상을 더 포함하는 것을 특징으로 한다.Preferably, the additive in the foaming step further comprises at least one of zinc diethyldithiocarbamate (ZDEC), zinc 2-mercaptobenzothiazole (ZMBT), and zinc oxide. It characterized in that it includes.

상기 과제의 해결 수단에 의한 본 발명에 따른 가공성이 우수한 PV 라텍스 폼의 제조방법은, 라텍스의 내부를 미리 가교시킨 후 외부를 가교시키기 때문에 내외부로 가교밀도의 균일함을 향상시켜 작업성이 우수할 뿐만 아니라 고품질의 PV 라텍스 폼을 제조하여 다양한 분야에 적용할 수 있는 효과가 있다.The manufacturing method of the PV latex foam having excellent processability according to the present invention by the solution to the above problem improves the uniformity of the crosslinking density inside and outside since the inside of the latex is crosslinked beforehand and then the outside is crosslinked. In addition, there is an effect that can be applied to various fields by manufacturing high-quality PV latex foam.

도 1은 본 발명의 바람직한 실시예에 따른 순서도.
도 2는 본 발명의 바람직한 실시예에 따른 제품사진.
도 3은 본 발명의 바람직한 실시예에 따른 제품사진.
1 is a flow chart according to a preferred embodiment of the present invention.
Figure 2 is a product photograph according to a preferred embodiment of the present invention.
3 is a photo of a product according to a preferred embodiment of the present invention.

이하, 본 발명의 바람직한 실시예를 첨부한 도면을 참조하여 상세하게 설명하면 다음과 같다.Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.

도 1은 본 발명의 바람직한 실시예에 따른 순서도이다. 도 1을 참조하면, 본 발명에 따라 내외부가 균일하게 가교되어 가교밀도를 향상시킨 PV 라텍스 폼은 내부가교단계(S10a), PV/NR혼합단계(S10), 발포단계(S20), 겔링단계(S30) 및 외부가교단계(S40)를 통하여 제조될 수 있으며, 각각의 단계에 대한 특징은 다음과 같다.1 is a flow chart according to a preferred embodiment of the present invention. Referring to Figure 1, the PV latex foam with improved crosslinking density by uniformly crosslinking inside and outside according to the present invention is an internal crosslinking step (S10a), PV/NR mixing step (S10), foaming step (S20), gelling step ( S30) and can be manufactured through the external crosslinking step (S40), the characteristics of each step are as follows.

먼저, 내부가교단계는 라텍스의 내부를 가교하여 PV 라텍스(Pre-Vulcanized latex)를 형성하는 단계이다(S10a).First, the internal crosslinking step is a step of forming a PV latex (Pre-Vulcanized latex) by crosslinking the inside of the latex (S10a).

우선 통상적으로 제조되는 라텍스 폼 방식은 라텍스 입자의 내외부가 균일하게 가교되지 않아 라텍스 폼의 가교밀도가 좋지 않은 문제점이 있어왔다.First, the conventionally manufactured latex foam method has a problem in that the crosslink density of the latex foam is not good because the inside and outside of the latex particles are not uniformly crosslinked.

이런 문제점에 착안하여 본 발명에서는 라텍스에 가교제를 투입하여 일정 조건 하에서 가황처리(Pre-Vulcanized)해 라텍스 입자 내의 고무분자를 미리 가교시키는 내부가교단계를 실시함으로써, 라텍스 입자의 외부만 가교되는 방식을 개선시키고자 한 것이다.In view of this problem, in the present invention, by introducing a crosslinking agent into the latex and pre-vulcanizing the rubber molecules in the latex particles under certain conditions, an internal crosslinking step is carried out to crosslink only the outside of the latex particles. It was intended to improve.

이때 PV 라텍스의 "PV"는 Pre-Vulcanized의 줄임말인데, 추후 라텍스의 외부가 가교되는 과정에서는 라텍스 내부까지 가교되지 못하기 때문에 우선 내부가교단계에서 라텍스의 내부를 미리 가교시킴으로써, 최종 완성되는 PV 라텍스 폼의 내외부로 가교밀도를 향상시킬 수 있을 뿐만 아니라 PV 라텍스 폼의 내외부 간의 결합력을 향상시킬 수 있게 된다.At this time, "PV" of PV latex is an abbreviation of Pre-Vulcanized. In the process of crosslinking the outside of the latex, it cannot be crosslinked to the inside of the latex. In addition to improving the crosslinking density inside and outside the foam, it is possible to improve the bonding strength between the inside and outside of the PV latex foam.

다음으로, PV/NR혼합단계는 PV 라텍스, NR 라텍스 및 올레산염을 1차교반하는 단계이다(S10).Next, the PV/NR mixing step is a step of first stirring PV latex, NR latex, and oleate (S10).

말하자면, PV/NR혼합단계는 내부가교단계에서 제조된 PV 라텍스 20~70phr에다가, NR(천연고무) 라텍스 30~80phr 및 올레산염 1~3phr을 함께 천천히 1차교반하는 과정으로써, PV 라텍스와 NR 라텍스의 혼합량이 중요하다 할 수 있다.In other words, the PV/NR mixing step is a process of slowly first stirring together 20 to 70 phr of PV latex manufactured in the internal crosslinking step, 30 to 80 phr of NR (natural rubber) latex and 1 to 3 phr of oleate, and PV latex and NR It can be said that the amount of latex mixed is important.

이때 PV 라텍스는 고무분자를 미리 내부적으로 가교시켜 놓은 것이기 때문에 NR 라텍스 post-sure 배합에 비해 wet-gel strength가 낮아 함유량이 많거나 단독으로 폼을 제조되는데 적합하지 않다.At this time, since PV latex has been internally crosslinked with rubber molecules, its wet-gel strength is lower than that of NR latex post-sure formulation, so it is not suitable for producing a foam with a large content or alone.

상술된 이유로 PV 라텍스와 NR 라텍스의 혼합량에 따른 혼합비는 중요하다 할 수 있는데, 즉 PV 라텍스과 NR 라텍스는 3~7:3~7의 중량비로 혼합됨으로써, 다양한 제반물성을 만족할 수 있게 된다. 이와 관련하여, 추후 <실험예>를 통하여 설명하기로 한다.For the above-described reasons, the mixing ratio according to the mixing amount of PV latex and NR latex can be said to be important. That is, PV latex and NR latex are mixed in a weight ratio of 3-7:3-7, thereby satisfying various physical properties. In this regard, it will be described later through <Experimental Example>.

올레산염의 경우, 올레인산에 포타슘 또는 소듐으로 치환된 유도체들과 같은 지방산계 유화제를 일컫는 것으로, 포타슘 올레이트(K-Oleate) 및 소듐 올레이트(Na-Oleate) 중 어느 하나 이상을 적용할 수 있는데, 본 발명에서는 포타슘 올레이트를 사용하였다.In the case of oleate, it refers to a fatty acid-based emulsifier such as derivatives substituted with potassium or sodium in oleic acid, and any one or more of potassium oleate and sodium oleate may be applied. In the present invention, potassium oleate was used.

이러한 올레산염은 1~3phr로 포함될 수 있는데, 1phr 미만으로 첨가되면 PV 라텍스와 NR 라텍스 간의 반응 중합 안정성을 저하시킬 수 있으며, 3phr을 초과하면 PV 라텍스와 NR 라텍스 간의 반응 중합시 오히려 응집 현상이 발생하여 라텍스의 입자가 거대해질 수 있고 고점성화로 인해 유화 안정성의 저하가 초래될 수 있으므로, 올레산염이 1~3phr로 첨가되는 데에는 중요한 임계적 의의가 있다.These oleate salts may be included in an amount of 1 to 3 phr.If less than 1 phr is added, the reaction polymerization stability between PV latex and NR latex may be deteriorated, and if it exceeds 3 phr, aggregation occurs during the reaction polymerization between PV latex and NR latex. As a result, the latex particles may become large and the emulsion stability may be deteriorated due to high viscosity. Therefore, the addition of 1 to 3 phr of oleate has an important critical significance.

다음으로, 발포단계는 1차교반하는 과정에서 황을 포함하는 첨가제를 투입한 후 2차교반하면서 발포하는 단계이다(S20).Next, the foaming step is a step of foaming while secondary stirring after adding an additive containing sulfur during the first stirring process (S20).

즉 앞선 PV/NR혼합단계에서 올레산염에 의해 PV 라텍스와 NR 라텍스 간의 유화를 이룬 다음, 발포단계에서 황, 아연 디에틸디티오카바메이트(Zinc diethyldithiocarbamate, ZDEC), 아연 2-메르캅토벤조티아졸(Zinc 2-mercaptobenzothiazole, ZMBT) 및 산화아연 중 어느 하나 이상을 포함하는 첨가제를 첨가하여 2차교반하면서 속도를 점점 빠르게 높여 발포를 시작한다.In other words, in the previous PV/NR mixing step, sulfur, zinc diethyldithiocarbamate (ZDEC), and zinc 2-mercaptobenzothiazole are emulsified by oleate between the PV latex and the NR latex. (Zinc 2-mercaptobenzothiazole, ZMBT) and an additive containing at least one of zinc oxide are added to increase the speed gradually while secondary stirring to start foaming.

황은 가황제로써, 성분들 간의 가교역할을 수행함으로써 발포가 시작되도록 하는 작용을 한다. 황의 경우 1.5~4phr 범위로 첨가될 수 있는바, 1.5phr 미만이면 가교가 되지 않아 발포 또한 안정적으로 이루어지지 못하고, 4phr을 초과하면 오히려 과가교되어 물성 저하가 초래될 수 있으므로, 1.5~4phr 범위 내에서 적절하게 사용하는 것이 바람직하다.Sulfur is a vulcanizing agent and acts to initiate foaming by performing a crosslinking role between components. In the case of sulfur, it can be added in the range of 1.5 to 4 phr, but if it is less than 1.5 phr, it is not crosslinked and thus foaming is not stable. If it exceeds 4 phr, it may be over-crosslinked, resulting in physical property degradation. It is desirable to use it appropriately.

ZDEC는 가황촉진제로써, 가황반응을 수월하도록 하는 일종의 촉매를 의미한다. 가황촉진제는 미세한 양의 변화로도 가황조건에 큰 영향을 미치기 때문에 ZDEC는 1~2phr의 범위로 투입되는 것이 바람직한바, 1phr의 미만일 경우 가황시간을 단축시킬 수 없고, 2phr을 초과하면 가황이 너무 빠르게 진행되어 물성 안정화를 달성할 수 없게 된다.ZDEC is a vulcanization accelerator, which means a kind of catalyst that facilitates the vulcanization reaction. Since the vulcanization accelerator greatly affects the vulcanization conditions even with a small amount of change, ZDEC is preferably introduced in the range of 1 to 2 phr. If it is less than 1 phr, the vulcanization time cannot be shortened. If it exceeds 2 phr, the vulcanization is excessive. It proceeds quickly and it becomes impossible to achieve property stabilization.

ZMBT는 ZDEC와 마찬가지로 가황촉진제로써, 가황반응을 수월하도록 하는 일종의 촉매이다. 즉 가황제 및 ZDEC와 병용하여 가황시간을 단축시킴과 함께, 가황제의 감량을 목적으로 하는 첨가제이다. ZMBT도 ZDEC처럼 1~2phr의 범위로 투입될 수 있는데, 이는 황과 ZDEC의 혼화력을 고려한 것으로, ZMBT를 1phr 미만으로 첨가하면 가황촉진을 위해 ZDEC와 시너지 효과를 내기에 부족한 양이고, ZMBT를 2phr을 초과하여 첨가하면 가황되는 시간을 줄여줄 수는 있으나 가황이 일어나지 않는 부분이 있을 수 있기 때문에 바람직하지 않다.ZMBT, like ZDEC, is a vulcanization accelerator and is a kind of catalyst that facilitates the vulcanization reaction. In other words, it is an additive for the purpose of reducing the amount of vulcanizing agent while shortening the vulcanizing time by using it in combination with a vulcanizing agent and ZDEC. Like ZDEC, ZMBT can be added in the range of 1 to 2 phr, which takes into account the mixing power of sulfur and ZDEC.If ZMBT is added less than 1 phr, it is insufficient to create synergies with ZDEC to promote vulcanization. If it is added in excess of 2 phr, the vulcanization time can be reduced, but it is not preferable because there may be parts where vulcanization does not occur.

단, 가황촉진제로 상술된 ZDEC 및 ZMBT에 한정되는 것만은 아니고, 다양한 가황촉진제를 사용할 수 있다.However, the vulcanization accelerator is not limited to the above-described ZDEC and ZMBT, and various vulcanization accelerators can be used.

산화아연(Zinc oxide, ZnO)은 ZDEC 및 ZMBT와 같은 가황촉진제의 촉진효과를 완전하게 발휘하기 위한 가황촉진조제 역할을 한다. 이러한 산화아연이 2phr 미만으로 첨가되면 가황의 촉진조제 역할을 하기에 미미하여 완전한 가황촉진을 이루기에 부족한 양이고, 5phr을 초과하여 첨가되면 그 이하의 양을 첨가한 경우와 비교하여 더 탁월한 효과가 나타나지 않았으므로, 산화아연은 2~5phr의 범위 내에서 적절하게 조절하여 사용하는 것이 바람직하다.Zinc oxide (ZnO) acts as a vulcanization accelerator to fully exert the accelerating effect of vulcanization accelerators such as ZDEC and ZMBT. If zinc oxide is added in less than 2 phr, it is insignificant to serve as an accelerator for vulcanization, and is insufficient to achieve complete vulcanization acceleration. If it is added in excess of 5 phr, more excellent effects appear compared to the case of adding less than that amount. Therefore, it is preferable to appropriately control and use zinc oxide within the range of 2 to 5 phr.

다음으로, 겔링단계는 발포하는 과정에서 다이페닐구아니딘(Diphenylguanidine) 및 규불화나트륨(sodium silicofluoride)을 투입한 후 3차교반하여 폼(foam)원료를 형성하는 단계이다(S30).Next, the gelling step is a step in which diphenylguanidine and sodium silicofluoride are added in the foaming process, followed by third stirring to form a foam raw material (S30).

즉 라텍스의 내부를 가교한 PV 라텍스, NR 라텍스 및 올레산염을 1차교반한 후, 기타 첨가제의 투입으로 2차교반으로 발포가 시작되는데, 이렇게 발포가 되면 겔링단계에서는 속도를 낮춘 후 다이페닐구아니딘 0.5~2phr 및 규불화나트륨 1~5phr을 투입한 다음 속도를 좀더 낮추어 1~10분 동안 3차교반함으로써, PV 라텍스 폼 제조를 위하여 기포가 생성된 폼원료를 완성하게 된다.In other words, after the first stirring of PV latex, NR latex and oleate, which crosslinked the inside of the latex, foaming starts with the second stirring by the addition of other additives.If this foaming occurs, the speed is lowered in the gelling step and then diphenylguanidine 0.5~2phr and 1~5phr of sodium silicate are added, and then the speed is further lowered and stirred for 1~10 minutes, thereby completing the foam raw material in which bubbles are generated for PV latex foam production.

이때 다이페닐구아니딘은 촉진제로써, 쉽게 말하여 앞서 2차교반을 통하여 가황이 이루어지지 않은 부분이 남아있는 것을 염려하여 추가적으로 첨가하는 가황촉진제를 의미한다. 이에 따라 다이페닐구아니딘은 0.5~2phr의 범위로 첨가되는 것이 좋으며, 만약 0.5phr 미만이면 촉진제로써의 역할을 다할 수 없고, 2phr을 초과하면 그 이하의 양이 첨가된 경우에 대비하여 더 탁월한 효과가 나타나지 않으므로 0.5~2phr의 범위 내에서 적절하게 조절하여 사용하는 것이 바람직하다.At this time, diphenylguanidine is an accelerator and, in simple terms, refers to a vulcanization accelerator that is additionally added in order to be concerned that a portion that has not been vulcanized remains through the second agitation. Accordingly, diphenylguanidine is preferably added in the range of 0.5 to 2 phr, and if it is less than 0.5 phr, it cannot function as an accelerator, and if it exceeds 2 phr, it has a more excellent effect compared to the case where less than that amount is added. Since it does not appear, it is preferable to use it by appropriately controlling it within the range of 0.5 to 2 phr.

규불화나트륨의 경우, 폼원료에 고화능력을 부여하여 추후 PV 라텍스 폼으로 성형될 때 형상 유지력을 가질 수 있도록 하는 작용을 한다. 이러한 규불화나트륨은 1~5phr 범위 내에서 첨가되는 것이 좋은데, 그 이유는 1phr 미만으로 첨가되면 폼원료에 고화력을 제공하기에 부족하여 PV 라텍스 폼을 성형한 후에도 형상 유지가 잘 되지 않는 우려가 있고, 5phr을 초과하여 첨가되면 성형 시간 단축 효과는 있으나, 오히려 너무 많은 양이 첨가되어 원하는 형상의 PV 라텍스 폼으로 완성되기 전에 고화되어버려 제품으로써의 효용성이 없어지게 되므로, 규불화나트륨은 1~5phr의 범위로 첨가되는 것이 바람직하다.In the case of sodium silicate, it imparts a solidifying ability to the foam material so that it can retain shape when it is later molded into PV latex foam. Sodium silicate is preferably added within the range of 1 to 5 phr. The reason is that if it is added less than 1 phr, it is insufficient to provide solidifying power to the foam material, and there is a concern that the shape may not be maintained well even after molding the PV latex foam. If it is added in excess of 5 phr, it has the effect of shortening the molding time, but rather, too much amount is added and it solidifies before it is completed into a desired shape of PV latex foam, so that the effectiveness as a product is lost, so sodium silicate is 1~ It is preferably added in the range of 5 phr.

마지막으로, 외부가교단계는 폼원료를 몰드에 투입한 후 90~100℃ 하에서 큐어링(curing)하여 외부가 가교된 PV 라텍스 폼(Pre-Vulcanized latex foam)을 형성하는 단계이다(S40).Finally, the external cross-linking step is a step of forming a PV latex foam cross-linked outside by curing the foam material in the mold at 90 to 100° C. (S40).

즉 외부가교단계는 오븐에 30~40℃로 예열한 몰드에 내부가 가교된 PV 라텍스를 출발물질로 한 폼원료를 부은 후, 90~100℃의 온도조건으로 한 큐어링(curing)을 통해 내외부가 균일하게 가교가 완료된 PV 라텍스 폼이 완성되는 단계이다.In other words, in the external crosslinking step, after pouring a foam raw material with the crosslinked PV latex as a starting material into a mold preheated to 30~40℃ in an oven, the inside and outside through curing under a temperature condition of 90~100℃. This is a step in which the uniformly crosslinked PV latex foam is completed.

큐어링이라 함은 폼원료를 90~100℃ 온도조건으로 가열하여 경화되도록 하는 일련의 과정을 말하는 것으로, 이러한 큐어링 과정을 거친 후 1~2시간 동안 건조시킨 다음 몰드로부터 완성된 PV 라텍스 폼을 탈형함으로써, 마무리한다.Curing refers to a series of processes in which the foam raw materials are heated and cured at a temperature of 90 to 100°C. After this curing process, the resulting PV latex foam is dried for 1 to 2 hours. Finish by demolding.

부가적으로, 낮은 온도로 예열해둔 몰드를 사용하게 되면 폼이 꺼지게 되어 형상이 올바르지 않게 되고, 40℃를 초과하여 몰드를 예열하게 되면 몰드 충진과정에서 일부 큐어링이 진행됨에 따라 균질의 제품을 얻을 수 없으므로, 큐어링 과정을 위한 몰드는 30~40℃로만 예열하는 것이 바람직하다.Additionally, if a mold preheated to a low temperature is used, the foam will turn off and the shape will be incorrect. If the mold is preheated above 40°C, a homogeneous product can be obtained as some curing proceeds during the mold filling process. Therefore, it is preferable to preheat the mold for the curing process only to 30 to 40°C.

그리고 큐어링을 90℃ 미만인 조건으로 실시하게 되면 폼원료가 일정 형상의 PV 라텍스 폼으로 경화되기까지 많은 시간이 소요되어 공정상 비효율적이고, 100℃를 초과하는 조건으로 실시하게 되면 폼원료에 포함된 수분의 급격한 증발로 인해 기포가 불균일해질 수 있으므로, 90~100℃의 온도범위 내에서 적절히 조절해가면서 큐어링하는 것이 바람직하다.And if curing is performed under the condition of less than 90℃, it takes a lot of time for the foam raw material to be cured into a certain shape of PV latex foam, which is inefficient in the process, and if it is carried out under conditions exceeding 100℃, it is included in the foam raw material. Since the air bubbles may become non-uniform due to rapid evaporation of moisture, it is preferable to cure while appropriately controlling within a temperature range of 90 to 100°C.

도 2 및 도 3는 본 발명의 바람직한 실시예에 따른 제품사진이다. 도 2 및 도 3을 참조하면, 신발의 내부에 장착되는 인솔(insole)을 제조하기 위하여 인솔 형상으로 이루어진 몰드를 30~40℃로 예열한 다음 몰드 내부에 폼원료를 주입해 90~100℃ 하에서 큐어링하여 완성된 제품을 사진으로 나타낸 것임을 알 수 있다.2 and 3 are product photographs according to a preferred embodiment of the present invention. 2 and 3, in order to manufacture an insole mounted inside a shoe, a mold in an insole shape is preheated to 30 to 40°C, and then a foam material is injected into the mold at 90 to 100°C. It can be seen that the cured product is shown in pictures.

단, 본 발명에 따른 PV 라텍스 폼은 몰드의 형상에 따라 다양한 제품으로 제조할 수 있는바, 예컨대 매트리스, 베개 등이 있으며 그 종류에 제한을 두지는 않기로 한다.However, the PV latex foam according to the present invention can be manufactured into various products according to the shape of the mold, for example, mattresses, pillows, and the like, and the types thereof are not limited.

이하, 본 발명의 실시예 및 실험예를 상세하게 설명하면 다음과 같다.Hereinafter, examples and experimental examples of the present invention will be described in detail.

<실시예><Example>

용기에 PV 라텍스 50phr, NR 라텍스 50phr, K-Oleate 1phr을 넣고 천천히 교반하였다. 교반하면서 황 1.5phr, 산화아연 3phr, ZDEC 및 ZMBT를 각각 1phr씩 투입한 후 천천히 다시 교반하면서 교반 속도를 빠르게 올려 발포시켰다. 원하는 배율만큼 발포가 된 후 속도를 낮춰 다이페닐구아니딘 및 규불화나트륨을 2phr씩 각각 투입하고, 폼원료를 고르게 만들기 위해 속도를 조금 더 낮추어 5분 추가 교반 후 종료하여 폼원료를 완성하였다. 이어서 오븐에 35℃로 예열해둔 몰드를 꺼내어 폼원료를 붓고, 95℃ 조건의 오븐에서 큐어링하였다. 큐어링 완료 후, 2시간 동안 건조시킨 다음 몰드를 꺼내고 완성된 PV 라텍스 폼을 분리하였다.50phr of PV latex, 50phr of NR latex, and 1phr of K-Oleate were added to the container and stirred slowly. While stirring, 1.5 phr of sulfur, 3 phr of zinc oxide, 1 phr of ZDEC and ZMBT were added each, and then slowly stirred again, and the stirring speed was rapidly increased to foam. After foaming by the desired magnification, diphenylguanidine and sodium silicate were added by 2 phr each by lowering the speed, and the speed was slightly lowered to make the foam raw material even and stirred for 5 minutes and then terminated to complete the foam raw material. Subsequently, the mold preheated to 35°C was taken out of the oven, the foam material was poured, and cured in an oven at 95°C. After curing was completed, it was dried for 2 hours, and then the mold was taken out and the finished PV latex foam was separated.

<실험예><Experimental Example>

PV 라텍스 폼의 물성을 테스트하기 위하여 다른 조건은 동일시 하되, PV 라텍스와 NR 라텍스의 배합되는 중량비만 달리하여 시편을 각각 제조해 비중, 인열강도, Compression Set(C/S), 작업성 및 시편상태를 확인해 보았으며, 그 실험결과를 하기의 표 1에 나타내었다.In order to test the physical properties of the PV latex foam, the other conditions are the same, but the specific gravity, tear strength, compression set (C/S), workability and the specimen are prepared by manufacturing specimens with only the weight ratio of PV latex and NR latex mixed. The state was checked, and the experimental results are shown in Table 1 below.

시편Psalter PV 라텍스:NR 라텍스
(중량비)
PV Latex: NR Latex
(Weight ratio)
비중
(g/㎤)
importance
(g/cm3)
인열강도
(kgf/㎝)
Tear strength
(kgf/cm)
C/S
(%)
C/S
(%)
작업성Workability 시편상태Specimen condition
1One 0:100:10 0.25420.2542 4.34.3 8.408.40 22 1:91:9 0.26010.2601 4.04.0 8.208.20 33 2:82:8 0.25960.2596 4.44.4 6.906.90 44 3:73:7 0.27640.2764 4.84.8 6.206.20 55 4:64:6 0.26610.2661 4.34.3 3.753.75 66 5:55:5 0.25000.2500 4.24.2 4.004.00 77 6:46:4 0.25270.2527 4.24.2 4.254.25 88 7:37:3 0.25880.2588 4.14.1 3.053.05 99 8:28:2 0.26490.2649 3.83.8 3.703.70 ×× 1010 9:19:1 0.26230.2623 3.73.7 7.507.50 ×× 1111 10:010:0 0.25830.2583 3.33.3 7.007.00 ××

표 1을 참조하면, 작업성의 경우 gel time(폼원료가 고화될 때까지의 소요시간)이 길게 소요되는지 혹은 짧게 소요되는지와 함께 가공안정성을 ◎: 매우우수, ○: 우수, △: 미흡, ×: 불량으로 표시한 것이고, 시편상태의 경우 표면의 크랙 유무 및 몰드에 붙어서 뜯어지지 않는지(또는 탈형에 어려움이 없는지)를 ◎: 매우우수, ○: 우수, △: 미흡, ×: 불량으로 표시한 것이다.Referring to Table 1, in the case of workability, whether the gel time (the time required for the foam raw material to solidify) is long or short, and the processing stability ◎: very good, ○: excellent, △: insufficient, × : Marked as defective, and in the case of the specimen state, whether there is a crack on the surface and whether it is not torn off by sticking to the mold (or there is no difficulty in demoulding) ◎: Very excellent, ○: Excellent, △: Insufficient, ×: In the case of the specimen will be.

우선 비중의 경우, 대부분 0.2g/㎤ 부근으로써 시편 모두 양호한 비중을 가짐을 알 수 있었다.First of all, in the case of specific gravity, it was found that most of the specimens were around 0.2 g/cm 3 and had good specific gravity.

인열강도의 경우, 시편에 칼자국을 낸 후 당겨 찢어지는 데 대해 저항하는 정도를 실험한 것으로, 대부분 3 또는 4kgf/㎝ 부근이었기 때문에 비교적 비슷한 수치 범위 내인 것을 알 수 있었다.In the case of tear strength, it was found that the degree of resistance to tearing after cutting the specimen was tested. Since most were around 3 or 4 kgf/cm, it was found to be within a relatively similar numerical range.

영구압축률(C/S)의 경우, 수치가 낮을수록 탄성률이 손실되지 않고 많이 회복됨을 의미하는 것인데, PV 라텍스와 NR 라텍스의 중량비가 0:10, 1:9, 2:8 및 3:7로 이루어지거나, PV 라텍스가 90% 이상으로 혼합된 9:1 및 10:0으로 이루어진 경우보다, PV 라텍스와 NR 라텍스의 중량비가 4:6, 5:5, 6:4, 7:3 및 8:2로 이루어진 경우의 값이 더 낮아 최종 고화과정을 거치면서 시편 내에 형성된 기공(cell)으로 인해 탄성률이 우수함을 알 수 있었다.In the case of the permanent compression ratio (C/S), the lower the value, the more the elastic modulus is recovered without loss.The weight ratio of PV latex and NR latex is 0:10, 1:9, 2:8 and 3:7. The weight ratio of PV latex and NR latex is 4:6, 5:5, 6:4, 7:3 and 8, compared to the case of 9:1 and 10:0 in which PV latex is mixed with 90% or more. In the case of 2, the value was lower, indicating that the elastic modulus was excellent due to the cells formed in the specimen during the final solidification process.

작업성 및 시편상태의 경우, PV 라텍스와 NR 라텍스의 중량비가 8:2, 9:1 및 10:0인 시편상태가 ×인 것으로부터, PV 라텍스의 함량이 80% 이상으로 많아지면 폼원료가 몰드에 붙어서 탈형이 잘 이루어지지 않음을 확인할 수 있었다.In the case of workability and specimen state, the weight ratio of PV latex and NR latex is ×, since the specimen state of 8:2, 9:1 and 10:0, when the content of PV latex increases to 80% or more, the foam raw material is It was confirmed that the mold was not easily demolded because it was attached to the mold.

반대로, PV 라텍스와 NR 라텍스의 중량비가 3:7, 2:8, 1:9 및 0:10으로 이루어진 경우에서와 같이, NR 라텍스의 함량이 70% 이상으로 많아지면 시편의 수축률이 증가하고, gel time이 짧아짐을 알 수 있었다.On the contrary, as in the case where the weight ratio of PV latex and NR latex is 3:7, 2:8, 1:9 and 0:10, when the content of NR latex increases to 70% or more, the shrinkage of the specimen increases, It could be seen that the gel time was shortened.

이러한 결과로부터 PV 라텍스와 NR 라텍스의 중량비가 4:6, 5:5, 6:4 및 7:3으로 이루어진 시편의 경우에만 비중, 인열강도, 영구압축률, 작업성 및 시편상태가 모두 우수함을 알 수 있다.From these results, it was found that specific gravity, tear strength, permanent compression rate, workability, and specimen condition were all excellent only in the case of specimens in which the weight ratio of PV latex and NR latex was 4:6, 5:5, 6:4 and 7:3. Able to know.

따라서 본 발명에 의하면, 내부를 미리 가교시킨 PV 라텍스 20~70phr 및 NR 라텍스 30~80phr을 사용하되, PV 라텍스와 NR 라텍스를 3~7:3~7의 중량비 내에서 적절하게 조절함으로써, 내외부가 균일하게 가교되어 가교밀도가 향상된 PV 라텍스 폼을 얻을 수 있는데 의미가 있다.Therefore, according to the present invention, 20 to 70 phr of PV latex and 30 to 80 phr of NR latex are used, but the PV latex and NR latex are appropriately controlled within the weight ratio of 3 to 7:3 to 7, so that the inside and outside are It is meaningful to obtain a PV latex foam with improved crosslinking density by uniformly crosslinking.

이상의 설명은 본 발명의 기술 사상을 예시적으로 설명한 것에 불과한 것으로, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자라면 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 다양한 수정 및 변형이 가능할 것이다.The above description is merely illustrative of the technical idea of the present invention, and those of ordinary skill in the art to which the present invention pertains will be able to make various modifications and variations without departing from the essential characteristics of the present invention.

따라서 본 발명에 개시된 실시예는 본 발명의 기술 사상을 한정하기 위한 것이 아니라, 설명하기 위한 것이고, 이러한 실시예에 의하여 본 발명의 기술 사상의 범위가 한정되는 것도 아니다.Therefore, the embodiments disclosed in the present invention are not intended to limit the technical idea of the present invention, but to explain the technical idea, and the scope of the technical idea of the present invention is not limited by these embodiments.

본 발명의 보호 범위는 특허청구범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술사상은 본 발명의 권리범위에 포함되는 것으로 해석되어야 할 것이다.The scope of protection of the present invention should be interpreted by the claims, and all technical thoughts within the scope equivalent thereto should be construed as being included in the scope of the present invention.

Claims (3)

라텍스의 내부를 가교하여 PV 라텍스(Pre-Vulcanized latex)를 형성하는 내부가교단계;
상기 PV 라텍스, NR 라텍스 및 올레산염을 1차교반하는 PV/NR혼합단계;
상기 1차교반하는 과정에서 황을 포함하는 첨가제를 투입한 후 2차교반하면서 발포하는 발포단계;
상기 발포하는 과정에서 다이페닐구아니딘(Diphenylguanidine) 및 규불화나트륨(sodium silicofluoride)을 투입한 후 3차교반하여 폼원료을 형성하는 겔링단계; 및
상기 폼원료를 몰드에 투입한 후 90~100℃ 하에서 큐어링(curing)하여 외부가 가교된 PV 라텍스 폼(Pre-Vulcanized latex foam)을 형성하는 외부가교단계;를 포함하는 것을 특징으로 하는 가공성이 우수한 PV 라텍스 폼의 제조방법.
An internal crosslinking step of crosslinking the inside of the latex to form PV latex (Pre-Vulcanized latex);
PV/NR mixing step of first stirring the PV latex, NR latex, and oleate;
A foaming step of foaming while second stirring after adding an additive containing sulfur during the first stirring process;
A gelling step of adding diphenylguanidine and sodium silicofluoride in the foaming process, followed by third stirring to form a foam raw material; And
Processability comprising: an external crosslinking step of forming a pre-Vulcanized latex foam crosslinked outside by curing the foam raw material in a mold and then curing at 90 to 100°C. Manufacturing method of excellent PV latex foam.
제1항에 있어서,
상기 PV/NR혼합단계에서의 올레산염은,
포타슘 올레이트(K-Oleate)인 것을 특징으로 하는 가공성이 우수한 PV 라텍스 폼의 제조방법.
The method of claim 1,
The oleate salt in the PV/NR mixing step,
A method of manufacturing a PV latex foam having excellent processability, characterized in that it is potassium oleate (K-Oleate).
제1항에 있어서,
상기 발포단계에서의 첨가제는,
아연 디에틸디티오카바메이트(Zinc diethyldithiocarbamate, ZDEC), 아연 2-메르캅토벤조티아졸(Zinc 2-mercaptobenzothiazole, ZMBT) 및 산화아연 중 어느 하나 이상을 더 포함하는 것을 특징으로 하는 가공성이 우수한 PV 라텍스 폼의 제조방법.
The method of claim 1,
The additive in the foaming step,
PV latex having excellent processability, characterized in that it further comprises at least one of zinc diethyldithiocarbamate (ZDEC), zinc 2-mercaptobenzothiazole (ZMBT), and zinc oxide Method of making the foam.
KR1020190062909A 2019-05-29 2019-05-29 Process for producing Pre-Vulcanized latex foam with excellent processibility KR102145295B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020190062909A KR102145295B1 (en) 2019-05-29 2019-05-29 Process for producing Pre-Vulcanized latex foam with excellent processibility

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020190062909A KR102145295B1 (en) 2019-05-29 2019-05-29 Process for producing Pre-Vulcanized latex foam with excellent processibility

Publications (1)

Publication Number Publication Date
KR102145295B1 true KR102145295B1 (en) 2020-08-19

Family

ID=72265569

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020190062909A KR102145295B1 (en) 2019-05-29 2019-05-29 Process for producing Pre-Vulcanized latex foam with excellent processibility

Country Status (1)

Country Link
KR (1) KR102145295B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113214548A (en) * 2021-05-18 2021-08-06 青岛科技大学 Natural foaming material

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005212027A (en) * 2004-01-29 2005-08-11 Inoac Corp Backup material for polishing
KR20080004487A (en) * 2005-04-04 2008-01-09 폴리머라텍스 게엠베하 New aqueous reinforced rubber dispersions and their use for making latex foams
KR101378491B1 (en) 2011-09-27 2014-03-26 주식회사 코라텍스 Manufacture method of loess nano latex foam and loess nano latex foam thereof
JP2017110082A (en) * 2015-12-15 2017-06-22 株式会社イノアック技術研究所 Method for producing latex foam and gelling agent

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005212027A (en) * 2004-01-29 2005-08-11 Inoac Corp Backup material for polishing
KR20080004487A (en) * 2005-04-04 2008-01-09 폴리머라텍스 게엠베하 New aqueous reinforced rubber dispersions and their use for making latex foams
KR101378491B1 (en) 2011-09-27 2014-03-26 주식회사 코라텍스 Manufacture method of loess nano latex foam and loess nano latex foam thereof
JP2017110082A (en) * 2015-12-15 2017-06-22 株式会社イノアック技術研究所 Method for producing latex foam and gelling agent

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113214548A (en) * 2021-05-18 2021-08-06 青岛科技大学 Natural foaming material

Similar Documents

Publication Publication Date Title
US9920173B2 (en) Mixing and processing of rubber compositions containing polar fillers
JP4759108B2 (en) Method for producing porous body
KR102145295B1 (en) Process for producing Pre-Vulcanized latex foam with excellent processibility
CN103289141A (en) Anti-static odorless odor-resistant dithio sponge rubber material as well as preparation method and application thereof
KR101674366B1 (en) Manufacturing method of cosmetic puff
US2575259A (en) Method of making foamed sponge rubber articles
US2290622A (en) Method of manufacturing cellular rubber
EP3074242B1 (en) Method to prepare treads for tyres
EP3476893B1 (en) Rubber compound for tyre portions
US2290729A (en) Rubber material and method of and composition for making same
CN106674688A (en) Thermoplastic elastomer-vulcanizate (TPE-V) material as well as preparation method and application thereof
US2885456A (en) Cold coagulable foamed rubber latex and sponge therefrom and process for making same
KR101664581B1 (en) Process for preparing Latex Foam
US2776330A (en) Production of sponge rubber
US2718536A (en) Manufacture of rubber articles
CN111205520A (en) Micro-foaming ball for pet and manufacturing method thereof
KR20100103008A (en) Polyvinyl chloride compound composition and manufacturing method thereof
US2283604A (en) Method of making sponge rubber
KR100347805B1 (en) Tire cure bladder composition
KR101680881B1 (en) Rubber Composition for Forming Tire Mold
CN108795056A (en) A kind of preparation method of precipitation high resiliency molding glue
DE112015006377B4 (en) Rubber composition for tire tread, method for producing the rubber composition, vulcanized product and its use in a tread portion
US2211592A (en) Peptized vulcanizate and method of preparing the same
JP5490190B2 (en) Gloves and manufacturing method thereof
KR100557984B1 (en) Manufacturing method of rubber hose

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant