KR102145097B1 - Hemostatic-capable thrombin-binding biodegradable PLGA mesh and method for manufacturing thereof - Google Patents
Hemostatic-capable thrombin-binding biodegradable PLGA mesh and method for manufacturing thereof Download PDFInfo
- Publication number
- KR102145097B1 KR102145097B1 KR1020180046050A KR20180046050A KR102145097B1 KR 102145097 B1 KR102145097 B1 KR 102145097B1 KR 1020180046050 A KR1020180046050 A KR 1020180046050A KR 20180046050 A KR20180046050 A KR 20180046050A KR 102145097 B1 KR102145097 B1 KR 102145097B1
- Authority
- KR
- South Korea
- Prior art keywords
- plga
- mesh
- thrombin
- thr
- hemostatic
- Prior art date
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L15/00—Chemical aspects of, or use of materials for, bandages, dressings or absorbent pads
- A61L15/16—Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons
- A61L15/38—Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons containing enzymes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L15/00—Chemical aspects of, or use of materials for, bandages, dressings or absorbent pads
- A61L15/16—Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons
- A61L15/22—Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons containing macromolecular materials
- A61L15/26—Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives thereof
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L15/00—Chemical aspects of, or use of materials for, bandages, dressings or absorbent pads
- A61L15/16—Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons
- A61L15/42—Use of materials characterised by their function or physical properties
- A61L15/425—Porous materials, e.g. foams or sponges
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L15/00—Chemical aspects of, or use of materials for, bandages, dressings or absorbent pads
- A61L15/16—Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons
- A61L15/42—Use of materials characterised by their function or physical properties
- A61L15/64—Use of materials characterised by their function or physical properties specially adapted to be resorbable inside the body
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L2400/00—Materials characterised by their function or physical properties
- A61L2400/04—Materials for stopping bleeding
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Epidemiology (AREA)
- Hematology (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Dispersion Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials For Medical Uses (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
Abstract
본 발명은 생분해성 고분자인 PLGA(poly(lactic-co-glycolic acid)) 표면에 트롬빈을 그라프트하여 얻어진 광범위한 출혈을 흡수 및 지혈하기 위한 생분해성 PLGA 지혈 메쉬 및 그 제조방법에 관한 것이다.The present invention relates to a biodegradable PLGA hemostatic mesh for absorbing and hemostasis obtained by grafting thrombin on the surface of a biodegradable polymer, poly(lactic-co-glycolic acid), and a method for producing the same.
Description
본 발명은 수술 시 사용되는 지혈용 메쉬 및 이의 제조방법에 관한 것이다.The present invention relates to a hemostatic mesh used in surgery and a method of manufacturing the same.
연조직용 소재에서 가장 큰 이슈가 되는 부분은 장기의 심한 훼손에 의한 대규모의 출혈이다 의료용 폴리에스테르 제조된 생분해성 부직포는 흉부외과적 기흉의 치료에 널리 사용되어온 의료용구이지만 최근 치료분야의 다양화에 따라 폭넓게 사용되고 있으며, 가장 이슈화되는 질환은 간담췌 분야의 열상이다. 교통사고 혹은 외부로부터 일어나는 강한 충격에 의한 부상은 간과 췌장과 같은 내부 연조직 장기의 심각한 훼손을 초래한다. 이러한 큰 열상으로부터 심각한 장기 손상을 최소화하는 가장 좋은 방법은 손상된 부위를 봉합하여 과도한 출혈을 막고 장기를 보존하는 것이다. 장기의 열상에 대한 치료법은 손상된 장기의 외형상 (blunt or sharp) 및 훼손 정도 (grade of lesions / I-V)에 따라 분류된다. Grade I/II의 경우 현재까지는 봉합 및 소작과 같은 수술 방법으로 치료가 이루어진다. 하지만, 상기 방법은 여전히 광범위하게 찢어진 연조직의 출혈을 막는데 한계가 있다. 이러한 경우, 생분해성 폴리에스테르 제조된 부직포가 사용되어 봉합부위를 최종적으로 지혈한다.The biggest issue in soft tissue materials is large-scale bleeding due to severe damage to organs. Biodegradable nonwoven fabric made of medical polyester is a medical device that has been widely used in the treatment of pneumothorax in chest surgery. Therefore, it is widely used, and the most problematic disease is laceration in the field of hepatobiliary pancreas. Injuries caused by traffic accidents or strong external shocks cause serious damage to internal soft tissue organs such as the liver and pancreas. The best way to minimize serious organ damage from these large lacerations is to suture the damaged area to prevent excessive bleeding and preserve the organ. Treatments for lacerations of organs are classified according to the appearance of the damaged organ (blunt or sharp) and the grade of lesions (I-V). In the case of Grade I/II, so far, treatment is performed by surgical methods such as sutures and cauterization. However, the method still has a limitation in preventing bleeding of widely torn soft tissue. In this case, a nonwoven fabric made of biodegradable polyester is used to finally hemostatic the sutured area.
개발된 지혈용 제재 중 다양한 분위에 널리 사용되는 타코실®, 그린플라스트® 등의 제품은 피브린, 트롬빈 등의 응고인자들을 포함하여 지혈효과가 우수한 제품으로 평가받고 있다. 하지만 타코실® 의 경우 재료 자체의 특성으로 인하여 쉽게 부스러지고 혈액이 쉽게 흡수되지 않음으로 출혈 부위 적용의 어려움이 있으며 그린플라스트®는 순간 지혈에는 효과가 있으나 과다출혈부위에는 점착력이 현저히 떨어지는 문제점이 있다. 생물학적인자로서 그린플라스트® 등에 의한 혈소판의 응고는 지혈에 있어서 매우 중요하지만 응급의학적 소견으로는 흡수성 물질의 사용에 의한 환부의 압박 역시 매우 중요한 물리적 지혈 수단이다.Among the developed hemostatic agents, products such as Tacosyl ® and Greenplast ® , which are widely used in various atmospheres, are evaluated as products with excellent hemostatic effects, including coagulation factors such as fibrin and thrombin. But is easy to crumble due to the properties of the material itself if the taco Room ® and the difficulties of a bleeding apply the blood is not easily absorbed by the green plast ® is instantaneous hemostasis include, but are effective excessive bleeding, this is significantly lowered tackiness have. As a biological factor, the coagulation of platelets by Greenplast ® is very important for hemostasis, but as an emergency medical finding, compression of the affected area by the use of absorbent substances is also a very important means of physical hemostasis.
결국 소수성인 생분해성 폴리에스테르 메쉬 혹은 부직포를 친수화시키며 생물학적 혈액응고인자를 도입하는 것은 현재 사용되는 제품의 모든 단점을 보완하는 차세대 제품의 도래를 의미한다.In the end, hydrophobic biodegradable polyester mesh or nonwoven fabric is made hydrophilic and the introduction of biological blood coagulation factors means the advent of next-generation products that complement all the shortcomings of currently used products.
본 발명자들은 상기 문제점을 해결하기 위해 노력한 결과, 질기면서 생분해성이 있는 락트산-글리콜산 공중합체(PLGA)에 플라즈마를 처리하여 표면에 관능기를 유도 한 후 트롬빈을 부착하여 제조한 THR-PLGA 메쉬가 in vitro 및 in vivo 실험에서 매우 우수한 지혈 효과를 갖는다는 것을 알아내어 본 발명을 완성하게 되었다.As a result of the present inventors' efforts to solve the above problem, the THR-PLGA mesh manufactured by attaching thrombin after inducing a functional group on the surface by treating plasma with a tough and biodegradable lactic acid-glycolic acid copolymer (PLGA) In vitro and in vivo experiments were found to have a very excellent hemostatic effect, and the present invention was completed.
본 발명은 상기 종래기술의 문제점을 해결하기 위한 것으로, 기존의 지혈재료 보다 혈액 응고시간이 단축되고 지혈 효과가 우수한 THR-PLGA 지혈 메쉬의 제조방법을 제공하는 것이다.The present invention is to solve the problems of the prior art, and to provide a method of manufacturing a THR-PLGA hemostatic mesh having a shorter blood coagulation time and excellent hemostatic effect than conventional hemostatic materials.
본 발명의 다른 목적은 상기 THR-PLGA 지혈 메쉬를 제공하는 것이다.Another object of the present invention is to provide the THR-PLGA hemostatic mesh.
그러나, 본 발명이 이루고자 하는 기술적 과제는 이상에서 언급한 과제에 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.However, the technical problem to be achieved by the present invention is not limited to the above-mentioned problems, and other problems that are not mentioned will be clearly understood by those skilled in the art from the following description.
상기 목적을 달성하기 위하여 본 발명은 PLGA(poly(lactic-co-glycolic acid)) 메쉬 표면에 플라즈마를 처리하여 친수성 관능기를 유도하는 단계, 상기 플라즈마를 처리하여 친수화된 PLGA 메쉬에 트롬빈을 포함하는 용액을 적하 하는 단계 및 반응을 종료한 후 세척 및 건조하는 단계를 포함하는, 광범위한 출혈을 흡수 및 지혈하기 위한 생분해성 PLGA 지혈 메쉬의 제조방법을 제공한다.In order to achieve the above object, the present invention comprises the steps of inducing a hydrophilic functional group by treating a plasma on the surface of a poly(lactic-co-glycolic acid) (PLGA) mesh, including thrombin in the hydrophilized PLGA mesh by treating the plasma. It provides a method for producing a biodegradable PLGA hemostatic mesh for absorbing and hemostasis of a wide range of bleeding, including the step of dropping a solution and washing and drying after the reaction is completed.
본 발명은 또한, 생분해성 고분자인 PLGA(poly(lactic-co-glycolic acid)) 표면에 응고인자를 그라프트하여 얻어진, 광범위한 출혈을 흡수 및 지혈하기 위한 생분해성 PLGA 지혈 메쉬를 제공한다.The present invention also provides a biodegradable PLGA hemostatic mesh for absorbing and hemostasis obtained by grafting a coagulation factor onto the surface of a biodegradable polymer, poly(lactic-co-glycolic acid) (PLGA).
본 발명은 트롬빈이 코팅된 PLGA(THR-PLGA) 메쉬 및 이의 제조방법에 관한 것으로, 플라즈마 처리한 PLGA(poly(lactic-co-glycolic acid)) 표면에 트롬빈을 정전기적 코팅하는 것을 특징으로 하는 바, 수술 시 지혈용 부직포로 제공하는데 탁월한 효과가 있다.The present invention relates to a THR-PLGA (THR-PLGA) mesh coated with thrombin and a method for manufacturing the same, characterized in that thrombin is electrostatically coated on a plasma-treated poly (lactic-co-glycolic acid) (PLGA) surface. , It has an excellent effect in providing a nonwoven fabric for hemostasis during surgery.
또한, 본 발명의 THR-PLGA 메쉬는 소수성 고분자인 PLGA의 표면 성질을 친수성으로 전환시킴으로써, 혈액 응고 시간(coagulation time)을 감소시킬 수 있다.In addition, the THR-PLGA mesh of the present invention can reduce blood coagulation time by converting the surface properties of PLGA, which is a hydrophobic polymer, to hydrophilicity.
도 1은 PLGA 메쉬를 Plasma generator chamber에서 반응시켜 PLGA 표면에 친수성 반응기를 유도하는 과정을 나타낸 것이다.
도 2는 트롬빈이 PLGA 메쉬 표면에 결합된 것을 확인하기 위하여 FTIR-ATR 분석하여 아마이드 및 NH2 작용기를 확인한 것이다.
도 3은 PLGA 및 THR-PLGA의 XPS 분석 결과를 나타낸 것으로, THR-PLGA에서만 트롬빈의 질소에 상응하는 N1s 피크 400eV가 관찰된 것으로부터 트롬빈이 PLGA 메쉬 표면에 결합된 것을 확인한 것이다.
도 4는 THR-PLGA의 N1s 고해상도 XPS 분석에서 C=N 및 N-C=O 결합에 해당하는 399.6, 401 eV 피크가 관찰된 것으로부터 트롬빈이 PLGA 메쉬 표면에 결합된 것을 확인한 것이다.
도 5는 THR-PLGA에 표면에 결합한 트롬빈의 활성농도의 측정결과를 나타낸 것이다.
도 6은 THR-PLGA에 떨어뜨린 rat 혈장의 FXIIIa 활성도 측정 결과를 나타낸 것이다.
도 7은 rat의 손상된 꼬리에 부착한 PLGA 및 THR- PLGA의 혈액 응고 시간을 나타낸 것이다.
도 8은 트롬빈 결합량이 상이한 THR-PLGA로부터 혈액 응고 morphology 를 관찰한 전자현미경 사진이다.1 shows a process of inducing a hydrophilic reactor on the surface of PLGA by reacting a PLGA mesh in a plasma generator chamber.
FIG. 2 shows amide and NH 2 functional groups by FTIR-ATR analysis to confirm that thrombin is bound to the PLGA mesh surface.
3 shows the results of XPS analysis of PLGA and THR-PLGA, and it was confirmed that thrombin was bound to the PLGA mesh surface from the observation that an N1s peak of 400 eV corresponding to the nitrogen of thrombin was observed only in THR-PLGA.
FIG. 4 shows that thrombin was bound to the PLGA mesh surface from the observation of 399.6 and 401 eV peaks corresponding to C=N and NC=O binding in the N1s high-resolution XPS analysis of THR-PLGA.
5 shows the measurement results of the active concentration of thrombin bound to the surface of THR-PLGA.
6 shows the results of measuring FXIIIa activity of rat plasma dropped on THR-PLGA.
Figure 7 shows the blood clotting time of PLGA and THR-PLGA attached to the damaged tail of rat.
8 is an electron microscope photograph of blood coagulation morphology observed from THR-PLGA with different amounts of thrombin binding.
상기 목적을 달성하기 위한 본 발명의 광범위한 출혈을 흡수 및 지혈하기 위한 생분해성 PLGA 지혈 메쉬는;Biodegradable PLGA hemostatic mesh for absorbing and hemostasis of the present invention for achieving the above object;
PLGA(poly(lactic-co-glycolic acid)) 메쉬 표면에 플라즈마를 처리하여 친수성 관능기를 유도하는 단계, 상기 친수화 된 PLGA 메쉬에 트롬빈을 포함하는 용액을 적하하는 단계 및 반응을 종료한 후 세척 및 건조하는 단계를 통해 제조될 수 있다. Inducing a hydrophilic functional group by treating plasma on the surface of a poly(lactic-co-glycolic acid) (PLGA) mesh, dropping a solution containing thrombin on the hydrophilized PLGA mesh, and washing after completing the reaction and It can be prepared through the step of drying.
본 발명자들은 체액 및 혈액이 존재하는 체내 부위에서도 충분한 접착 및 지혈을 수행할 수 있고, 특히 다른 생분해성 고분자에 비해 많은 양의 수분을 흡수할 수 있으며, 체내에서 스스로 분해 가능한 생분해성 의료용 지혈 메쉬를 개발하기 위하여 연구 노력하였다. 그 결과, PLGA의 표면을 플라즈마 처리하여 친수성 관능기를 유도하고 트롬빈을 그라프트 시켜 사용함으로써 생체 조직의 접착, 피복 및 지혈 등을 효과적으로 할 수 있음을 확인하였다.The present inventors can perform sufficient adhesion and hemostasis even in body fluids and blood-existing areas of the body, in particular, can absorb a large amount of moisture compared to other biodegradable polymers, and a biodegradable medical hemostatic mesh capable of self-degradation in the body Research efforts were made to develop. As a result, it was confirmed that the surface of PLGA was plasma-treated to induce a hydrophilic functional group, and thrombin was grafted to be used to effectively adhere, coat, and hemostasis of living tissue.
하기 실시예에서 확인한 바와 같이, 본 발명의 제조방법에 따라 제조된 PLGA 지혈 메쉬는 지혈제로 작용하는 트롬빈 농도의 유효량 만큼 PLGA 표면에 결합되는 트롬빈의 농도를 쉽게 조절할 수 있고, 지혈 효과에 있어서도 FXIIIa 활성도를 높일 뿐 아니라 동물 모델에서 혈액응고시간을 현저하게 단축한 우수한 효과를 보였다(도 7 참조).As confirmed in the following examples, the PLGA hemostatic mesh prepared according to the manufacturing method of the present invention can easily control the concentration of thrombin bound to the PLGA surface as much as the effective amount of thrombin concentration acting as a hemostatic agent, and FXIIIa activity also in the hemostatic effect. In addition to increasing the blood coagulation time was significantly shortened in the animal model showed an excellent effect (see Fig. 7).
본 발명의 일구현예에 따르면, 상기 생분해성 PLGA 지혈 메쉬는 트롬빈 활성범위가 생분해성 고분자인 PLGA 지혈 메쉬 단위 면적당 0.5 내지 3.5 IU/cm2, 바람직하게는 1.0 내지 3.0 IU/cm2, 가장 바람직하게는 1.5 내지 2.5 IU/cm2 일 수 있다.According to an embodiment of the present invention, the biodegradable PLGA hemostatic mesh has a thrombin activity range of 0.5 to 3.5 IU/cm 2 per unit area of the PLGA hemostatic mesh, which is a biodegradable polymer, It may be preferably 1.0 to 3.0 IU/cm 2 , most preferably 1.5 to 2.5 IU/cm 2 .
본 발명의 일구현예에 따르면, 상기 플라즈마 표면개질법이 50 mTorr 이하의 압력 및 20 내지 50 W 전력조건에서 20~40 초 동안 수행될 수 있다.According to an embodiment of the present invention, the plasma surface modification method may be performed for 20 to 40 seconds at a pressure of 50 mTorr or less and a power condition of 20 to 50 W.
본 발명의 상기 플라즈마 처리된 PLGA에 있어서, 상기 친수성 관능기는 카보닐기, 히드록실기, 카르복실기 및 아민기로 이루어진 군에서 선택되는 어느 하나 이상의 친수성 관능기를 포함할 수 있다.In the plasma-treated PLGA of the present invention, the hydrophilic functional group may include any one or more hydrophilic functional groups selected from the group consisting of a carbonyl group, a hydroxyl group, a carboxyl group and an amine group.
본 발명의 다른 일구현예에 따르면, 본 발명은 생분해성 고분자인 PLGA(poly(lactic-co-glycolic acid)) 표면에 트롬빈을 그라프트하여 얻어진, 광범위한 출혈을 흡수 및 지혈하기 위한 생분해성 PLGA 지혈 메쉬에 관한 것이다.According to another embodiment of the present invention, the present invention is a biodegradable PLGA hemostasis for absorption and hemostasis obtained by grafting thrombin on the surface of a biodegradable polymer, poly(lactic-co-glycolic acid) (PLGA). It relates to the mesh.
이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시한다. 그러나 하기의 실시예는 본 발명을 보다 쉽게 이해하기 위하여 제공되는 것일 뿐, 하기 실시예에 의해 본 발명의 내용이 한정되는 것은 아니다.Hereinafter, preferred embodiments are presented to aid in understanding the present invention. However, the following examples are provided for easier understanding of the present invention, and the contents of the present invention are not limited by the following examples.
1. 재료 및 방법1. Materials and methods
1-1. PLGA 표면에 반응기 유도1-1. Induce the reactor on the PLGA surface
PLGA에 반응기를 유도하기 위하여 1.0 × 1.0 cm2 크기의 mesh를 준비하고 RF plasma generator chamber 에서 50 mTorr, 20 watt, 30 초간 반응시켰다. 이후 대기 중에 10 분간 노출시켜 PLGA 표면에 carbonyl기 외 hydroxyl, carboxyl기 등 다양한 반응기를 유도하였다(도 1).In order to induce the reactor to the PLGA, a mesh of 1.0 × 1.0 cm 2 was prepared and reacted in an RF plasma generator chamber for 50 mTorr, 20 watt, and 30 seconds. Thereafter, exposure to the atmosphere for 10 minutes to induce various reactors such as hydroxyl and carboxyl groups in addition to carbonyl groups on the surface of the PLGA (FIG. 1).
1-2. Thrombin immobilized PLGA (THR-PLGA) 제조1-2. Thrombin immobilized PLGA (THR-PLGA) manufacturing
반응기가 유도된 PLGA 표면에 응고인자를 도입하기 위하여 트롬빈 용액을 준비하였다. Tris-HCl 1 M(pH 7.4)을 3차 증류수 (DW)로 희석하여 20 mM로 만들고 고압 멸균기에서 121 ℃의 온도에서 15 분간 처리한 뒤 트롬빈 용액은 thrombin from bovine plasma 0.29 mg을 20 mM tris-HCl 2 ml에 녹여 80 IU/ml의 stock solution을 제조하였고 필요에 따라 희석하여 사용하였다.A thrombin solution was prepared to introduce a coagulation factor to the surface of the PLGA in which the reactor was induced. Dilute Tris-HCl 1 M (pH 7.4) with tertiary distilled water (DW) to make 20 mM, and treat it for 15 minutes at 121°C in an autoclave. The thrombin solution is thrombin from bovine plasma 0.29
상기 1-1에서 제조한 carbonyl기가 유도된 PLGA (1.0 × 1.0 cm2)에 각각 1, 2, 3, 4, 5, 6, 7, 8 IU의 activity를 지닌 트롬빈 용액을 100 μL 적하 한 뒤 4 ℃에서 반응시키고 24 시간 경과 후 3~5회 멸균한 DW 로 수세를 하였고 -80 ℃, 5 mTorr에서 24 시간 동안 동결 건조하였다(도 1).Add 100 μL of thrombin solution with activities of 1, 2, 3, 4, 5, 6, 7, 8 IU to PLGA (1.0 × 1.0 cm 2 ) in which the carbonyl group prepared in 1-1 was induced, and then 4 After 24 hours, the reaction was performed at °C and washed with sterilized
1-3. 재료표면 분석1-3. Material surface analysis
Fourier transform infrared spectroscopy-attenuated total reflection (FTIR-ATR; Nicolet iS50, Fisher Scientific, 미국)를 사용하여 THR-PLGA의 화학적 조성을 확인 하였다. 스펙트럼은 600 ~ 4000 cm-1범위를 측정 하였다. THR-PLGA의 원자 조성을 X-ray photo electron spectroscopy (PHI 5000 VersaProbe, ULVAC PHI, 일본)으로 분석 하였다. 분석 조건으로 알루미늄 양극에서 얻은 15 kV, 24.5 W 단색 X 선 빔 (광전자 에너지 = 1486.6 eV)을 사용하였다. THR-PLGA의 젖음성은 water contact angle을 측정하여 확인하였다. 재료 표면에 10 μL의 물방울을 떨어뜨린 후, OCA 40 (Dataphysics, Germany)을 사용하여 재료 표면과 물방울 사이의 각도를 확인하였다.The chemical composition of THR-PLGA was confirmed using Fourier transform infrared spectroscopy-attenuated total reflection (FTIR-ATR; Nicolet iS50, Fisher Scientific, USA). Spectra measured in the range of 600 to 4000 cm -1 . The atomic composition of THR-PLGA was analyzed by X-ray photo electron spectroscopy (PHI 5000 VersaProbe, ULVAC PHI, Japan). As analysis conditions, a 15 kV, 24.5 W monochromatic X-ray beam (photoelectron energy = 1486.6 eV) obtained from an aluminum anode was used. The wettability of THR-PLGA was confirmed by measuring the water contact angle. After dropping 10 μL of water droplets on the material surface, the angle between the material surface and the water droplets was checked using OCA 40 (Dataphysics, Germany).
1-4. THR-PLGA의 트롬빈 활성도 평가1-4. Evaluation of thrombin activity of THR-PLGA
PLGA에 도입된 트롬빈의 활성도를 측정하기 위하여 chromogenic substrate assay 방법을 실행하였다. 1, 2, 3, 4, 5, 6, 7, 8 IU 로 처리한 THR-PLGA (1.0 × 1.0 cm2 )를 20 mM tris-HCl 용액 906.25 μL에 담근 후 1.9 mM의 N-(p-Tosyl)-Gly-Pro-Arg p-nitroanilide acetate salt 용액을 93.75 μL를 첨가하여 0.2 mM의 농도로 맞추었다. 20분 동안 상온에서 배양한 뒤 microplate reader를 사용하여 405 nm에서 흡광도를 측정하였다. THR-PLGA 각각의 트롬빈 활성도는 시간에 따른 흡광도의 변화량으로 계산하였다.In order to measure the activity of thrombin introduced into PLGA, a chromogenic substrate assay was performed. 1, 2, 3, 4, 5, 6, 7, 8 IU THR-PLGA (1.0 × 1.0 cm 2 ) treated with 20 mM tris-HCl was immersed in 906.25 μL, and 1.9 mM N-(p-Tosyl)-Gly-Pro-Arg p-nitroanilide acetate salt solution was added 93.75 μL. Was added to adjust the concentration to 0.2 mM. After incubation at room temperature for 20 minutes, the absorbance was measured at 405 nm using a microplate reader. The thrombin activity of each THR-PLGA was calculated as the change in absorbance over time.
1-5. Coagulation Factor XIIIa (FXIIIa)활성 분석1-5. Coagulation Factor XIIIa (FXIIIa) activity analysis
FXIIIa의 활성도는 rat (Sprague Dawley, 6-9 주, 150-200g)의 혈액으로부터 분리한 혈장을 이용하여 측정하였다. rat의 흉부를 요오드로 소독 후 5 mL 주사기를 이용하여 심장에서 채혈하였고, 채혈 한 혈액은 진공 sodium citrate 채혈관에 수집 후 10회 도치 시켰다. 혈액은 1 시간 이내로 1.5 mL 튜브로 옮겨 1300 rcf에서 10 분 동안 원심 분리하여 혈장을 분리하였다. Rat 혈장에 있는 FXIIIa는 Factor XIIIa Activity Assay Kit (Catalog # K522-100, BioVision)를 사용하여 측정하였다. 농도 별 트롬빈을 처리한 THR-PLGA를 지름 6 mm로 자른 뒤 96-well plate에 넣었다. 25 μL FXIIIa activation buffer, 25 μL reaction buffer, 48 μL detection buffer, 2 μL probe를 섞은 혼합용액 100 μL를 THR-PLGA가 놓여져 있는 well에 적하 한 뒤 혈장 25 μL를 넣고 잘 섞어주었다. 트롬빈에 의해 FXIIIa가 활성화 되도록 20분간 상온에서 반응시킨 후, 상층액 100 μL를 microplate reader기로 340 nm에서 흡광도를 측정하였다. 각 시료에 대한 FXIIIa의 활성도는 시간에 따른 흡광도의 변화량으로 계산하였다.The activity of FXIIIa was measured using plasma isolated from blood of rats (Sprague Dawley, 6-9 weeks, 150-200g). After disinfecting the rat's chest with iodine, blood was collected from the heart using a 5 mL syringe, and the collected blood was collected in a vacuum sodium citrate blood collection tube and inverted 10 times. Blood was transferred to a 1.5 mL tube within 1 hour and centrifuged at 1300 rcf for 10 minutes to separate plasma. FXIIIa in rat plasma was measured using Factor XIIIa Activity Assay Kit (Catalog # K522-100, BioVision). THR-PLGA treated with thrombin for each concentration was cut into 6 mm in diameter and placed in a 96-well plate. 100 μL of a mixed solution of 25 μL FXIIIa activation buffer, 25 μL reaction buffer, 48 μL detection buffer, and 2 μL probe was added dropwise to the well in which THR-PLGA was placed, and 25 μL of plasma was added and mixed well. After reacting at room temperature for 20 minutes to activate FXIIIa by thrombin, 100 μL of the supernatant was measured for absorbance at 340 nm with a microplate reader. The activity of FXIIIa for each sample was calculated as the change in absorbance over time.
1-6. 동물 지혈 모델1-6. Animal hemostasis model
THR-PLGA의 생체 내에서 실제적인 지혈시간을 평가하기 위하여 15마리의 rat을 (Sprague Dawley, 6-9 주, 150-200g) 사용하였다. 수술 전 Zoletil (Virbac Laboratories, Carros, France), Rompun® (Bayer Korea Ltd, Seoul, Korea)으로 마취시키고 꼬리는 요오드로 소독하였다. Rat 꼬리의 끝 부분으로부터 2 cm부분을 잘라내고 출혈을 유도하였다. 출혈이 일어난 꼬리에 PLGA와 THR-PLGA를 부착하여 혈액 응고 시간을 육안으로 관찰하였다. 혈액 응고 실험 후 THR-PLGA와 PLGA는 동결 건조 시키고 전자 현미경 (SEM)을 사용하여 시료 내 응고 된 혈액의 상태를 관찰 하였다.To evaluate the actual hemostatic time of THR-PLGA in vivo, 15 rats (Sprague Dawley, 6-9 weeks, 150-200g) were used. Before surgery, Zoletil (Virbac Laboratories, Carros, France), Rompun® (Bayer Korea Ltd, Seoul, Korea) was anesthetized and the tail was disinfected with iodine. A 2 cm part was cut from the end of the rat tail and bleeding was induced. PLGA and THR-PLGA were attached to the bleeding tail, and the blood clotting time was visually observed. After the blood coagulation experiment, THR-PLGA and PLGA were freeze-dried, and the condition of the coagulated blood in the sample was observed using an electron microscope (SEM).
2. 결과2. Results
2-1. 표면 특성-트롬빈과 PLGA의 공유결합 확인(도 2 내지 도 4)2-1. Surface Characteristics-Confirmation of the covalent bond between thrombin and PLGA (Figs. 2 to 4)
트롬빈이 결합된 PLGA 샘플 표면의 화학적 조성은 도 2에 나타내었다. FTIR-ATR 분석 결과, PLGA 샘플에서 2950 cm-1, 1750 cm-1, 1150 cm-1이 관찰 되었으며, 이것으로 PLGA의 특이적 구성 결합인 C-H, C=O, C-O을 확인하였다. THR-PLGA은 트롬빈이 PLGA에 결합하였기 때문에 amide I (1650 cm-1), amide II (1550 cm-1)및 NH2 (3000 ~3500 cm-1)작용기를 그래프에서 추가적으로 관찰 할 수 있었다.The chemical composition of the surface of the thrombin-bound PLGA sample is shown in FIG. 2. As a result of FTIR-ATR analysis, 2950 cm -1 , 1750 cm -1 , and 1150 cm -1 were observed in the PLGA sample, and this confirmed the specific constituent bindings of PLGA, CH, C=O, and CO. In THR-PLGA, since thrombin binds to PLGA, amide I (1650 cm -1 ), amide II (1550 cm -1 ) and NH 2 (3000 ~3500 cm -1 ) functional groups could be additionally observed in the graph.
도 3 은 PLGA 및 THR-PLGA 샘플의 XPS 분석 결과를 보여준다. PLGA 샘플의 구성 성분인 탄소와 산소는 각각 C1s 와 O1s에 해당하는 284.6, 532.4 eV에서 관찰 되었다. THR-PLGA 샘플은 트롬빈의 질소에 상응하는 N1s 피크 400 eV를 관찰할 수 있었다. 또한, THR-PLGA의 고분해능 스펙트럼에서. 또한, THR-PLGA의 N1s 고해상도 XPS 분석에서 C=N 및 N-C=O 결합에 해당하는 399.6, 401 eV 피크가 관찰되었다 (도 4). 단백질은 이민 반응을 통해 고형 기질 상에 카르보닐기를 결합시킬 수 있다. 이것은 플라즈마 처리에 의해 PLGA에서 생성 된 카르보닐기와 트롬빈의 아민기가 이민 반응을 통해 공유결합을 형성한 결과로 보여진다.3 shows the XPS analysis results of PLGA and THR-PLGA samples. Carbon and oxygen, the constituents of the PLGA sample, were observed at 284.6 and 532.4 eV, corresponding to C1s and O1s, respectively. The THR-PLGA sample was able to observe an N1s peak of 400 eV corresponding to the nitrogen of thrombin. Also, in the high-resolution spectrum of THR-PLGA. In addition, in the N1s high-resolution XPS analysis of THR-PLGA, 399.6 and 401 eV peaks corresponding to C=N and N-C=O bonds were observed (FIG. 4). Proteins can bind a carbonyl group on a solid substrate through an imine reaction. This is seen as a result of the formation of covalent bonds through the imine reaction of the carbonyl group and thrombin amine group generated in PLGA by plasma treatment.
2-2. THR-PLGA에 고정되어 있는 트롬빈의 활성여부 및 활성도 측정 결과 확인(도 5)2-2. Checking the activity of thrombin fixed to THR-PLGA and the measurement result of activity (Fig. 5)
도 5는 THR-PLGA에 표면에 결합한 트롬빈의 활성농도의 측정결과를 나타내었다. 각각 0.28±0.12, 0.76±0.24, 1.25±0.21, 1.67±0.21, 1.88±0.21, 2.50±0.21, 2.78±0.12, 3.47±0.43 IU씩 측정되었다. 이 결과는 트롬빈 용액 1, 2, 3, 4, 5, 6, 7, 8 IU을 PLGA와 반응 시켰을 때, THR-PLGA에 결합된 트롬빈의 실질적인 활성도를 의미하며 지혈제로써 작용하는 트롬빈 농도의 유효값을 구하였다.5 shows the measurement results of the active concentration of thrombin bound to the surface of THR-PLGA. The measurements were 0.28±0.12, 0.76±0.24, 1.25±0.21, 1.67±0.21, 1.88±0.21, 2.50±0.21, 2.78±0.12, and 3.47±0.43 IU, respectively. This result indicates the actual activity of thrombin bound to THR-PLGA when 1, 2, 3, 4, 5, 6, 7, 8 IU of thrombin solution was reacted with PLGA, and the effective value of thrombin concentration acting as a hemostatic agent Was obtained.
2-3. Rat 혈장의 FXIIIa 활성도 분석-THR-PLGA의 혈액 응고 능력 및 동물실험에 특정 농도를 지닌 THR2-3. Analysis of FXIIIa activity in rat plasma-THR-PLGA's blood coagulation ability and THR with specific concentration in animal experiments 22 -PLGA, THR-PLGA, THR 44 -PLGA, THR-PLGA, THR 88 -PLGA 사용 이유(도 6)-Reason for using PLC (Fig. 6)
도 6은 THR-PLGA에 떨어뜨린 rat 혈장의 FXIIIa 활성도 측정 결과를 보여준다. THR-PLGA 샘플의 혈장은 positive control과 PLGA보다 더 높은 양의 FXIIIa 활성을 보였다. 특히, THR8-PLGA에서 가장 높은 FXIIIa 활성이 관찰되었다. 이러한 결과는 혈액응고 기전에 작용하는 트롬빈의 효과 때문이다. 혈액 응고인자 XIII (FXIII)은 혈액 응고과정의 마지막 단계에 관여하는 것으로 알려져 있다. FXIII은 촉매역할을 하는 "A"단위체와 운반역할을 하는 "B" 단위체로 구성되어 있다. 트롬빈은 FXIII를 활성 형태 (FXIIIa)로 A단위체와 B단위체로 자른다. 활성형태의 FXIIIa는 섬유소에 작용하여 섬유소 분자 사이에 가교 결합을 형성하여 섬유소 구조를 안정화 한다고 알려져 있다. 따라서, FXIIIa는 지혈 과정에서 중요한 역할을 하며, THR-PLGA에 의해 활성이 증가하였기 때문에 지혈 효과를 입증하였다.6 shows the results of measuring FXIIIa activity of rat plasma dropped on THR-PLGA. Plasma of THR-PLGA sample showed positive control and higher FXIIIa activity than PLGA. In particular, the highest FXIIIa activity was observed in THR 8 -PLGA. This result is due to the effect of thrombin on the blood coagulation mechanism. Blood coagulation factor XIII (FXIII) is known to be involved in the final stage of the blood clotting process. FXIII is composed of a "A" unit that acts as a catalyst and a "B" unit that acts as a transport. Thrombin cuts FXIII into active form (FXIIIa) into A and B units. The active form of FXIIIa is known to stabilize the fibrin structure by acting on fibrin to form cross-links between fibrin molecules. Therefore, FXIIIa plays an important role in the hemostasis process, and since the activity was increased by THR-PLGA, it proved the hemostatic effect.
Rat 혈장의 FXIIIa 활성도 분석결과로부터 또 하나의 현상을 발견하였다. 흥미롭게도 0.28, 0.76, 1.25, 1.67 IU의 트롬빈 활성도와 비례하여 쥐 혈장의 FXIIIa 활성도가 증가 하였다. 하지만, 1.88, 2.50, 2.78, 3.47 IU 농도의 트롬빈이 붙은 THR-PLGA는 FXIIIa 활성도의 증가율이 급격히 감소하였다. 이것은 트롬빈 활성도의 역치와 혈장내 FXIII의 양에 관련된 것으로 생각된다. 또한 이 데이터를 근거로 하여 0.76±0.24, 1.67±0.21, 3.47±0.43 IU의 트롬빈 활성도를 갖는 THR2-PLGA, THR4-PLGA, THR8-PLGA을 동물 모델 실험에 사용하였다.Another phenomenon was found from the results of FXIIIa activity analysis in rat plasma. Interestingly, the FXIIIa activity of rat plasma increased in proportion to the thrombin activity of 0.28, 0.76, 1.25, and 1.67 IU. However, THR-PLGA with thrombin at 1.88, 2.50, 2.78, and 3.47 IU significantly decreased the rate of increase in FXIIIa activity. This is thought to be related to the threshold of thrombin activity and the amount of FXIII in the plasma. In addition, based on this data, THR 2 -PLGA, THR 4 -PLGA, and THR 8 -PLGA having thrombin activity of 0.76±0.24, 1.67±0.21, and 3.47±0.43 IU were used in animal model experiments.
2-4. 동물 모델에서 THR-PLGA의 지혈 효과 확인 결과(도 7)2-4. Results of confirming the hemostatic effect of THR-PLGA in an animal model (Fig. 7)
THR-PLGA의 생체에 대한 지혈 효과를 보기 위하여 위한 동물 모델로부터 혈액 응고 시간을 측정하였다. 도 7은 rat의 손상된 꼬리에 부착 한 PLGA 및 THR- PLGA 샘플의 혈액 응고 시간을 나타낸다. 지혈을 하지 않은 rat 모델은 출혈을 멈추기 위해 6 분 (391 초) 이상 걸렸다. PLGA, THR2-PLGA, THR4-PLGA, THR8-PLGA의 지혈에 걸리는 시간은 각각 248, 168, 116 및 103 초로 3분 이하의 시간이 걸렸다. THR8-PLGA는 가장 빠른 지혈 효과를 보였으며, 그 응고시간의 차이는 THR4-PLGA와 크지 않았다.Blood clotting time was measured from an animal model to see the hemostatic effect of THR-PLGA on the living body. Figure 7 shows the blood clotting time of PLGA and THR-PLGA samples attached to the damaged tail of rats. The rat model without hemostasis took more than 6 minutes (391 seconds) to stop bleeding. The hemostasis of PLGA, THR 2 -PLGA, THR 4 -PLGA, and THR 8 -PLGA was 248, 168, 116 and 103 seconds, respectively, which took less than 3 minutes. THR 8 -PLGA showed the fastest hemostatic effect, and the difference in coagulation time was not large with THR 4 -PLGA.
2-5. 전자현미경 사진으로 혈액 응고 morphology 확인 결과(도 8)2-5. Blood coagulation morphology confirmation result by electron micrograph (Fig. 8)
Rat의 심장에서 채혈한 혈액을 각각 1 mL씩 PLGA, THR2-PLGA, THR4-PLGA, THR8-PLGA에 적하 하고, 상기 2-4에서 측정한 THR8-PLGA의 혈액 응고시간인 100초 동안 반응 시킨 뒤 혈액속에서 PLGA, THR2-PLGA, THR4-PLGA, THR8-PLGA을 꺼내서 PBS로 3회 수세하였다. 씻은 샘플은 -80°C에서 얼린 뒤 동결 건조하여 전자현미경으로 확인하였다(도 8). PLGA 위에 형성된 혈전의 모습에서는 적혈구와 혈소판이 관찰 되었으며, 피브린의 그물 구조는 보이지 않았다. THR-PLGA에서 응고된 혈액에서는 피브린 그물 구조안에 다량의 혈소판과 적혈구가 갇혀 있는 모습을 확인하였다. 모든 THR-PLGA에서는 피브린 그물이 형성되고 그 주변으로 ??혈구와 혈소판이 달라 붙은 모습을 확인 할 수 있었다. 그 중, THR8-PLGA에서 가장 많은 적혈구가 응집되어 있는 모습을 확인할 수 있었다.Each 1 mL of blood collected from the rat's heart was added dropwise to PLGA, THR 2 -PLGA, THR 4 -PLGA, THR 8 -PLGA, and the blood clotting time of THR 8 -PLGA measured in 2-4 was 100 seconds. After reacting for a while, PLGA, THR 2 -PLGA, THR 4 -PLGA, and THR 8 -PLGA were taken out from the blood and washed three times with PBS. The washed sample was frozen at -80 °C and then freeze-dried to confirm with an electron microscope (FIG. 8). Red blood cells and platelets were observed in the thrombus formed on the PLGA, and the fibrin net structure was not observed. In the blood coagulated by THR-PLGA, it was confirmed that a large amount of platelets and red blood cells were trapped in the fibrin net structure. In all THR-PLGAs, fibrin nets were formed, and blood cells and platelets were adhered around them. Among them, it was confirmed that the most red blood cells were aggregated in THR 8 -PLGA.
본 발명에서는 PLGA에 플라즈마를 처리하여 유도한 카르보닐기와 트롬빈이 이민반응을 통해 공유결합을 하였음을 FTIR-ATR, XPS 분석으로 확인하였다. 또한 PLGA 표면에 결합한 트롬빈의 활성도를 측정하여 수치화 하였으며, FXIIIa의 활성도, 동물실험을 통해 혈액응고 능력이 있는 THR-PLGA 기능성을 확인하였다. 특히, 트롬빈의 농도가 높을수록 혈액 응고시간이 단축 됨을 확인하였으며, 1.67 IU 이상부터 혈액 응고 시간이 급격히 감소 함을 바탕으로 1.67 IU 이상의 트롬빈을 코팅한 THR-PLGA이 지혈제로써 적절한 효율을 보일 것 이라 생각 된다.In the present invention, it was confirmed by FTIR-ATR and XPS analysis that the carbonyl group and thrombin induced by plasma treatment on PLGA covalently bonded through the imine reaction. In addition, the activity of thrombin bound to the PLGA surface was measured and quantified, and the activity of FXIIIa, and THR-PLGA functionality with blood coagulation ability was confirmed through animal experiments. In particular, it was confirmed that the higher the concentration of thrombin, the shorter the blood clotting time, and based on the rapid decrease in the blood clotting time from 1.67 IU or higher, THR-PLGA coated with thrombin of 1.67 IU or more will show appropriate efficiency as a hemostatic agent. I think.
전술한 본 발명의 설명은 예시를 위한 것이며, 본 발명이 속하는 기술분야의 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 쉽게 변형이 가능하다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다.The above description of the present invention is for illustrative purposes only, and those of ordinary skill in the art to which the present invention pertains will be able to understand that other specific forms can be easily modified without changing the technical spirit or essential features of the present invention. will be. Therefore, it should be understood that the embodiments described above are illustrative and non-limiting in all respects.
Claims (6)
상기 카보닐기가 유도된 PLGA 메쉬 표면에 트롬빈을 포함하는 용액을 적하하는 이민(imine) 반응을 통해 공유 결합을 형성하는 단계를 포함하는,
광범위한 출혈을 흡수 및 지혈하기 위한 생분해성 PLGA 지혈 메쉬의 제조방법.
Inducing a carbonyl group as a hydrophilic functional group by treating plasma on the surface of a poly(lactic-co-glycolic acid) (PLGA) mesh; And
Including the step of forming a covalent bond through an imine reaction of dropping a solution containing thrombin on the surface of the PLGA mesh from which the carbonyl group is derived,
A method of manufacturing a biodegradable PLGA hemostatic mesh for absorbing and hemostasis of extensive bleeding.
상기 생분해성 PLGA 지혈 메쉬 단위 면적당 트롬빈의 활성범위가 0.5 내지 3.5 IU/cm2인, 생분해성 PLGA 지혈 메쉬의 제조방법.
The method of claim 1,
The biodegradable PLGA hemostatic mesh has an active range of thrombin per unit area of 0.5 to 3.5 IU/cm 2 , a method for producing a biodegradable PLGA hemostatic mesh.
상기 플라즈마 처리가 50 mTorr 이하의 압력 및 20 내지 50 W 전력조건에서 20~40 초 동안 수행되는 것인, 생분해성 PLGA 지혈 메쉬의 제조방법.
The method of claim 1,
The plasma treatment is carried out for 20 to 40 seconds under a pressure of 50 mTorr or less and a power condition of 20 to 50 W, a method of producing a biodegradable PLGA hemostatic mesh.
상기 카보닐기가 유도된 PLGA 메쉬 표면에 이민(imine) 반응을 통해 공유 결합된 트롬빈을 포함하는,
광범위한 출혈을 흡수 및 지혈하기 위한 생분해성 PLGA 지혈 메쉬.
As a hydrophilic functional group on the surface, a carbonyl group is derived PLGA (poly(lactic-co-glycolic acid)) mesh; And
Containing thrombin covalently bonded to the surface of the PLGA mesh from which the carbonyl group was derived through an imine reaction,
Biodegradable PLGA hemostatic mesh for absorption and hemostasis of extensive bleeding.
상기 생분해성 PLGA 지혈 메쉬 단위 면적당 트롬빈의 활성범위가 0.5 내지 3.5 IU/cm2인, 생분해성 PLGA 지혈 메쉬.The method of claim 5,
The biodegradable PLGA hemostatic mesh having an active range of thrombin per unit area of 0.5 to 3.5 IU/cm 2 , a biodegradable PLGA hemostatic mesh.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR20170085213 | 2017-07-05 | ||
KR1020170085213 | 2017-07-05 |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20190005106A KR20190005106A (en) | 2019-01-15 |
KR102145097B1 true KR102145097B1 (en) | 2020-08-14 |
Family
ID=65030399
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020180046050A KR102145097B1 (en) | 2017-07-05 | 2018-04-20 | Hemostatic-capable thrombin-binding biodegradable PLGA mesh and method for manufacturing thereof |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR102145097B1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102615766B1 (en) | 2020-12-14 | 2023-12-20 | 주식회사 넥스트바이오메디컬 | Adhesive composition for in-body absorbable reinforcement materials comprising chitosan and gelatin and manufacturing method thereof |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101112775B1 (en) * | 2009-05-26 | 2012-03-14 | 가톨릭대학교 산학협력단 | Biodegradable suture type scaffolds for culturing of cell having improved cell compatibility |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100529209B1 (en) * | 2002-08-28 | 2005-11-17 | 한국과학기술연구원 | A preparation method of biodegradable porous polymer scaffolds having improved cell compatibility |
KR101624625B1 (en) * | 2012-12-28 | 2016-05-26 | 주식회사 삼양바이오팜 | Improved absorbable hemostatic material and method for preparing the same |
KR101628205B1 (en) * | 2014-09-26 | 2016-06-22 | 주식회사 아모그린텍 | Wound dressing materials having transfer function in one way direction and manufacturing method thereof |
KR101878774B1 (en) * | 2015-04-15 | 2018-07-17 | 주식회사 삼양바이오팜 | Multifunctional hemostatic material and method for preparing the same |
-
2018
- 2018-04-20 KR KR1020180046050A patent/KR102145097B1/en active IP Right Grant
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101112775B1 (en) * | 2009-05-26 | 2012-03-14 | 가톨릭대학교 산학협력단 | Biodegradable suture type scaffolds for culturing of cell having improved cell compatibility |
Also Published As
Publication number | Publication date |
---|---|
KR20190005106A (en) | 2019-01-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Liu et al. | Mussel-inspired degradable antibacterial polydopamine/silica nanoparticle for rapid hemostasis | |
Seon et al. | Functional improvement of hemostatic dressing by addition of recombinant batroxobin | |
KR100305374B1 (en) | Aldehyde-cured proteinaceous adhesive | |
JP2016530035A (en) | Nanoparticles for use in bioadhesion | |
Mirzadeh et al. | Cell attachment to laser-induced AAm-and HEMA-grafted ethylenepropylene rubber as biomaterial: in vivo study | |
BRPI0410919B1 (en) | use of an equine collagen foil | |
JP5507566B2 (en) | Biodegradable blend for temporary skeleton of blood vessel wall (auxiliary material) | |
JP2015506256A (en) | Tissue patches and related systems, kits and methods | |
AU2008219065A1 (en) | Hemostatic compositions and therapeutic regimens | |
Su et al. | Tranexamic acid-loaded starch hemostatic microspheres | |
Mu et al. | Thrombin immobilized polydopamine–diatom biosilica for effective hemorrhage control | |
CN111035485B (en) | Intravascular stent and preparation method and application thereof | |
KR102211806B1 (en) | Support for tissue regeneration, method for thereof, and bioink material for 3D printing using the same | |
KR102145097B1 (en) | Hemostatic-capable thrombin-binding biodegradable PLGA mesh and method for manufacturing thereof | |
RU2624242C1 (en) | Wound cover with hemostatic action, and method for its production | |
Gong et al. | Biomimetic hydroxyapate/polydopamine composites with good biocompatibility and efficiency for uncontrolled bleeding | |
CN106390187A (en) | Composite hemostatic sponge of microcrystalline cellulose and collagen and preparation method thereof | |
Pandiyaraj et al. | Glow discharge plasma-induced immobilization of heparin and insulin on polyethylene terephthalate film surfaces enhances anti-thrombogenic properties | |
Fan et al. | Injectable and ultra-compressible shape-memory mushroom: highly aligned microtubules for ultra-fast blood absorption and hemostasis | |
CN114848668B (en) | Composition with functions of promoting wound healing and rapidly stopping bleeding | |
Xiong et al. | Facilely prepared thirsty granules arouse tough wet adhesion on overmoist wounds for hemostasis and tissue repair | |
Szymonowicz et al. | The evaluation of resorbable haemostatic wound dressings in contact with blood in vitro | |
JP2007222477A (en) | Fibrous medical material containing in vivo absorbent material | |
Yu et al. | Sea Cucumber‐Inspired Aerogel for Ultrafast Hemostasis of Open Fracture | |
Karimi et al. | Platelet-rich fibrin (PRF) gel modified by a carbodiimide crosslinker for tissue regeneration |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
G170 | Publication of correction |