KR102141895B1 - Electronic regulator for 2-stage pressure reduction of hydrogen - Google Patents

Electronic regulator for 2-stage pressure reduction of hydrogen Download PDF

Info

Publication number
KR102141895B1
KR102141895B1 KR1020170175579A KR20170175579A KR102141895B1 KR 102141895 B1 KR102141895 B1 KR 102141895B1 KR 1020170175579 A KR1020170175579 A KR 1020170175579A KR 20170175579 A KR20170175579 A KR 20170175579A KR 102141895 B1 KR102141895 B1 KR 102141895B1
Authority
KR
South Korea
Prior art keywords
hydrogen
pressure
main body
reducing
pressure reducing
Prior art date
Application number
KR1020170175579A
Other languages
Korean (ko)
Other versions
KR20190074162A (en
Inventor
김구호
김재광
김재경
이준혁
전완재
Original Assignee
(주)모토닉
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)모토닉 filed Critical (주)모토닉
Priority to KR1020170175579A priority Critical patent/KR102141895B1/en
Priority to CN201811447647.3A priority patent/CN109931427A/en
Publication of KR20190074162A publication Critical patent/KR20190074162A/en
Application granted granted Critical
Publication of KR102141895B1 publication Critical patent/KR102141895B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/30Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04201Reactant storage and supply, e.g. means for feeding, pipes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • Y02T90/34
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/40Application of hydrogen technology to transportation, e.g. using fuel cells

Abstract

본 발명은 고압의 수소를 2단으로 감압하는 전자식 레귤레이터에 있어서: 입구포트(11), 배출포트(12), 출구포트(13)와 연통되는 수소유동경로를 지닌 본체(10); 상기 본체(10)의 수소유동경로에 스풀(22)과 제1감압시트(24)를 구비하고, 배출포트(12)에 도달하는 수소의 압력을 감소시키는 1차감압수단(20); 및 상기 본체(10)의 배출포트(12)와 출구포트(13) 사이에 개재되는 솔레노이드밸브로 수소의 압력을 감소시키는 2차감압수단(30);을 포함하여 이루어지는 것을 특징으로 한다.
이에 따라, 고압 수소용 레귤레이터에서 2단의 감압을 통하여 기밀성능을 확보하는 동시에 압력안정성을 향상하고, 2차감압수단에 전자식으로 적용하여 기계식 대비 보다 정밀한 제어가 가능하여 작동신뢰성을 제고하는 효과가 있다.
The present invention provides an electronic regulator for decompressing high pressure hydrogen to two stages: a main body 10 having a hydrogen flow path communicating with an inlet port 11, an outlet port 12, and an outlet port 13; A primary pressure reducing means (20) having a spool (22) and a first pressure reducing sheet (24) in the hydrogen flow path of the main body (10) and reducing the pressure of hydrogen reaching the discharge port (12); And a secondary pressure reducing means (30) for reducing the pressure of hydrogen with a solenoid valve interposed between the discharge port (12) and the outlet port (13) of the main body (10).
Accordingly, the high-pressure hydrogen regulator secures airtight performance through two stages of decompression, improves pressure stability, and applies electronically to the secondary decompression means to enable more precise control than mechanical, thereby improving operational reliability. have.

Description

수소용 2단감압 전자식 레귤레이터 {Electronic regulator for 2-stage pressure reduction of hydrogen}Electronic regulator for 2-stage pressure reduction of hydrogen}

본 발명은 수소용 레귤레이터에 관한 것으로서, 보다 구체적으로는 수소 연료전지 차량에서 연료전지계통을 구성하기 위한 수소용 2단감압 전자식 레귤레이터에 관한 것이다.The present invention relates to a regulator for hydrogen, and more particularly, to a two-stage decompression electronic regulator for hydrogen for constructing a fuel cell system in a hydrogen fuel cell vehicle.

일명 수소차에서 연료전지계통은 연료전지스택 본체, 연료공급부, 냉각부 등으로 구성되어 있다. 수소는 고압탱크로부터 레귤레이터로 감압되어 연료전지로 공급된다. 수소용 레귤레이터는 고압과 저압영역에서 고른 성능을 요구하고 있으며, 수소가스의 내외부 기밀성이 중요하게 관리되고 있다.In a hydrogen vehicle, a fuel cell system is composed of a fuel cell stack body, a fuel supply unit, and a cooling unit. Hydrogen is decompressed from the high pressure tank to the regulator and supplied to the fuel cell. Hydrogen regulators require uniform performance in the high and low pressure ranges, and the internal and external gas-tightness of hydrogen gas is importantly managed.

수소용 레귤레이터와 관련하여 한국 공개특허공보 제2017-0074009호(선행문헌 1), 한국 등록특허공보 제0792541호(선행문헌 2) 등을 참조할 수 있다.With regard to the regulator for hydrogen, Korean Patent Publication No. 2017-0074009 (Prior Art Document 1), Korean Registered Patent Publication No. 0792541 (Prior Art Document 2), etc. can be referred to.

선행문헌 1은 축방향과 반경방향으로 다수의 포트를 형성한 중공 구조의 바디; 바디의 중공에 상하운동 가능하게 수용되는 피스톤; 바디의 중공에 오리피스를 형성하도록 수용되는 시트; 및 피스톤과 시트를 통과하도록 설치되고, 압력조절을 위한 상하운동을 수행하는 스풀;을 포함한다. 이에, 양호한 작동신뢰성과 내구성을 유지하면서 경박단소의 구조를 구현하는 효과를 기대한다.Prior Document 1 is a hollow body having a plurality of ports in the axial and radial directions; A piston accommodated in the hollow of the body to be able to move up and down; A sheet accommodated to form an orifice in the hollow of the body; And a spool installed to pass through the piston and the seat and performing vertical movement for pressure control. Accordingly, it is expected that the effect of realizing the structure of the light and small element while maintaining good operation reliability and durability.

이는 1단 감압으로 피스톤과 샤프트의 작동하면서 기계식 원리로 압력을 감압후 요구 유량만큼 수소를 공급한다. 그러나 유량에 따른 압력편차가 커서 정밀성이 부족한 단점과, 시트부 누설에 의한 고압에서 저압구간으로의 내부리크가 고질적인 문제로 확인되고 있다.It operates the piston and shaft with a single-stage decompression, while reducing the pressure on a mechanical basis and supplying hydrogen as much as the required flow rate. However, it has been confirmed that the pressure deviation according to the flow rate is large and thus lacks precision, and the internal leakage from the high pressure to the low pressure region due to the leakage of the seat portion has been identified as a chronic problem.

선행문헌 2는 제1피스톤의 제1감압실 쪽에 고정 설치되며, 본체의 유입구와 연통되게 형성된 오리피스와의 사이에 유동간격을 형성하는 밸브축; 및 제2피스톤의 제2감압실 반대쪽에 설치된 제21스프링을 포함하여, 밸브축과 제1피스톤과 제2피스톤이 본체 내에서 왕복하면서 2단계로 감압한다. 이에, 내구성이 우수하고 구조가 간단하며 2단으로 용이하게 감압하는 효과를 기대한다.Prior Art Document 2 is fixed to the first pressure reducing chamber side of the first piston, the valve shaft forming a flow gap between the inlet and the orifice formed in communication with the main body; And a 21st spring installed on the opposite side of the second pressure reducing chamber of the second piston, the valve shaft and the first piston and the second piston are reciprocated in the main body to reduce pressure in two stages. Accordingly, the durability is excellent, the structure is simple, and the effect of easily reducing pressure in two stages is expected.

그러나, 이 또한 기계식 원리로 수소를 감압하므로 압력 제어의 정밀성을 높이기에 한계성을 드러내고 있다.However, this also depressurizes hydrogen on a mechanical principle, thus revealing limitations in increasing the precision of pressure control.

한국 공개특허공보 제2017-0074009호 "수소 연료전지 차량의 고압 레귤레이터" (공개일자 : 2017.06.29.)Korean Patent Application Publication No. 2017-0074009, "High-pressure regulator for hydrogen fuel cell vehicles" (published date: 2017.06.29.) 한국 등록특허공보 제0792541호 "고압 가스용 레귤레이터" (공개일자 : 2008.01.09.)Korean Patent Registration No. 0792541 "Regulator for high pressure gas" (published date: 2008.01.09.)

상기와 같은 종래의 문제점들을 개선하기 위한 본 발명의 목적은, 2단의 감압을 통하여 기밀성능을 확보하는 동시에 압력안정성을 향상하고, 2차감압수단에 전자식으로 적용하여 기계식 대비 보다 정밀한 제어가 가능한 수소용 2단감압 전자식 레귤레이터를 제공하는 데 있다.The object of the present invention for improving the above-described conventional problems is to secure the airtight performance through depressurization in two stages, improve pressure stability, and apply electronically to the secondary decompression means to enable more precise control compared to mechanical. The present invention is to provide a two-stage electronic regulator for hydrogen.

본 발명의 다른 목적은 1차감압수단의 밸런스 기능으로 공급압력별 압력편차를 최소화하여 2차감압수단에 공급되는 압력을 안정적으로 유지하는데 있다.Another object of the present invention is to maintain the pressure supplied to the secondary pressure reducing means stably by minimizing the pressure deviation for each supply pressure with the balance function of the primary pressure reducing means.

상기 목적을 달성하기 위하여, 본 발명은 고압의 수소를 2단으로 감압하는 전자식 레귤레이터에 있어서: 입구포트, 배출포트, 출구포트와 연통되는 수소유동경로를 지닌 본체; 상기 본체의 수소유동경로에 스풀과 제1감압시트를 구비하고, 배출포트에 도달하는 수소의 압력을 감소시키는 1차감압수단; 및 상기 본체의 배출포트와 출구포트 사이에 개재되는 솔레노이드밸브로 수소의 압력을 감소시키는 2차감압수단;을 포함하여 이루어지는 것을 특징으로 한다.In order to achieve the above object, the present invention provides an electronic regulator for decompressing high pressure hydrogen to two stages: a main body having a hydrogen flow path communicating with an inlet port, an outlet port, and an outlet port; A primary pressure reducing means having a spool and a first pressure reducing sheet in the hydrogen flow path of the main body and reducing the pressure of the hydrogen reaching the discharge port; And a secondary pressure reducing means for reducing the pressure of hydrogen with a solenoid valve interposed between the discharge port and the outlet port of the main body.

본 발명의 세부 구성으로서, 상기 2차감압수단의 솔레노이드밸브는 코일과 코어에 의한 전자기력을 플란저와 니들에 인가하여 배출포트에 결합된 제2감압시트의 개도를 변동하는 것을 특징으로 한다.As a detailed configuration of the present invention, the solenoid valve of the secondary decompression means is characterized by varying the opening degree of the second decompression sheet coupled to the discharge port by applying electromagnetic force by the coil and the core to the plunger and needle.

본 발명의 세부 구성으로서, 상기 제2감압시트와 니들 사이에는 구체가 수소의 유동에 의한 다자유도 운동 가능하게 장착되는 것을 특징으로 한다.As a detailed configuration of the present invention, between the second pressure reducing sheet and the needle, it is characterized in that the sphere is mounted movably by the flow of hydrogen.

본 발명의 세부 구성으로서, 상기 코어는 외주면에 형성되는 요홈의 적어도 일부에 형성되는 구배면을 더 구비하는 것을 특징으로 한다.As a detailed configuration of the present invention, the core is characterized in that it further comprises a gradient surface formed in at least a portion of the groove formed on the outer peripheral surface.

본 발명의 세부 구성으로서, 상기 플란저는 왕복운동 행정의 속도변동을 완화하고 완충하기 위해 적어도 일단에 댐핑체를 구비하는 것을 특징으로 한다.As a detailed configuration of the present invention, the plunger is characterized by having a damping body at least one end to alleviate and cushion the speed fluctuation of the reciprocating stroke.

본 발명의 변형예로서, 상기 제2감압시트는 상류단에 긴밀한 접촉 상태를 유지하도록 고정된 실링을 더 구비하는 것을 특징으로 한다.As a modification of the present invention, the second pressure-sensitive sheet is further characterized by further comprising a sealing fixed to maintain a close contact with the upstream end.

이상과 같이 본 발명에 의하면, 고압 수소용 레귤레이터에서 2단의 감압을 통하여 기밀성능을 확보하는 동시에 압력안정성을 향상하고, 2차감압수단에 전자식으로 적용하여 기계식 대비 보다 정밀한 제어가 가능하여 작동신뢰성을 제고하는 효과가 있다.According to the present invention as described above, in the regulator for high-pressure hydrogen, the airtight performance is secured through the two-stage decompression, and the pressure stability is improved, and electronically applied to the secondary pressure reducing means to enable more precise control compared to the mechanical operation reliability It has the effect of enhancing.

도 1은 본 발명에 따른 수소용 레귤레이터를 나타내는 모식도
도 2는 본 발명에 따른 레귤레이터의 주요 구조를 나타내는 모식도
도 3은 본 발명에 따른 2차감압수단을 단면으로 나타내는 구성도
도 4는 본 발명의 변형예에 따른 레귤레이터를 나타내는 모식도
1 is a schematic diagram showing a regulator for hydrogen according to the present invention
Figure 2 is a schematic diagram showing the main structure of the regulator according to the present invention
Figure 3 is a block diagram showing a secondary decompression means according to the invention in cross section
4 is a schematic diagram showing a regulator according to a modification of the present invention

이하, 첨부된 도면에 의거하여 본 발명의 실시예를 상세하게 설명하면 다음과 같다.Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.

본 발명은 고압의 수소를 2단으로 감압하는 전자식 레귤레이터에 관하여 제안한다. 수소차의 연료전지계통에 적용하기 위한 레귤레이터를 대상으로 하지만 반드시 이에 국한되는 것은 아니다. 수소연료전지 차량은 압축천연가스(Compressed Natural Gas) 차량에 비하여 레귤레이터의 고압 설계가 요구된다.The present invention proposes an electronic regulator that decompresses high-pressure hydrogen to two stages. It is targeted at regulators for application to the fuel cell system of hydrogen vehicles, but is not limited thereto. Hydrogen fuel cell vehicles require a high-pressure design of the regulator compared to compressed natural gas vehicles.

본 발명에 따른 본체(10)는 입구포트(11), 배출포트(12), 출구포트(13)와 연통되는 수소유동경로를 지닌 구조이다. 도 1에서 본체(10)의 일측에 입구포트(11)가 형성되고 타측에 배출포트(12)와 출구포트(13)가 형성된 상태를 예시한다. 출구포트(13)는 배출포트(12)에서 측방향으로 연통하도록 형성된다. 입구포트(11)로 유입되는 고압(예컨대 max.875bar)의 수소는 출구포트(13)에서 설정된 압력과 유량(예컨대 max.2000LPM)으로 토출된다. 본체(10)의 하방향으로 형성되는 감압포트(14)는 릴리프밸브, 퍼지밸브, 압력센서 등이 부착되는 부분이다.The main body 10 according to the present invention is a structure having a hydrogen flow path communicating with the inlet port 11, the outlet port 12, and the outlet port 13. In FIG. 1, an inlet port 11 is formed on one side of the main body 10, and a discharge port 12 and an outlet port 13 are formed on the other side. The outlet port 13 is formed to communicate laterally from the discharge port 12. Hydrogen of high pressure (eg max.875bar) flowing into the inlet port 11 is discharged at a pressure and flow rate (eg max.2000LPM) set in the outlet port 13. The pressure reducing port 14 formed in the downward direction of the main body 10 is a portion to which a relief valve, a purge valve, a pressure sensor, and the like are attached.

또한, 본 발명에 따르면 배출포트(12)에 도달하는 수소의 압력을 감소시키는 1차감압수단(20)이 상기 본체(10)의 수소유동경로에 스풀(22)과 제1감압시트(24)를 구비하는 구조이다. 도 2에서 본체(10)의 중심에 형성된 수소유동경로에 스풀(22)이 상하운동 가능하게 설치된 상태를 예시한다. 스풀(22)은 상측으로 제1감압시트(24)를 통과하여 피스톤(15)에 접촉하고 하측으로 스프링(26)에 의하여 상방향의 탄성력 받는다. 피스톤(15)은 외부로 노출된 조절볼트(16)와 스프링을 개재하여 연결되어 스풀(22)의 운동력(감압 수준)을 가변한다. 이와 같은 구조에 의하면 입구포트(11)로 공급된 수소의 압력이 1차감압수단(20)을 통과하면서 700bar에서 20bar 수준으로 1차적으로 축소된다.In addition, according to the present invention, the primary pressure reducing means 20 for reducing the pressure of hydrogen reaching the discharge port 12 is spool 22 and the first pressure reducing sheet 24 in the hydrogen flow path of the main body 10 It is a structure provided with. In FIG. 2, the spool 22 is installed in the hydrogen flow path formed at the center of the main body 10 so as to be vertically movable. The spool 22 passes through the first pressure reducing sheet 24 upwardly and contacts the piston 15 and receives elastic force upward in the downward direction by a spring 26. The piston 15 is connected via an adjustment bolt 16 exposed to the outside via a spring to vary the kinetic force (decompression level) of the spool 22. According to this structure, the pressure of hydrogen supplied to the inlet port 11 is primarily reduced from 700 bar to 20 bar level while passing through the primary pressure reducing means 20.

또한, 본 발명에 따르면 2차감압수단(30)이 상기 본체(10)의 배출포트(12)와 출구포트(13) 사이에 개재되는 솔레노이드밸브로 수소의 압력을 감소시키는 구조이다. 1차감압수단(20)을 거친 수소가 배출포트(12)에 결합되는 2차감압수단(30)을 거치면 출구포트(13)에서 최종 출구압으로 토출된다. 2차감압수단(30)의 솔레노이드밸브는 전자식으로 구성되고 별도의 로직에 의한 비례제어가 적용된다. 또한 일정한 압력으로 고ㆍ저유량에 대한 대응이 가능해야 한다.In addition, according to the present invention, the secondary pressure reducing means 30 is a structure that reduces the pressure of hydrogen with a solenoid valve interposed between the discharge port 12 and the outlet port 13 of the main body 10. When the hydrogen that has passed through the primary pressure reducing means 20 passes through the secondary pressure reducing means 30 coupled to the discharge port 12, it is discharged from the outlet port 13 to the final outlet pressure. The solenoid valve of the secondary decompression means 30 is configured electronically and proportional control by a separate logic is applied. In addition, it should be possible to respond to high and low flow rates with constant pressure.

본 발명의 세부 구성으로서, 상기 2차감압수단(30)의 솔레노이드밸브는 코일(31)과 코어(32)에 의한 전자기력을 플란저(35)와 니들(36)에 인가하여 배출포트(12)의 결합된 제2감압시트(34)의 개도를 변동하는 것을 특징으로 한다. 도 3을 참조하면 솔레노이드밸브는 코일(31), 코어(32), 플란저(35), 니들(36)을 기본적 구성으로 구비한다. 플란저(35)와 니들(36)은 스필밸브의 조립공차를 적용하여 억지끼움으로 일체화하는 것이 좋다. 배출포트(12)와 연통하도록 상류단에 설치되는 제2감압시트(34)는 오리피스와 원추형 유로를 구비한다. 원추형 유로는 내마모성을 지닌 소재 상에서 고도의 표면조도를 유지하도록 형성된다.As a detailed configuration of the present invention, the solenoid valve of the secondary decompression means 30 applies electromagnetic force by the coil 31 and the core 32 to the plunger 35 and the needle 36 to discharge the port 12 Characterized in that the opening degree of the combined second pressure reducing sheet (34). Referring to FIG. 3, the solenoid valve includes a coil 31, a core 32, a plunger 35, and a needle 36 as a basic configuration. It is preferable that the plunger 35 and the needle 36 are integrated with a forced fit by applying an assembly tolerance of the spill valve. The second pressure reducing sheet 34 installed at the upstream end to communicate with the discharge port 12 has an orifice and a conical flow path. The conical flow path is formed to maintain a high degree of surface roughness on a wear-resistant material.

본 발명의 세부 구성으로서, 상기 제2감압시트(34)와 니들(36) 사이에는 구체(40)가 수소의 유동에 의한 다자유도 운동 가능하게 장착되는 것을 특징으로 한다. 고압 수소가 제2감압시트(34)로 유동하는 과정에서 레이놀즈수(Re.) 증가로 관내 유동박리(Flow Separation) 현상과 이로 인한 재순환(Recirculation)이 발생한다. 구체(40)는 고압으로 유동하는 수소의 유동박리와 재순환을 회피하도록 제2감압시트(34)의 원추형 유로 상에 니들(36)의 단부와 접촉 가능하도록 수용된다. 구체(40)는 강도, 내마모성, 내후성과 더불어 비중이 높은 금속재를 사용하며, 제2감압시트(34)의 원추형 유로와 선접촉을 이루는 형상공차와 표면조도를 지닌다.As a detailed configuration of the present invention, between the second pressure reducing sheet 34 and the needle 36 is characterized in that the sphere 40 is mounted movably by the flow of hydrogen. In the process of high pressure hydrogen flowing to the second depressurization sheet 34, the Reynolds number (Re.) increases, resulting in flow separation in the pipe and recirculation due to this. The sphere 40 is accommodated in contact with the end of the needle 36 on the conical flow path of the second pressure reducing sheet 34 to avoid flow separation and recirculation of hydrogen flowing at high pressure. The sphere 40 uses a metal material having a high specific gravity in addition to strength, abrasion resistance, and weather resistance, and has a shape tolerance and surface roughness that form a line contact with the conical flow path of the second pressure sensitive sheet 34.

본 발명의 세부 구성으로서, 상기 코어(32)는 외주면에 형성되는 요홈의 적어도 일부에 형성되는 구배면(42)을 더 구비하는 것을 특징으로 한다. 코일(31)에 의한 자속을 인가하도록 장착되는 코어(32)는 플란저(35)의 왕복운동 흡인력을 일정하게 유지하도록 외주면에 요홈을 구비한다. 도 3에서 요홈의 상측에 구배면(42)이 형성된 상태를 예시한다. 구배면(42)은 플란저(35)의 왕복운동 행정단에서 잔류 자속을 해소시키는 시간을 단축하여 일정한 흡인력 유지에 조력한다.As a detailed configuration of the present invention, the core 32 is characterized in that it further comprises a gradient surface 42 formed on at least a portion of the groove formed on the outer peripheral surface. The core 32 mounted to apply the magnetic flux by the coil 31 is provided with grooves on the outer circumferential surface to maintain the reciprocating suction force of the plunger 35 constant. 3 illustrates a state in which a gradient surface 42 is formed on an upper side of the groove. The gradient surface 42 assists in maintaining a constant suction force by shortening the time for resolving the residual magnetic flux at the reciprocating stroke end of the plunger 35.

본 발명의 세부 구성으로서, 상기 플란저(35)는 왕복운동 행정의 속도변동을 완화하고 완충하기 위해 적어도 일단에 댐핑체(43)를 구비하는 것을 특징으로 한다. 댐핑체(43)는 엔지니어링플라스틱 또는 금속재로 형성하고 플란저(35)의 상단이나 하단 또는 양단에 설치한다. 도시에는 생략하나 금속재의 양단에 엔지니어링플라스틱을 결합할 수 있고, 댐핑체(43)의 탄성변형을 유도하도록 다수의 미세한 통공을 형성할 수도 있다. 댐핑체(43)를 생략하는 경우 플란저(35)의 왕복운동 행정단에서 자속의 흡인력에 기인하여 충격과 진동이 유발되기 쉽니다.As a detailed configuration of the present invention, the plunger 35 is characterized by having a damping body 43 at least one end to alleviate and cushion the speed fluctuation of the reciprocating stroke. The damping body 43 is formed of an engineering plastic or a metal material and is installed at the top or bottom or both ends of the plunger 35. Although not shown, engineering plastics may be coupled to both ends of the metal material, and a plurality of fine holes may be formed to induce elastic deformation of the damping body 43. If the damping body 43 is omitted, shock and vibration are likely to occur due to the suction force of the magnetic flux at the reciprocating stroke of the plunger 35.

본 발명의 변형예로서, 상기 제2감압시트(34)는 상류단에 긴밀한 접촉 상태를 유지하도록 고정된 실링(45)을 더 구비하는 것을 특징으로 한다. 기계식 구조인 1차감압수단(20)으로 수소의 유량별 압력성능과 내부의 실링에 한계성을 보인다. 1차감압수단(20)과 2차감압수단(30)을 병용하면 내부 실링 성능을 향상하는 측면에서 유리하다. 제2감압시트(34) 상에 전술한 구체(40)와 더불어 고무재의 실링(45)을 부가하는 것이 바람직하다. 실링(45)는 볼트나 나선 방식보다는 코킹(47)으로 결합하는 것이 선호된다.As a modification of the present invention, the second pressure reducing sheet 34 is further characterized by further comprising a sealing 45 fixed to maintain a close contact with the upstream end. The primary pressure reducing means 20, which is a mechanical structure, shows a pressure performance for each flow rate of hydrogen and a limitation in the internal sealing. When the primary pressure reducing means 20 and the secondary pressure reducing means 30 are used in combination, it is advantageous in terms of improving the internal sealing performance. It is preferable to add the sealing member 45 of the rubber material together with the above-described sphere 40 on the second pressure-sensitive sheet 34. The sealing 45 is preferably combined with a caulking 47 rather than a bolt or spiral method.

한편, 본 발명에 의한 작동의 일예로서, 2차감압수단(30)인 솔레노이드밸브는 속도조절을 위한 주파수를 500~2000Hz 범위로 설정하고, 유량조절을 위한 듀티(Duty)를 0~100% 범위로 설정한다. 이에, 배출포트(12)에서 1차감압수단(20)을 거친 수소 압력이 19.0~20.0bar로 유지되고, 출구포트(13)에서 2차감압수단(30)을 거친 수소 압력이 15~17bar (16±1.0bar 이내)로 유지된다.On the other hand, as an example of the operation according to the present invention, the solenoid valve, which is the secondary decompression means 30, sets the frequency for speed control in the range of 500 to 2000 Hz, and the duty for flow control in the range of 0 to 100%. Set to Thus, the hydrogen pressure after passing through the primary pressure reducing means 20 at the discharge port 12 is maintained at 19.0 to 20.0 bar, and the hydrogen pressure through the secondary pressure reducing means 30 at the outlet port 13 is 15 to 17 bar ( 16±1.0bar).

본 발명은 기재된 실시예에 한정되는 것이 아니고, 본 발명의 사상 및 범위를 벗어나지 않고 다양하게 수정 및 변형할 수 있음이 이 기술의 분야에서 통상의 지식을 가진 자에게 자명하다. 따라서 그러한 변형예 또는 수정예들은 본 발명의 특허청구범위에 속한다 해야 할 것이다.It is obvious to those skilled in the art that the present invention is not limited to the described embodiments, and can be variously modified and modified without departing from the spirit and scope of the present invention. Therefore, such modifications or modifications will have to belong to the claims of the present invention.

10: 본체 11: 입구포트
12: 배출포트 13: 출구포트
15: 피스톤 16: 조절볼트
20: 1차감압수단 22: 스풀
24, 34: 감압시트 30: 2차감압수단
31: 코일 32: 코어
35: 플란저 36: 니들
40: 구체 42: 구배면
43: 댐핑체 45: 실링
47: 코킹
10: main body 11: entrance port
12: outlet port 13: outlet port
15: piston 16: adjustable bolt
20: primary pressure reducing means 22: spool
24, 34: pressure reducing sheet 30: secondary pressure reducing means
31: coil 32: core
35: Plunger 36: Needle
40: sphere 42: gradient surface
43: damping body 45: sealing
47: Caulking

Claims (6)

수소차의 연료전지계통에서 고압의 수소를 2단으로 감압하는 전자식 레귤레이터에 있어서:
입구포트(11), 배출포트(12), 출구포트(13)와 연통되는 수소유동경로를 지닌 본체(10);
상기 본체(10)의 수소유동경로에 스풀(22)과 제1감압시트(24)를 구비하고, 배출포트(12)에 도달하는 수소의 압력을 감소시키는 1차감압수단(20); 및
상기 본체(10)의 배출포트(12)와 출구포트(13) 사이에 개재되는 솔레노이드밸브로 수소의 압력을 감소시키는 2차감압수단(30);을 포함하여 이루어지되,
상기 2차감압수단(30)의 솔레노이드밸브는 코일(31)과 코어(32)에 의한 전자기력을 플란저(35)와 니들(36)에 인가하여 배출포트(12)에 결합된 제2감압시트(34)의 개도를 변동하고,
상기 제2감압시트(34)와 니들(36) 사이에는 구체(40)가 수소의 유동에 의한 다자유도 운동 가능하게 장착되며,
상기 플란저(35)는 왕복운동 행정의 속도변동을 완화하고 완충하기 위해 적어도 일단에 댐핑체(43)를 구비하고,
상기 제2감압시트(34)는 상류단에 긴밀한 접촉 상태를 유지하도록 고정된 실링(45)을 더 구비하는 것을 특징으로 하는 수소용 2단감압 전자식 레귤레이터.
In an electronic regulator that decompresses high-pressure hydrogen in two stages in a fuel cell system of a hydrogen vehicle:
A main body 10 having a hydrogen flow path communicating with the inlet port 11, the outlet port 12, and the outlet port 13;
A primary pressure reducing means (20) having a spool (22) and a first pressure reducing sheet (24) in the hydrogen flow path of the main body (10) and reducing the pressure of hydrogen reaching the discharge port (12); And
The secondary pressure reducing means 30 for reducing the pressure of hydrogen with a solenoid valve interposed between the discharge port 12 and the outlet port 13 of the main body 10;
The solenoid valve of the secondary decompression means 30 applies the electromagnetic force by the coil 31 and the core 32 to the plunger 35 and the needle 36, and a second decompression sheet coupled to the discharge port 12 Change the opening degree of (34),
Between the second pressure-reducing sheet 34 and the needle 36, a sphere 40 is mounted to be capable of multi-degree of freedom by the flow of hydrogen.
The plunger 35 is provided with a damping body 43 at least one end to alleviate and cushion the speed fluctuation of the reciprocating stroke,
The second pressure reducing sheet (34) is a two-stage reduced pressure electronic regulator for hydrogen, further comprising a sealing (45) fixed to maintain a close contact with the upstream end.
삭제delete 삭제delete 청구항 1에 있어서,
상기 코어(32)는 외주면에 형성되는 요홈의 적어도 일부에 형성되는 구배면(42)을 더 구비하는 것을 특징으로 하는 수소용 2단감압 전자식 레귤레이터.
The method according to claim 1,
The core 32 is a two-stage reduced pressure electronic regulator for hydrogen, characterized in that it further comprises a gradient surface 42 formed on at least a portion of the groove formed on the outer peripheral surface.
삭제delete 삭제delete
KR1020170175579A 2017-12-19 2017-12-19 Electronic regulator for 2-stage pressure reduction of hydrogen KR102141895B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020170175579A KR102141895B1 (en) 2017-12-19 2017-12-19 Electronic regulator for 2-stage pressure reduction of hydrogen
CN201811447647.3A CN109931427A (en) 2017-12-19 2018-11-29 Hydrogen second depressurized electronic type regulator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020170175579A KR102141895B1 (en) 2017-12-19 2017-12-19 Electronic regulator for 2-stage pressure reduction of hydrogen

Publications (2)

Publication Number Publication Date
KR20190074162A KR20190074162A (en) 2019-06-27
KR102141895B1 true KR102141895B1 (en) 2020-08-07

Family

ID=66984674

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020170175579A KR102141895B1 (en) 2017-12-19 2017-12-19 Electronic regulator for 2-stage pressure reduction of hydrogen

Country Status (2)

Country Link
KR (1) KR102141895B1 (en)
CN (1) CN109931427A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210032739A (en) 2019-09-17 2021-03-25 (주)모토닉 Shut off valve and regulator with the same
CN111816895A (en) * 2020-07-15 2020-10-23 山东派蒙机电技术有限公司 Device for keeping pressure stability of hydrogen path of hydrogen fuel cell
CN112747156B (en) * 2021-01-12 2022-10-14 北京卫星制造厂有限公司 High-precision large-pressure-reduction-ratio automatic pressure-regulating gas pressure-stabilizing pressure-reducing combined valve

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015055311A (en) * 2013-09-12 2015-03-23 株式会社鷺宮製作所 Control valve

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070077729A (en) * 2006-01-24 2007-07-27 현대자동차주식회사 A bleed type variable force solenoid valve
ES2317482T3 (en) * 2006-12-12 2009-04-16 C.R.F. Societa Consortile Per Azioni ELECTRONIC UNIT REDUCING OR REGULATING THE PRESSURE TO FEED GAS, IN PARTICULAR METHANE OR HYDROGEN TO AN INTERNAL COMBUSTION ENGINE, AND GAS POWER SUPPLY SYSTEM INCLUDING THIS UNIT.
KR100792541B1 (en) 2006-12-13 2008-01-09 (주)모토닉 Regulator for high-pressure gas
KR100938151B1 (en) * 2007-11-02 2010-01-22 (주)모토닉 Regulator for High-pressure Gas
KR101045519B1 (en) * 2009-10-20 2011-06-30 (주)모토닉 Regulator
CN201651460U (en) * 2010-05-19 2010-11-24 方伟东 Electric control pressure reducing regulator for gas-fired automobile
CN202580182U (en) * 2012-05-08 2012-12-05 河南欧意环保科技股份有限公司 Gas pressure regulator for vehicle
CN202851198U (en) * 2012-10-24 2013-04-03 贾学仪 Double piston type gas pressure reducing regulator for vehicles
CN203549067U (en) * 2013-10-25 2014-04-16 常州伊菲特电器有限公司 Valve core assembly of electromagnetic valve
CN203742834U (en) * 2013-12-24 2014-07-30 深圳市华江科技有限公司 Pressure reducer
CN104315226B (en) * 2014-09-11 2017-05-03 奉化市星宇电子有限公司 Solenoid valve for fluid control
KR101808712B1 (en) 2015-12-21 2017-12-14 (주)모토닉 High pressure regulator for hydrogen fuel cell electric vehicle

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015055311A (en) * 2013-09-12 2015-03-23 株式会社鷺宮製作所 Control valve

Also Published As

Publication number Publication date
CN109931427A (en) 2019-06-25
KR20190074162A (en) 2019-06-27

Similar Documents

Publication Publication Date Title
KR102141895B1 (en) Electronic regulator for 2-stage pressure reduction of hydrogen
CN103003605B (en) Gas pressure regulating valve
US8973894B2 (en) Solenoid and solenoid valve
JP4650793B2 (en) Pulsation damper
CN103003606A (en) Gas pressure regulating valve
US10316975B2 (en) Proportional valve, air-conditioner compressor arrangement, and operating method
KR101808712B1 (en) High pressure regulator for hydrogen fuel cell electric vehicle
CN109073099B (en) Fluid control valve
CN103003607A (en) Gas pressure regulating valve
US10787160B2 (en) Adjustable magnetic valve
CN103362690A (en) Gas fuel pressure control device
CN101900214B (en) Valve for distributing fluids
US11448329B2 (en) Valve device
JP2015532388A (en) Valve used for pump
US10920900B2 (en) Fuel supply valve for fuel cell system
JP2017117452A (en) Sealing structure of hydrogen fuel cell vehicle regulator
KR20040104941A (en) Electro-pneumatic air pressure regulator
CN109844325B (en) Discharge pressure compensation valve and lifting device comprising such a discharge pressure compensation valve
JP4773108B2 (en) valve
CN102606790A (en) Actuator which can be actuated electromagnetically, particularly for an adjustable damping valve of a vibration damper
JP2016136304A (en) Pressure adjustment valve
CN105814351A (en) Electromagnet of an electromagnetically actuated fluid valve
KR20110020949A (en) Servo valve
JP2012073886A (en) Regulator
JP2016183708A (en) Reduction valve

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right