KR102137014B1 - method for manufacturing micro scale semiconductor Light Emitting Device - Google Patents

method for manufacturing micro scale semiconductor Light Emitting Device Download PDF

Info

Publication number
KR102137014B1
KR102137014B1 KR1020180173880A KR20180173880A KR102137014B1 KR 102137014 B1 KR102137014 B1 KR 102137014B1 KR 1020180173880 A KR1020180173880 A KR 1020180173880A KR 20180173880 A KR20180173880 A KR 20180173880A KR 102137014 B1 KR102137014 B1 KR 102137014B1
Authority
KR
South Korea
Prior art keywords
light emitting
forming
unit
type semiconductor
semiconductor layer
Prior art date
Application number
KR1020180173880A
Other languages
Korean (ko)
Other versions
KR20200082872A (en
Inventor
이상헌
김영우
박승현
박종민
김진모
김정현
정태훈
Original Assignee
한국광기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국광기술원 filed Critical 한국광기술원
Priority to KR1020180173880A priority Critical patent/KR102137014B1/en
Publication of KR20200082872A publication Critical patent/KR20200082872A/en
Application granted granted Critical
Publication of KR102137014B1 publication Critical patent/KR102137014B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0093Wafer bonding; Removal of the growth substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/0004Devices characterised by their operation
    • H01L33/0008Devices characterised by their operation having p-n or hi-lo junctions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0095Post-treatment of devices, e.g. annealing, recrystallisation or short-circuit elimination
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/10Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a light reflecting structure, e.g. semiconductor Bragg reflector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/12Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a stress relaxation structure, e.g. buffer layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Led Devices (AREA)

Abstract

개시되는 마이크로 반도체 발광소자 제조방법은, 성장기판 상에 n형 반도체층, 전자와 정공의 재결합에 의해 광을 생성하는 활성층 및 p형 반도체층을 포함하는 발광부를 성장시키는 제1 공정; 상기 발광부를 두께방향으로 식각하여 설정된 제1 크기로 구획된 단위발광부를 형성하는 제2 공정; 상기 단위발광부의 상면에 상기 활성층으로부터 조사되는 광을 반사시키는 반사막을 형성하는 제3 공정; 상기 단위발광부의 상면으로부터 상기 n형 반도체층에 이르는 n-전극을 형성하는 제4 공정; 상기 단위발광부의 상면 및 측면을 감싸는 파괴 보호층을 형성하는 제5 공정; 상기 파괴 보호층의 상면에 형성되며, 상기 n형 반도체층 및 상기 p형 반도체층과 각각 전기적으로 연결되는 본딩전극을 형성하는 제6 공정; 상기 본딩전극이 형성되는 면에 이송기판을 접합시키는 제7 공정; 및 상기 성장기판을 제거하는 제8 공정;을 포함한다.The disclosed method for manufacturing a micro semiconductor light emitting device includes: a first process of growing an light emitting unit including an n-type semiconductor layer on an growth substrate, an active layer generating light by recombination of electrons and holes, and a p-type semiconductor layer; A second process of forming the unit light emitting unit partitioned into a first size set by etching the light emitting unit in a thickness direction; A third step of forming a reflective film that reflects light irradiated from the active layer on an upper surface of the unit light emitting unit; A fourth process of forming an n-electrode from the top surface of the unit light emitting portion to the n-type semiconductor layer; A fifth step of forming a destruction protective layer surrounding the top and side surfaces of the unit light emitting portion; A sixth step of forming a bonding electrode formed on an upper surface of the fracture protection layer and electrically connected to the n-type semiconductor layer and the p-type semiconductor layer, respectively; A seventh process of bonding the transfer substrate to the surface on which the bonding electrode is formed; And an eighth process of removing the growth substrate.

Description

마이크로 반도체 발광소자 제조방법{method for manufacturing micro scale semiconductor Light Emitting Device}Method for manufacturing micro semiconductor light emitting device {method for manufacturing micro scale semiconductor Light Emitting Device}

본 발명(Disclsoure)은, 마이크로 반도체 발광소자 제조방법에 관한 것으로서, 구체적으로 파괴 보호층을 이용하여 성장기판이 제거된 마이크로 반도체 발광소자 제조방법에 관한 것이다.The present invention (Disclsoure) relates to a method for manufacturing a micro semiconductor light emitting device, and more particularly, to a method for manufacturing a micro semiconductor light emitting device from which a growth substrate has been removed using a destructive protective layer.

여기서는, 본 발명에 관한 배경기술이 제공되며, 이들이 반드시 공지기술을 의미하는 것은 아니다(This section provides background information related to the present disclosure which is not necessarily prior art).Here, a background technology related to the present invention is provided, and this does not necessarily mean a known technology.

마이크로 반도체 발광소자LED(MicroLED, micro-LED, mLED, μLED)는 일반적으로 소자의 크기(발광면의 가로 또는 세로 길이)가 100um이하인 것을 의미하며, 이는 개별소자가 하나의 직접 하나의 화소로 기능하도록 하여 디스플레이를 형성하기 위한 기술이다. Micro-semiconductor light-emitting device LED (MicroLED, micro-LED, mLED, μLED) generally means that the device's size (horizontal or vertical length of the light emitting surface) is less than 100um, which means that each individual device functions as one direct pixel. This is a technique for forming a display by making it possible.

마이크로 반도체 발광소자를 이용한 디스플레이는, 보편화된 LCD 기술과 비교할 때 더 나은 대비, 응답 시간, 에너지 효율성을 제공한다. Displays using micro-semiconductor light-emitting devices provide better contrast, response time, and energy efficiency when compared to universal LCD technology.

OLED와 함께 마이크로 반도체 발광소자는 스마트워치, 스마트폰과 같이 크기가 작고 에너지가 적은 장치에 주 목적을 둔다. Along with OLED, micro-semiconductor light emitting devices are mainly aimed at small-sized and low-energy devices such as smart watches and smart phones.

OLED와 마이크로 반도체 발광소자는 전통적인 LCD 시스템에 비해 에너지 요구량이 상당히 더 적은 편이다. OLED and micro-semiconductor light-emitting devices have significantly less energy requirements than traditional LCD systems.

또한, OLED와 달리 마이크로 반도체 발광소자는 전통적인 GaN LED 기술에 기반을 두고 있어서 OLED가 내는 총 광량 대비 30배 이상 더 밝은 밝기를 제공할뿐 아니라 lux/W 면에서도 효율성이 더 좋다. 또, OLED의 짧은 수명으로 인한 문제가 없다. In addition, unlike OLEDs, micro-semiconductor light-emitting devices are based on traditional GaN LED technology, providing brightness more than 30 times brighter than the total amount of light emitted by OLEDs, as well as better efficiency in terms of lux/W. In addition, there is no problem due to the short life of the OLED.

이러한 종류의 디스플레이 장치는 최종 기판상에 개별적으로 성장된 적색(Red, R), 녹색(Green, G) 및 청색(Blue, B) 발광 다이오드(LED)의 구조들을 전사함으로써 얻어진다.A display device of this kind is obtained by transferring the structures of red (R), green (G) and blue (B) light emitting diodes (LEDs) grown individually on the final substrate.

최근에는 100~200um 크기의 소위 '미니 반도체 발광소자'가 중대형 디스플레이를 구현하는데 사용되고 있다.Recently, a so-called'mini semiconductor light emitting device' having a size of 100 to 200um has been used to realize a medium to large display.

미니 반도체 발광소자의 경우, 그 크기가 상대적으로 크고, 성장기판(통상 '사파이어 기판')을 제거하지 않고 사용되어 두께에 대한 제약을 가지고 있어서 고해상도를 구현하는데 어려움을 가지고 있다.In the case of a mini-semiconductor light emitting device, its size is relatively large, and it is used without removing a growth substrate (usually a'sapphire substrate'), which has limitations on thickness, and thus has difficulty in realizing high resolution.

효율적인 고해상도 구현을 위해서는, 반도체 발광소자의 크기가 100um 이하이고, 100~150um의 두께를 가지고 있는 성장기판이 제거되는 것이 필요한데, 공지된 성장기판의 제거방법(화학적, 기계적 방법)에 의해 성장기판을 제거하는 경우 상대적으로 얇은 발광소자의 두께로 인해 접합 또는 전사 과정에서 발광소자의 파괴가 발생되는 문제가 있다. In order to realize an efficient high resolution, it is necessary to remove the growth substrate having a thickness of 100 µm or less and a thickness of 100 to 150 µm, and the growth substrate is removed by a known method of removing the growth substrate (chemical or mechanical method). In the case of removal, there is a problem in that destruction of the light emitting device occurs during the bonding or transfer process due to the thickness of the relatively thin light emitting device.

1. 한국 공개특허공보 제10-2017-0083906호1. Korea Patent Publication No. 10-2017-0083906

본 발명(Discloure)은, 파괴 보호층을 이용하여 성장기판이 제거된 마이크로 반도체 발광소자 제조방법의 제공을 일 목적으로 한다.An object of the present invention (Discloure) is to provide a method for manufacturing a micro semiconductor light emitting device from which a growth substrate has been removed using a destructive protective layer.

여기서는, 본 발명의 전체적인 요약(Summary)이 제공되며, 이것이 본 발명의 외연을 제한하는 것으로 이해되어서는 아니 된다(This section provides a general summary of the disclosure and is not a comprehensive disclosure of its full scope or all of its features).Here, an overall summary of the present invention is provided, which should not be understood as limiting the appearance of the present invention (This section provides a general summary of the disclosure and is not a comprehensive disclosure of its full scope or all of its features).

상기한 과제의 해결을 위해, 본 발명을 기술하는 여러 관점들 중 어느 일 관점(aspect)에 따른 마이크로 반도체 발광소자 제조방법은, 성장기판 상에 n형 반도체층, 전자와 정공의 재결합에 의해 광을 생성하는 활성층 및 p형 반도체층을 포함하는 발광부를 성장시키는 제1 공정; 상기 발광부를 두께방향으로 식각하여 설정된 제1 크기로 구획된 단위발광부를 형성하는 제2 공정; 상기 단위발광부의 상면에 상기 활성층으로부터 조사되는 광을 반사시키는 반사막을 형성하는 제3 공정; 상기 단위발광부의 상면으로부터 상기 n형 반도체층에 이르는 n-전극을 형성하는 제4 공정; 상기 단위발광부의 상면 및 측면을 감싸는 파괴 보호층을 형성하는 제5 공정; 상기 파괴 보호층의 상면에 형성되며, 상기 n형 반도체층 및 상기 p형 반도체층과 각각 전기적으로 연결되는 본딩전극을 형성하는 제6 공정; 상기 본딩전극이 형성되는 면에 이송기판을 접합시키는 제7 공정; 및 상기 성장기판을 제거하는 제8 공정;을 포함한다.In order to solve the above problems, a method for manufacturing a micro semiconductor light emitting device according to any one of several aspects of describing the present invention is performed by recombination of an n-type semiconductor layer, electrons and holes on a growth substrate. A first step of growing a light emitting portion comprising an active layer and a p-type semiconductor layer for generating a; A second process of forming the unit light emitting unit partitioned into a first size set by etching the light emitting unit in a thickness direction; A third step of forming a reflective film that reflects light irradiated from the active layer on an upper surface of the unit light emitting unit; A fourth process of forming an n-electrode from the top surface of the unit light emitting portion to the n-type semiconductor layer; A fifth step of forming a destruction protective layer surrounding the top and side surfaces of the unit light emitting portion; A sixth step of forming a bonding electrode formed on an upper surface of the fracture protection layer and electrically connected to the n-type semiconductor layer and the p-type semiconductor layer, respectively; A seventh process of bonding the transfer substrate to the surface on which the bonding electrode is formed; And an eighth process of removing the growth substrate.

본 발명의 일 관점(aspect)에 따른 마이크로 반도체 발광소자 제조방법에서, 상기 파괴 보호층은, 폴리이미드(PI, polyimide)로 구비될 수 있다.In the method of manufacturing a micro semiconductor light emitting device according to an aspect of the present invention, the fracture protection layer may be provided with polyimide (PI).

본 발명의 일 관점(aspect)에 따른 마이크로 반도체 발광소자 제조방법에서, 상기 파괴 보호층은, 10um의 두께로 형성되며, 200℃의 열로 경화시키는 것을 특징으로 할 수 있다.In the method for manufacturing a micro semiconductor light emitting device according to an aspect of the present invention, the fracture protection layer is formed to a thickness of 10 um, and may be characterized by curing with heat of 200°C.

본 발명의 일 관점(aspect)에 따른 마이크로 반도체 발광소자 제조방법에서, 상기 설정된 제1 크기는, 상기 단위발광부 상면의 가로 및 세로의 길이가 50um ~ 100um인 것을 특징으로 할 수 있다.In the method of manufacturing a micro semiconductor light emitting device according to an aspect of the present invention, the set first size may be characterized in that the length of the horizontal and vertical surfaces of the upper surface of the unit light emitting portion is 50 μm to 100 μm.

본 발명의 일 관점(aspect)에 따른 마이크로 반도체 발광소자 제조방법에서, 상기 이송기판은 UV 조사에 의해 분리되는 UV-tape로 구비되는 것을 특징으로 할 수 있다.In the method of manufacturing a micro semiconductor light emitting device according to an aspect of the present invention, the transfer substrate may be characterized by being provided with UV-tape separated by UV irradiation.

본 발명에 따르면, 파괴 보호층에 의해 성장기판이 제거된 마이크로 스케일(즉 크기가 100um 이하)의 반도체 발광소자의 접합 과정에 손상이 방지되므로, 고해상도 디스플레이의 구현이 용이해진다.According to the present invention, damage to the bonding process of the micro-scale (ie, the size of 100 μm or less) semiconductor light emitting device from which the growth substrate has been removed by the destruction protective layer is prevented, thereby facilitating the implementation of a high-resolution display.

도 1은 본 발명에 따른 마이크로 반도체 발광소자 제조방법의 일 실시형태를 보인 도면.
도 2는 도 1에서 제1 공정을 설명하기 위한 도면.
도 3은 도 1에서 제2 공정을 설명하기 위한 도면.
도 4는 도 1에서 제3,4 공정을 설명하기 위한 도면.
도 5는 도 1에서 제5 공정을 설명하기 위한 도면.
도 6은 도 1에서 제6 공정을 설명하기 위한 도면.
도 7은 도 1에서 제7 공정을 설명하기 위한 도면.
도 8은 도 1에서 제8 공정을 설명하기 위한 도면.
1 is a view showing an embodiment of a method for manufacturing a micro semiconductor light emitting device according to the present invention.
FIG. 2 is a view for explaining a first process in FIG. 1;
3 is a view for explaining a second process in FIG.
4 is a view for explaining the third and fourth processes in FIG. 1.
5 is a view for explaining a fifth step in FIG. 1;
6 is a view for explaining a sixth process in FIG. 1.
7 is a view for explaining a seventh process in FIG. 1;
8 is a view for explaining an eighth process in FIG. 1.

이하, 본 발명에 따른 마이크로 반도체 발광소자 제조방법을 구현한 실시형태를 도면을 참조하여 자세히 설명한다.Hereinafter, embodiments embodying the method for manufacturing a micro semiconductor light emitting device according to the present invention will be described in detail with reference to the drawings.

다만, 본 발명의 사상은 이하에서 설명되는 실시형태에 의해 그 실시 가능 형태가 제한된다고 할 수는 없고, 본 발명의 사상을 이해하는 통상의 기술자는 본 개시와 동일한 기술적 사상의 범위 내에 포함되는 다양한 실시 형태를 치환 또는 변경의 방법으로 용이하게 제안할 수 있을 것이나, 이 또한 본 발명의 기술적 사상에 포함됨을 밝힌다.However, the spirit of the present invention cannot be said to be limited by the embodiments described below, and those skilled in the art who understand the spirit of the present invention are included within the scope of the same technical spirit as the present disclosure. Although embodiments can be easily proposed as a method of substitution or modification, it is revealed that this is also included in the technical spirit of the present invention.

또한, 이하에서 사용되는 용어는 설명의 편의를 위하여 선택한 것이므로, 본 발명의 기술적 내용을 파악하는 데 있어서, 사전적 의미에 제한되지 않고 본 발명의 기술적 사상에 부합되는 의미로 적절히 해석되어야 할 것이다. In addition, the terms used below are selected for convenience of explanation, and therefore, in grasping the technical contents of the present invention, it should not be limited to the dictionary meaning and should be interpreted appropriately in accordance with the technical spirit of the present invention.

도 1은 본 발명에 따른 마이크로 반도체 발광소자 제조방법의 일 실시형태를 보인 도면, 도 2 내지 도 8은 도 1에서 제1 공정~제8 공정을 설명하기 위한 각 도면이다. 1 is a view showing an embodiment of a method for manufacturing a micro semiconductor light emitting device according to the present invention, FIGS. 2 to 8 are views for explaining the first to eighth processes in FIG. 1.

도 1 내지 도 8을를 참조하면, 본 실시형태에 따른 마이크로 반도체 발광소자 제조방법은, 성장기판(101) 상에 n형 반도체층(120a), 전자와 정공의 재결합에 의해 광을 생성하는 활성층(120b) 및 p형 반도체층(120c)을 포함하는 발광부(120)를 성장시키는 제1 공정(S10)으로 시작된다.1 to 8, the method of manufacturing a micro semiconductor light emitting device according to this embodiment includes an n-type semiconductor layer 120a on a growth substrate 101 and an active layer that generates light by recombination of electrons and holes ( 120b) and the first process (S10) of growing the light emitting unit 120 including the p-type semiconductor layer 120c.

여기서, 성장기판(101)은, 사파이어(Al2O3), SiC, GaN, Si를 예로 들 수 있으며, 발광부(120)는, 3족 질화물 반도체, 즉 Al(x)Ga(y)In(1-x-y)N (0≤x≤1, 0≤y≤1, 0≤x+y≤1)으로 된 화합물로 이루어진다. Here, the growth substrate 101 may include, for example, sapphire (Al 2 O 3 ), SiC, GaN, Si, and the light emitting unit 120 is a group 3 nitride semiconductor, that is, Al(x)Ga(y)In (1-xy)N (0≤x≤1, 0≤y≤1, 0≤x+y≤1).

다음으로, 제2 공정(S20)은, 발광부(120)를 두께방향으로 식각하여 설정된 제1 크기로 구획된 단위발광부(121)를 형성하는 공정이다.Next, the second process (S20) is a process of forming the unit light emitting unit 121 partitioned into a first size set by etching the light emitting unit 120 in the thickness direction.

여기서, 설정된 제1 크기는, 단위발광부(121) 상면의 가로 및 세로의 길이가 50um ~ 100um인 것을 의미한다. Here, the set first size means that the horizontal and vertical lengths of the upper surface of the unit light emitting unit 121 are 50 μm to 100 μm.

제2 공정(S20)은 마스크를 이용한 식각공정에 의해 이루어지는데, 일 예로 식각이 필요한 부분에 DNR thick PR(photo resistor) 패턴을 코팅한 한 후 metal mask증착하여 식각(ICP etching)을 수행한다.The second step (S20) is performed by an etching process using a mask. For example, a DNR thick PR (photo resistor) pattern is coated on a portion requiring etching, and then metal mask deposition is performed to perform etching (ICP etching).

이때, DNR thick PR(photo resistor)의 두께는 6um, metal mask는 1.6um인 것이 바람직하다.At this time, the thickness of the DNR thick PR (photo resistor) is preferably 6um, the metal mask is 1.6um.

다음으로, 제3 공정(S30) 및 제4 공정(S40)은 함께 설명한다. Next, the third process (S30) and the fourth process (S40) will be described together.

제3 공정(S30)을 수행하기 전에 n-전극을 형성하기 위한 mesa 공정이 이루어지는 것이 바람직하다.It is preferable that a mesa process for forming an n-electrode is performed before performing the third process (S30).

mesa 공정은, 각 단위발광부(121)의 상면으로부터 n형 반도체층(120a)에 이르는 홀을 형성하는 것으로서, 일 예로 ZNP PR 마스크를 이용한 ICP 에칭 공정이 있다. 이때 ZNP PR 마스크의 두께는 3um이고, 에칭 깊이는 1um 내외인 것이 바람직하다.The mesa process is to form a hole extending from the top surface of each unit light emitting part 121 to the n-type semiconductor layer 120a, for example, an ICP etching process using a ZNP PR mask. At this time, the thickness of the ZNP PR mask is 3um, and the etching depth is preferably about 1um.

한편, 제3 공정(S30)은, 각 단위발광부(121)의 상면에 활성층(120b)으로부터 조사되는 광을 반사시키는 반사막(122)을 형성하는 공정이다.Meanwhile, the third step (S30) is a step of forming a reflective film 122 that reflects light irradiated from the active layer 120b on the upper surface of each unit light emitting part 121.

반사막(122)은, 증착 공정에 의해 이루어지며, ZNP PR 마스크를 이용하되, Ni/Ag 반사막으로 마련될 수 있다.The reflective film 122 is formed by a deposition process and uses a ZNP PR mask, but may be provided as a Ni/Ag reflective film.

ZNP PR 마스크는 3um 두께, 반사막(122)의 두께는 0.35um인 것이 바람직하다.The ZNP PR mask is preferably 3um thick and the reflective film 122 is 0.35um thick.

제4 공정(S40)은, 각 단위발광부(121)의 상면으로부터 n형 반도체층(120a)에 이르는 n-전극(123)을 형성하는 공정이다.The fourth step (S40) is a step of forming an n-electrode 123 from the top surface of each unit light emitting part 121 to the n-type semiconductor layer 120a.

n-전극(123)은, 증착 공정에 의해 이루어지며, ZNP PR 마스크를 이용하되, Cr/Au로 마련될 수 있다.The n-electrode 123 is made by a deposition process, and using a ZNP PR mask, may be provided in Cr/Au.

ZNP PR 마스크는 3um 두께, n-전극(123)의 두께는 0.7um인 것이 바람직하다.The ZNP PR mask is preferably 3um thick and the thickness of the n-electrode 123 is 0.7um.

제5 공정(S50)은, 각 단위발광부(121)의 상면 및 측면을 감싸는 파괴 보호층(130)을 형성하는 공정이다.The fifth step (S50) is a step of forming a fracture protective layer 130 surrounding the top and side surfaces of each unit light emitting part 121.

파괴 보호층(130)은, 폴리이미드(PI, polyimide)로 구비되는 것이 바람직하다.The destruction protective layer 130 is preferably provided with polyimide (PI).

또한, 파괴 보호층(130)은, 10um의 두께로 형성되며, 200℃의 열로 경화시켜 형성할 수 있다.In addition, the destruction protective layer 130 is formed to a thickness of 10um, it can be formed by curing with heat of 200 ℃.

파괴 보호층(130)은, 성장기판(101)이 제거되어 크기에 비해 두께가 얇은 각 단위발광부(121)의 접합과정에서 손상을 방지하게 된다. 이는 각 단위발광부(121)를 이용한 고해상도 구현을 가능하게 한다.Destructive protective layer 130, the growth substrate 101 is removed to prevent damage in the bonding process of each unit light emitting portion 121 is thin compared to the size. This enables realization of high resolution using each unit light emitting unit 121.

제6 공정(S60)은, 파괴 보호층(130)의 상면에 형성되며, n형 반도체층(120a) 및 p형 반도체층(120c)과 각각 전기적으로 연결되는 본딩전극(141,142)을 형성하는 공정이다.The sixth process (S60) is a process of forming bonding electrodes 141 and 142 formed on the top surface of the destruction protection layer 130 and electrically connected to the n-type semiconductor layer 120a and the p-type semiconductor layer 120c, respectively. to be.

본딩전극(141,142)은, 증착 공정에 의해 이루어지며, ZNP PR 마스크를 이용하되, Cr/Ni/Au로 마련될 수 있다.The bonding electrodes 141 and 142 are formed by a deposition process, and may be provided with Cr/Ni/Au using a ZNP PR mask.

ZNP PR 마스크는 3um 두께, 본딩전극(141,142)의 두께는 0.7um인 것이 바람직하다.The ZNP PR mask is preferably 3um thick and the bonding electrodes 141 and 142 are 0.7um thick.

제7 공정(S70)은, 본딩전극(141,142)이 형성되는 면에 이송기판(150)을 접합시키는 공정이다.The seventh step (S70) is a step of bonding the transfer substrate 150 to the surface on which the bonding electrodes 141 and 142 are formed.

이송기판(150)은, 성장기판(101)을 제거하기 위한 것이고, 또한 단위발광부(121)의 이송을 쉽게 하기 위함이다.The transfer substrate 150 is for removing the growth substrate 101, and is also intended to facilitate the transfer of the unit light emitting portion 121.

이송기판(150)은, 유연성을 가지는 재질로 구비되는 것이 바람직하며, 일 예로 UV 조사에 의해 분리되는 UV-tape(모델명: DU-130P)로 구비될 수 있다.The transfer substrate 150 is preferably provided with a material having flexibility, and for example, may be provided with UV-tape (model name: DU-130P) separated by UV irradiation.

제8 공정(S80)은, 성장기판(101)을 제거하는 공정으로서, LLO(Laser Lift Off) 공정에 의해 진행되는 것이 바람직하다.The eighth step (S80) is a step of removing the growth substrate 101, and is preferably performed by a LLO (Laser Lift Off) process.

이에 의해, 초소형의 마이크로 LED를 이송 접합과정에서 발생되는 소자의 손상을 방지할 수 있으며, 얇은 두께에 의해 픽셀의 정렬 정렬도가 높아져 고해상도 구현이 가능한 이점을 가진다.Thereby, it is possible to prevent the damage of the device generated during the transfer bonding process of the micro-miniature LED, and the alignment alignment of the pixels is increased due to the thin thickness, thereby realizing high resolution.

Claims (5)

성장기판 상에 n형 반도체층, 전자와 정공의 재결합에 의해 광을 생성하는 활성층 및 p형 반도체층을 포함하는 발광부를 성장시키는 제1 공정;
상기 발광부를 두께방향으로 식각하여 설정된 제1 크기로 구획된 단위발광부를 형성하는 제2 공정;
상기 단위발광부의 상면에 상기 활성층으로부터 조사되는 광을 반사시키는 반사막을 형성하는 제3 공정;
상기 단위발광부의 상면으로부터 상기 n형 반도체층에 이르는 n-전극을 형성하는 제4 공정;
상기 단위발광부의 상면 및 측면을 감싸는 파괴 보호층을 형성하는 제5 공정;
상기 파괴 보호층의 상면에 형성되며, 상기 n형 반도체층 및 상기 p형 반도체층과 각각 전기적으로 연결되는 본딩전극을 형성하는 제6 공정;
상기 본딩전극이 형성되는 면에 이송기판을 접합시키는 제7 공정; 및
상기 성장기판을 제거하는 제8 공정;을 포함하되,
상기 파괴 보호층은, 폴리이미드(PI, polyimide)로 구비되고, 10um의 두께로 형성되며, 200℃의 열로 경화되어 형성되고,
상기 설정된 제1 크기는, 상기 단위발광부 상면의 가로 및 세로의 길이가 50um ~ 100um인 것을 특징으로 하고,
상기 이송기판은 UV 조사에 의해 분리되는 UV-tape로 구비되는 것을 특징으로 하며,
상기 제2 공정은, 마스크를 이용한 식각공정에 의해 이루어지되, 식각이 필요한 부분에 6um 두께의 DNR thick PR(photo resistor) 패턴을 코팅한 한 후, 1.6um 두께의 metal mask를 증착하여 식각(ICP etching)이 수행되는 것을 특징으로 하는 마이크로 반도체 발광소자 제조방법.


A first step of growing a light emitting unit including an n-type semiconductor layer on the growth substrate, an active layer generating light by recombination of electrons and holes, and a p-type semiconductor layer;
A second process of forming the unit light emitting unit partitioned into a first size set by etching the light emitting unit in a thickness direction;
A third step of forming a reflective film that reflects light irradiated from the active layer on an upper surface of the unit light emitting unit;
A fourth process of forming an n-electrode from the top surface of the unit light emitting portion to the n-type semiconductor layer;
A fifth step of forming a destruction protective layer surrounding the top and side surfaces of the unit light emitting portion;
A sixth step of forming a bonding electrode formed on an upper surface of the fracture protection layer and electrically connected to the n-type semiconductor layer and the p-type semiconductor layer, respectively;
A seventh process of bonding the transfer substrate to the surface on which the bonding electrode is formed; And
Including; an eighth step of removing the growth substrate;
The fracture protection layer is provided with polyimide (PI), is formed to a thickness of 10 um, and is formed by curing with heat of 200° C.,
The set first size, characterized in that the horizontal and vertical length of the upper surface of the unit light emitting portion is 50um ~ 100um,
The transfer substrate is characterized by being provided with UV-tape separated by UV irradiation,
The second process is performed by an etching process using a mask, and after coating a 6 µm thick DNR thick PR (photo resistor) pattern on a portion requiring etching, a metal mask having a thickness of 1.6 µm is deposited and etched (ICP). Etching) is a method of manufacturing a micro semiconductor light emitting device characterized in that it is performed.


삭제delete 삭제delete 삭제delete 삭제delete
KR1020180173880A 2018-12-31 2018-12-31 method for manufacturing micro scale semiconductor Light Emitting Device KR102137014B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020180173880A KR102137014B1 (en) 2018-12-31 2018-12-31 method for manufacturing micro scale semiconductor Light Emitting Device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020180173880A KR102137014B1 (en) 2018-12-31 2018-12-31 method for manufacturing micro scale semiconductor Light Emitting Device

Publications (2)

Publication Number Publication Date
KR20200082872A KR20200082872A (en) 2020-07-08
KR102137014B1 true KR102137014B1 (en) 2020-07-23

Family

ID=71601347

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020180173880A KR102137014B1 (en) 2018-12-31 2018-12-31 method for manufacturing micro scale semiconductor Light Emitting Device

Country Status (1)

Country Link
KR (1) KR102137014B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022065556A1 (en) * 2020-09-28 2022-03-31 엘지전자 주식회사 Method for manufacturing semiconductor light-emitting device package, semiconductor light-emitting device package manufactured thereby, and display device comprising same

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112582506B (en) * 2020-12-09 2021-10-08 苏州芯聚半导体有限公司 Light emitting diode substrate stripping method and light emitting diode array
CN112582520B (en) * 2020-12-29 2021-10-08 苏州芯聚半导体有限公司 Micro light emitting diode transfer method and display panel

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100786802B1 (en) * 2006-09-26 2007-12-18 한국광기술원 Vertical type semiconductor light emitting diode and the method for manufacturing the same
KR101754528B1 (en) * 2016-03-23 2017-07-06 한국광기술원 Transfer assembly with dry adhesion structure and method for transferring led structure assembly using the same and led structure assembly

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102481524B1 (en) 2016-01-11 2022-12-26 엘지전자 주식회사 Display device using semiconductor light emitting device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100786802B1 (en) * 2006-09-26 2007-12-18 한국광기술원 Vertical type semiconductor light emitting diode and the method for manufacturing the same
KR101754528B1 (en) * 2016-03-23 2017-07-06 한국광기술원 Transfer assembly with dry adhesion structure and method for transferring led structure assembly using the same and led structure assembly

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022065556A1 (en) * 2020-09-28 2022-03-31 엘지전자 주식회사 Method for manufacturing semiconductor light-emitting device package, semiconductor light-emitting device package manufactured thereby, and display device comprising same

Also Published As

Publication number Publication date
KR20200082872A (en) 2020-07-08

Similar Documents

Publication Publication Date Title
KR102531884B1 (en) Display device and method for forming the same
TWI663753B (en) Methods of filling an organic or inorganic liquid in an assembly module
US11915962B2 (en) High-resolution micro-LED display panel and manufacturing method of the same
KR101968592B1 (en) Integrated colour led micro-display
WO2018121611A1 (en) Group iii-v nitride semiconductor-based led full color display device structure and preparing method
KR102137014B1 (en) method for manufacturing micro scale semiconductor Light Emitting Device
US20200185368A1 (en) Led display device and method for manufacturing same
US8071401B2 (en) Method of forming vertical structure light emitting diode with heat exhaustion structure
US7781242B1 (en) Method of forming vertical structure light emitting diode with heat exhaustion structure
CN111048497B (en) Method for manufacturing active matrix color display device
CN110034224A (en) A kind of transfer method based on bar shaped Micro-LED
CN110911537B (en) Common cathode LED chip and manufacturing method thereof
TWI750650B (en) Emissive display substrate for surface mount micro-led fluidic assembly and method for making same
JP2023022313A (en) Micro light emitting device, micro light emitting diode, and transfer method thereof
CN108922899A (en) pixel array substrate and driving method thereof
KR101721846B1 (en) manufacturing method of micro GaN LED array and micro GaN LED array thereby
EP3726576A1 (en) Display device and method for forming the same
KR102078643B1 (en) Display appartus using one chip type led and fabrication method of the same
CN113299804A (en) Micro-LED chip preparation and substrate stripping method
CN110249435A (en) Light-emitting component and its manufacturing method
CN116404027A (en) Micro-LED Micro display and preparation method thereof
CN209929349U (en) Display panel
KR102598043B1 (en) Semiconductor light emitting device including a floating conductive pattern
KR20120106624A (en) Semiconductor light emitting device wafer and method for manufacturing semiconductor light emitting device
CN110265587A (en) Display panel and its manufacturing method

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right