KR102132605B1 - 방사선의 종류를 구별하여 검출하는 방사선 검출기 - Google Patents

방사선의 종류를 구별하여 검출하는 방사선 검출기 Download PDF

Info

Publication number
KR102132605B1
KR102132605B1 KR1020180138606A KR20180138606A KR102132605B1 KR 102132605 B1 KR102132605 B1 KR 102132605B1 KR 1020180138606 A KR1020180138606 A KR 1020180138606A KR 20180138606 A KR20180138606 A KR 20180138606A KR 102132605 B1 KR102132605 B1 KR 102132605B1
Authority
KR
South Korea
Prior art keywords
scintillator
radiation
wavelength band
optical filter
light
Prior art date
Application number
KR1020180138606A
Other languages
English (en)
Other versions
KR20190056975A (ko
Inventor
무하마드 나지르 울라
박찬선
박진호
이기성
염정열
Original Assignee
고려대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 고려대학교 산학협력단 filed Critical 고려대학교 산학협력단
Priority to US16/764,533 priority Critical patent/US11346962B2/en
Priority to PCT/KR2018/013764 priority patent/WO2019098629A1/ko
Publication of KR20190056975A publication Critical patent/KR20190056975A/ko
Application granted granted Critical
Publication of KR102132605B1 publication Critical patent/KR102132605B1/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/20Measuring radiation intensity with scintillation detectors
    • G01T1/2008Measuring radiation intensity with scintillation detectors using a combination of different types of scintillation detectors, e.g. phoswich
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/1603Measuring radiation intensity with a combination of at least two different types of detector
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/20Measuring radiation intensity with scintillation detectors
    • G01T1/2002Optical details, e.g. reflecting or diffusing layers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/20Measuring radiation intensity with scintillation detectors
    • G01T1/2006Measuring radiation intensity with scintillation detectors using a combination of a scintillator and photodetector which measures the means radiation intensity

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Molecular Biology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Measurement Of Radiation (AREA)

Abstract

본 발명은 방사선의 종류를 구별하여 검출하는 방사선 검출기에 관한 것으로, 제1 방사선과 반응하여 제1 파장대의 빛을 방출하는 제1 섬광체와, 제2 방사선과 반응하여 제2 파장대의 빛을 방출하는 제2 섬광체가 적층되어 형성된 섬광체 모듈과; 상기 섬광체 모듈의 일 영역에 부착되어 상기 제1 파장대의 빛을 투과시키는 제1 광학 필터와; 상기 섬광체 모듈에 다른 일 영역에 부착되어 상기 제2 파장대의 빛을 투과시키는 제2 광학 필터와; 상기 제1 광학 필터를 투과한 상기 제1 파장대의 빛을 감지하는 제1 광 검출기와; 상기 제2 광학 필터를 투과한 상기 제2 파장대의 빛을 감지하는 제2 광 검출기와; 상기 제1 광 검출기 및 상기 제2 광 검출기의 감지 결과에 기초하여 방사선을 판별하는 제어부를 포함하는 것을 특징으로 한다. 이에 따라, 방사선 검출기가 서로 다른 파장대의 빛만을 선택적으로 투과시키는 제1 광학 필터 및 제2 광학 필터를 사용함으로써 회로 구성과 신호 처리 과정을 현저하게 간소화시키면서도 방사선의 종류를 보다 정확히 판별할 수 있게 된다.

Description

방사선의 종류를 구별하여 검출하는 방사선 검출기{RADIATION DETECTOR FOR DETECTING AND DISTINGUISHING TYPE OF RADIATION}
본 발명은 방사선의 종류를 구별하여 검출하는 방사선 검출기에 관한 것으로, 보다 상세하게는 질병 진단, 방사선 사고 등에서의 방사선 검출에 적용하는데 있어 방사선의 종류를 구별하여 검출하면서도 제조 비용을 줄이고 신호처리 속도를 향상시킬 수 있는 방사선 검출기에 관한 것이다.
일반적으로 포스위치 검출기(Phoswich detector, '샌드위치 검출기'라고도 함)란 고-에너지 방사선 환경 하에서 알파 입자, 베타 입자 뿐만 아니라 저준위, 저 에너지 감마선과 엑스선을 검출하기 위해 개발된 검출기이다. 이러한 포스위치 검출기는 구조적인 형태에 따라 입사된 모든 에너지별 방사선들을 동시에 구별하여 처리할 수 있다.
'포스위치(Phoswich)'라는 명칭은 Phosphor sandwich으로부터 파생된 용어이며, 서로 다른 특성, 예컨대 서로 다른 파형을 가진 두 개 이상의 섬광체들이 광학적으로 서로 연결되어 photodiode, APD (Avalanche photodiode), SiPM (Silicon photomultiplier, 실리콘광증배소자), PMT (photomultiplier tube, 광증배관) 등 광센서와 결합된 구조를 일컫는다. 입사된 방사선이 특정 섬광체에서 반응한 신호를 파형 분석 등과 같은 기법으로 구별할 수 있다.
포스위치 검출기는, 도 1에 도시된 바와 같이, 서로 다른 2개 이상의 섬광체를 전후 또는 적층 구조로 배치하여 방사선의 투과도와 섬광체와의 반응 유무를 이용하여 구별한다. 예를 들면, 섬광체 1(scintillator 1)은 베타 입자를 검출하도록 설계하고 섬광체 2는 감마선(scintillator 2)을 검출하기 위해 설계한다. 이와 같은 방법은 방사선의 종류를 구별하는데 자주 사용된다.
일반적으로 포스위치 검출기는 서로 다른 감쇠시간(decay time)을 가진 섬광체들을 배치하여 방사선을 측정한다. 즉, 방사선이 반응하는 섬광체를 특정하기 위해서 파형분별법(pulse shape discrimination, PSD)를 이용하여 구별하여야 한다.
PSD 방식의 성능 평가를 위해서는 FOM(figure of merit)과 입자제거율(particle rejection ratio)을 이용한다. 이를 구하기 위해서는 고속의 아날로그-디지털 변환회로(analog-to-digital converter, ADC)와 파형구별(pulse shape discrimination, PSD)을 위한 복잡한 알고리즘을 사용해야 하는데, 이는 회로와 컴퓨터에서 신호 처리 속도 및 비용 문제를 야기한다. 즉, photodetector로 수집되는 빛은 섬광체 1과 섬광체 2로부터 동시에 들어오기 때문에, 이를 구별하기 위한 회로적인 요소와 신호처리에 많은 비용과 시간이 소요되는 문제점이 있다.
또한, 신호처리를 통해 방사선을 구분하는데 있어서, 알고리즘의 정확성이 확보되지 않는 경우 검출 정확도를 보장할 수 없을 뿐만 아니라, 이를 보장하기 위해 알고리즘이 더욱 복잡해지는 문제점을 안게 된다.
본 발명은 상기와 같은 종래기술의 문제점을 해결하기 위하여 안출된 것으로, 질병 진단, 방사선 사고 등에서의 방사선 검출에 적용하는데 있어 방사선의 종류를 구별하여 검출하면서도 제조 비용을 줄이고, 신호처리 속도 및 검출 정확도를 향상시킬 수 있는 방사선 검출기를 제공하는데 그 목적이 있다.
상기 목적은 본 발명에 따라, 방사선의 종류를 구별하여 검출하는 방사선 검출기에 있어서, 제1 방사선과 반응하여 제1 파장대의 빛을 방출하는 제1 섬광체와, 제2 방사선과 반응하여 제2 파장대의 빛을 방출하는 제2 섬광체가 적층되어 형성된 섬광체 모듈과; 상기 섬광체 모듈의 일 영역에 부착되어 상기 제1 파장대의 빛을 투과시키는 제1 광학 필터와; 상기 섬광체 모듈에 다른 일 영역에 부착되어 상기 제2 파장대의 빛을 투과시키는 제2 광학 필터와; 상기 제1 광학 필터를 투과한 상기 제1 파장대의 빛을 감지하는 제1 광 검출기와; 상기 제2 광학 필터를 투과한 상기 제2 파장대의 빛을 감지하는 제2 광 검출기와; 상기 제1 광 검출기 및 상기 제2 광 검출기의 감지 결과에 기초하여 방사선을 판별하는 제어부를 포함하는 방사선의 종류를 구별하여 검출하는 방사선 검출기에 의해서 달성된다.
여기서, 상기 제1 섬광체의 두께는 상기 제2 섬광체의 두께보다 상대적으로 얇게 형성되고; 상기 제1 섬광체는 베타선과 반응하도록 마련되고, 상기 제2 섬광체는 감마선과 반응하도록 마련되고; 상기 제1 섬광체로 입사되는 베타선이 상기 제1 섬광체와 반응하여 감마선을 방출하고, 상기 제1 섬광체와의 반응을 통해 방출된 감마선이 상기 제2 섬광체와 반응하며; 상기 제어부는 상기 제1 광 검출기 및 상기 제2 광 검출기가 동시에 빛을 감지하는 것에 의해 베타선을 판별할 수 있다.
여기서, 상기 제1 섬광체는 CaF2(CaF2:Eu), CsI, LYSO, NaI, LaBr3, BaF2, GPS, 및 플라스틱 섬광체 등 단파장 섬광체 중 어느 하나를 포함하고, 상기 제1 광학 필터는 380nm ~ 450nm 파장대의 빛을 투과하도록 마련되며; 상기 제2 섬광체는 Ce:LuAG, Ce:GAGG, Ce:GFAG를 포함한 긴 파장 섬광체 중 어느 하나를 포함하고, 상기 제2 광학 필터는 480nm ~ 700nm 파장대의 빛을 투과하도록 마련될 수 있다.
또한, 상기 제1 섬광체의 두께는 상기 제2 섬광체의 두께보다 상대적으로 얇게 형성되고; 상기 제1 섬광체는 중성자와 반응하도록 마련되고, 상기 제2 섬광체는 감마선과 반응하도록 마련되고; 상기 제1 섬광체로 입사되는 중성자가 상기 제1 섬광체와 반응하여 감마선을 방출하고, 상기 제1 섬광체와의 반응을 통해 방출된 감마선이 상기 제2 섬광체와 반응하며; 상기 제어부는 상기 제1 광 검출기 및 상기 제2 광 검출기가 동시에 빛을 감지하는 것에 의해 중성자를 판별할 수 있다.
여기서, 상기 제1 섬광체는 보론-10 (Boron-10) 기반 섬광체를 포함하고, 상기 제1 광학 필터는 380nm ~ 450nm 파장대의 빛을 투과하도록 마련되며; 상기 제2 섬광체는 Ce:LuAG, Ce:GAGG, Ce:GFAG를 포함한 긴 파장 섬광체 중 어느 하나를 포함하고, 상기 제2 광학 필터는 480nm ~ 700nm 파장대의 빛을 투과하도록 마련될 수 있다.
그리고, 상기 제1 광학 필터 및 상기 제2 광학 필터는 상기 제2 섬광체의 상기 제1 섬광체 반대편 표면에 부착될 수 있다.
그리고, 상기 제1 광학 필터는 상기 제1 섬광체의 상기 제2 섬광체 반대편 표면에 부착되며; 상기 제2 광학 필터는 상기 제2 섬광체의 상기 제1 섬광체 반대편 표면에 부착될 수 있다.
그리고, 상기 제1 광학 필터는 상기 제1 섬광체의 상기 제1 섬광체와 상기 제2 섬광체의 적층 방향의 측면에 부착되고; 상기 제2 광학 필터는 상기 제2 섬광체의 상기 제1 섬광체와 상기 제2 섬광체의 적층 방향의 측면에 부착될 수 있다.
그리고, 상기 섬광체 모듈은 상기 제2 섬광체의 상기 제1 섬광체 반대편에 부착되고, 상기 제1 파장대의 빛과 상기 제2 파장대의 빛을 반사 및 투과시키는 빔 스플리터를 더 포함하며; 상기 제1 광학 필터는 상기 빔 스플리터의 반사 및 투과 방향 중 어느 한 방향에 설치되고, 상기 제2 광학 필터는 상기 빔 스플리터의 반사 및 투과 방향 중 다른 한 방향에 설치될 수 있다.
한편, 상기 목적은 본 발명의 다른 실시 형태에 따라, 방사선의 종류를 구별하여 검출하는 방사선 검출기에 있어서, 제1 방사선과 반응하여 제1 파장대의 빛을 방출하는 제1 섬광체와, 제2 방사선과 반응하여 제2 파장대의 빛을 방출하는 제2 섬광체가 적층되어 형성된 섬광체 모듈과; 상기 제2 섬광체의 상기 제1 섬광체 반대편에 부착되고, 상기 제1 파장대의 빛을 반사 및 투과 중 어느 하나로 진행시키고 상기 제2 파장대의 빛은 반사 및 투과 중 다른 하나로 진행시키는 다이크로익 필터와; 상기 다이크로익 필터를 거친 상기 제1 파장대의 빛을 감지하는 제1 광 검출기와; 상기 다이크로익 필터를 거친 상기 제2 파장대의 빛을 감지하는 제2 광 검출기와; 상기 제1 광 검출기 및 상기 제2 광 검출기의 감지 결과에 기초하여 방사선을 판별하는 제어부를 포함하는 입사되는 방사선의 종류를 구별하여 검출하는 방사선 검출기에 의해서 달성될 수 있다.
여기서, 상기 제1 섬광체의 두께는 상기 제2 섬광체의 두께보다 상대적으로 얇게 형성되고; 상기 제1 섬광체는 베타선과 반응하도록 마련되고, 상기 제2 섬광체는 감마선과 반응하도록 마련되고; 상기 제1 섬광체로 입사되는 베타선이 상기 제1 섬광체와 반응하여 감마선을 방출하고, 상기 제1 섬광체와의 반응을 통해 방출된 감마선이 상기 제2 섬광체와 반응하여, 상기 제1 광 검출기 및 상기 제2 광 검출기가 동시에 빛을 감지하는 것에 의해 베타선의 검출을 인식할 수 있다.
여기서, 상기 제1 섬광체는 CaF2(CaF2:Eu), CsI, LYSO, NaI, LaBr3, BaF2, GPS, 및 플라스틱 섬광체 등 단파장 섬광체 중 어느 하나를 포함하고; 상기 제2 섬광체는 Ce:LuAG, Ce:GAGG, Ce:GFAG를 포함한 긴 파장 섬광체 중 어느 하나를 포함할 수 있다.
또한, 상기 제1 섬광체의 두께는 상기 제2 섬광체의 두께보다 상대적으로 얇게 형성되고; 상기 제1 섬광체는 중성자와 반응하도록 마련되고, 상기 제2 섬광체는 감마선과 반응하도록 마련되고; 상기 제1 섬광체로 입사되는 중성자가 상기 제1 섬광체와 반응하여 감마선을 방출하고, 상기 제1 섬광체와의 반응을 통해 방출된 감마선이 상기 제2 섬광체와 반응하여, 상기 제1 광 검출기 및 상기 제2 광 검출기가 동시에 빛을 감지하는 것에 의해 중성자의 검출을 인식할 수 있다.
여기서, 상기 제1 섬광체는 보론-10 (Boron-10) 기반 섬광체를 포함하고, 상기 제1 광학 필터는 380nm ~ 450nm 파장대의 빛을 투과하도록 마련되며; 상기 제2 섬광체는 Ce:LuAG, Ce:GAGG, Ce:GFAG를 포함한 긴 파장 섬광체 중 어느 하나를 포함하고, 상기 제2 광학 필터는 480nm ~ 700nm 파장대의 빛을 투과하도록 마련될 수 있다.
상기와 같은 구성에 의하여 본 발명에 따른 방사선 검출기가 서로 다른 파장대의 빛만을 선택적으로 투과시키는 제1 광학 필터 및 제2 광학 필터를 사용함으로써 회로 구성과 신호 처리 과정을 현저하게 간소화시키면서도 방사선의 종류를 보다 정확히 판별할 수 있게 된다.
또한, 감마선 환경에서 베타선을 추출하는데 있어 제1 광 검출기 및 제2 광 검출기가 동시에 빛을 감지하는 것에 의해 베타선의 유무를 감지하게 되어, 베타선의 보다 정확한 검출할 수 있어, 외과 수술에서 베타 입자 탐지기(beta probe)로 사용 가능하게 된다.
또한, 위와 같은 원리로 감마선 백그라운드에 영향을 받지 않는 중성자 검출기를 구성하여 국토 안전에 사용 가능하다.
도 1은 일반적인 포스위치 검출기의 구조를 나타낸 도면이고,
도 2 내지 도 8은 본 발명의 실시예들에 따른 방사건 검출기를 도시한 도면이다.
이하에서는 도면에 도시된 실시예를 참조하여 본 발명에 따른 방사선 검출기(100)에 대해 상세히 설명한다.
도 2는 본 발명의 일 실시예에 따른 방사선 검출기(100)를 나타낸 도면이다. 도 1을 참조하여 설명하면, 본 발명의 일 실시예에 따른 방사선 검출기(100)는 섬광체 모듈(110), 제1 광학 필터(121), 제2 광학 필터(122), 제1 광 검출기(131), 제2 광 검출기(132) 및 제어부(160)를 포함한다.
섬광체 모듈(110)은 제1 섬광체(111)와 제2 섬광체(112)를 포함한다. 도 2에서는 제1 섬광체(111)와 제2 섬광체(112)가 적층된 구조를 갖는 것을 예로 하고 있다. 제1 섬광체(111)는 제1 방사선과 반응하도록 마련되고, 제1 방사선과 반응하면서 제1 파장대의 빛을 방출한다.
제2 섬광체(112)는 제2 방사선과 반응하여 제2 파장대의 빛을 방출한다. 여기서, 제1 방사선과 제2 방사선은 서로 다른 방사선 종류이며, 제1 파장대와 제2 파장대는 서로 중첩되는 구간이 없는 서로 다른 파장대이다.
제1 광학 필터(121)는 섬광체 모듈(110)의 일 영역에 부착되어 제1 파장대의 빛만을 투과시킨다. 그리고, 제2 광학 필터(122)는 섬광체 모듈(110)의 다른 일 영역에 부착되어 제2 파장대의 빛만을 투과시킨다. 이에 따라, 제1 방사선이 제1 섬광체(111)에 입사된 후 반응하여 방출되는 제1 파장대의 빛은 제1 광학 필터(121)는 투과하지만 제2 광학 필터(122)는 투과하지 못하고 차단되며, 마찬가지로, 제2 방사선이 제2 섬광체(112)에 입사된 후 반응하여 방출되는 제2 파장대의 빛은 제2 광학 필터(122)를 투과하지만 제1 광학 필터(121)는 투과하지 못하고 차단된다.
이 때, 제1 광 검출기(131)는 제1 광학 필터(121)를 투과한 제1 파장대의 빛을 감지하도록 설치되고, 제2 광 검출기(132)는 제2 광학 필터(122)를 투과한 제2 파장대의 빛을 감지하도록 설치된다. 도 2에서는 제1 광 검출기(131)가 제1 광학 필터(121)의 후단에 설치되고, 제2 광 검출기(132)가 제2 광학 필터(122)의 후단에 설치되는 것을 예로 하고 있다.
상기와 같은 구성에 따라, 제어부(160)는 제1 광 검출기(131) 및 제2 광 검출기(132)의 감지 결과에 기초하여 방사선을 판별한다. 일 예로, 제어부(160)는 제1 광 검출기(131)에서만 감지되는 경우, 제1 광 검출기(131)에 대응하는 제1 섬광체(111)에 반응하는 방사선이 검출된 것으로 인식한다. 반면, 제어부(160)는 제1 광 검출기(131)에서만 감지되는 경우, 제2 광 검출기(132)에 대응하는 제2 섬광체(112)에 반응하는 방사선이 검출된 것으로 인식하게 된다. 또한, 제어부(160)는 제1 광 검출기(131) 및 제2 광 검출기(132) 모두에서 감지되는 경우, 두 유형의 방사선이 검출된 것으로 판별하게 된다.
상기와 같은 구성에 따라, 복잡한 회로 구성이나 신호 처리 과정을 거치지 않고도, 제1 광 검출기(131)와 제2 광 검출기(132) 중 어느 쪽에서 방사선이 검출되었는지 여부에 따라 방사선의 종류를 구별하여 판별할 수 있게 된다.
이하에서는, 상기와 같은 구성을 이용하여 베타선을 판별하는 방법, 도 2를 참조하여 보다 구체적으로 설명한다. 상술한 바와 같이, 기존의 포스위치 검출기를 이용하여 베타선(또는 '베타 입자', 이하 동일)을 검출할 때, 주변의 감마선 환경이나 베타선의 반응 후 발생하는 감마선으로 인해 그 측정의 정확도를 보장하기 어렵고, 베타선과 감마선이 공존하는 환경에서 베타선이 존재하는지 여부를 판별하기 위해서는 복잡한 회로 구성과 신호 처리 과정을 거쳐야했음은 상술한 바와 같다.
본 발명의 실시예에서는 베타선의 판별을 위해, 제1 섬광체(111)는 베타선과 반응하는 재질, 예컨대, CaF2(CaF2:Eu), CsI, LYSO, NaI, LaBr3, BaF2, GPS, 플라스틱 섬광체를 포함한 단파장 섬광체 중 어느 하나의 형태로 마련되고, 제2 섬광체(112)는 감마선과 반응하는 Ce:LuAG, Ce:GAGG, Ce:GFAG를 포함한 긴 파장 섬광체 중 어느 하나로 마련되는 것을 예로 한다.
그리고, 제1 광학 필터(121)는 베타선이 제1 섬광체(111)와 반응하여 방출하는 빛의 파장대를 고려하여 380nm ~ 450nm 파장대의 빛을 투과하도록 마련되고, 제2 광학 필터(122)는 감마선이 제2 섬광체(112)와 반응하여 방출하는 빛의 파장대를 고려하여, 480nm ~ 700nm 파장대의 빛을 투과하도록 마련되는 것을 예로 한다. 여기서, 제1 광학 필터(121) 및 제2 광학 필터(122)는 상술한 제1 섬광체(111) 및 제2 섬광체(112)의 재질에 따라 투과 파장의 범위가 결정될 수 있다.
상기와 같은 과정에서, 베타선 만이 존재하는 환경으로 가정하면, 베타선이 제1 섬광체(111)에 입사되면, 도 1에 도시된 바와 같이, 제1 섬광체(111)와 반응하면서 제1 파장대의 빛을 방출하고, 양측 방향으로 각각 감마선을 방출하게 된다. 그리고, 제1 섬광체(111)와의 반응을 통해 방출된 감마선은 제2 섬광체(112)에 입사된 후 반응하여, 제2 파장대의 빛을 방출하게 된다.
제1 섬광체(111)로부터 방출되는 제1 파장대의 빛은 제1 광학 필터(121)를 통과하여 제1 광 검출기(131)에 의해 감지되고, 제2 섬광체(112)로부터 방출된 제2 파장대의 빛은 제2 광학 필터(122)를 통과하여 제2 광 검출기(132)에 의해 감지된다. 여기서, 제어부(160)는 제1 광 검출기(131) 및 제2 광 검출기(132)에 의해 빛이 검출된 것으로 판단하게 되어, 베타선의 존재를 판별하게 된다.
만약, 베타선이 존재하지 않는 환경으로, 주변에 흔한 감마선에 의해 제2 광 검출기(132)에서만 빛을 검출하거나, 제2 광 검출기(132)에서도 빛이 검출되지 않는 경우에는 베타선이 검출되지 않은 것으로 판단할 수 있다. 여기서, 제어부(160)는, 도 2에 도시된 바와 같이, 단순한 비교기(150)로부터의 출력 신호 만으로도 방사선의 종류를 판별할 수 있게 된다.
다른 예로, 본 발명에 따른 방사선 검출기(100)를 이용하여 중성자를 검출하는 방법에 대해 설명한다.
일반적으로, 중성자 검출은 비파괴 검사, 원자력 현장이나 보안 검색기 등에 쓰이며 최근에는 테러와 관련되어 원자폭탄 감지에서 널리 사용되고 있다. 이 중에서 원자력 현장이나 원자 폭탄의 경우 중성자만 방출되는 것이 아니라 감마선도 방출되기 때문에, 중성자만 검출하는데 있어서는 상술한 바와 같이, 파형 분석법 등과 같은 추가적인 신호 처리 과정을 거치게 되어, 검출 시간이 많이 소요되는 문제점이 있다.
본 발명에서는 제1 섬광체(111)가 중성자와 반응하도록 마련되고, 제2 섬광체(112)가 감마선과 반응하도록 마련하는 것을 예로 한다. 예를 들어, 제1 섬광체(111)는 보론-10 (Boron-10)과 같은 보론 섬광체로 마련하고, 제2 섬광체(112)로 Ce:LuAG, Ce:GAGG, Ce:GFAG를 포함한 긴 파장 섬광체 중 어느 하나로 마련되는 것을 예로 한다.
그리고, 제1 광학 필터(121)는 보론 섬광체와 중성자가 반응하여 방출하는 빛의 파장대를 고려하여, 380nm ~ 450nm 파장대의 빛을 투과하도록 마련하고, 상술한 바와 같이, 제2 광학 필터(122)는 480nm ~ 700nm 파장대의 빛을 투과하도록 마련되는 것을 예로 한다.
중성자가 보론-10과 반응하면 다음과 같이 반응한다.
n + 10B --> 7Li(*) + α
7Li(*) --> 7Li + γ(480keV)
보론 섬광체 내부에서 생성된 알파선의 경우 보론 섬광체에서 포착되며, 감마선의 경우 보론 섬광체에서 포착되거나 섬광체 외부로 빠져나가게 된다. 기존의 방사선 검출기(100)에서 보론-10을 이용하게 되면, 감마선의 영향으로 중성자 검출에 있어 그 검출 효율이 현저하게 떨어지는 문제점이 있다.
반면, 본 발명에 따른 방사선 검출기(100)에서는 보론 섬광체로 구성한 제1 섬광체(111)에 중성자가 반응하게 되어 감마선을 방출하게 되면, 방출된 감마선이 제2 섬광체(112)에 입사되어 제2 섬광체(112)와 반응하게 된다.
그리고, 제1 섬광체(111)에서의 반응에 따라 방출되는 제1 파장대의 빛은 제1 광학 필터(121)를 투과하여 제1 광 검출기(131)에 의해 검출되고, 제2 섬광체(112)에서의 반응에 따라 방출되는 제2 파장대의 빛은 제2 광학 필터(122)를 투과하여 제2 광 검출기(132)에 의해 검출됨으로써, 제어부(160)가 제1 광 검출기(131) 및 제2 광 검출기(132)에 의해 빛이 감지되는 것으로 중성자를 판별 가능하게 된다.
여기서, 본 발명에서는 상술한 베타선이나 중성자의 검출을 위한 실시예에서, 제1 섬광체(111)의 두께가 제2 섬광체(112)의 두께보다 상대적으로 얇게 마련되는 것을 예로 한다. 예컨대, 보론 섬광체의 두께는 0.5mm ~ 1mm 정도로 마련하고, 제2 섬광체(112)의 두께는 10mm 정도로 구성하는 것을 예로 한다. 이를 통해, 제1 섬광체(111)에서의 반응을 통해 방출된 감마선이 인접한 제2 섬광체(112)로 바로 입사되도록 함으로써, 제1 광 검출기(131) 및 제2 광 검출기(132) 모두에서 빛을 감지할 때를 베타선 또는 중성자의 검출로 인식하는데 있어 검출 효율과 정확도를 높일 수 있게 된다.
이하에서는, 도 3 내지 도 8을 참조하여 본 발명의 다른 실시 형태에 따른 방사선 검출기(100)에 대해 설명한다.
도 2에 도시된 실시예에 따른 방사선 검출기(100)에서는 제1 광학 필터(121) 및 제2 광학 필터(122)가 제2 섬광체(112)의 제1 섬광체(111) 반대편 표면에 부착되는 것을 예로 하였다. 반면, 도 3에 도시된 실시예에 따른 방사선 검출기(100a)는 제1 광학 필터(121a)가 제1 섬광체(111a)의 제2 섬광체(112a) 반대편 표면에 부착되고, 제2 광학 필터(122a)가 제2 섬광체(112a)의 제1 섬광체(111a) 반대편 표면에 부착되는 것을 예로 하고 있다. 그리고, 제1 광 검출기(131a)는 제1 광학 필터(121a)의 후단에 위치하고, 제2 광 검출기(132a)는 제2 광학 필터(122a)의 후단에 배치되어 도 3의 아래로부터, 제2 광 검출기(132a), 제2 광학 필터(122a), 제2 섬광체(112a), 제1 섬광체(111a), 제1 광학 필터(121a) 및 제1 광 검출기(131a)가 순차적으로 적층되어 구성되는 것을 예로 한다.
도 4에 도시된 실시예에서는 방사선 검출기(100b)의 제1 광학 필터(121b) 및 제2 광학 필터(122b)가 제1 섬광체(111b) 및 제2 섬광체(112b)의 적측 방향의 측면에 부착되는 것을 예로 한다. 도 4에서는 제1 광학 필터(121b)가 적층 방향의 측면에서 제1 섬광체(111b)에 부착되고, 제2 광학 필터(122b)가 적층 방향의 측면에서 제2 섬광체(112b)에 부착되는 것을 예로 하고 있다. 그리고, 제1 광 검출기(131b) 및 제2 광 검출기(132b)는 각각 제1 광학 필터(121b) 및 제2 광학 필터(122b)의 측면에 배치되는 것을 예로 하고 있다.
도 5에 도시된 실시예에서는 방사선 검출기(100c)의 제1 광학 필터(121c) 및 제2 광학 필터(122c)가 제1 섬광체(111c) 및 제2 섬광체(112c)의 적층 방향의 양측에 각각 분산되어 설치되는 것을 예로 하고 있다. 그리고, 제1 광 검출기(131c)에 제2 섬광체(112c)로부터 방출되는 빛이 차단되도록 제1 광학 필터(121c)가 제1 섬광체(111c) 및 제2 섬광체(112c)의 일측 측면에 걸쳐 부착되고, 마찬가지로, 제2 광 검출기(132c)에 제1 섬광체(111c)로부터 방출되는 빛이 차단되도록 제2 광학 필터(122c)가 제1 섬광체(111c) 및 제2 섬광체(112c)의 타측 측면에 걸쳐 부착되는 것을 예로 하고 있다.
도 6에 도시된 실시예에서는 방사선 검출기(100d)의 섬광체 모듈(110d)이 빔 스플리터(113d)를 포함하는 것을 예로 하고 있다. 빔 스플리터(113d)는 제2 섬광체(112d)의 제1 섬광체(111d) 반대편에 부착되는데, 빛을 투과 및 반사 및 반사시킨다.
그리고, 제1 광학 필터(121d)는 빔 스플리터(113d)의 반사 및 투과 방향 중 어느 한 방향에 설치되고, 제2 광학 필터(122d)는 빔 스플리터(113d)의 반사 및 투과 방향 중 다른 한 방향에 설치된다. 이에 따라, 제1 광학 필터(121d)로 진행하는 제1 파장대의 빛과 제2 파장대의 빛 중 제1 파장대의 빛만 투과하여 제1 광 검출기(131d)에 의해 감지되고, 제2 광학 필터(122d)로 진행하는 제1 파장대의 빛과 제2 파장대의 빛 중 제2 파장대의 빛만 투과하여 제2 광 검출기(132d)에 의해 감지된다.
도 7에 도시된 실시예에서는 제1 섬광체(111e) 및 제2 섬광체(112e)로부터 방출되는 제1 파장대의 빛과 제2 파장대의 빛을 제1 광학 필터(121e) 및 제2 광학 필터(122e)로 유도하는 광섬유와 같은 광 가이드(141e,142e)가 설치되는 것을 예로 한다. 각각의 광 가이드(141e,142e)를 통해 전달되는 빛은 제1 파장대와 제2 파장대를 포함하게 되며, 제1 광학 필터(121e) 및 제2 광학 필터(122e)를 통해 선택적으로 제1 광 검출기(131e) 및 제2 광 검출기(132e)로 입사된다.
한편, 도 8에 도시된 실시예에 따른 방사선 검출기(100f)는 도 2에 도시된 실시예의 제1 광학 필터(121) 및 제2 광학 필터(122)를 대체하여 다이크로익 필터(120f)가 적용되는 것을 예로 하고 있다. 다이크로익 필터(120f)는 제2 섬광체(112f)의 제1 섬광체(111f) 반대편에 부착된다. 그리고, 다이크로익 필터(120f)는 제1 파장대의 빛을 반사(또는 투과)시켜 제1 광 검출기(131f)로 향하게 하고, 제2 파장대의 빛은 투과(또는 반사)시켜 제2 광 검출기(132f)로 향하게 한다.
도 8에 도시된 실시예에 따른 방사선 검출기(100f)는 다이크로익 필터(120f)에 의해 서로 다른 파장대의 빛이 분산되어 진행하게 되는 바, 상술한 실시예들에서와 같은 동일한 효과를 얻을 수 있게 된다.
앞에서 설명되고 도면에서 도시된 방사선 검출기(100,100a,100b,100c,100d,100e,100f)는 본 발명을 실시하기 위한 하나의 실시예에 불과하며, 본 발명의 기술적 사상을 한정하는 것으로 해석되어서는 안된다. 본 발명의 보호범위는 이하의 특허청구범위에 기재된 사항에 의해서만 정하여지며, 본 발명의 요지를 벗어남이 없이 개량 및 변경된 실시예는 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 자명한 것인 한 본 발명의 보호범위에 속한다고 할 것이다.
100,100a,100b,100c,100d,100e,100f : 방사선 검출기
110,110a,110b,110c,110d,110e,110f : 섬광체 모듈
111,111a,111b,111c,111d,111e,111f : 제1 섬광체
112,112a,112b,112c,112d,112e,112f : 제2 섬광체
113d : 빔 스플리터
120f : 다이크로익 필터
121,121a,121b,121c,121d,121e : 제1 광학 필터
122,122a,122b,122c,122d,122e : 제2 광학 필터
131,131a,131b,131c,131d,131e,131f : 제1 광 검출기
132,132a,132b,132c,132d,132e,132f : 제2 광 검출기
141e,142e : 광 가이드
150 : 비교기 160 : 제어부

Claims (14)

  1. 삭제
  2. 방사선의 종류를 구별하여 검출하는 방사선 검출기에 있어서,
    제1 방사선과 반응하여 제1 파장대의 빛을 방출하는 제1 섬광체와, 제2 방사선과 반응하여 제2 파장대의 빛을 방출하는 제2 섬광체가 적층되어 형성된 섬광체 모듈과;
    상기 섬광체 모듈의 일 영역에 부착되어 상기 제1 파장대의 빛을 투과시키는 제1 광학 필터와;
    상기 섬광체 모듈에 다른 일 영역에 부착되어 상기 제2 파장대의 빛을 투과시키는 제2 광학 필터와;
    상기 제1 광학 필터를 투과한 상기 제1 파장대의 빛을 감지하는 제1 광 검출기와;
    상기 제2 광학 필터를 투과한 상기 제2 파장대의 빛을 감지하는 제2 광 검출기와;
    상기 제1 광 검출기 및 상기 제2 광 검출기의 감지 결과에 기초하여 방사선을 판별하는 제어부를 포함하고,
    상기 제1 섬광체의 두께는 상기 제2 섬광체의 두께보다 상대적으로 얇게 형성되고,
    상기 제1 섬광체는 베타선과 반응하도록 마련되고, 상기 제2 섬광체는 감마선과 반응하도록 마련되고,
    상기 제1 섬광체로 입사되는 베타선이 상기 제1 섬광체와 반응하여 감마선을 방출하고, 상기 제1 섬광체와의 반응을 통해 방출된 감마선이 상기 제2 섬광체와 반응하며,
    상기 제어부는 상기 제1 광 검출기 및 상기 제2 광 검출기가 동시에 빛을 감지하는 것에 의해 베타선을 판별하는 것을 특징으로 하는 방사선의 종류를 구별하여 검출하는 방사선 검출기.
  3. 제2항에 있어서,
    상기 제1 섬광체는 CaF2(CaF2:Eu), CsI, LYSO, NaI, LaBr3, BaF2, GPS, 및 플라스틱 섬광체를 포함한 단파장 섬광체 중 어느 하나를 포함하고, 상기 제1 광학 필터는 380nm ~ 450nm 파장대의 빛을 투과하도록 마련되며;
    상기 제2 섬광체는 Ce:LuAG, Ce:GAGG, Ce:GFAG를 포함한 긴 파장 섬광체 중 어느 하나를 포함하고, 상기 제2 광학 필터는 480nm ~ 700nm 파장대의 빛을 투과하도록 마련되는 것을 특징으로 하는 방사선의 종류를 구별하여 검출하는 방사선 검출기.
  4. 방사선의 종류를 구별하여 검출하는 방사선 검출기에 있어서,
    제1 방사선과 반응하여 제1 파장대의 빛을 방출하는 제1 섬광체와, 제2 방사선과 반응하여 제2 파장대의 빛을 방출하는 제2 섬광체가 적층되어 형성된 섬광체 모듈과;
    상기 섬광체 모듈의 일 영역에 부착되어 상기 제1 파장대의 빛을 투과시키는 제1 광학 필터와;
    상기 섬광체 모듈에 다른 일 영역에 부착되어 상기 제2 파장대의 빛을 투과시키는 제2 광학 필터와;
    상기 제1 광학 필터를 투과한 상기 제1 파장대의 빛을 감지하는 제1 광 검출기와;
    상기 제2 광학 필터를 투과한 상기 제2 파장대의 빛을 감지하는 제2 광 검출기와;
    상기 제1 광 검출기 및 상기 제2 광 검출기의 감지 결과에 기초하여 방사선을 판별하는 제어부를 포함하고,
    상기 제1 섬광체의 두께는 상기 제2 섬광체의 두께보다 상대적으로 얇게 형성되고,
    상기 제1 섬광체는 중성자와 반응하도록 마련되고, 상기 제2 섬광체는 감마선과 반응하도록 마련되고,
    상기 제1 섬광체로 입사되는 중성자가 상기 제1 섬광체와 반응하여 감마선을 방출하고, 상기 제1 섬광체와의 반응을 통해 방출된 감마선이 상기 제2 섬광체와 반응하며,
    상기 제어부는 상기 제1 광 검출기 및 상기 제2 광 검출기가 동시에 빛을 감지하는 것에 의해 중성자를 판별하는 것을 특징으로 하는 방사선의 종류를 구별하여 검출하는 방사선 검출기.
  5. 제4항에 있어서,
    상기 제1 섬광체는 보론-10 (Boron-10) 기반 섬광체를 포함하고, 상기 제1 광학 필터는 380nm ~ 450nm 파장대의 빛을 투과하도록 마련되며;
    상기 제2 섬광체는 Ce:LuAG, Ce:GAGG, Ce:GFAG를 포함한 긴 파장 섬광체 중 어느 하나를 포함하고, 상기 제2 광학 필터는 480nm ~ 700nm 파장대의 빛을 투과하도록 마련되는 것을 특징으로 하는 방사선의 종류를 구별하여 검출하는 방사선 검출기.
  6. 제2항 또는 제4항에 있어서,
    상기 제1 광학 필터 및 상기 제2 광학 필터는 상기 제2 섬광체의 상기 제1 섬광체 반대편 표면에 부착되는 것을 특징으로 하는 방사선의 종류를 구별하여 검출하는 방사선 검출기.
  7. 제2항 또는 제4항에 있어서,
    상기 제1 광학 필터는 상기 제1 섬광체의 상기 제2 섬광체 반대편 표면에 부착되며;
    상기 제2 광학 필터는 상기 제2 섬광체의 상기 제1 섬광체 반대편 표면에 부착되는 것을 특징으로 하는 방사선의 종류를 구별하여 검출하는 방사선 검출기.
  8. 제2항 또는 제4항에 있어서,
    상기 제1 광학 필터는 상기 제1 섬광체의 상기 제1 섬광체와 상기 제2 섬광체의 적층 방향의 측면에 부착되고;
    상기 제2 광학 필터는 상기 제2 섬광체의 상기 제1 섬광체와 상기 제2 섬광체의 적층 방향의 측면에 부착되는 것을 특징으로 하는 방사선의 종류를 구별하여 검출하는 방사선 검출기.
  9. 제2항 또는 제4항에 있어서,
    상기 섬광체 모듈은
    상기 제2 섬광체의 상기 제1 섬광체 반대편에 부착되고, 상기 제1 파장대의 빛과 상기 제2 파장대의 빛을 반사 및 투과시키는 빔 스플리터를 더 포함하며;
    상기 제1 광학 필터는 상기 빔 스플리터의 반사 및 투과 방향 중 어느 한 방향에 설치되고, 상기 제2 광학 필터는 상기 빔 스플리터의 반사 및 투과 방향 중 다른 한 방향에 설치되는 것을 특징으로 하는 방사선의 종류를 구별하여 검출하는 방사선 검출기.
  10. 삭제
  11. 방사선의 종류를 구별하여 검출하는 방사선 검출기에 있어서,
    제1 방사선과 반응하여 제1 파장대의 빛을 방출하는 제1 섬광체와, 제2 방사선과 반응하여 제2 파장대의 빛을 방출하는 제2 섬광체가 적층되어 형성된 섬광체 모듈과;
    상기 제2 섬광체의 상기 제1 섬광체 반대편에 부착되고, 상기 제1 파장대의 빛을 반사 및 투과 중 어느 하나로 진행시키고 상기 제2 파장대의 빛은 반사 및 투과 중 다른 하나로 진행시키는 다이크로익 필터와;
    상기 다이크로익 필터를 거친 상기 제1 파장대의 빛을 감지하는 제1 광 검출기와;
    상기 다이크로익 필터를 거친 상기 제2 파장대의 빛을 감지하는 제2 광 검출기와;
    상기 제1 광 검출기 및 상기 제2 광 검출기의 감지 결과에 기초하여 방사선을 판별하는 제어부를 포함하고,
    상기 제1 섬광체의 두께는 상기 제2 섬광체의 두께보다 상대적으로 얇게 형성되고,
    상기 제1 섬광체는 베타선과 반응하도록 마련되고, 상기 제2 섬광체는 감마선과 반응하도록 마련되고,
    상기 제1 섬광체로 입사되는 베타선이 상기 제1 섬광체와 반응하여 감마선을 방출하고, 상기 제1 섬광체와의 반응을 통해 방출된 감마선이 상기 제2 섬광체와 반응하여, 상기 제1 광 검출기 및 상기 제2 광 검출기가 동시에 빛을 감지하는 것에 의해 베타선의 검출을 인식하는 것을 특징으로 하는 방사선의 종류를 구별하여 검출하는 방사선 검출기.
  12. 제11항에 있어서,
    상기 제1 섬광체는 CaF2(CaF2:Eu), CsI, LYSO, NaI, LaBr3, BaF2, GPS, 및 플라스틱 섬광체를 포함한 단파장 섬광체 중 어느 하나를 포함하고;
    상기 제2 섬광체는 Ce:LuAG, Ce:GAGG, Ce:GFAG를 포함한 긴 파장 섬광체 중 어느 하나를 포함하는 것을 특징으로 하는 방사선의 종류를 구별하여 검출하는 방사선 검출기.
  13. 방사선의 종류를 구별하여 검출하는 방사선 검출기에 있어서,
    제1 방사선과 반응하여 제1 파장대의 빛을 방출하는 제1 섬광체와, 제2 방사선과 반응하여 제2 파장대의 빛을 방출하는 제2 섬광체가 적층되어 형성된 섬광체 모듈과;
    상기 제2 섬광체의 상기 제1 섬광체 반대편에 부착되고, 상기 제1 파장대의 빛을 반사 및 투과 중 어느 하나로 진행시키고 상기 제2 파장대의 빛은 반사 및 투과 중 다른 하나로 진행시키는 다이크로익 필터와;
    상기 다이크로익 필터를 거친 상기 제1 파장대의 빛을 감지하는 제1 광 검출기와;
    상기 다이크로익 필터를 거친 상기 제2 파장대의 빛을 감지하는 제2 광 검출기와;
    상기 제1 광 검출기 및 상기 제2 광 검출기의 감지 결과에 기초하여 방사선을 판별하는 제어부를 포함하고,
    상기 제1 섬광체의 두께는 상기 제2 섬광체의 두께보다 상대적으로 얇게 형성되고,
    상기 제1 섬광체는 중성자와 반응하도록 마련되고, 상기 제2 섬광체는 감마선과 반응하도록 마련되고,
    상기 제1 섬광체로 입사되는 중성자가 상기 제1 섬광체와 반응하여 감마선을 방출하고, 상기 제1 섬광체와의 반응을 통해 방출된 감마선이 상기 제2 섬광체와 반응하여, 상기 제1 광 검출기 및 상기 제2 광 검출기가 동시에 빛을 감지하는 것에 의해 중성자의 검출을 인식하는 것을 특징으로 하는 방사선의 종류를 구별하여 검출하는 방사선 검출기.
  14. 제13항에 있어서,
    상기 제1 섬광체는 보론-10 (Boron-10) 기반 섬광체를 포함하고, 상기 제1 파장대는 380nm ~ 450nm 이며;
    상기 제2 섬광체는 Ce:LuAG, Ce:GAGG, Ce:GFAG 중 어느 하나를 포함하고, 상기 제2 파장대는 480nm ~ 700nm 인 것을 특징으로 하는 방사선의 종류를 구별하여 검출하는 방사선 검출기.
KR1020180138606A 2017-11-17 2018-11-13 방사선의 종류를 구별하여 검출하는 방사선 검출기 KR102132605B1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/764,533 US11346962B2 (en) 2017-11-17 2018-11-13 Radiation detector for detecting radiation and identifying type thereof
PCT/KR2018/013764 WO2019098629A1 (ko) 2017-11-17 2018-11-13 방사선의 종류를 구별하여 검출하는 방사선 검출기

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020170153901 2017-11-17
KR20170153901 2017-11-17

Publications (2)

Publication Number Publication Date
KR20190056975A KR20190056975A (ko) 2019-05-27
KR102132605B1 true KR102132605B1 (ko) 2020-07-10

Family

ID=66679521

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020180138606A KR102132605B1 (ko) 2017-11-17 2018-11-13 방사선의 종류를 구별하여 검출하는 방사선 검출기

Country Status (1)

Country Link
KR (1) KR102132605B1 (ko)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210102987A (ko) 2019-01-08 2021-08-20 더 리서치 파운데이션 포 더 스테이트 유니버시티 오브 뉴욕 유사 각기둥 광 가이드
CN112180419B (zh) * 2020-04-21 2023-05-05 宁波甬东核辐射监测有限公司 一种空气氚的探测部件和探测器
KR102399325B1 (ko) * 2020-04-22 2022-05-18 고려대학교 산학협력단 감마선의 반응 위치를 구별하여 검출하는 방사선 검출기 및 이를 포함하는 핵 의학 영상 장치
KR102490327B1 (ko) * 2020-11-04 2023-01-20 한양대학교 산학협력단 원자로 냉각재 누설 감지용 방사선 검출기 차폐장치

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015510589A (ja) * 2012-02-04 2015-04-09 ラピスカン システムズ、インコーポレイテッド ガンマ線‐中性子複合検出システム

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020195565A1 (en) * 2001-06-26 2002-12-26 European Organization For Nuclear Research PET scanner

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015510589A (ja) * 2012-02-04 2015-04-09 ラピスカン システムズ、インコーポレイテッド ガンマ線‐中性子複合検出システム

Also Published As

Publication number Publication date
KR20190056975A (ko) 2019-05-27

Similar Documents

Publication Publication Date Title
KR102132605B1 (ko) 방사선의 종류를 구별하여 검출하는 방사선 검출기
US11346962B2 (en) Radiation detector for detecting radiation and identifying type thereof
AU2007267904B2 (en) Neutron and gamma ray monitor
US7335891B2 (en) Gamma and neutron radiation detector
EP1016881B1 (en) Radiation detecting apparatus
JPH10232284A (ja) 波長シフト型放射線センサおよび放射線検出装置
US6407392B1 (en) Radiation detector
RU2502088C2 (ru) Устройство и способ для детектирования нейтронов посредством калориметрии на основе гамма-захвата
EP2705386B1 (en) Neutron spectrometer
US7381956B2 (en) Detector element for spatially resolved detection of gamma radiation
CA2451376A1 (en) A pet scanner
WO2013003621A2 (en) Optical fiber having scintillation quencher, a radiation sensor and a radiation detection apparatus including the optical fiber and a method of making and using the same
JP6083637B2 (ja) シンチレータを用いた中性子検出器及び中性子イメージ検出器
EP3306352A1 (en) Radioactive contamination inspection device
RU2300782C2 (ru) Сцинтилляционный детектор нейтронов
CN112946721A (zh) 一种能够同时鉴别α、β和γ射线的探测器及探测方法
RU2259573C1 (ru) Сцинтилляционный детектор быстрых и тепловых нейтронов
JP5060410B2 (ja) 放射線検出装置
KR102399325B1 (ko) 감마선의 반응 위치를 구별하여 검출하는 방사선 검출기 및 이를 포함하는 핵 의학 영상 장치
CN113031044B (zh) 用于辐射检查的探测器及探测装置
RU2272301C1 (ru) Сцинтилляционный детектор нейтронов
EP4105691A1 (en) Gamma and neutron radiation detector
RU2814061C1 (ru) Сцинтилляционный детектор нейтронного и гамма-излучения
RU2303278C1 (ru) Сцинтилляционный детектор
RU2371739C1 (ru) Сцинтилляционный детектор

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant