KR102126733B1 - Method of preparing a structure consisted of arranged fiber structure and cells - Google Patents

Method of preparing a structure consisted of arranged fiber structure and cells Download PDF

Info

Publication number
KR102126733B1
KR102126733B1 KR1020190002167A KR20190002167A KR102126733B1 KR 102126733 B1 KR102126733 B1 KR 102126733B1 KR 1020190002167 A KR1020190002167 A KR 1020190002167A KR 20190002167 A KR20190002167 A KR 20190002167A KR 102126733 B1 KR102126733 B1 KR 102126733B1
Authority
KR
South Korea
Prior art keywords
cells
cell
collagen
manufacturing
present
Prior art date
Application number
KR1020190002167A
Other languages
Korean (ko)
Inventor
김근형
김원진
Original Assignee
성균관대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 성균관대학교산학협력단 filed Critical 성균관대학교산학협력단
Priority to KR1020190002167A priority Critical patent/KR102126733B1/en
Application granted granted Critical
Publication of KR102126733B1 publication Critical patent/KR102126733B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0679Cells of the gastro-intestinal tract
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • A61L27/22Polypeptides or derivatives thereof, e.g. degradation products
    • A61L27/24Collagen
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/36Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
    • A61L27/38Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells
    • A61L27/3804Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells characterised by specific cells or progenitors thereof, e.g. fibroblasts, connective tissue cells, kidney cells
    • A61L27/3808Endothelial cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/36Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
    • A61L27/38Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells
    • A61L27/3804Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells characterised by specific cells or progenitors thereof, e.g. fibroblasts, connective tissue cells, kidney cells
    • A61L27/3826Muscle cells, e.g. smooth muscle cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/36Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
    • A61L27/38Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells
    • A61L27/3804Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells characterised by specific cells or progenitors thereof, e.g. fibroblasts, connective tissue cells, kidney cells
    • A61L27/383Nerve cells, e.g. dendritic cells, Schwann cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/56Porous materials, e.g. foams or sponges
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/0068General culture methods using substrates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0618Cells of the nervous system
    • C12N5/0619Neurons
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0652Cells of skeletal and connective tissues; Mesenchyme
    • C12N5/0657Cardiomyocytes; Heart cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0652Cells of skeletal and connective tissues; Mesenchyme
    • C12N5/0658Skeletal muscle cells, e.g. myocytes, myotubes, myoblasts
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/069Vascular Endothelial cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/069Vascular Endothelial cells
    • C12N5/0691Vascular smooth muscle cells; 3D culture thereof, e.g. models of blood vessels
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2430/00Materials or treatment for tissue regeneration
    • A61L2430/40Preparation and treatment of biological tissue for implantation, e.g. decellularisation, cross-linking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2500/00Specific components of cell culture medium
    • C12N2500/30Organic components
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2523/00Culture process characterised by temperature

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • Chemical & Material Sciences (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Genetics & Genomics (AREA)
  • Wood Science & Technology (AREA)
  • Biotechnology (AREA)
  • Organic Chemistry (AREA)
  • Cell Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Veterinary Medicine (AREA)
  • Dermatology (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Transplantation (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Urology & Nephrology (AREA)
  • Botany (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Rheumatology (AREA)
  • Vascular Medicine (AREA)
  • Neurology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Biophysics (AREA)
  • Immunology (AREA)
  • Neurosurgery (AREA)
  • Cardiology (AREA)
  • Dispersion Chemistry (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

The present invention relates to a manufacturing method for fabricating a structure including an arrayed fiber/surface structure and arrayed cells using a three-dimensional cell printing technique. The manufacturing method of the present invention enables the fabrication of cell-carrying collagen fiber structures arranged in one direction, thereby obtaining a more effectively and efficiently arranged cell structure. The structure is expected to be applied to various fields related to the regeneration of organs or arranged tissues by enabling a faster cell growth and cell differentiation effect than that of a generally produced collagen structure.

Description

배열된 섬유구조 및 세포를 갖는 구조체 제조방법{Method of preparing a structure consisted of arranged fiber structure and cells}Method of preparing a structure consisted of arranged fiber structure and cells}

본 발명은 3차원 세포프린팅 기법을 사용하여 배열된 섬유/표면 구조 및 배열된 세포를 포함하는 구조체를 제작하기 위한 제조방법에 관한 것이다.The present invention relates to a manufacturing method for fabricating a structure including an arrayed fiber/surface structure and an arrayed cell using a three-dimensional cell printing technique.

조직공학은 생명과학과 공학의 원리를 활용하여 조직의 기능을 재생, 유지, 혹은 향상시키는 생물학적 제품을 개발하려는 여러 학문이 제휴한 분야이다. 대표적인 방법으로는 재생을 원하는 조직으로부터 세포를 분리하여 배양하고 이를 적절한 생체재료에 접종하여 증폭 배양함으로써 인공적으로 조직을 형성하는 시술이다.Tissue engineering is an area of collaboration between several disciplines that seek to develop biological products that regenerate, maintain, or enhance the functioning of tissues using principles of life sciences and engineering. A typical method is a procedure of artificially forming tissue by separating and culturing cells from tissues to be regenerated, and inoculating them with appropriate biomaterials to amplify and culture them.

이러한 시술에는 세포를 필요한 부위에 전달하기 쉽고, 조직이 성장하는데 3차원 구조로 기계적인 보조역할을 할 수 있으며 기능을 할 수 있는 새로운 조직으로 만들어 나가는 적당한 세포지지체가 필요하다. 이러한 지지체는 세포가 증식하고 특유의 기질을 만들 수 있는 적절한 미세구조를 갖고 있어야 하며, 3차원으로 상호 연결된 많은 기공을 가지고 있어 세포가 이 기공을 통해 안으로 자랄 수 있어야 하고, 세포 성장에 필요한 영양분을 공급할 수 있어야 한다. 또한 독성이 없으며 지지체로서의 기능 종료 후에는 생체 내에서 완전히 분해되어 없어질 수 있는 생분해성 재료여야 한다.These procedures require a suitable cell support that is easy to deliver cells to the required areas, and to make new tissues that can function as mechanical aids and function as a three-dimensional structure for tissue growth. These supports must have an appropriate microstructure that allows cells to proliferate and create a unique matrix, and have many pores interconnected in three dimensions, so that the cells can grow inside, and provide the nutrients needed for cell growth. It should be able to supply. In addition, it should be a biodegradable material that is non-toxic and can be completely degraded and disappeared in vivo after termination of its function as a support.

인공 조직의 성능 향상을 위해 최근의 인공 조직은 성장인자와 세포를 원하는 위치에 보유할 수 있고 세포를 균일하게 분포시킬 수 있으며, 성장인자를 효과적으로 운반할 수 있다는 점으로 인해 세포 프린팅 기술(cell printing techniques)이 다양한 조직 재생 분야에 널리 응용되고 있다. 성공적인 조직 재생을 위해서 세포가 탑재되는 담체는 높은 다공성과 공극 크기 조절 가능성, 산소와 영양성분 공급, 및 혈관 신생을 위해 공극 간 100% 상호연결성을 갖추어야 한다.To improve the performance of artificial tissues, recent artificial tissues have cell printing technology due to the fact that they can retain growth factors and cells in a desired location, distribute cells uniformly, and effectively carry growth factors. techniques) are widely applied in various tissue regeneration fields. For successful tissue regeneration, the cell-mounted carrier must have high porosity and pore size control, oxygen and nutrient supply, and 100% interconnection between pores for angiogenesis.

한편, 배열된 구조를 갖는 조직의 재생을 위해서는 반드시 세포들을 배열된 형태로 배양하고 분화시켜야 한다. 따라서 많은 연구팀들이 세포를 배열된 형태로 배양하기 위해 여러 가지 방법으로 배열된 섬유 구조를 갖는 세포지지체를 제작하기 위해 노력해 왔다. 그러나 전기방사 공정이나 리소그래피 공정 같은 배열된 섬유 구조를 제작하는데 빈번하게 사용되는 공정들은 대체로 적층이 불가능하여 때문에 세포담체로써 사용되는데 한계점을 가지므로 이에 대한 많은 연구가 필요한 실정이다.On the other hand, cells must be cultured and differentiated in an arranged form in order to regenerate tissue having an arranged structure. Therefore, many research teams have tried to produce cell supports having a fibrous structure arranged in various ways to cultivate cells in an arrayed form. However, processes that are frequently used to fabricate arrayed fiber structures, such as electrospinning processes and lithography processes, cannot be stacked, so they have limitations in being used as cell carriers, so much research is needed.

대한민국 출원공개공보 10-2017-0012099Republic of Korea Application Publication No. 10-2017-0012099

본 발명자들은 조직 재생을 위한 구조체에 대한 연구를 거듭한 결과 배열된 구조를 갖는 조직의 재생을 위해서는 반드시 세포들이 배열된 형태로 배양되고 분화시켜야 함을 인지하여 배열된 구조의 세포를 담지한 콜라겐 구조체 제작을 위한 제조방법을 발명하고, 상기 제조방법을 통한 배열된 구조의 세포를 담지한 콜라겐 구조체 경우 일반적으로 제작되는 콜라겐 구조체에 비해 빠른 세포성장 및 세포분화 효과가 있음을 실험적으로 확인하여 본 발명을 완성하였다.The present inventors have repeatedly studied the structure for tissue regeneration, and the collagen structure carrying cells of the arranged structure is recognized by the fact that cells must be cultured and differentiated in the arranged form in order to regenerate the tissue having the arranged structure. Invented the manufacturing method for production, and experimentally confirm that the collagen structure carrying cells of the arranged structure through the above manufacturing method has a faster cell growth and cell differentiation effect than the produced collagen structure. Completed.

이에, 본 발명의 목적은 (a) 근원세포(myoblast), 심근원세포 (cardiomyoblast), 평활근세포 (smooth muscle cell), 신경세포 (neural cell), 및 혈관세포 (vascular cells)로 이루어진 군으로부터 선택된 하나 이상의 세포 및 콜라겐(collagen)을 포함하는 바이오잉크를 준비하는 단계;Accordingly, the object of the present invention is (a) myoblast (myoblast), Preparing a bioink containing one or more cells and collagen selected from the group consisting of cardiomyoblast, smooth muscle cell, neural cell, and vascular cells step;

(b) 상기 (a)단계의 바이오잉크에 전단응력(shear stress)를 가하여 상기 콜라겐 및 근원세포를 한 방향으로 배열시키는 단계; (b) arranging the collagen and progenitor cells in one direction by applying a shear stress to the bioink of step (a);

(c) 상기 (b)단계의 바이오잉크를 플레이트에 분배하여 인공구조체를 형성하는 단계; 및(c) dispensing the bioink of step (b) onto a plate to form an artificial structure; And

(d) 상기 (c)단계의 인공구조체를 염화칼륨-글리신 용액을 이용하여 경화 및 배열을 유지시키는 단계를 포함하는, 세포지지체의 제조방법을 제공하는 것이다.(d) It provides a method for producing a cell support, comprising the step of maintaining the curing and alignment of the artificial structure of step (c) using a potassium chloride-glycine solution.

그러나 본 발명이 이루고자 하는 기술적 과제는 이상에서 언급한 과제에 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래의 기재로부터 당해 기술 분야의 통상의 기술자에게 명확하게 이해될 수 있을 것이다.However, the technical problem to be achieved by the present invention is not limited to the above-mentioned problems, and other problems that are not mentioned will be clearly understood by those skilled in the art from the following description.

상기와 같은 본 발명의 목적을 달성하기 위하여, 본 발명은 (a) 근원세포(myoblast), 심근원세포 (cardiomyoblast), 평활근세포 (smooth muscle cell), 신경세포 (neural cell), 및 혈관세포 (vascular cells)로 이루어진 군으로부터 선택된 하나 이상의 세포 및 콜라겐(collagen)을 포함하는 바이오잉크를 준비하는 단계;In order to achieve the object of the present invention as described above, the present invention (a) myoblast (myoblast), Preparing a bioink containing one or more cells and collagen selected from the group consisting of cardiomyoblast, smooth muscle cell, neural cell, and vascular cells step;

(b) 상기 (a)단계의 바이오잉크에 전단응력(shear stress)를 가하여 상기 콜라겐 및 근원세포를 한 방향으로 배열시키는 단계;(b) arranging the collagen and progenitor cells in one direction by applying a shear stress to the bioink of step (a);

(c) 상기 (b)단계의 바이오잉크를 플레이트에 분배하여 인공구조체를 형성하는 단계; 및(c) dispensing the bioink of step (b) onto a plate to form an artificial structure; And

(d) 상기 (c)단계의 인공구조체를 염화칼륨-글리신 용액을 이용하여 경화 및 배열을 유지시키는 단계를 포함하는, 세포지지체의 제조방법을 제공한다.(d) providing a method of manufacturing a cell support, comprising the step of maintaining the curing and alignment of the artificial structure of step (c) using a potassium chloride-glycine solution.

본 발명의 일 구현예로, 상기 (a) 단계에서 콜라겐은 바이오잉크 총 중량에 대하여 3 내지 9중량%로 포함될 수 있다.In one embodiment of the present invention, the collagen in step (a) may be included in 3 to 9% by weight based on the total weight of the bioink.

본 발명의 다른 구현예로, 상기 (a) 단계의 근원세포의 개수는 1 x 106cells/mL-1 내지 1 x 109cells/mL-1 일 수 있다.In another embodiment of the present invention, the number of progenitor cells in step (a) may be 1 x 10 6 cells/mL -1 to 1 x 10 9 cells/mL -1 .

본 발명의 또 다른 구현예로, 상기 (c) 단계에서 플레이트의 온도는 33℃ 내지 40℃ 일 수 있다.In another embodiment of the present invention, the temperature of the plate in step (c) may be 33°C to 40°C.

본 발명의 또 다른 구현예로, 상기 (c) 단계의 분배는 0.7uLs-1 내지 0.9uLs-1 유량으로 이루어질 수 있다.In another embodiment of the present invention, the distribution of step (c) may be made at a flow rate of 0.7 uLs -1 to 0.9 uLs -1 .

본 발명의 또 다른 구현예로, 상기 (c) 단계의 분배는 9mms-1 내지 11mms-1 속도로 이루어질 수 있다.In another embodiment of the present invention, the distribution of step (c) may be performed at a speed of 9 mms -1 to 11 mms -1 .

본 발명의 또 다른 구현예로, 상기 (c) 단계의 분배는 인공구조체가 격자구조를 형성하도록 이루어질 수 있다.In another embodiment of the present invention, the distribution of step (c) may be made such that the artificial structure forms a lattice structure.

본 발명의 또 다른 구현예로, 상기 (d) 단계의 염화칼륨-글리신 용액에서 상기 염화칼륨은 50 내지 200 mM 이고 상기 글리신은 50 내지 100 mM 일 수 있다.In another embodiment of the present invention, in the potassium chloride-glycine solution of step (d), the potassium chloride may be 50 to 200 mM and the glycine may be 50 to 100 mM.

본 발명의 배열된 콜라겐 섬유구조 및 세포를 갖는 구조체 제조방법은 한 방향으로 배열된 세포 담지 콜라겐 섬유구조의 제작이 가능하며 보다 효과적이고 효율적으로 배열된 세포구조를 얻을 수 있으며 상기 구조는 일반적으로 제작되는 콜라겐 구조체에 비해 빠른 세포성장과 세포 분화 효과가 있어 배열된 조직이나 장기 재생과 관련된 다양한 분야에 적용될 것으로 기대된다.The method of manufacturing an arrayed collagen fiber structure and a structure having cells of the present invention enables production of a cell-supported collagen fiber structure arranged in one direction, and more effectively and efficiently arranged cell structures can be obtained, and the structure is generally produced. It is expected to be applied to various fields related to arranged tissue or organ regeneration because it has a fast cell growth and cell differentiation effect compared to collagen structure.

도 1은 배열된 콜라겐 섬유구조 및 세포를 갖는 구조체 제작 모식도를 나타낸 것이다.
도 2는 배열된 섬유구조 및 세포를 갖는 구조체의 형태를 나타낸 것이다.
도 3은 바이오 잉크의 유량에 따라 제조된 섬유구조의 형태를 비교한 것이다.
도 4는 바이오 프린팅시 이동속도에 따른 콜라겐 섬유구조의 형태 등을 비교한 것이다.
도 5a 내지 도 5g는 근원세포가 포함된 구조체 배양 및 이에 대한 다양한 세포실험 결과를 나타낸 것이다.
1 shows a schematic diagram of constructing a structure having arranged collagen fiber structures and cells.
Figure 2 shows the morphology of a structure with arranged fibrous structures and cells.
Figure 3 is a comparison of the shape of the fabric structure prepared according to the flow rate of bio ink.
Figure 4 is a comparison of the shape of the collagen fiber structure according to the movement speed during bioprinting.
5a to 5g show the results of various cell experiments and the culture of the construct containing the progenitor cells.

본 발명자들은 조직 재생을 위한 구조체에 대한 연구를 거듭한 결과 배열된 구조를 갖는 조직의 재생을 위해서는 반드시 세포들이 배열된 형태로 배양되고 분화시켜야 함을 인지하여 배열된 구조의 세포를 담지한 콜라겐 구조체 제작을 위한 제조방법을 발명하고, 상기 제조방법을 통한 배열된 구조의 세포를 담지한 콜라겐 구조체 경우 일반적으로 제작되는 콜라겐 구조체에 비해 빠른 세포성장 및 세포분화 효과가 있음을 실험적으로 확인하여 본 발명을 완성하였다.The present inventors have repeatedly studied the structure for tissue regeneration, and the collagen structure carrying cells of the arranged structure is recognized by the fact that cells must be cultured and differentiated in the arranged form in order to regenerate the tissue having the arranged structure. Invented the manufacturing method for production, and experimentally confirm that the collagen structure carrying cells of the arranged structure through the above manufacturing method has a faster cell growth and cell differentiation effect than the produced collagen structure. Completed.

본 발명의 일 실시예에서는, 본 발명의 제조방법에 따라 배열된 섬유구조 및 세포를 갖는 구조체의 제조가 가능함을 확인하였다(실시예 2 참조).In one embodiment of the present invention, it was confirmed that it is possible to manufacture a structure having fibers and cells arranged according to the manufacturing method of the present invention (see Example 2).

본 발명의 다른 실시예에서는, 바이오잉크의 유량에 따른 섬유구조의 형태 관찰하여 최적의 유량을 확인하였다(실시예 3 참조).In another embodiment of the present invention, the optimal flow rate was confirmed by observing the shape of the fiber structure according to the flow rate of the bioink (see Example 3).

본 발명의 또 다른 실시예에서는, 바이오 프린팅 시 이동 속도에 따른 섬유구조의 형태 관찰하여 최적의 이동 속도를 확인하였다(실시예 4 참조).In another embodiment of the present invention, the optimum movement speed was confirmed by observing the shape of the fiber structure according to the movement speed during bioprinting (see Example 4).

본 발명의 또 다른 실시예에서는, 근원세포가 포함된 배열된 구조체 배양 및 세포실험을 수행한 결과 세포의 성장속도는 유사하였으나 세포 분화력에 있어서 배열된 구조체가 배열되지 않은 구조체보다 뛰어남을 확인하였다(실시예 5 참조).In another embodiment of the present invention, as a result of performing the cell array culture and cell experiment, the cell growth rate was similar, but it was confirmed that the cell array differentiation was superior to the cell array. (See Example 5).

이하 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.

본 발명은 (a) 근원세포(myoblast), 심근원세포 (cardiomyoblast), 평활근세포 (smooth muscle cell), 신경세포 (neural cell), 및 혈관세포 (vascular cells)로 이루어진 군으로부터 선택된 하나 이상의 세포 및 콜라겐(collagen)을 포함하는 바이오잉크를 준비하는 단계;The present invention (a) myoblast (myoblast), Preparing a bioink containing one or more cells and collagen selected from the group consisting of cardiomyoblast, smooth muscle cell, neural cell, and vascular cells step;

(b) 상기 (a)단계의 바이오잉크에 전단응력(shear stress)를 가하여 상기 콜라겐 및 근원세포를 한 방향으로 배열시키는 단계;(b) arranging the collagen and progenitor cells in one direction by applying a shear stress to the bioink of step (a);

(c) 상기 (b)단계의 바이오잉크를 플레이트에 분배하여 인공구조체를 형성하는 단계; 및(c) dispensing the bioink of step (b) onto a plate to form an artificial structure; And

(d) 상기 (c)단계의 인공구조체를 염화칼륨-글리신 용액을 이용하여 경화 및 배열을 유지시키는 단계를 포함하는, 세포지지체의 제조방법을 제공한다.(d) providing a method of manufacturing a cell support, comprising the step of maintaining the curing and alignment of the artificial structure of step (c) using a potassium chloride-glycine solution.

본 발명에서 사용하는 용어 “콜라겐”은 동물의 뼈와 피부 및 근육에 주로 존재하며 연골, 장기 막, 머리카락 등에도 분포되어 있는 경단백질이며 천연 생체적합성 재료이다. 본 발명에서 콜라겐은 다른 천연 생체적합성 재료인 젤라틴, 푸코이단, 알지네이트, 키토산 또는 히알루론산으로 대체하여 사용할 수도 있다.The term “collagen” used in the present invention is a light protein that is mainly present in the bones, skin, and muscles of animals and is also distributed in cartilage, organ membranes, hair, etc., and is a natural biocompatible material. In the present invention, collagen may be used in place of other natural biocompatible materials such as gelatin, fucoidan, alginate, chitosan or hyaluronic acid.

본 발명에 있어서 상기 (a) 콜라겐은 상기 바이오잉크 총 중량에 대하여 3 내지 9 중량%로 포함되는 것이 바람직할 수 있다. 이는 콜라겐이 바이오잉크 총 중량에 대하여 3중량% 미만으로 포함될 경우 3D 형상으로 프린팅이 불가능한 문제점이 있으며 콜라겐의 중량비가 증가할수록 높은 점성으로 인해 구조체 제작이 어려우며 잉크 내부의 세포의 생존율 또한 떨어지기 때문이다.In the present invention, the (a) collagen may be preferably included in 3 to 9% by weight relative to the total weight of the bioink. This is because when collagen is contained in less than 3% by weight relative to the total weight of bioink, printing in a 3D shape is impossible, and as the weight ratio of collagen increases, the structure is difficult to produce due to the high viscosity and the survival rate of the cells inside the ink also decreases. .

본 발명에서 사용하는 용어 “근원세포”는 분화되지 않은 상태에 있는 근육 세포를 의미하며, 근원세포의 분화가 진행되면 다른 세포와 융합하여 다핵의 가늘고 긴 근관 (myotube)을 형성하여 근섬유 (muscle fiber)를 만든다. 본 발명의 제조방법에 따른 근원세포의 분화 촉진 효과는 골격근, 심근 및 평활근 등에서 유도될 수 있으며, 상기 근원세포는 심근원세포(cardiomyoblast)일 수 있다. 또한, 상기 근원세포 이외에도, 평활근세포 (smooth muscle cell), 신경세포 (neural cell), 혈관세포 (vascular cells)를 바이오잉크 제작에 이용할 수 있으나 이에 제한되는 것은 아니다.The term “muscular cell” used in the present invention refers to muscle cells in an undifferentiated state, and when differentiation of progenitor cells progresses, it fuses with other cells to form multinucleated elongated myotubes and muscle fibers. ). The effect of promoting differentiation of progenitor cells according to the manufacturing method of the present invention may be derived from skeletal muscle, myocardium and smooth muscle, etc., and the progenitor cells may be cardiomyoblasts. In addition, in addition to the progenitor cells, smooth muscle cells, neural cells, and vascular cells may be used for bioink production, but are not limited thereto.

본 발명에서 사용하는 용어 “염화칼륨-글리신 용액”는 콜라겐의 파이버(fiber) 형성을 도우며, 이를 통해 콜라겐 섬유의 배열을 유지 할 수 있게 도와준다. 상기 (d) 단계의 염화칼륨-글리신 용액에서 상기 염화칼륨은 50 내지 200 mM 이고 상기 글리신은 50 내지 100 mM 일 수 있으나 이에 제한되는 것은 아니다.The term “potassium chloride-glycine solution” used in the present invention helps to form the fibers of collagen, and thereby helps to maintain the arrangement of collagen fibers. In the potassium chloride-glycine solution of step (d), the potassium chloride may be 50 to 200 mM and the glycine may be 50 to 100 mM, but is not limited thereto.

상기 염화칼륨-글리신 용액은 콜라겐과 함께 사용하는 경우 최적의 효율을 가질 수 있다.The potassium chloride-glycine solution may have optimal efficiency when used with collagen.

본 발명에서 상기 (a) 단계의 근원세포의 개수는 1 x 106cells/mL-1 내지 1 x 109cells/mL-1 일 수 있으나 이에 제한되는 것은 아니며, 1 x 106cells/mL-1 이상이면 충분하다.The number of source cells of step (a) in the present invention is 1 x 10 6 cells / mL -1 to 1 x 10 9 cells / mL -1 days, but not limited to, 1 x 10 6 cells / mL - 1 or more is sufficient.

본 발명에서 상기 (c) 단계에서 플레이트의 온도는 33℃ 내지 40℃ 일 수 있으나 이에 제한되는 것은 아니며 상기 온도 범위에서 콜라겐은 효과적으로 겔화 된다.In the present invention, the temperature of the plate in step (c) is 33°C to 40°C It may be, but is not limited to, collagen is effectively gelated in the temperature range.

본 발명에서 상기 (c) 단계의 분배는 0.7uLs-1 내지 0.9uLs-1 유량으로 이루어질 수 있으나 이에 제한되는 것은 아니다. 다만 0.9 이상의 유량에서는 배열성이 사라질 수 있고 0.7 이하의 유량에서는 불안정한 토출로 인해 가닥의 굵기가 일정치 않은 문제가 발생할 수 있다.In the present invention, the distribution of step (c) may be made at a flow rate of 0.7 uLs -1 to 0.9 uLs -1 , but is not limited thereto. However, at a flow rate of 0.9 or more, the alignment may disappear, and at a flow rate of 0.7 or less, unstable discharge may cause a problem that the thickness of the strands is not uniform.

본 발명에서 상기 (c) 단계의 분배는 9mm s-1 내지 11mm s-1 속도로 이루어질 수 있으나 이제 제한되는 것은 아니다. 다만 9 mm s-1 이하의 속도에서 배열성이 사라질 수 있으며, 12 mm s-1 이상의 속도에서는 배열성을 유지하지만 가닥의 제작 시 불안정함을 보이는 문제가 발생할 수 있다.The distribution of step (c) in the present invention may be made at a speed of 9mm s -1 to 11mm s -1 , but is not limited now. However, the alignment may be lost at a speed of 9 mm s -1 or less, and the alignment may be maintained at a speed of 12 mm s -1 or more, but a problem may appear instability in the production of strands.

본 발명에서 상기 (c) 단계의 분배는 인공구조체가 격자구조를 형성하도록 이루어질 수 있다. 이는 구조체에 공극을 제공하기 위함인데 이는 세포 생존, 증식 및 이동에 필수적인 역할을 하며 구조체의 공극 연결성이 낮으면 대량수송 및 영양물질 교환이 잘 이루어지지 않고, 이는 결국 대형 3차원 구조체에서 세포 괴사를 일으키게 된다.In the present invention, the distribution of step (c) may be made such that the artificial structure forms a lattice structure. This is to provide pores to the structure, which plays an essential role in cell survival, proliferation, and migration. If the pore connectivity of the structure is low, mass transport and exchange of nutrients do not occur well, which in turn leads to cell necrosis in large three-dimensional structures. Is caused.

이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시한다. 그러나 하기의 실시예는 본 발명을 보다 쉽게 이해하기 위하여 제공되는 것일 뿐, 하기 실시예에 의해 본 발명의 내용이 한정되는 것은 아니다.Hereinafter, preferred embodiments are provided to help understanding of the present invention. However, the following examples are only provided to more easily understand the present invention, and the contents of the present invention are not limited by the following examples.

[실시예][Example]

실시예 1. 바이오 잉크의 제조Example 1. Preparation of bio ink

바이오잉크의 제조는 도 1에 나타난 바와 같으며, 바이오잉크는 5 wt% 중성 콜라겐 용액에 C2C12 세포 (1 X 107 cells mL-1)를 혼합하여 제조했다.Preparation of the bio-ink is as shown in Figure 1, the bio-ink was prepared by mixing C2C12 cells (1 X 10 7 cells mL -1 ) in a 5 wt% neutral collagen solution.

실시예 2. 배열된 섬유구조 및 세포를 갖는 구조체의 제조Example 2. Preparation of structure with arranged fibrous structure and cells

배열된 섬유구조 및 세포를 갖는 구조체의 제조방법은 도 1에 나타난 바와 같다. 바이오잉크의 경우, 5 wt% 중성 콜라겐 용액에 C2C12 세포 (1 X 107 cells mL-1)를 혼합시켰으며, 상기와 같이 혼합한 용액은 37℃ 플레이트에 0.80 uL s-1의 유량과 10 mm s-1의 속도로 프린팅 한 후, 150 mM KCL / 50 mM L-glycine 용액 (pH 7.5)에 반응시켰다. 그 다음 상기와 같이 제작한 구조체를 광학사진, 주사전자현미경 사진 및 형광사진을 통해 이하와 같이 관찰하였다.The method of manufacturing the structure having the arranged fibrous structure and cells is as shown in FIG. 1. In the case of bioink, C2C12 cells (1 X 10 7 cells mL -1 ) were mixed in a 5 wt% neutral collagen solution, and the mixed solution as described above was 0.80 uL s -1 flow rate and 10 mm in a 37°C plate. After printing at a rate of s -1 , it was reacted with 150 mM KCL / 50 mM L-glycine solution (pH 7.5). Then, the structure prepared as above was observed as follows through optical photography, scanning electron micrograph and fluorescence photography.

세포의 배열성 확인을 위해 살아있는 세포와 죽은 세포를 염색하는 Live (green) / Dead (red) 염색을 수행하였다. 0.15 mM cacein AM (live)과 2 mM ethidium homodimer-1 (dead)에 1시간 동안 구조체를 염색 한 후 측정하였다. 또한, 콜라겐 섬유의 배열성 확인을 위해 phalloidin conjugated with Alexa Fluor 488 (Invitrogen, USA) 용액에 구조체를 2시간 이상 반응시킨 후 측정하였다.In order to confirm the arrangement of cells, Live (green) / Dead (red) staining was performed to stain live and dead cells. The structure was stained for 1 hour in 0.15 mM cacein AM (live) and 2 mM ethidium homodimer-1 (dead), and then measured. In addition, the structure was reacted with phalloidin conjugated with Alexa Fluor 488 (Invitrogen, USA) solution for 2 hours or more to confirm the alignment of collagen fibers, and then measured.

그 결과, 도 1 및 도 2에 나타난 바와 같이, 상기 방법으로 제작한 구조체의 경우 세포 및 콜라겐 섬유가 배열성을 가지고 있다는 것을 확인하였다.As a result, as shown in Figures 1 and 2, in the case of the structure produced by the above method, it was confirmed that the cells and collagen fibers have alignment.

실시예 3. 바이오잉크의 유량에 따른 섬유구조의 형태 관찰Example 3. Observation of the shape of the fiber structure according to the flow rate of bioink

바이오잉크의 유량에 다른 섬유구조 관찰을 위해 0.64 내지 0.96 uL s-1의 조건에서 (속도 10 mm s-1 고정) 콜라겐 구조체를 제작하였다. 콜라겐의 유량을 제외한 모든 조건은 동일하게 진행하였으며, 주사전자현미경을 이용해 배열성을 관찰하고 주사전자현미경 사진 상의 섬유 구조의 각도를 측정하여 반치폭 (FWHM, full width at half maximum)을 계산하였다.Collagen structures were prepared under the conditions of 0.64 to 0.96 uL s -1 (fixed at a rate of 10 mm s -1 ) to observe the fiber structure different from the flow rate of bioink. All conditions except the flow rate of collagen were performed in the same manner, and the alignment was observed using a scanning electron microscope, and the angle of the fiber structure on the scanning electron microscope photograph was measured to calculate the full width at half maximum (FWHM).

그 결과, 도 3에 나타난 바와 같이 0.9 uL s-1 이상의 유량에서 배열성이 사라지고 0.7 uL s-1 이하의 유량에서 불안정한 토출로 인해 가닥의 굵기가 일정치 않은 것을 확인하였다.As a result, as shown in FIG. 3, it was confirmed that the alignment disappeared at a flow rate of 0.9 uL s -1 or higher, and the thickness of the strand was not uniform due to unstable discharge at a flow rate of 0.7 uL s -1 or lower.

실시예 4. 바이오 프린팅 시 이동 속도에 따른 섬유구조의 형태 관찰Example 4. Observation of the shape of the fiber structure according to the movement speed during bio printing

바이오잉크의 유량에 다른 섬유구조 관찰을 위해 5 내지 12.5 mm s-1의 조건에서 콜라겐 구조체를 제작하였다. 프린팅 시 이동 속도를 제외한 모든 조건은 동일하게 진행하였으며, 주사전자현미경과 콜라겐 형광염색을 통해 배열성을 확인하였다. 주사전자현미경 사진 상의 섬유 구조의 각도를 측정하여 반치폭을 계산하였다.Collagen structures were prepared under the conditions of 5 to 12.5 mm s -1 to observe the fiber structure different from the flow rate of bioink. When printing, all conditions except the moving speed were the same, and alignment was confirmed by scanning electron microscopy and collagen fluorescence staining. The half width was calculated by measuring the angle of the fiber structure on the scanning electron microscope.

그 결과, 도 4에 나타난 바와 같이 9 mm s-1 이하의 속도에서 배열성이 사라지는 것을 확인하였으며, 12 mm s-1 이상의 속도에서 배열성을 유지하지만 가닥의 제작시 불안정함을 확인하였다.As a result, as shown in FIG. 4, it was confirmed that the alignment was lost at a speed of 9 mm s −1 or less, and the alignment was maintained at a speed of 12 mm s −1 or more, but it was confirmed that it was unstable during the production of the strand.

실시예 5. 근원세포가 포함된 구조체 배양 및 세포실험Example 5. Structure culture and cell experiment with progenitor cells

제작한 배열성을 지니는 세포-콜라겐 구조체 (CS-AF)의 세포능을 확인하기 위해 같은 프린팅 조건에서 염화칼륨-글리신 버퍼를 사용하지 않은, 배열성이 결여된 구조체 (CON)와 비교를 진행하였다.In order to confirm the cellular capacity of the prepared cell-collagen structure (CS-AF) having the arrayability, a comparison was made with the structure (CON) lacking the arrayability without using potassium chloride-glycine buffer under the same printing conditions.

5-1. 세포 배양5-1. Cell culture

근원세포인 C2C12 세포가 포함된 콜라겐 구조체 (12 × 8 × 1 mm3)를 FBS (Gemini Bio-Products, USA)과 1% 항생제(Antimycotic; Cellgro, Manassas, VA)를 함유한 DMEM (Sigma- Aldrich, USA) 배지에서 37 ℃, 5 % CO2 조건 하에서 배양하였다. 배지는 2일에 한번씩 교체하였으며, 근원세포의 분화유도에는 2% horse serum과 1% 항생제를 함유하는 DMEM 배지를 이용하였다.DMEM (Sigma-Aldrich, DMEM) containing collagen construct (12 × 8 × 1 mm3) containing C2C12 cells, the progenitor cells, and FBS (Gemini Bio-Products, USA) and 1% antibiotic (Antimycotic; Cellgro, Manassas, VA) USA) cultured in a medium at 37° C. under 5% CO 2 conditions. The medium was changed once every 2 days, and DMEM medium containing 2% horse serum and 1% antibiotic was used to induce differentiation of myoblasts.

5-2. 세포 증식 테스트5-2. Cell proliferation test

각 세포 구조체는 1, 3, 7일 배양 후 세포 증식 키트 (Cell Proliferation Kit I; Boehringer Mannheim, Germay)를 이용해 MTT assay를 진행하였다. 배양을 진행한 구조체는 0.5 mg mL-1 3-(4,5-디메틸티아졸-2-일)-2,5-디페닐테트라졸리움 브로마이드(3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, MTT)에 4시간 동안 반응 한 후 흡광도 570 nm의 microplate reader를 이용해 측정하였다.Each cell construct was cultured for 1, 3, 7 days and then subjected to MTT assay using a cell proliferation kit (Cell Proliferation Kit I; Boehringer Mannheim, Germay). The cultured construct was 0.5 mg mL -1 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (3-(4,5-dimethylthiazol-2-yl) After reacting with -2,5-diphenyltetrazolium bromide (MTT) for 4 hours, it was measured using a microplate reader with an absorbance of 570 nm.

그 결과, 도 5a에 나타난 바와 같이 상기 두가지 구조체에서 세포 증식의 차이는 나타나지 않음을 확인하였다.As a result, it was confirmed that the difference in cell proliferation was not observed in the two constructs as shown in FIG. 5A.

5-3. 형광이미지 획득 방법5-3. Fluorescence image acquisition method

각 세포가 포함된 콜라겐 구조체는 3일 및 7일 배양한 후 37℃에서 30 분 동안 0.15 mM calcein AM 및 2 mM ethidium homodimer-1을 처리하여 염색하고, 살아있는 세포(초록색)와 죽은 세포(빨간색)를 형광현미경으로 측정하였다.Collagen constructs containing each cell were cultured for 3 days and 7 days, stained by treating with 0.15 mM calcein AM and 2 mM ethidium homodimer-1 at 37°C for 30 minutes, and living cells (green) and dead cells (red). Was measured with a fluorescence microscope.

그 결과 도 5b에 나타난 바와 같이 살아있는 세포와 죽은 세포를 염색한 형광사진에서 두 구조체 모두 높은 세포생존율을 보였으나 7일차의 CS-AF에서 CON과 달리 세포가 배열된 구조를 확인할 수 있었다.As a result, as shown in FIG. 5B, both structures showed high cell viability in fluorescence pictures stained with live and dead cells, but in the CS-AF on the 7th day, unlike the CON, the structure in which the cells were arranged was confirmed.

또한, 각 콜라겐 구조체에서 배양한 세포의 미오신 중쇄(myosin heavy chain: MHC)와 sarcomeric alpha actinin (α-actinin) 이미지 획득을 위하여, 배양 7일 및 14일 경과후 PBS로 2회 세척하고, 3.7% 파라포름알데하이드(paraformaldehyde)를 처리하여 실온에서 고정하였다. 그리고 다시 PBS로 상기 구조체를 2회 세척하고, 2% Triton X-100에 60분 동안 담갔으며, 이어서, 2% BSA로 120분 동안 처리한 후, 상기 샘플을 1:50으로 희석한 항-MHC 항체 (Invitrogen, USA) 및 항-α-actinin 항체 (Invitrogen)로 처리하여 4℃에서 밤새 보관하였다. MHC는 Alexa Fluor 488 (1:50, Molecular Probes), α-actinin은 Alexa Fluor 594 (1:50, Molecular Probes) 와 접합된 2차 항체를 실온에서 1시간 동안 처리하였고, 5 μM 디아미디노-2-페닐인돌(diamidino-2-phenylindole, DAPI; Invitrogen, Carlsbad, CA) 및 팔로이딘(phalloidin)15 U/mL (Invitrogen, Carlsbad, CA)를 Alexa Fluor 568에 접합하여 대조 염색하였다. Zeiss 공초점 현미경을 이용하여 이미지를 획득하였고, ImageJ 소프트웨어는 세포의 방향을 계산하는데 사용하였다(cell orientation). In addition, in order to obtain the myosin heavy chain (MHC) and sarcomeric alpha actinin (α-actinin) images of cells cultured in each collagen construct, washed twice with PBS after 7 and 14 days of culture, 3.7% The paraformaldehyde was treated and fixed at room temperature. And again, the structure was washed twice with PBS, immersed in 2% Triton X-100 for 60 minutes, and then treated with 2% BSA for 120 minutes, and the sample was diluted 1:50 with anti-MHC. Antibodies (Invitrogen, USA) and anti-α-actinin antibodies (Invitrogen) were stored at 4° C. overnight. The secondary antibody conjugated with Alexa Fluor 488 (1:50, Molecular Probes) for MHC and Alexa Fluor 594 (1:50, Molecular Probes) for α-actinin was treated at room temperature for 1 hour, and 5 μM diamidino- 2-phenylindole (diamidino-2-phenylindole, DAPI; Invitrogen, Carlsbad, CA) and phalloidin 15 U/mL (Invitrogen, Carlsbad, CA) were conjugated to Alexa Fluor 568 for control staining. Images were acquired using a Zeiss confocal microscope, and ImageJ software was used to calculate cell orientation (cell orientation).

그 결과, 도 5C 내지 5f에 나타난 염색 사진 및 세포의 배열성 결과를 종합해 볼때 CS-AF에서 높은 배열성을 보인다는 것을 확인하였다.As a result, when synthesizing the staining pictures and cell alignment results shown in FIGS. 5C to 5F, it was confirmed that CS-AF shows high alignment.

5-4. 실시간 연쇄 중합효소 반응 (Real-Time Polymerase Chain Reaction, RT-PCR)5-4. Real-time polymerase chain reaction (RT-PCR)

Myogenic 마커인 Myod1, Myof5, Myogin, 및 Myh2의 발현 정도를 정량적으로 측정하기 위해 배양 7, 14, 21 일 후에 RT-PCR (Real-time polymerase chain reaction)을 수행하였다. RT-PCR에 이용하기 위한 총 RNA는 TRI reagent (Sigma-Aldrich)를 사용하여 분리하였고, 분리된 RNA의 순도와 농도는 분광 광도계 (FLX800T; Biotek, USA)로 측정하였다. 역전사 시스템을 사용하여 RNase-free DNase를 처리한 총 RNA (500 ng)로부터 cDNA를 합성하였으며, Fast Universal PCR Master Mix (Applied Biosystems)를 사용하여 StepOnePlus Real-Time PCR System (Applied Biosystems, USA)으로 qRT-PCR을 수행하였다. 그리고 TaqMan Gene Expression Assays (Applied Biosystems)를 사용하여 myogenic 마커 발현을 정량한 후, beta actin 값으로 나누었다. 이용된 마커는 beta actin (Actb, Mm00607939_s1), Myogenic differentiation 1 (Myod1, Mm00435125_m1), myogenic factor 5 (Myf5, Mm00440387_m1), myogenin (myg, Mm01332564_m1), myosin heavy chain 2 (Myh2, Mm00446194_m1)이다. RT-PCR (Real-time polymerase chain reaction) was performed after 7, 14 and 21 days of culture to quantitatively measure the expression level of Myogenic markers Myod1, Myof5, Myogin, and Myh2. Total RNA for use in RT-PCR was separated using TRI reagent (Sigma-Aldrich), and the purity and concentration of the isolated RNA was measured by a spectrophotometer (FLX800T; Biotek, USA). CDNA was synthesized from RNase-free DNase-treated total RNA (500 ng) using a reverse transcription system, and qRT with StepOnePlus Real-Time PCR System (Applied Biosystems, USA) using Fast Universal PCR Master Mix (Applied Biosystems) -PCR was performed. Then, the expression of myogenic markers was quantified using TaqMan Gene Expression Assays (Applied Biosystems), and then divided into beta actin values. The markers used were beta actin (Actb, Mm00607939_s1), Myogenic differentiation 1 (Myod1, Mm00435125_m1), myogenic factor 5 (Myf5, Mm00440387_m1), myogenin (myg, Mm01332564_m1), myosin heavy chain 2 (Myh2, Mm00446194_1)

그 결과, 도 5g에 나타난 바와 같이 근원세포 분화의 초기 마커인 MyoD1과 Myf5의 경우 14일차까지 발현이 증가하다가 21일차에서 감소 하는 경향을 보였으며, 후기 마커인 Myog와 Myh2의 경우 21일까지 활발히 증가하는 경향을 보였다. 또한 CS-AF는 CON에 비해 네가지 분화 마커에서 모두 높은 발현을 보임을 확인하였다.As a result, as shown in FIG. 5G, the expressions of MyoD1 and Myf5, the initial markers of progenitor cell differentiation, tended to increase by day 14 and then decrease by day 21. It tended to increase. In addition, it was confirmed that CS-AF showed high expression in all four differentiation markers compared to CON.

전술한 본 발명의 설명은 예시를 위한 것이며, 본 발명이 속하는 기술분야의 통상의 지식을 가지는 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 쉽게 변형이 가능하다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다.The above description of the present invention is for illustration only, and those of ordinary skill in the art to which the present invention pertains can understand that the present invention can be easily modified to other specific forms without changing the technical spirit or essential features of the present invention. will be. Therefore, it should be understood that the embodiments described above are illustrative in all respects and not restrictive.

Claims (8)

(a) 근원세포(myoblast), 심근원세포 (cardiomyoblast), 평활근세포 (smooth muscle cell), 및 혈관세포 (vascular cells)로 이루어진 군으로부터 선택된 하나 이상의 세포 및 콜라겐(collagen)을 포함하는 바이오잉크를 준비하는 단계;
(b) 상기 (a)단계의 바이오잉크에 전단응력(shear stress)를 가하여 상기 콜라겐 및 세포를 한 방향으로 배열시키는 단계;
(c) 상기 (b)단계의 바이오잉크를 플레이트에 분배하여 인공구조체를 형성하는 단계; 및
(d) 상기 (c)단계의 인공구조체를 염화칼륨-글리신 용액을 이용하여 경화 및 배열 유지시키는 단계를 포함하며,
상기 (c) 단계의 분배는 0.7uLs-1 내지 0.9uLs-1 유량으로 이루어지는 것을 특징으로 하는, 배열된 세포지지체의 제조방법.
(a) myoblast, Preparing a bioink comprising one or more cells and collagen selected from the group consisting of cardiomyoblast, smooth muscle cell, and vascular cells;
(b) arranging the collagen and cells in one direction by applying a shear stress to the bioink of step (a);
(c) dispensing the bioink of step (b) onto a plate to form an artificial structure; And
(d) curing and arranging the artificial structure of step (c) using potassium chloride-glycine solution,
The distribution of step (c) is characterized in that consisting of a flow rate of 0.7uLs -1 to 0.9uLs -1 , the method of manufacturing an arrayed cell support.
제1항에 있어서,
상기 (a) 단계에서 콜라겐은 바이오잉크 총 중량에 대하여 3 내지 9중량% 로 포함되는 것을 특징으로 하는, 배열된 세포지지체의 제조방법.
According to claim 1,
In step (a), collagen is 3 to 9% by weight based on the total weight of bioink. Characterized in that it is included, the method of manufacturing the arranged cell support.
제1항에 있어서,
상기 (a) 단계의 세포의 개수는 1 x 106cells/mL-1 내지 1 x 109cells/mL-1 인것을 특징으로 하는, 배열된 세포지지체의 제조방법.
According to claim 1,
The number of cells in step (a) is 1 x 10 6 cells/mL -1 to 1 x 10 9 cells/mL -1 , characterized in that the method of manufacturing an arrayed cell support.
제1항에 있어서,
상기 (c) 단계에서 플레이트의 온도는 33℃ 내지 40℃인 것을 특징으로 하는, 배열된 세포지지체의 제조방법.
According to claim 1,
In the step (c), the temperature of the plate is 33 °C to 40 °C, characterized in that the method of manufacturing the arranged cell support.
삭제delete 제1항에 있어서,
상기 (c) 단계의 분배는 9mms-1 내지 11mms-1 속도로 이루어지는 것을 특징으로 하는, 배열된 세포지지체의 제조방법.
According to claim 1,
The distribution of step (c) is characterized in that consisting of a speed of 9mms -1 to 11mms -1 , the method of manufacturing the arranged cell support.
제1항에 있어서,
상기 (c) 단계의 분배는 인공구조체가 격자구조를 형성하도록 이루어지는 것을 특징으로 하는, 배열된 세포지지체의 제조방법.
According to claim 1,
The distribution of step (c) is characterized in that the artificial structure is made to form a lattice structure, the method of manufacturing an arranged cell support.
제1항에 있어서,
상기 (d) 단계의 염화칼륨-글리신 용액에서 상기 염화칼륨은 50 내지 200 mM 이고 상기 글리신은 50 내지 100 mM 인 것을 특징으로 하는, 배열된 세포지지체의 제조방법.

According to claim 1,
In the potassium chloride-glycine solution of step (d), characterized in that the potassium chloride is 50 to 200 mM and the glycine is 50 to 100 mM, the method of manufacturing an arrayed cell support.

KR1020190002167A 2019-01-08 2019-01-08 Method of preparing a structure consisted of arranged fiber structure and cells KR102126733B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020190002167A KR102126733B1 (en) 2019-01-08 2019-01-08 Method of preparing a structure consisted of arranged fiber structure and cells

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020190002167A KR102126733B1 (en) 2019-01-08 2019-01-08 Method of preparing a structure consisted of arranged fiber structure and cells

Publications (1)

Publication Number Publication Date
KR102126733B1 true KR102126733B1 (en) 2020-06-26

Family

ID=71136705

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020190002167A KR102126733B1 (en) 2019-01-08 2019-01-08 Method of preparing a structure consisted of arranged fiber structure and cells

Country Status (1)

Country Link
KR (1) KR102126733B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20240034967A (en) 2022-09-07 2024-03-15 성균관대학교산학협력단 Method for Fabrication of Cell Construct Comprising Cell-Spheroid Using Hybrid Bio-printing Technique

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170012099A (en) 2015-07-21 2017-02-02 주식회사 바이오잉크솔루션스 Composition of bio-ink having improved physical and biological properties

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170012099A (en) 2015-07-21 2017-02-02 주식회사 바이오잉크솔루션스 Composition of bio-ink having improved physical and biological properties

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Biomacromolecules, Vol. 17(4), p. 1365~1375(2016)* *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20240034967A (en) 2022-09-07 2024-03-15 성균관대학교산학협력단 Method for Fabrication of Cell Construct Comprising Cell-Spheroid Using Hybrid Bio-printing Technique

Similar Documents

Publication Publication Date Title
JP6140240B2 (en) Silk organs made by tissue engineering
Wang et al. Cellular cardiomyoplasty and cardiac tissue engineering for myocardial therapy
Stankus et al. Microintegrating smooth muscle cells into a biodegradable, elastomeric fiber matrix
Guo et al. Creation of engineered cardiac tissue in vitro from mouse embryonic stem cells
KR101711354B1 (en) Self-assembling multicellular bodies and methods of producing a three-dimensional biological structure using the same
Gerecht-Nir et al. Biophysical regulation during cardiac development and application to tissue engineering
WO2015178427A1 (en) Hollow microfiber
US6897064B2 (en) Cell or tissue-culturing carrier, and culturing method
Kim et al. 3D tissue formation by stacking detachable cell sheets formed on nanofiber mesh
Zhang et al. Gelatin-based hydrogels combined with electrical stimulation to modulate neonatal rat cardiomyocyte beating and promote maturation
Chen et al. Biomimetic assembly of vascular endothelial cells and muscle cells in microgrooved collagen porous scaffolds
Cimetta et al. Enhancement of viability of muscle precursor cells on 3D scaffold in a perfusion bioreactor
Matsuura et al. Toward the development of bioengineered human three-dimensional vascularized cardiac tissue using cell sheet technology
Ozturk et al. Dynamic cell culturing and its application to micropatterned, elastin-like protein-modified poly (N-isopropylacrylamide) scaffolds
CN109793934B (en) Tissue-engineered myocardial patch and preparation and application thereof
US20170342373A1 (en) Technique for formation and assembly of 3d cellular structures
JP6733126B2 (en) Method for producing three-dimensional cell aggregate
KR102126733B1 (en) Method of preparing a structure consisted of arranged fiber structure and cells
EP3418375B1 (en) Method for producing three-dimensional tissue having vascular system structure, and three-dimensional tissue comprising gel having vascular system structure
Zhao et al. Cardiac tissue engineering
CN110029084B (en) Heterogeneous glucan 3D gel with adjustable local crosslinking strength, and preparation method and application method thereof
CN102089426A (en) Cellular differentiation process and its use for blood vessel build-up
Eng et al. Cardiac tissue engineering
KR102284592B1 (en) Method for producing arranged structure using biocompatible polymer and arranged structure produced using same
Guo et al. Engineering cardiac tissue from embryonic stem cells

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant