KR102126375B1 - Welding control method of steel tube expansion part - Google Patents

Welding control method of steel tube expansion part Download PDF

Info

Publication number
KR102126375B1
KR102126375B1 KR1020200008181A KR20200008181A KR102126375B1 KR 102126375 B1 KR102126375 B1 KR 102126375B1 KR 1020200008181 A KR1020200008181 A KR 1020200008181A KR 20200008181 A KR20200008181 A KR 20200008181A KR 102126375 B1 KR102126375 B1 KR 102126375B1
Authority
KR
South Korea
Prior art keywords
welding
temperature
toughness
low
base material
Prior art date
Application number
KR1020200008181A
Other languages
Korean (ko)
Inventor
김준기
Original Assignee
주식회사광성이엔지
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사광성이엔지 filed Critical 주식회사광성이엔지
Priority to KR1020200008181A priority Critical patent/KR102126375B1/en
Application granted granted Critical
Publication of KR102126375B1 publication Critical patent/KR102126375B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/095Monitoring or automatic control of welding parameters
    • B23K9/0953Monitoring or automatic control of welding parameters using computing means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K37/00Auxiliary devices or processes, not specially adapted to a procedure covered by only one of the preceding main groups
    • B23K37/02Carriages for supporting the welding or cutting element
    • B23K37/0276Carriages for supporting the welding or cutting element for working on or in tubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K37/00Auxiliary devices or processes, not specially adapted to a procedure covered by only one of the preceding main groups
    • B23K37/04Auxiliary devices or processes, not specially adapted to a procedure covered by only one of the preceding main groups for holding or positioning work
    • B23K37/053Auxiliary devices or processes, not specially adapted to a procedure covered by only one of the preceding main groups for holding or positioning work aligning cylindrical work; Clamping devices therefor
    • B23K37/0538Auxiliary devices or processes, not specially adapted to a procedure covered by only one of the preceding main groups for holding or positioning work aligning cylindrical work; Clamping devices therefor for rotating tubes, e.g. rollers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/095Monitoring or automatic control of welding parameters
    • B23K9/0956Monitoring or automatic control of welding parameters using sensing means, e.g. optical

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Theoretical Computer Science (AREA)
  • Arc Welding In General (AREA)

Abstract

The present invention relates to a method for improving low-temperature toughness (low-temperature impact toughness), which is a main cause of damage to a pipe expansion unit. In order to improve the low-temperature toughness and strength of a base material of an expansion unit which is weakened during welding of the expansion unit, penetration is sufficiently performed during welding in order to transmit heat input for changing a tissue structure of the base material. A welding control method of the steel pipe expansion unit includes a temperature measurement step, a temperature comparison step, a temperature matching step, and a heat input flattening step.

Description

강관확관부의 용접제어방법 {Welding control method of steel tube expansion part}Welding control method of steel tube expansion part}

본 발명은 상수관 제작 시 필수 공정인 강관확관 작업에 의해 급격히 저하된 확관부 저온인성을 향상시키기 위한 방법에 관한 것이다.The present invention relates to a method for improving the low-temperature toughness of a swelling portion that is drastically reduced by a steel pipe swelling operation, which is an essential process when manufacturing a water pipe.

상수관로는 기간산업분야로 국민의 생활과 안전에 밀접한 영향이 있는 분야이다. 또한 대부분 도심 도로 밑에 시공되어 있는 경우가 많고 상수관로 파손 시 상수 공급에 차질을 빚어 국민생활을 불편하게 하고 도로침하 및 교통흐름에 막대한 영향을 미친다. 파손부위가 시공을 위해 확관한 부위의 파손사례가 많고 이를 분석한 결과 강제 확관에 의해 확관부의 경도가 급격히 상승하고 저온인성이 급격히 하락함을 확인할 수 있었다. The water supply pipeline is a key industry sector and has a close influence on people's lives and safety. Also, most of them are installed under urban roads, and when water pipes are damaged, water supply is disrupted, which makes people's lives uncomfortable and greatly affects road subsidence and traffic flow. There were many cases of damage in the swelling area where the damage site was expanded for construction, and as a result of the analysis, it was confirmed that the hardness of the swelling part increased rapidly and the low-temperature toughness sharply decreased due to forced expansion.

본 발명은 상수관로 시공을 위해 상수관 제작 시 확관부의 저온인성이 급격히 저하되어 라인 운영 중 잦은 파괴가 발생하고 있어 이를 근본적으로 보완하는 기술 개발에 관한 것이다. 상수관로의 현장 시공방법은 도 3과 같이 랩 조인트(Lap Joint)로 관 끝단부의 외경을 압연 롤에 의해 강제 확관을 시킨다. 이 과정을 통해 확관부는 가공경화에 의해 경도 상승 및 저온 인성이 저하되게 되어 라인 운영 중 확관부의 파손 발생사례가 증가하고 있다. 확관부 분석결과 파손에 영향을 주는 주원인은 저온인성 저하로 판명이 되었고 그 값은 0℃에서 18J 정도로 확인이 되었고 이는 모재의 값인 60J에 훨씬 미치지 못한 상황이다.The present invention relates to the development of a technology that fundamentally complements the low-temperature toughness of the expansion part during the production of the water pipe for the construction of the water pipe, which causes frequent destruction during line operation. In the field construction method of the water pipe, the outer diameter of the end of the pipe is forcibly expanded by a rolling roll as shown in FIG. Through this process, the swelling of the swelling part increases hardness and lowers the low-temperature toughness due to the work hardening. As a result of the analysis of the dilated part, the main cause affecting the damage was found to be low temperature toughness, and the value was confirmed to be about 18J at 0℃, which is far less than the value of the base material, 60J.

본 발명의 강관확관부 인성향상 방법은, 확관부 용접시 취약해진 확관부 모재의 저온인성과 강도를 향상시키기 위해 모재의 조직구조 변화를 위한 입열이 전달되도록 하기 위하여 용접 중 용입이 충분히 이루어지도록 하는 것이다. 상수관(KS D 3626 참조)에 적용될 수 있으며, 확관부 용접시 취약해진 확관부 모재의 저온인성과 강도를 향상시키기 위해 입열이 용입에 의해 공급되어 모재의 조직구조를 변화시키는 강관확관부 인성향상 방법이다. Steel pipe expansion pipe toughness improvement method of the present invention, in order to improve the low-temperature toughness and strength of the base portion of the expansion pipe weakened during welding of the expansion pipe, to ensure sufficient penetration during welding in order to transfer heat input for changing the structure of the base material will be. It can be applied to water pipes (see KS D 3626) and improves the toughness of steel pipe expansion pipes that change the organizational structure of the base metal by supplying heat input by intrusion to improve the low-temperature toughness and strength of the base metal pipe, which is weakened during welding of the pipe. It is a way.

본 발명의 강관확관부 용접제어방법은, 강관 확관부의 용접부 온도를 측정하는 단계; 상기 측정된 온도를 사전 정립된 측정온도와 용접전류와의 관계와 비교하는 단계;와 상기 비교에 따라 용접기의 용접전류를 조절하여 용입을 제어하여 용접부 온도를 맞추는 단계;를 포함한다. 관경이 크기 때문에 써모커플 등의 접촉식 온도측정을 활용하려면 작업부재별 계속 설치, 해체를 반복해야 하므로 강관 용접 끝단부를 항상 측정할 수 있도록 용접시스템의 한 부분으로 비접촉식센서를 설치하여 데이터를 추출하는 구성을 가질 수 있다. The welding control method for a steel pipe expanding portion of the present invention includes measuring a temperature of a welding portion of the steel pipe expanding portion; And comparing the measured temperature with the relationship between the pre-established measurement temperature and the welding current; and adjusting the welding current of the welding machine according to the comparison to control the penetration and setting the welding part temperature. Because of the large diameter, to utilize contact temperature measurement such as a thermocouple, it is necessary to continuously install and disassemble each work member, so installing a non-contact sensor as a part of the welding system to extract the data by always installing the non-contact sensor as a part of the welding system. It may have a configuration.

본 발명의 강관확관부 용접제어방법은 강관 확관부의 용접시 저온인성을 향상시키기 위해 용입깊이와 용접폭을 제어한다. 약 3mm정도의 용입 조건으로 육성용접 시험을 한 결과 용접부 충격인성 값이 96.7J, HAZ부가 69.5J로 모재의 충격인성을 상회하게 되었다. 이에 따라 실제 작업에는 2mm이상의 용입이 조건이 된다.The welding control method of the steel pipe expanding portion of the present invention controls the penetration depth and the welding width to improve low-temperature toughness when welding the steel pipe expanding portion. As a result of testing the cultivation welding under the condition of about 3 mm of penetration, the impact toughness value of the welded part was 96.7 J and the HAZ part was 69.5 J, which exceeded the impact toughness of the base material. Accordingly, a penetration of 2 mm or more is a condition for actual work.

상기 설명한 본 발명의 확관부 육성용접을 적용하면 다음과 같은 효과가 있다. 첫 째, 상수관로 운영 중 자주 발생되는 확관부 파손에 의한 누수 방지로 상수문제로 인한 국민생활 불편을 해소할 수 있다. 둘 째, 확관부 파손에 의한 싱크 홀, 도로 침하 등의 문제를 제거함으로 인해 이로 인한 교통문제를 해결할 수 있다. 셋 째, 누수로 인한 경제적 손실, 이를 보완하기 위한 보수비용이 대폭 절감된다. 넷 째, 상수관로 관리 및 보수인력을 대폭 줄일 수 있다. 다섯 째, 안정적인 도시계획 설계 및 운영을 할 수 있다. 여섯 째, 상수관로의 수명연장에도 효과가 크다.Applying the bulge welding of the expansion portion of the present invention described above has the following effects. First, it is possible to solve the inconvenience of people's daily lives due to water supply problems by preventing water leakage due to damage to the bulges that frequently occur during the operation of water pipes. Second, it is possible to solve the traffic problems caused by removing problems such as sink holes and road settlement caused by the damage to the bulge section. Third, economic losses due to water leakage and repair costs to compensate for it are significantly reduced. Fourth, it is possible to drastically reduce manpower and maintenance of water pipelines. Fifth, stable city planning can be designed and operated. Sixth, it is also effective in extending the life of water pipelines.

도 1은 본 발명에 의해 확관부를 육성용접한 실시예
도 2는 본 발명에 적용된 용접시스템 구성도
도 3은 확관부의 예시
도 4는 확관부의 구성과 측정위치
도 5는 본 발명의 실시예에 의한 확관부의 물성측정결과
도 6은 본 발명의 실시예에 의한 저온인성값의 변화결과
도 7은 열영향부의 형성을 나타내는 상변태도
도 8은 본 발명의 실시예인 용접부와 HAZ부
도 9는 SAW TWIN 용접방식의 예시
1 is an embodiment in which the expansion pipe is fostered and welded according to the present invention.
Figure 2 is a welding system configuration applied to the present invention
Figure 3 is an example of the expansion
4 is a configuration and measurement position of the expansion portion
5 is a measurement result of the physical properties of the expansion portion according to an embodiment of the present invention
6 is a change result of a low-temperature toughness value according to an embodiment of the present invention
7 is a phase transformation diagram showing the formation of the heat-affected zone
8 is an embodiment of the present invention, the welding part and the HAZ part
9 is an example of a SAW TWIN welding method

본 발명은 확관부 파손의 주원인인 저온인성(저온충격인성)을 향상시키기 위한 방법에 관한 것이다. 확관부 파손의 주원인인 저온인성은 모재의 인성이 약 0℃에서 60J 정도인데 확관을 하면서 20J 이하로 급격히 저하됨에 인한 것으로 판단이 된다. 한국생산기술연구원에 의뢰하여 분석한 결과로 확관부를 육성 용접하여 용입 깊이를 2mm 이상으로 용접한 결과 용접부에서 약 100J, 열 영향부에서 70J 정도의 충격인성 값을 확보할 수 있었다. 이는 모재의 60J을 훨씬 상회하는 수치로 이와 같이 확관부를 육성 용접에 의해 시공할 경우 기존의 확관부 파손문제를 방지할 수 있을 것이다.The present invention relates to a method for improving low-temperature toughness (low-temperature impact toughness), which is a major cause of breakage of the bulge. The low-temperature toughness, which is the main cause of damage to the bulge, is judged to be due to the rapid decrease in the toughness of the base material at about 0℃ to 60J or less while expanding. As a result of analysis by request from the Korea Institute of Industrial Technology, as a result of welding the expansion pipe by welding the depth of penetration more than 2mm, it was possible to secure an impact toughness value of about 100J in the weld and 70J in the heat-affected zone. This is a value far more than 60J of the base material, and thus, when constructing the dilated portion by cultivation welding, it will be possible to prevent the existing dilated portion from being damaged.

도 1은 본 발명에 의해 확관부를 육성용접한 실시예로서, 확관부의 인성 및 강도저하를 보완하기 위해 확관부를 육성용접한 예시이다. 도 2는 본 발명에 적용된 용접시스템 구성도로서, 파이프 회전기구, 파이프 직경에 따라 대응 가능한 용접 매뉴풀레이터(Manipulator), 육성용접을 하기 위한 용접 헤드 부 및 이를 운영하기 위한 전체 제어장치 등으로 이루어진다. 용접부에서 측정되는 온도는 용접하는 전류와 상관관계가 있기 때문에 충분한 용입이 될 수 있는 용접기 전류치를 정하고 이때의 온도를 비접촉식으로 측정하여 사전 정립된 충분한 용입이 가능한 용접전류와 강관끝단부에서 측정되는 온도의 상관관계를 적용하여 용입을 제어한다. 관경이 크기 때문에 써모커플 등을 활용하려면 작업부재별 계속 설치, 해체를 반복해야 하므로 강관 용접 끝단부를 항상 측정할 수 있도록 장치 구성 시 장비의 한 부분으로 비접촉식센서를 설치할 수 있다. 1 is an example in which the bulging portion is grown and welded according to the present invention, and is an example in which the bulging portion is cultivated and welded to compensate for the decrease in toughness and strength of the bulging portion. 2 is a configuration diagram of a welding system applied to the present invention, consisting of a pipe rotating mechanism, a welding manipulator capable of responding to pipe diameters, a welding head part for nurturing welding, and a whole control device for operating the same. . Since the temperature measured at the welding part is correlated with the current to be welded, the welding machine current value that can be sufficient penetration is determined, and the temperature at this time is measured in a non-contact manner. Correlation of is applied to control penetration. Because of the large diameter, it is necessary to repeat installation and disassembly for each work member in order to utilize a thermocouple, etc., so that a non-contact sensor can be installed as part of the equipment when constructing the device so that the end of the steel pipe can be measured at all times.

도 2의 가로방향 축(1과 2에 각각 수직이며 지면 안쪽으로 확장되는 축으로서 도시되지 않음)이 위빙(Weaving)을 위한 축이고 이를 좌우로 일정 주파수로 움직이면 용접 비드(Bead)가 고루 퍼져 넓은 직사각형 모양의 비드가 형성되고, 이로 인해 모재 열영향부 역시 고른 열영향을 받아 용접부 전체에 저온인성 향상 효과를 가져올 수 있다. 위빙(Weaving)을 하지 않을 경우 용접비드가 볼록하게 올라오고 이에 따라 모재 하부의 열영향도 산모양처럼 양쪽으로 갈수록 열처리 효과는 적어져 전체적인 인성 향상 효과는 저하된다. 일반 용접에서 위빙(Weaving)의 장점은 용접품질과 생산성을 높이는 효과가 있는 점과 비교하여 본 확관부의 위빙(Weaving)은 용접비드를 넓게 펼치고 입열을 고르게 하여 모재의 물성을 좋게 하는 효과가 있다. The horizontal axis of FIG. 2 (a vertical axis respectively 1 and 2 and not shown as an axis extending into the ground) is an axis for weaving, and when it is moved to the left and right at a constant frequency, the welding bead spreads evenly and thus becomes a wide rectangle. A bead of a shape is formed, and the heat-affected portion of the base material is also subjected to an even heat effect, thereby improving the low-temperature toughness of the entire welded portion. When weaving is not performed, the weld bead rises convexly, and as a result, the heat effect of the lower part of the base material becomes less like that of the mountain, and the heat treatment effect is less, so the overall toughness improvement effect is lowered. The advantage of weaving in general welding is that it has the effect of improving the welding quality and productivity. Weaving of this expansion part has the effect of expanding the welding bead and spreading heat evenly to improve the properties of the base material. .

도 3은 확관부의 일반적인 예시이며, 도 4는 확관부의 구성과 본 발명에서의 측정위치를 나타내며 도 4에서의 #7번에서 #11번 Slope 부위가 확관된 부위이다. 도 5는 본 발명의 실시예에 의한 확관부의 물성측정결과로서, 그래프는 확관부에서의 경도 및 인성변화를 나타낸다. 확관부에서 경도 값은 급격히 상승됨을 확인할 수 있으며 충격인성은 저하됨을 확인할 수 있다(본 분석데이터는 한국생산기술연구원에 의뢰하여 확인한 내용임).3 is a general example of the dilated portion, and FIG. 4 shows the configuration of the dilated portion and the measurement position in the present invention, and the slope portions #7 to #11 in FIG. 4 are dilated portions. 5 is a measurement result of the physical properties of the dilated portion according to an embodiment of the present invention, the graph shows the hardness and toughness change in the dilated portion. It can be seen that the hardness value in the expansion tube is rapidly increased and the impact toughness is decreased (this analysis data was confirmed by request from the Korea Institute of Industrial Technology).

도 6은 본 발명의 실시예에 의한 저온인성값의 변화결과를 나타내며, 확관부를 2mm 정도 높이로 육성용접을 하고 용입ƒˆ이는 3mm정도로 했을 경우의 데이터이다. 0℃ 에서의 값이 96.7J로 육성용접 전 확관부 18J에 비해 대폭 향상이 되었음을 확인할 수 있다.6 shows the result of the change of the low-temperature toughness value according to the embodiment of the present invention, and is the data when the expansion tube is grown and welded to a height of about 2 mm and the penetration is about 3 mm. It can be seen that the value at 0°C is 96.7J, which is a significant improvement compared to the expansion portion 18J before foster welding.

육성용접하는 방식으로는 SAW(Submerged Arc Welding)과 FCAW(Flux Cored Welding)을 검토하였고 두 방식 모두 효과적인 방법으로 판단한다. 본 발명에서의 예시로서 시험 분석한 용접기법은 FCAW 이다. 용접의 종류는 다음과 같다. SAW(Submerged Arc Welding, 잠호용접)은 용접부위에 플럭스가루를 덮고 그 내부에 용접봉이 공급되어 발생된 아크에 의해 플럭스가 녹아 가스가 발생하여 용접부를 보호한다. 특징으로서는 용착효율 및 가동효율이 높으며, 자동화가 가능하고, 수동용접보다 비교적 기능도가 적게 요구된다. 장점은 용입이 깊고, 다전극용접이 가능하며, 용접속도가 빠르다. 또한 아크길이가 일정하며, 대기로부터 보호 및 비드외관이 양호하며, 또한 아크섬광 및 흄발생이 적어 작업환경이 양호하다. 특별한 용접기술이 필요치 않으며, 용접이음의 신뢰도가 높다. 단점은 용접개소가 짧으면 비능률적이며, 자세가 한정적인 점, 정밀한 개선가공이 요구되며, 입열이 광범위함을 고려해야 하는 점, 용접 중 아크가 보이지 않아 용접상태 확인이 곤란한 점을 들 수 있다. FCAW(플럭스 코어드 아크 용접, Flux Cored Arc Welding)은 연속적으로 공급된 용가재와 모재 사이의 아크열에 의해 용접한다. 용접심선 내부에 들어있는 플럭스가 녹으며 발생하는 보호가스에 의해 용접부가 보호된다. 수동용접보다 비교적 기능도가 덜 요구된다. 장점은 전자세용접이 가능한 점, 슬래그의 박리성이 우수하며, 부드럽고 균일한 용접 Bead면을 가지는 등 용착효율과 가동효율이 높은 점, SMAW의 4배로 용접속도가 빠른 점(다만, GMAW보다는 낮음), 차폐가스의 사용이 선택적이고, 수동용접보다 비교적 기능도가 덜 요구되며, 자동화에 유리한 점을 들 수 있다. 단점은 용접부의 열처리 후 충격강도가 낮은 점, 용접 대상물과의 거리제약이 있으며, 바람을 비롯한 외부 환경요인에 영향을 많이 받는 점, 적용재질에 제약이 있어서 현재까지는 철계(Ferrous) 금속과 Nickel Base 합금에만 적용이 가능한 점을 들 수 있다. SMAW(피복금속아크용접, Shielded Metal Arc Welding)은 피복된 용접봉과 피용접물간에 발생한 전기 아크열을 이용하여 모재와 소모성 용접봉을 녹여 붙이는 용접법이다. 용접봉을 감싼 피복재에서 가스가 발생하여 용접부가 보호되며, 일반적으로 ‘아크용접’으로 불린다. 장점은 장비가 저렴하고 간편하여 설치가 쉽고 장소의 제한이 적어 가장 많이 사용 되는 점, 피복제(Flux) 변화에 따라 다양한 용도에서 사용이 가능한 점, Flux는 고온에서 가스 또는 슬래그를 발생하여 용융금속을 산화로부터 보호하며 용접 품질이 우수한 점, 아크의 집중된 열로 용접이 이루어지기 때문에 큰 부재의 표면을 용접할 경우, 선행 패스의 열을 이용하여 후행패스의 예열을 생략할 수 있는 점을 들 수 있다. 단점은 용접봉이 습기에 취약한 점(사용 전 충분한 건조 필요), 전극의 피복이 오버레이층의 표면에 슬래그로 존재하므로 각 패스아이에서 Cleaning 과정이 필요한 점, 용접작업 후 냉각과정에서 오버레이 용접층 내부에 심한 변형이 유발되는 점(내마모성에는 큰 영향을 미치지 않음)을 들 수 있다. GTAW(가스텅스텐아크용접, Gas Tungsten Arc Welding)은 텅스텐 전극과 모재사이에 발생한 아크열로 용가재를 녹여 용착금속을 형성하는 정밀 용접법으로서, Ar(아르곤 가스) 또는 HE등 불활성 가스를 공급하여 용접부를 보호하며, 일반적으로 TIG(Tungsten Inert Gas) 용접으로 불린다. 장점은 용접입열의 조정이 용이한 점, 용접부는 별도 공급되는 불활성기체에 감싸여져 보호되며, 보호가스가 투명하여 용접작업자가 용접상황을 파악하기 쉬운 점, 내부식성이 우수한 점, 거의 모든 금속의 용접에 이용할 수 있으며, 산화나 질화에 민감한 재질 및 대상들이 얇거나 초층(Root pass)등 주로 SMAW를 적용하기 곤란한 경우에 사용되는 점을 들 수 있다. 단점은 고품질 고정밀도의 용접으로서는 생산성이 떨어지는 점, 텅스텐전극봉이 용접부에 녹아들어가 오염될 경우 용접부가 취화되는 점, 소모성 용접봉을 쓰는 용접법 보다 높은 기술이 요구되는 점, 타 용접법의 용접기에 비해 용접기가 고가인 점을 들 수 있다. For the method of nurturing welding, SAW (Submerged Arc Welding) and FCAW (Flux Cored Welding) were reviewed, and both are judged to be effective methods. As an example in the present invention, the welding technique tested and analyzed is FCAW. The types of welding are as follows. SAW (Submerged Arc Welding) covers the flux powder on the welding area and the welding rod is supplied inside to protect the welding area by generating gas by melting the flux by the generated arc. As a feature, welding efficiency and operation efficiency are high, automation is possible, and relatively less functionality is required than manual welding. The advantages are deep penetration, multi-electrode welding, and high welding speed. In addition, the arc length is constant, the protection from the atmosphere and the bead appearance are good, and the arc scintillation and fume generation are small, so the working environment is good. No special welding technique is required, and the reliability of the welding joint is high. Disadvantages include short welding locations, inefficiencies, limited posture, precise improvement processing, wide heat input considerations, and arcs not visible during welding, making welding conditions difficult to check. FCAW (Flux Cored Arc Welding) is welded by the arc heat between the continuously supplied filler metal and the base material. The flux contained in the welding core is melted and the welding part is protected by the generated protective gas. It requires less functionality than manual welding. The advantages are that it can be welded electronically, has good slag peelability, has a high welding efficiency, such as having a smooth and uniform welding bead surface, and a welding speed that is 4 times faster than SMAW (but lower than GMAW). ), the use of shielding gas is optional, it requires less functionality than manual welding, and is advantageous for automation. Disadvantages are low impact strength after heat treatment of the welding part, distance limitation with the object to be welded, large influence on external environmental factors including wind, and limited application materials, so far, ferrous metal and nickel base It is mentioned that it is applicable only to alloys. SMAW (Shielded Metal Arc Welding) is a welding method that melts and pastes a base material and a consumable welding rod by using electric arc heat generated between a coated welding rod and a welding object. Gas is generated from the covering material surrounding the welding rod to protect the welding portion, and is generally called “arc welding”. The advantage is that the equipment is inexpensive and simple, so it is easy to install and there are few restrictions in place, so it can be used in various applications depending on the change in the flux. Flux generates gas or slag at high temperatures to produce molten metal. It protects from oxidation and has excellent welding quality, and because welding is performed with concentrated heat of the arc, when welding the surface of a large member, it is possible to omit preheating of the trailing pass by using the heat of the preceding pass. . Disadvantages are that the electrode is vulnerable to moisture (needs sufficient drying before use), and that the electrode is present as a slag on the surface of the overlay layer, so it is necessary to clean the process at each pass-eye. The point is that severe deformation is caused (the wear resistance is not significantly affected). GTAW (Gas Tungsten Arc Welding) is a precision welding method that melts molten metal with arc heat generated between a tungsten electrode and a base material to form a weld metal.It supplies an inert gas such as Ar (argon gas) or HE to provide a weld. Protection, and is commonly called TIG (Tungsten Inert Gas) welding. The advantages are easy to adjust the welding heat, the welding part is protected by being wrapped in an inert gas that is supplied separately, and the protective gas is transparent, making it easy for the welding worker to understand the welding situation, excellent corrosion resistance, and almost all metals. It can be used for welding, and materials and objects that are sensitive to oxidation or nitriding are used when the SMAW is mainly difficult to apply, such as a thin layer or a root pass. Disadvantages are high-quality, high-precision welding, which is inferior in productivity, tungsten electrode rod melts into the weld, and contaminates the weld, embrittlement of the weld is required. It is expensive.

종래의 육성용접은 이종재질을 붙이는 형태의 용접방법으로서 육성용접을 통해 모재의 물성변화는 거의 없는 상황이다. 본 발명의 목적은 모재의 저온인성과 강도를 향상시키는 것이다. 육성용접이라고 표현은 했지만 기존 육성용접 방식으로는 본 목적을 달성할 수 없다. 따라서, 본 발명의 구체적인 목적은 확관하면서 취약해진 확관부 모재의 저온인성과 강도를 향상시키는 것이다. 이 목적을 달성하기 위해서는 모재의 조직구조를 변화할 수 있는 충분한 입열이 전달되어야 하며 이를 위해 용접 중 용입이 충분히 되어야 가능하다.Conventional nurturing welding is a welding method in which a dissimilar material is attached, and there is little change in physical properties of the base material through nurturing welding. The object of the present invention is to improve the low-temperature toughness and strength of the base material. Although it was referred to as nurturing welding, this purpose cannot be achieved with the existing nurturing welding method. Therefore, a specific object of the present invention is to improve the low-temperature toughness and strength of the base portion of the duct portion that is weakened while expanding. In order to achieve this purpose, sufficient heat input must be transmitted to change the structure of the base material, and for this purpose, sufficient penetration during welding is possible.

한국생산기술연구원과 함께 1차 분석한 결과, 모재의 인성은 40J 정도임에 비해 확관부 모재 저온인성은 19J 정도로 반 이하로 취약해진다. 여러 용접시험 결과 모재에 용입깊이가 3mm정도일 경우 확관부 저온인성값이 80J 이상으로 향상됨을 확인할 수 있었다. 이를 확보하기 위해 용접폭 50-60mm정도로 용접해야 하고 용입을 최소 2mm 이상 3mm정도 하기 위해서는 기존 육성용접방법과는 차별화된 방식으로 용접해야 한다. 본 발명에서의 예시로서 적용하는 용접방법은 SAW 또는 SAW Twin용접기법이며, Weaving하면서 용접하여 본 발명의 목적을 달성할 수 있다.As a result of the first analysis with the Korea Institute of Industrial Technology, the toughness of the base material is about 40J, whereas the low-temperature toughness of the base material of the swelling is weaker than half by 19J. As a result of various welding tests, it was confirmed that the low-temperature toughness value of the dilated portion was improved to 80 J or more when the penetration depth of the base material was about 3 mm. In order to secure this, it is necessary to weld with a welding width of 50-60mm, and in order to achieve a minimum penetration of 2mm or more and 3mm, welding must be performed in a manner different from the conventional welding method. The welding method applied as an example in the present invention is the SAW or SAW Twin welding method, and the object of the present invention can be achieved by welding while weaving.

도 7은 열영향부의 형성을 나타내는 상변태도로서, 용접에 의해 모재 내에는 CG-HAZ, FG-HAZ, IC-HAZ, SC-HAZ가 형성된다. HAZ중 CG-HAZ는 용접부의 인성을 열위하게 하는 반면, FG & IC-HAZ는 인성개선에 효과적이고, FG-HAZ의 분율이 높을수록 인성향상에 유리하다. 도 8은 본 발명의 실시예를 적용한 결과인 용접부와 HAZ부(도 8의 상단)와 그 확대도(도 8의 하단)를 나타내며, 1차 시험에서 확인된 약 3mm정도의 용입 조건으로 육성용접 시험을 한 결과 용접부 충격인성 값이 96.7J, HAZ부가 69.5J로 모재의 충격인성을 상회하게 되었다. 이에 따라 실 작업 조건으로는 2mm이상의 용입을 적용할 수 있다.Figure 7 is a phase transformation diagram showing the formation of the heat-affected zone, CG-HAZ, FG-HAZ, IC-HAZ, SC-HAZ are formed in the base material by welding. Of the HAZ, CG-HAZ deteriorates the toughness of the weld, whereas FG & IC-HAZ are effective in improving toughness, and the higher the fraction of FG-HAZ, the better the toughness. Figure 8 shows the results of applying the embodiment of the present invention, the welding part and the HAZ part (top of Fig. 8) and an enlarged view (bottom of Fig. 8), it was confirmed in the first test welding welding conditions of about 3mm As a result of the test, the impact toughness value of the welding part was 96.7J, and the HAZ part was 69.5J, which exceeded the impact toughness of the base material. Accordingly, a penetration of 2 mm or more can be applied as a working condition.

도 9는 SAW TWIN 용접방식의 예시로서, 이러한 방식으로 확관부를 육성용접한 사례는 없으며 이를 통해 확관부 저온인성 및 강도가 향상된다. 도시된 SAW TWIN 용접방식이외에 SAW SINGLE, FCAW, GMAW 등 다른 용접방식도 활용 가능하다.9 is an example of a SAW TWIN welding method, and there is no case of cultivating and welding the dilated portion in this way, thereby improving the low-temperature toughness and strength of the dilated portion. In addition to the illustrated SAW TWIN welding method, other welding methods such as SAW SINGLE, FCAW, and GMAW can be used.

이상에서 실시예를 중심으로 설명하였으나 이는 단지 예시일 뿐 본 발명을 한정하는 것이 아니며, 본 발명이 속하는 분야의 통상의 지식을 가진 자라면 본 실시예의 본질적인 특성을 벗어나지 않는 범위에서 이상에 예시되지 않은 여러 가지의 변형과 응용이 가능함을 알 수 있을 것이다. 예를 들어, 실시예에 구체적으로 나타난 각 구성 요소는 변형하여 실시할 수 있다. 그리고 이러한 변형과 응용에 관계된 차이점들은 첨부된 청구 범위에서 규정하는 본 발명의 범위에 포함되는 것으로 해석되어야 할 것이다.The embodiments have been mainly described above, but this is merely an example and does not limit the present invention, and those of ordinary skill in the art to which the present invention pertains are not exemplified above without departing from the essential characteristics of the present embodiment. It will be appreciated that various modifications and applications are possible. For example, each component specifically shown in the embodiment may be modified. And differences related to these modifications and applications should be construed as being included in the scope of the invention defined in the appended claims.

1: X축
2: Y축
1: X axis
2: Y axis

Claims (3)

삭제delete 삭제delete 강관 확관부의 용접부 온도를 측정하는 단계;
상기 측정된 온도를 사전 정립된 측정온도와 용접전류와의 관계와 비교하는 단계;
상기 비교에 따라 용접기의 용접전류를 조절하여 용입을 제어하여 용접부 온도를 맞추는 단계;와
상기 온도를 유지하며 SAW TWIN 용접기법으로 위빙하여 용접비드를 넓게 펼쳐서 입열을 고르게 하는 단계;를 포함하며,
상기 강관 확관부의 용접시 저온인성을 80J 이상으로 향상시키기 위해 용입깊이를 3mm, 용접폭의 범위를 50 내지 60mm로 제어하는 것을 특징으로 하는 강관확관부 용접제어방법.
Measuring the temperature of the welded portion of the steel pipe expanding portion;
Comparing the measured temperature with a relationship between a pre-established measurement temperature and a welding current;
Adjusting the welding current of the welding machine according to the comparison to control the penetration to match the temperature of the weld;
Including the step of maintaining the temperature and weaving by SAW TWIN welding technique to spread the welding beads wide to even the heat input;
A welding control method for a steel pipe expansion pipe, characterized in that the welding depth is controlled to 3 mm and the range of the welding width is 50 to 60 mm to improve the low-temperature toughness to 80 J or more when welding the pipe expansion.
KR1020200008181A 2020-01-21 2020-01-21 Welding control method of steel tube expansion part KR102126375B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020200008181A KR102126375B1 (en) 2020-01-21 2020-01-21 Welding control method of steel tube expansion part

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020200008181A KR102126375B1 (en) 2020-01-21 2020-01-21 Welding control method of steel tube expansion part

Publications (1)

Publication Number Publication Date
KR102126375B1 true KR102126375B1 (en) 2020-06-24

Family

ID=71407481

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020200008181A KR102126375B1 (en) 2020-01-21 2020-01-21 Welding control method of steel tube expansion part

Country Status (1)

Country Link
KR (1) KR102126375B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102376702B1 (en) * 2020-11-05 2022-03-22 한국생산기술연구원 Surface modification method for improving low-temperature impact toughness of steel pipe forming part and surface modification device controlled thereby

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05261533A (en) * 1992-03-16 1993-10-12 Ishikawajima Harima Heavy Ind Co Ltd Method for controlling depth of penetration of lap joint welding
KR20090055647A (en) * 2006-11-30 2009-06-02 신닛뽄세이테쯔 카부시키카이샤 Weld steel pipe with excellent low-temperature toughness for high-strength line pipe and process for producing the same
KR20180074365A (en) * 2016-12-23 2018-07-03 주식회사 포스코 Welding joint of thick steel plate having excellent low temperature toughness and welding method of the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05261533A (en) * 1992-03-16 1993-10-12 Ishikawajima Harima Heavy Ind Co Ltd Method for controlling depth of penetration of lap joint welding
KR20090055647A (en) * 2006-11-30 2009-06-02 신닛뽄세이테쯔 카부시키카이샤 Weld steel pipe with excellent low-temperature toughness for high-strength line pipe and process for producing the same
KR20180074365A (en) * 2016-12-23 2018-07-03 주식회사 포스코 Welding joint of thick steel plate having excellent low temperature toughness and welding method of the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102376702B1 (en) * 2020-11-05 2022-03-22 한국생산기술연구원 Surface modification method for improving low-temperature impact toughness of steel pipe forming part and surface modification device controlled thereby

Similar Documents

Publication Publication Date Title
US11746605B2 (en) Hardbanding method and apparatus
JP6016170B2 (en) High toughness weld metal with excellent ductile tear strength
US10086462B2 (en) Hardfacing with low carbon steel electrode
CN102974916B (en) HP series grinding roller open arc built-up welding slip-off preventing welding method
CN106232279A (en) Stepped design welding line joint groove
CN104785911A (en) Hollow spindle and solid spindle nose welding method
CN105583506A (en) Welding process for high-performance steel
CN102264502A (en) Butt weld and method of making using fusion and friction stir welding
CN104924018A (en) On-site repairing method for large motor rotor large section cracks
CA2942849A1 (en) Method for welding of high-strength pipelines with controlled heat input
Kumar et al. Experimental investigation and optimization of TIG welding parameters on aluminum 6061 alloy using firefly algorithm
KR102126375B1 (en) Welding control method of steel tube expansion part
Kadir et al. Investigation on welding distortion in stainless steel sheet using gas tungsten arc welding process
JP6910866B2 (en) Welding corrugations for stainless steel applications
EP1390173B1 (en) Method of welding two ductile iron workpieces for achieving highly ductile reduced imperfection weld
Hudson et al. Girth welding of X100 pipeline steels
상열김 et al. A Study on Process Robustness of Lap Joint Fillet Welding in GTAW Using C Type Filler
CN102941399B (en) Gas-shielded welding method for pearlite heat-resistant steel structural members
Shuo Girth weldability and welding process of Baosteel X80 UOE linepipes
Suman et al. Numerical Study of Welding Distortion in SAW Welded Creep Strength Enhanced Ferrite Steel Joint
CN106041270A (en) Automatic pipeline welding method
Bonds FIELD WELDING AND CUTTING DUCTILE IRON PIPE
Eun et al. Welding and Heat Treatment Requirements in Shop and Field
Millwood et al. Construction of the X100 Operational Trial Pipeline at Spadeadam, Cumbria, UK
Δαούτης Methods to control distortions of welded structures

Legal Events

Date Code Title Description
AMND Amendment
E601 Decision to refuse application
X091 Application refused [patent]
AMND Amendment
X701 Decision to grant (after re-examination)
GRNT Written decision to grant