KR102121852B1 - Process tube and carrier tray - Google Patents

Process tube and carrier tray Download PDF

Info

Publication number
KR102121852B1
KR102121852B1 KR1020157029623A KR20157029623A KR102121852B1 KR 102121852 B1 KR102121852 B1 KR 102121852B1 KR 1020157029623 A KR1020157029623 A KR 1020157029623A KR 20157029623 A KR20157029623 A KR 20157029623A KR 102121852 B1 KR102121852 B1 KR 102121852B1
Authority
KR
South Korea
Prior art keywords
process tube
port
carrier tray
protrusion
tube
Prior art date
Application number
KR1020157029623A
Other languages
Korean (ko)
Other versions
KR20150132849A (en
Inventor
마이클 제이. 바움
브렌트 폴
에드 벨싱어
Original Assignee
벡톤 디킨슨 앤드 컴퍼니
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 벡톤 디킨슨 앤드 컴퍼니 filed Critical 벡톤 디킨슨 앤드 컴퍼니
Publication of KR20150132849A publication Critical patent/KR20150132849A/en
Application granted granted Critical
Publication of KR102121852B1 publication Critical patent/KR102121852B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/508Containers for the purpose of retaining a material to be analysed, e.g. test tubes rigid containers not provided for above
    • B01L3/5085Containers for the purpose of retaining a material to be analysed, e.g. test tubes rigid containers not provided for above for multiple samples, e.g. microtitration plates
    • B01L3/50851Containers for the purpose of retaining a material to be analysed, e.g. test tubes rigid containers not provided for above for multiple samples, e.g. microtitration plates specially adapted for heating or cooling samples
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L9/00Supporting devices; Holding devices
    • B01L9/06Test-tube stands; Test-tube holders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/508Containers for the purpose of retaining a material to be analysed, e.g. test tubes rigid containers not provided for above
    • B01L3/5085Containers for the purpose of retaining a material to be analysed, e.g. test tubes rigid containers not provided for above for multiple samples, e.g. microtitration plates
    • B01L3/50855Containers for the purpose of retaining a material to be analysed, e.g. test tubes rigid containers not provided for above for multiple samples, e.g. microtitration plates using modular assemblies of strips or of individual wells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/02Adapting objects or devices to another
    • B01L2200/025Align devices or objects to ensure defined positions relative to each other
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/02Adapting objects or devices to another
    • B01L2200/028Modular arrangements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/12Specific details about manufacturing devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/18Transport of container or devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/02Identification, exchange or storage of information
    • B01L2300/021Identification, e.g. bar codes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0809Geometry, shape and general structure rectangular shaped
    • B01L2300/0829Multi-well plates; Microtitration plates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0848Specific forms of parts of containers
    • B01L2300/0851Bottom walls
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0848Specific forms of parts of containers
    • B01L2300/0858Side walls
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/52Containers specially adapted for storing or dispensing a reagent
    • B01L3/527Containers specially adapted for storing or dispensing a reagent for a plurality of reagents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/54Labware with identification means
    • B01L3/545Labware with identification means for laboratory containers
    • B01L3/5453Labware with identification means for laboratory containers for test tubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L7/00Heating or cooling apparatus; Heat insulating devices
    • B01L7/52Heating or cooling apparatus; Heat insulating devices with provision for submitting samples to a predetermined sequence of different temperatures, e.g. for treating nucleic acid samples

Abstract

본 개시가 프로세스 튜브들(102) 내의 뉴클레오티드들의 증폭 이전에 그리고 그 동안에 프로세스 튜브들(102)을 캐리어 트레이(300) 내에 효율적으로 저장하고 이송하기 위한 시스템 및 방법을 제공한다. 개시된 프로세스 튜브(102)는 환형 렛지(204), 넥(228), 및 돌출부(212)를 갖는 고정 영역을 포함한다. 프로세스 튜브(102)의 고정 영역이 프로세스 튜브(102)를 캐리어 트레이(300)의 포트 내에 고정할 수 있지만, 그럼에도 불구하고 프로세스 튜브(102)를 유전자 증폭기(400)의 강성 히터 웰(402) 내에 정렬하기 위하여 프로세스 튜브(102)가 조정되거나 또는 플로팅할 수 있게 한다.The present disclosure provides a system and method for efficiently storing and transporting process tubes 102 into carrier tray 300 prior to and during amplification of nucleotides in process tubes 102. The disclosed process tube 102 includes a fixed region with an annular ledge 204, neck 228, and protrusion 212. The fixed region of the process tube 102 can secure the process tube 102 in the port of the carrier tray 300, but nevertheless the process tube 102 is within the rigid heater well 402 of the gene amplifier 400. Allows the process tube 102 to be adjusted or floated for alignment.

Figure R1020157029623
Figure R1020157029623

Description

프로세스 튜브 및 캐리어 트레이{PROCESS TUBE AND CARRIER TRAY}Process tube and carrier tray {PROCESS TUBE AND CARRIER TRAY}

본원에서 설명되는 기술은 전반적으로, 증폭 프로세스들에서 사용되는 프로세스 튜브들 및 프로세스 튜브들이 이송 및 프로세싱을 위해 안전하게 저장되는 트레이들뿐만 아니라, 이를 제작하고 사용하는 방법들에 관한 것이다.The technique described herein generally relates to process tubes used in amplification processes and trays in which process tubes are safely stored for transport and processing, as well as methods of making and using it.

의료 진단 산업이 오늘날의 건강관리 인프라스트럭처의 중요 엘러먼트이다. 그러나, 현재 시험관 진단 분석들에 있어, 어떻게 하든 루틴이 환자 치료에서 병목현상이 되었다. 생물학적 샘플들의 진단 어세이(assay)들이 몇몇 핵심적인 단계들로 분해될 수 있다는 것을 이해하면, 하나 이상의 단계들을 자동화하는 것이 대체로 바람직하다. 예를 들어, 환자로부터 획득된 것들과 같은 생물학적 샘플이 관심이 있는 목표 핵산(예를 들어, DNA, RNA, 또는 유사한 것)을 증폭하기 위하여 핵산 증폭 어세이들에서 사용될 수 있다. 유전자 증폭기(thermal cycler) 디바이스에서 수행되는 중합효소 연쇄 반응(polymerase chain reaction: PCR)이 관심이 있는 샘플을 증폭하기 위해 사용되는 이러한 하나의 증폭 어세이이다.The medical diagnostics industry is an important element of today's healthcare infrastructure. However, with current in vitro diagnostic analyzes, routines have become a bottleneck in patient care, no matter how. It is generally desirable to automate one or more steps, understanding that diagnostic assays of biological samples can be broken down into several key steps. For example, biological samples, such as those obtained from a patient, can be used in nucleic acid amplification assays to amplify a target nucleic acid of interest (eg, DNA, RNA, or similar). A polymerase chain reaction (PCR) performed in a thermal cycler device is one such amplification assay used to amplify a sample of interest.

증폭되면, 목표 핵산, 또는 목표 핵산의 증폭 산물(예를 들어, 목표 앰플리콘(amplicon))의 존재가 검출될 수 있으며, 여기에서 목표 핵산 및/또는 목표 앰플리콘의 존재가 목표(예를 들어, 목표 병원체, 유전 돌연변이 또는 개변, 또는 유사한 것)의 존재를 식별 및/또는 수량화하기 위해 사용된다. 종종, 핵산 증폭 어세이들이 다수의 단계들을 수반하며, 이는 핵산 추출 및 준비, 핵산 증폭, 및 목표 핵산 검출을 포함할 수 있다.Once amplified, the presence of a target nucleic acid or amplification products of the target nucleic acid (eg, a target amplicon) can be detected, where the target nucleic acid and/or the presence of a target amplicon is targeted (eg , Target pathogens, genetic mutations or modifications, or the like). Often, nucleic acid amplification assays involve multiple steps, which may include nucleic acid extraction and preparation, nucleic acid amplification, and target nucleic acid detection.

다수의 핵산-기반 진단 어세이들에 있어, 분석될 생물학적, 환경적, 또는 다른 샘플들이 획득되면 프로세싱을 위해 시약들과 혼합된다. 이러한 프로세싱이 증폭으로 생물학적 샘플로부터 추출된 핵산들과, 프로브들 및 형광단들과 같은 검출 시약들을 결합하는 단계를 포함할 수 있다. 증폭을 위한 샘플들의 프로세싱이 현재 시간-소모적이고 노동 집약적인 단계이다.In many nucleic acid-based diagnostic assays, biological, environmental, or other samples to be analyzed are obtained and mixed with reagents for processing. Such processing may include combining nucleic acids extracted from the biological sample with amplification and detection reagents such as probes and fluorophores. Processing of samples for amplification is currently a time-consuming and labor intensive step.

증폭을 위한 샘플들의 프로세싱이 주로, 증폭 프로세스 이전 및 증폭 프로세스 동안 추출될 DNA 샘플들을 홀딩하기 위해 사용되는 전용 프로세스 튜브들에서 일어난다. 일부 사례들에 있어, 프로세스 튜브들이 증폭을 위해 유전자 증폭기 내에 직접적으로 위치된다. 일부 사례들에 있어, 절차를 간략화하기 위하여, 프로세스 튜브들이 먼저 증폭-전 프로세싱(증폭 시약들로 튜브들을 채우는 단계, 시약들을 건조하는 단계, 및 이들을 핫 스탬핑하여 튜브들을 마킹하는 단계)을 위해 튜브 랙 내에 위치된다. 프로세스 튜브들은 흔히 실험실 기술자에 의해 튜브 랙으로부터 제거되며, 개별적으로 그리고 독립적으로 유전자 증폭기의 히터 유닛과 접촉하도록 위치된다. 프로세스 튜브들을 개별적으로 유전자 증폭기 내에 위치시키는 것이 비효율적이며, 시간 소모적이고, 자동화하기 어려울 수 있다. 추가로, 이러한 프로세스들이 인적 오류에 영향을 받기 쉽다.The processing of samples for amplification mainly takes place in dedicated process tubes used to hold DNA samples to be extracted before and during the amplification process. In some cases, process tubes are placed directly in the gene amplifier for amplification. In some cases, to simplify the procedure, process tubes are first tube for pre-amplification processing (filling tubes with amplification reagents, drying reagents, and hot stamping them to mark tubes). It is located within the rack. Process tubes are often removed from the tube rack by a laboratory technician and individually and independently positioned to contact the heater unit of the genetic amplifier. It is inefficient, time consuming and difficult to automate to place the process tubes individually into the gene amplifier. Additionally, these processes are susceptible to human error.

일부 사례들에 있어, 프로세스 튜브들을 포함하는 랙들이 유전자 증폭기 내에 직접적으로 위치될 수 있다. 그러나, 이러한 접근방식이 너무 많은 단점들을 가지며, 이는 프로세스 튜브들이 취급 및 이송 동안 랙 내에서 이동할 수 있으며 결과적으로 유전자 증폭기의 히터들과 정확하게 정렬하지 못할 가능성이 크기 때문이다. 추가적으로, 튜브들을 증폭기의 히터들과 정렬하고 그 안에 끼워 맞추기(fit) 위하여 실험실 기술자에 의한 개입이 요구된다. 또한, 프로세스 튜브들이 단단하게 랙에 연결되지 않는 경우, 프로세스가 프로세스 튜브들의 마킹 동안 제거될 수 있으며, 스탬핑 장치에 의해 위로 당겨지고 랙 밖으로 제거될 수 있다.In some cases, racks containing process tubes can be positioned directly within the genetic amplifier. However, this approach has too many drawbacks because process tubes can move within the rack during handling and transport and consequently are not likely to accurately align with the heaters of the genetic amplifier. Additionally, intervention by laboratory technicians is required to align and fit the tubes with the heaters of the amplifier. Also, if the process tubes are not rigidly connected to the rack, the process can be removed during the marking of the process tubes, pulled up by a stamping device and removed out of the rack.

랙 내에서 프로세스 튜브들을 취급 및 이송하기 어려운 점들 중 다수가 증폭 프로세스들에서 일반적으로 사용되는 튜브들의 형상에서 기인한다. 프로세스 튜브들은 일반적으로 원뿔 형상이며, 이는 프로세스 튜브의 상단에서 프로세스 튜브의 하단보다 더 큰 외경을 갖는다. 일부 프로세스 튜브들이 원통형 형상이며, 이는 상단으로부터 하단까지 일정한 직경을 갖는다. 프로세스 튜브들이 위치되는 랙의 포트들이 프로세스 튜브들의 최대 외경(프로세스 튜브의 상단에서의)보다 더 큰 직경을 가져야만 한다. 프로세스 튜브들 및 랙의 제조와 관련된 공차들을 처리하기 위하여, 랙 내의 포트들이 흔히 프로세스 튜브들의 외경보다 현저하게 더 크며, 이는 튜브들이 랙 내에서 주위로 이동하고 잠재적으로 밖으로 떨어지는 것을 가능하게 한다. 랙 내의 고정 핏(secure fit)이 없으면, 프로세스 튜브가 일 측 또는 다른 측으로 틸팅(tilt)할 수 있다. 랙 내에 복수의 프로세스 튜브들을 가지면, 틸팅하는 프로세스 튜브들이 서로 충돌하고 부서지며 및/또는 그 안에 저장된 샘플들 및/또는 시약들의 손실을 초래할 수 있다. 또한, 상이하게 틸팅된 프로세스 튜브들을 유전자 증폭기의 강성(rigid) 히터들과 정렬하는 것이 대단히 어려울 수 있다.Many of the difficulties in handling and transporting process tubes within a rack are due to the shape of the tubes commonly used in amplification processes. The process tubes are generally conical, which has a larger outer diameter at the top of the process tube than the bottom of the process tube. Some process tubes have a cylindrical shape, which has a constant diameter from top to bottom. The ports of the rack where the process tubes are located must have a larger diameter than the maximum outer diameter of the process tubes (at the top of the process tube). To address the tolerances associated with manufacturing process tubes and racks, the ports in the rack are often significantly larger than the outer diameter of the process tubes, which allows the tubes to move around in the rack and potentially fall out. Without a secure fit within the rack, the process tube can tilt to one side or the other. Having multiple process tubes in a rack can cause tilting process tubes to collide and break with each other and/or to lose samples and/or reagents stored therein. Also, it can be very difficult to align the different tilted process tubes with the rigid heaters of the genetic amplifier.

따라서, 증폭 전 및 증폭 동안 프로세스 튜브들을 안전하고 효율적을 취급하고 이송하는 것을 가능하게 하기 위하여 이들을 함께 단단히 끼워 맞추는 트레이 및 프로세스 튜브들에 대한 필요성이 존재한다. 또한, 유전자 증폭기의 히터들과 정렬을 용이하게 하기 위하여 트레이 내에서 조정 또는 플로팅(float)하기 위한 능력을 갖는 프로세스 튜브들에 대한 필요성이 존재한다. Accordingly, there is a need for trays and process tubes that tightly fit them together to enable safe and efficient handling and transport of process tubes before and during amplification. There is also a need for process tubes that have the ability to adjust or float in a tray to facilitate alignment with the heaters of the genetic amplifier.

본원의 배경기술의 논의는 본원에서 설명되는 발명들의 맥락을 설명하기 위해 포함된다. 이는, 임의의 청구항들의 우선일에 언급된 임의의 재료가 공개되거나, 공지되거나, 또는 일반적이고 평범한 지식의 일부라는 것을 인정하는 것으로서 간주되지 않아야 한다.Discussion of the background art herein is included to explain the context of the inventions described herein. This should not be regarded as an admission that any material mentioned on the priority date of any claim is public, known, or part of general and ordinary knowledge.

본원에서 개시되는 특정 실시예들은, 환형 렛지(ledge), 돌출부, 및 렛지와 돌출부 사이의 넥(neck)을 포함하는 고정(securement) 영역을 갖는 프로세스 튜브를 고려한다. 프로세스 튜브는 또한 돌출부 아래로 연장하는 몸체 및 튜브에 개구를 규정(define)하는 환형 렛지로부터 위쪽으로 수직적으로 연장하는 상단 링을 포함한다. Certain embodiments disclosed herein contemplate a process tube having an annular ledge, a protrusion, and a securement area that includes a neck between the ledge and the protrusion. The process tube also includes a body extending below the protrusion and a top ring extending vertically upward from an annular ledge defining an opening in the tube.

특정 실시예들에 있어, 넥의 외측 표면이 프로세스 튜브를 관통하는 길이방향 축과 평행할 수 있다. 돌출부는 정점(apex), 정점으로부터 넥으로의 상부 슬로프, 정점으로부터 몸체로의 하부 슬로프를 포함할 수 있다. 돌출부 상의 상부 슬로프의 각도가 돌출부 상의 하부 슬로프의 각도보다 더 가파를 수 있다. 프로세스 튜브의 환형 렛지는 상부 표면, 하부 표면, 및 외측 표면을 가질 수 있다. 돌출부는 넥의 외경보다 더 큰 외경을 가질 수 있다. 환형 렛지는 돌출부의 외경보다 더 큰 외경을 가질 수 있다. 프로세스 튜브는, 프로세스 튜브의 하단부를 규정하는 몸체 밑의 베이스를 더 포함할 수 있다.In certain embodiments, the outer surface of the neck can be parallel to the longitudinal axis through the process tube. The protrusion can include an apex, an upper slope from the apex to the neck, and a lower slope from the apex to the body. The angle of the upper slope on the protrusion may be steeper than the angle of the lower slope on the protrusion. The annular ledge of the process tube can have an upper surface, a lower surface, and an outer surface. The protrusion may have a larger outer diameter than the outer diameter of the neck. The annular ledge may have a larger outer diameter than the outer diameter of the protrusion. The process tube can further include a base under the body that defines a lower end of the process tube.

본원에서 개시되는 특정 실시예들이 복수의 프로세스 튜브들을 갖는 프로세스 튜브 스트립(strip)을 포함한다. 복수의 프로세스 튜브들이 복수의 튜브들의 환형 렛지들에 인접하는 탭에 의해 연결된다.Certain embodiments disclosed herein include a process tube strip having a plurality of process tubes. The plurality of process tubes are connected by tabs adjacent to the annular ledges of the plurality of tubes.

특정 실시예들은, 튜브로부터 측방으로 연장하는 환형 렛지를 갖는 프로세스 튜브를 고려하며, 환형 렛지는 상부 표면, 하부 표면 및 외부 표면을 포함한다. 프로세스 튜브는 프로세스 튜브에 개구를 규정하는, 환형 렛지의 상부 표면으로부터 위쪽으로 수직적으로 연장하는 상단 링을 포함할 수 있다. 프로세스 튜브는 환형 렛지 아래의 튜브 상의 위치에서 프로세스 튜브로부터 측방으로 연장하는 환형 돌출부를 더 포함할 수 있다. 돌출부는, 정점, 상부 슬로프, 및 하부 슬로프를 가질 수 있다. 프로세스 튜브는 환형 렛지와 돌출부 사이의 넥, 돌출부 아래의 몸체, 및 튜브의 하단부를 규정하는 베이스를 포함할 수 있다.Certain embodiments contemplate a process tube having an annular ledge extending laterally from the tube, the annular ledge comprising an upper surface, a lower surface and an outer surface. The process tube can include a top ring extending vertically upward from the top surface of the annular ledge defining an opening in the process tube. The process tube can further include an annular projection extending laterally from the process tube at a location on the tube below the annular ledge. The protrusion may have a vertex, an upper slope, and a lower slope. The process tube can include a neck between the annular ledge and the protrusion, a body below the protrusion, and a base defining the bottom of the tube.

개시된 프로세스 튜브의 실시예들은 캐리어 트레이 내에 단단하게 끼워 맞춰지도록 구성될 수 있다. 캐리어 트레이는 쉘프(shelf) 및 베이스를 가질 수 있으며, 쉘프는 쉘프의 상단부을 관통하는 복수의 포트들을 가지고, 포트들이 내부 벽을 갖는다. 특정 실시예들에 있어, 개시된 프로세스 튜브의 돌출부는 캐리어 트레이의 포트의 직경보다 더 큰 외경을 가질 수 있다. 프로세스 튜브의 넥은 캐리어 트레이의 포트의 직경보다 더 작은 외경을 가질 수 있다. 프로세스 튜브는 캐리어 트레이의 포트 내에 단단하게 끼워 맞춰질 수 있다. Embodiments of the disclosed process tube can be configured to fit tightly within a carrier tray. The carrier tray can have a shelf and a base, the shelf has a plurality of ports passing through the upper end of the shelf, and the ports have an inner wall. In certain embodiments, the protruding portion of the disclosed process tube can have an outer diameter greater than the diameter of the port of the carrier tray. The neck of the process tube can have an outer diameter smaller than the diameter of the port of the carrier tray. The process tube can fit tightly into the port of the carrier tray.

프로세스 튜브의 특정 실시예들에 있어, 프로세스 튜브의 환형 렛지의 하부 표면이 쉘프 상단부의 외부 상에 놓일 수 있으며, 돌출부의 상부 슬로프가 포트의 내부 벽의 하단 에지 상에 놓일 수 있다. 프로세스 튜브의 넥과 포트의 내부 벽 사이에 간극(gap)이 존재할 수 있으며, 간극은 프로세스 튜브가 캐리어 트레이의 포트 내에서 틸팅하거나 또는 조정될 수 있게 한다.In certain embodiments of the process tube, the lower surface of the annular ledge of the process tube may lie on the outside of the shelf top, and the upper slope of the protrusion may lie on the bottom edge of the inner wall of the port. A gap may exist between the neck of the process tube and the inner wall of the port, which allows the process tube to be tilted or adjusted within the port of the carrier tray.

본 발명의 추가적인 실시예들은, 이를 관통하는 복수의 포트들을 갖는 캐리어 트레이 및 고정 영역을 갖는 프로세스 튜브를 갖는 시스템을 고려한다. 프로세스 튜브의 고정 영역은 환형 렛지, 넥, 및 돌출부를 포함할 수 있다. 프로세스 튜브의 고정 영역이 캐리어 트레이의 포트 내에 단단히 끼워 맞춰질 수 있다. 이러한 시스템에 있어, 프로세스 튜브의 환형 렛지 및 돌출부는 캐리어 트레이의 포트의 직경보다 더 큰 외경을 가질 수 있으며, 프로세스 튜브의 넥은 포트의 직경보다 더 작은 외경을 가질 수 있다. 프로세스 튜브가 캐리어 트레이의 포트 내에 단단하게 끼워 맞춰질 때, 프로세스 튜브가 캐리어 트레이의 포트 내에서 틸팅하거나 또는 조정될 수 있다.Additional embodiments of the invention contemplate a system having a carrier tube having a plurality of ports passing through it and a process tube having a fixed area. The fixing region of the process tube can include an annular ledge, neck, and protrusion. The fixing area of the process tube can be fitted tightly into the port of the carrier tray. In such a system, the annular ledges and protrusions of the process tube can have an outer diameter larger than the diameter of the port of the carrier tray, and the neck of the process tube can have an outer diameter smaller than the diameter of the port. When the process tube fits tightly into the port of the carrier tray, the process tube can be tilted or adjusted within the port of the carrier tray.

도 1a는 본원에서 설명된 바와 같은 예시적인 프로세스 튜브 스트립의 등축도를 도시한다.
도 1b는 도 1a의 프로세스 튜브 스트립의 측면 평면도이다.
도 1c는 도 1a의 프로세스 튜브 스트립의 평면도이다.
도 1d는 본원에서 설명된 바와 같은 다른 예시적인 프로세스 튜브 스트립의 등축도를 도시한다.
도 1e는 본원에서 설명된 바와 같은 다른 예시적인 프로세스 튜브 스트립의 등축도를 도시한다.
도 2a는 본원에서 설명된 바와 같은 예시적인 단일 프로세스 튜브의 등축도를 도시한다.
도 2b는 도 1c의 라인 2B를 따라 취해진 도 2의 프로세스 튜브의 단면도이다.
도 3a는 본원에서 개시되는 바와 같은 예시적인 캐리어 트레이를 도시한다.
도 3b는 도 3a의 캐리어 트레이 내의 예시적인 복수의 프로세스 튜브 스트립들을 도시한다.
도 4는 캐리어 트레이 내에 프로세스 튜브들을 고정하기 이전의 캐리어 트레이 내에 위치된 12개의 프로세스 튜브들의 단면도이다.
도 5는 캐리어 트레이 내에 프로세스 튜브들을 고정하기 이전의 캐리어 트레이 내에 위치된 2개의 예시적인 프로세스 튜브들의 단면도이다.
도 6a는 프로세스 튜브들을 캐리어 트레이 내에 고정한 후의 도 4의 12개의 프로세스 튜브들의 도 3b의 라인 6A을 따라 취한 단면도이다.
도 6b는 프로세스 튜브들을 캐리어 트레이 내에 고정한 후의 캐리어 트레이 내에 위치된 프로세스 튜브 스트립의 도 3b의 라인 6B을 따라 취한 단면도이다.
도 7은 캐리어 트레이 내에 프로세스 튜브들을 고정한 후의 캐리어 트레이 내에 위치된 도 5의 프로세스 튜브들의 단면도이다.
도 8은 유전자 증폭기의 예시적인 히터 어셈블리의 등축도이다.
도 9는 본원에서 설명되는 바와 같은 히터 어셈블리의 히터 웰(well) 내에 위치된 예시적인 프로세스 튜브들의 단면도이다.
1A shows an isometric view of an exemplary process tube strip as described herein.
1B is a side plan view of the process tube strip of FIG. 1A.
1C is a top view of the process tube strip of FIG. 1A.
1D shows an isometric view of another exemplary process tube strip as described herein.
1E shows an isometric view of another exemplary process tube strip as described herein.
2A shows an isometric view of an exemplary single process tube as described herein.
2B is a cross-sectional view of the process tube of FIG. 2 taken along line 2B of FIG. 1C.
3A shows an exemplary carrier tray as disclosed herein.
3B shows a plurality of exemplary process tube strips in the carrier tray of FIG. 3A.
4 is a cross-sectional view of twelve process tubes positioned in a carrier tray prior to fixing process tubes in a carrier tray.
5 is a cross-sectional view of two exemplary process tubes positioned in a carrier tray prior to securing process tubes in a carrier tray.
6A is a cross-sectional view taken along line 6A of FIG. 3B of the 12 process tubes of FIG. 4 after securing the process tubes in a carrier tray.
6B is a cross-sectional view taken along line 6B of FIG. 3B of the process tube strip positioned within the carrier tray after securing the process tubes in the carrier tray.
7 is a cross-sectional view of the process tubes of FIG. 5 positioned within a carrier tray after fixing process tubes in a carrier tray.
8 is an isometric view of an exemplary heater assembly of a genetic amplifier.
9 is a cross-sectional view of exemplary process tubes positioned within a heater well of a heater assembly as described herein.

실시예들이 추가로 설명되기 전에, 본 발명이 이와 같이 변화할 수 있는 설명되는 특정 실시예들에 한정되지 않는다는 것이 이해되어야 한다. 본원에서 사용되는 용어가 특정 실시예들을 설명하기 위한 목적으로만 사용되며, 제한적으로 의도되지 않는다는 것이 또한 이해되어야 한다.Before the embodiments are further described, it should be understood that the present invention is not limited to the specific embodiments described, which may be changed as such. It should also be understood that the terminology used herein is used for the purpose of describing specific embodiments only and is not intended to be limiting.

값들의 범위가 제공될 때, 문맥이 명백히 달리 기술하지 않는 한, 그 범위의 상한 및 하한 사이의 하한의 제 10 단위에 대한 사이의 값 및 그 언급된 범위의 임의의 다른 언급된 값 또는 사이의 값이 실시예들 내에 포괄된다는 것이 이해될 것이다. 이러한 더 작은 범위들의 상한 및 하한이 독립적으로 더 작은 범위들 내에 포함될 수 있으며, 또한 언급된 범위 내에서 명확하게 배제되는 임의의 것을 조건으로 실시예들 내에 포괄된다. 언급된 범위가 한계들 중 하나 또는 둘 모두를 포함하는 경우, 이러한 포함된 한계들의 둘 모두 중 하나를 배제하는 범위들이 또한 실시예들에 포함된다.When a range of values is provided, unless the context clearly dictates otherwise, the value between the upper and lower limits of the range for the tenth unit and any other stated value in or between the stated range. It will be understood that values are encompassed within the embodiments. The upper and lower limits of these smaller ranges may be included within the smaller ranges independently, and are also encompassed within the embodiments subject to anything explicitly excluded within the stated range. Where the stated range includes one or both of the limits, ranges excluding either of those included limits are also included in the embodiments.

달리 정의되지 않는 한, 본원에서 사용되는 모든 기술적 및 과학적 용어들이 실시예들이 속하는 기술분야의 당업자에 의해 일반적으로 이해되는 것과 동일한 의미를 갖는다. 본원에서 설명되는 것들과 유사한 임의의 방법들 및 재료들이 또한 실시예들의 실시 또는 테스트에서 사용될 수 있지만, 선호되는 방법들 및 재료들이 이제 설명된다.Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which the embodiments pertain. Although any methods and materials similar to those described herein can also be used in the practice or testing of embodiments, preferred methods and materials are now described.

본원에서 그리고 첨부된 청구항들에서 사용되는 바와 같은 단수형들 "일"은 문맥에 명확하게 달리 기술하지 않는 한 복수의 지시대상들을 포함한다. 따라서, 예를 들어, "일 방법"에 대한 언급은 복수의 이러한 방법들 및 당업자들에게 공지된 균등물들 등을 포함한다.Singular forms "work" as used herein and in the appended claims include a plurality of indications unless the context clearly dictates otherwise. Thus, for example, reference to “one method” includes a plurality of such methods and equivalents known to those skilled in the art.

상세한 설명 및 명세서의 청구항들 전체에 걸쳐 단어 "포함하다" 및 "포함하는", "구성하다"와 같은 이의 변형들이 다른 첨가물들, 컴포넌트들, 완전체들 또는 단계들을 배제하도록 의도되지 않는다.Throughout the detailed description and claims of the specification, variations thereof such as the words “comprises” and “comprising” and “consist” are not intended to exclude other additives, components, entities or steps.

본원에서 설명되는 프로세스 튜브들 및 캐리어 트레이는, 유전자 증폭기에서 사용되기 이전에 프로세스 튜브들을 준비, 저장, 및 이송하는 안전하고 효율적인 시스템을 제공하기 위해, 그리고 또한 증폭 동안 프로세스 튜브들을 유전자 증폭기 내에 정확하고 단단하게 위치시키기 위해 함께 사용될 수 있다.The process tubes and carrier trays described herein can be used to provide a safe and efficient system for preparing, storing, and transporting process tubes prior to use in a gene amplifier, and also to accurately process process tubes within the gene amplifier during amplification. It can be used together to securely position.

도 1a는 본원에서 설명되는 실시예들에 따른 예시적인 프로세스 튜브 스트립(100)의 등축도를 도시한다. 도 1b는 도 1a의 프로세스 튜브 스트립의 측면 평면도이다. 도 1c는 도 1a의 프로세스 튜브 스트립의 평면도이다. 도 1a 내지 도 1c에 도시된 바와 같이, 프로세스 튜브 스트립(100)은 커넥터 탭(104)에 의해 함께 연결된 프로세스 튜브들(102)의 집합이다. 예시적인 프로세스 튜브 스트립(100)은 또한, 도 1a 내지 도 1c에 도시된 바와 같이, 프로세스 튜브 스트립(100)의 상단을 나타내는 상단 단부 탭(106) 및 프로세스 튜브 스트립(100)의 하단을 나타내는 하단 단부 탭(108)을 포함할 수 있다. 도 1a 내지 도 1c에 도시된 프로세스 튜브 스트립(100)은 프로세스 튜브 스트립(100) 내에 함께 연결된 8개의 프로세스 튜브들(102)을 포함한다. 그러나, 당업자는 다른 실시예들에 있어 프로세스 튜브 스트립(100)이, 예를 들어 임의의 다른 수의 프로세스 튜브들, 예를 들어, 프로세스 튜브 스트립 내에 연결된 40, 30, 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 7, 6, 5, 4, 3, 또는 2 개의 프로세스 튜브들(102)을 포함할 수 있다는 것을 즉각적으로 인식할 것이다. 프로세스 튜브 스트립(100)의 일 실시예가 상단 및 하단 단부 탭들(106, 108)의 상부 표면 상에 표시 또는 표지를 포함할 수 있다. 일 실시예에 있어, 상단 단부 탭(106)은 프로세스 튜브 스트링(100)의 상단을 나타내는 "A"로 마킹될 수 있고, 하단 단부 탭(108)은 프로세스 튜브 스트립(100) 내의 프로세스 튜브들(102)의 수에 대응하는 알파벳 문자로 마킹될 수 있다(예를 들어, "H"는 프로세스 튜브 스트립(100)에서 함께 연결된 8개의 프로세스 튜브들(102)를 갖는 프로세스 튜브 스트립(100)에 대하여 프로세스 튜브 스트립(100)의 하단 단부 탭(108) 상에 마킹될 것이다). 그러나, 숙련된 당업자는 다양한 다른 문자들, 예를 들어, "1" 및 "8"과 같은 자판 문자들이 또한 동일한 목적을 달성하기 위하여 프로세스 튜브 스트립(100)의 상단 및 하단 단부 탭들을 마킹하는데 용이하게 사용될 수 있다는 것을 용이하게 인식할 것이다. 따라서, 상단 및 하단 단부 탭들(106, 108)이 프로세스 튜브 스트립(100) 내의 프로세스 튜브들(102)의 수 및 프로세스 튜브(102)의 상단 및 하단을 나타내기 위해 사용될 수 있다. 이에 더하여, 단부 탭들(106, 108)이, 예를 들어, 프로세스 튜브들(102)의 내용물들, 프로세스 튜브 스트립(100) 내에서 수행되는 어세이 유형, 및 프로세스 튜브 스트립(100)의 제조 날짜 및 장소를 식별하기 위하여 컬러 마킹, 바코드, 또는 어떤 다른 지시로 마킹될 수 있다.1A shows an isometric view of an exemplary process tube strip 100 in accordance with embodiments described herein. 1B is a side plan view of the process tube strip of FIG. 1A. 1C is a top view of the process tube strip of FIG. 1A. 1A-1C, the process tube strip 100 is a collection of process tubes 102 connected together by a connector tab 104. The exemplary process tube strip 100 also has a top end tab 106 representing the top of the process tube strip 100 and a bottom representing the bottom of the process tube strip 100, as shown in FIGS. 1A-1C. End tabs 108 may be included. The process tube strip 100 shown in FIGS. 1A-1C includes eight process tubes 102 connected together in a process tube strip 100. However, one of ordinary skill in the art may, in other embodiments, process tube strip 100 be connected to any other number of process tubes, eg, 40, 30, 20, 19, 18, 17 connected within a process tube strip. , 16, 15, 14, 13, 12, 11, 10, 9, 7, 6, 5, 4, 3, or two process tubes 102. One embodiment of the process tube strip 100 can include a mark or label on the top surface of the top and bottom end tabs 106, 108. In one embodiment, the top end tab 106 can be marked with an “A” representing the top of the process tube string 100, and the bottom end tab 108 is the process tubes in the process tube strip 100 ( Can be marked with an alphabetic letter corresponding to the number of 102) (eg, "H" for process tube strip 100 having 8 process tubes 102 connected together in process tube strip 100) Will be marked on the bottom end tab 108 of the process tube strip 100). However, one of ordinary skill in the art can easily mark various upper and lower end tabs of the process tube strip 100 in order to achieve the same purpose, as well as various other characters, for example, keyboard characters such as "1" and "8". It will be easily recognized that it can be used. Thus, top and bottom end tabs 106, 108 can be used to indicate the number of process tubes 102 in the process tube strip 100 and the top and bottom of the process tube 102. In addition, the end tabs 106, 108 are, for example, the contents of the process tubes 102, the type of assay performed within the process tube strip 100, and the date of manufacture of the process tube strip 100 And color marking, barcode, or some other indication to identify the place.

도 1d는 프로세스 튜브들(102)의 각각 상에 렛지 연장부(110)를 포함하는 프로세스 튜브 스트립(100)의 다른 실시예이다. 도 1e는 각 프로세스 튜브들(102)의 렛지 연장부(110) 상에 위치된 튜브 태그(112)를 포함하는 프로세스 튜브 스트립(100)의 추가적인 실시예이다. 이러한 실시예들이 이하에서 더 상세하게 논의될 것이다.1D is another embodiment of a process tube strip 100 that includes a ledge extension 110 on each of the process tubes 102. 1E is a further embodiment of a process tube strip 100 that includes a tube tag 112 located on the ledge extension 110 of each process tube 102. These embodiments will be discussed in more detail below.

프로세스 튜브들(102)은 고체들 또는 액체들을 수용할 수 있거나 또는 하우징할 수 있다. 예를 들어, 프로세스 튜브들(102)이 시약들 및/또는 샘플들, 예를 들어, 증폭 어세이들에서 사용될 핵산 샘플들을 홀딩할 수 있다. 프로세스 튜브들(102)이 원형 단면일 수 있지만, 다른 단면들이 또한 가능하며 이에 부합한다. 프로세스 튜브들(102)은 단일 구성을 통해 제조될 수 있지만, 특정한 경우들에 있어 프로세스 튜브들이 적용가능한 바와 같이 용융된(fused) 또는 달리 함께 결합된 2개 이상의 파트들로부터 구성될 수도 있다. 전형적으로, 프로세스 튜브들은 프로세스 튜브(102) 내에 유체의 투입(deposit) 및/또는 회수를 위한 피펫 팁(pipette tip)을 수납/수용하도록 구성되는 개구를 갖는다.The process tubes 102 can contain or house solids or liquids. For example, process tubes 102 can hold reagents and/or samples, such as nucleic acid samples to be used in amplification assays. Although the process tubes 102 can be circular cross-sections, other cross-sections are also possible and conform. The process tubes 102 can be manufactured through a single configuration, but in certain cases the process tubes may be constructed from two or more parts fused or otherwise joined together as applicable. Typically, process tubes have an opening configured to receive/receive a pipette tip for depositing and/or recovering fluid into process tube 102.

일부 실시예들에 있어, 프로세스 튜브(102)는 폴리프로필렌 또는 당업자들에게 공지된 다른 열가소성 폴리머들로부터 구성될 수 있다. 대안적으로, 프로세스 튜브들(102)이, 폴리카보네이트 또는 유사한 것과 같은 다른 적절한 재료들로부터 구성될 수 있다. 일부 실시예들에 있어, 폴리프로필렌은 바람직하게, 티타늄 디옥사이드, 아연 옥사이드, 지르코늄 옥사이드, 또는 칼슘 카르보네이트, 또는 유사한 것과 같은 색소로 보충된다. 바람직하게, 프로세스 튜브들(102)은, 이들이 형광을 발광하지 않으며 그에 따라 프로세스 튜브(102) 내의 증폭된 핵산의 검출을 방해하지 않도록 하는 재료들을 사용하여 제조된다.In some embodiments, process tube 102 may be constructed from polypropylene or other thermoplastic polymers known to those skilled in the art. Alternatively, process tubes 102 can be constructed from other suitable materials, such as polycarbonate or similar. In some embodiments, polypropylene is preferably supplemented with a pigment such as titanium dioxide, zinc oxide, zirconium oxide, or calcium carbonate, or the like. Preferably, the process tubes 102 are made using materials that do not emit fluorescence and thus do not interfere with the detection of the amplified nucleic acid in the process tube 102.

도 2a 및 도 2b는 각기 예시적인 단일 프로세스 튜브(102)의 등축도 및 단면도를 도시한다. 커넥터 탭들(104)이 도 2a에 도시되며, 이들은 프로세스 튜브(102)를 프로세스 튜브(102)의 어느 한 측 상의 다른 프로세스 튜브들(102)에 연결한다. 도 2b에서, 도시된 커넥터 탭(104)은 커넥터 탭의 밑면 상에 커넥터 리세스(recess)(232)를 포함한다. 일부 실시예들에 있어, 커넥터 리세스(232)는 프로세스 스트립(100)의 일 부분으로서 연결된 다른 프로세스 튜브들(102)을 용이하게 따로 쪼개기 위한 분리 지점을 제공한다. 프로세스 튜브들(102)이, 상이한 건식 시약들을 갖는 다른 프로세스 튜브들(102)을 혼합하고 매칭하기 위하여, 그리고 유전자 증폭기의 증폭 어세이의 필요한 동작을 매칭하기 위하여 프로세스 튜브들을 캐리어 트레이(300) 내에 재배열하기 위해 최종 사용자에 의해 따로 쪼개질 수 있다. 커넥터 탭(104)이 또한 프로세스 튜브 스트립(100)의 단부에서 그리고 상단 또는 하단 단부 탭(106, 108)에서 프로세스 튜브(102) 사이에 위치될 수 있다. 이러한 커넥터 탭(104)은 단부 프로세스 튜브(102)가 용이하게 제거되고 또한 다른 프로세스 튜브 스트립들(100)로부터의 프로세스 튜브들(102)과 혼합 및 매칭되거나, 또는 유전자 증폭기 내에서 개별적으로 사용될 수 있게 한다.2A and 2B show isometric and cross-sectional views of an exemplary single process tube 102, respectively. Connector tabs 104 are shown in FIG. 2A, which connect process tube 102 to other process tubes 102 on either side of process tube 102. In FIG. 2B, the illustrated connector tab 104 includes a connector recess 232 on the underside of the connector tab. In some embodiments, connector recess 232 provides a separation point for easily splitting other process tubes 102 connected as part of process strip 100. The process tubes 102 are placed in the carrier tray 300 to mix and match different process tubes 102 with different dry reagents, and to match the required operation of the amplification assay of the genetic amplifier. It can be split apart by the end user to rearrange. Connector tabs 104 may also be positioned at the ends of the process tube strip 100 and between the process tubes 102 at the top or bottom end tabs 106, 108. This connector tab 104 allows the end process tube 102 to be easily removed and also mixed and matched with process tubes 102 from other process tube strips 100, or used individually within a genetic amplifier. To make.

도 2a 및 도 2b에 도시된 바와 같이, 프로세스 튜브(102)가 상단 링(202)을 가질 수 있으며, 상단 링(202)은 프로세스 튜브(102)의 상단에 개구(226)를 규정한다. 상단 링(202)이 개구(226)의 둘레를 둘러 연장한다. 프로세스 튜브(102)의 일부로서, 환형 렛지(204)가 상단 링(202) 아래에서 프로세스 튜브(102)의 측면으로부터 벗어나 측방으로 연장한다. 이러한 방식으로, 상단 링(202)이 환형 렛지(204)의 상부 표면(206)으로부터 위쪽으로 연장한다. 상부 표면(206)에 더하여, 환형 렛지(204)가 또한 외측 표면(208) 및 하부 표면(210)에 의해 규정된다. 환형 렛지(204) 아래에 프로세스 튜브(102)의 넥(228)이 있으며, 이는 프로세스 튜브(102)의 길이방향 축(230)에 평행하게 환형 렛지(204)로부터 수직적으로 연장한다. 도 2b에 도시된 바와 같이, 넥(228)에서의 프로세스 튜브(102)의 외부가 프로세스 튜브(102)를 관통하여 수직적으로 이어지는 길이방향 축(230)에 평행할 수 있다. 다른 실시예에 있어, 외부 넥(228)이 제조 프로세스 동안 사출 몰드로부터 프로세스 튜브(102)를 제거하는데 도움을 주기 위하여 길이방향 축(230)에 대해 소정의 각도를 가질 수 있다.2A and 2B, the process tube 102 can have a top ring 202, which defines an opening 226 at the top of the process tube 102. The top ring 202 extends around the perimeter of the opening 226. As part of the process tube 102, an annular ledge 204 extends laterally off the side of the process tube 102 below the top ring 202. In this way, the top ring 202 extends upward from the top surface 206 of the annular ledge 204. In addition to the upper surface 206, an annular ledge 204 is also defined by the outer surface 208 and the lower surface 210. Below the annular ledge 204 is the neck 228 of the process tube 102, which extends vertically from the annular ledge 204 parallel to the longitudinal axis 230 of the process tube 102. As shown in FIG. 2B, the exterior of the process tube 102 at the neck 228 may be parallel to the longitudinal axis 230 passing vertically through the process tube 102. In other embodiments, the outer neck 228 may have an angle relative to the longitudinal axis 230 to help remove the process tube 102 from the injection mold during the manufacturing process.

도 2a 내지 도 2b에 도시된 바와 같은 예시적인 프로세스 튜브(102)의 넥(228) 아래에 프로세스 튜브(102)의 측면으로부터 측방으로 연장하는 돌출부(212)가 있다. 돌출부(212)는, 넥(228)으로부터 돌출부(212)의 정점(215)으로 연장할 때 상부 슬로프(214)에 의해 규정된다. 돌출부(212)의 정점(215)이 돌출부(212)의 최대 외경을 가지며, 그래서 돌출부(212)가 정점(215)으로부터 프로세스 튜브(102)의 외부 아래로 연장하는 하부 슬로프(216)를 포함한다. 돌출부(212)의 상부 슬로프(214)는 길이방향 축(230)으로부터 멀어지도록 경사지며, 하부 슬로프(216)는 다시 길이방향 축(230)을 향해 경사진다. 일부 실시예들에 있어, 도 2a 내지 도 2b에 도시된 바와 같이, 돌출부 상의 상부 슬로프(214)의 각도가 돌출부(212) 상의 하부 슬로프(216)의 각도보다 더 가파르다. 돌출부(212)의 하부 슬로프(216)는 프로세스 튜브(102)의 긴 몸체부(218)를 만난다. 몸체(218)는, 돌출부(212)의 하부 슬로프(216)와 유사하게, 길이방향 축(230)을 향해 경사지지만, 돌출부(212)의 하부 슬로프(215)보다 덜 가파른 각도를 갖는다. 몸체(218)는 프로세스 튜브(102)의 베이스(220)로 연장한다. 베이스(220)는, 프로세스 튜브(102)의 하단 내에서 디보트(divot)(222)에 의해 규정되는, 프로세스 튜브(102) 하단 상의 환형 하단 링(224)을 포함한다. 이러한 실시예에 있어, 상단 링(202), 환형 렛지(204), 넥(228), 돌출부(212), 및 몸체(218)가 길이방향 축(230)과 동축이다.Below the neck 228 of the exemplary process tube 102 as shown in FIGS. 2A-2B is a protrusion 212 that extends laterally from the side of the process tube 102. The protrusion 212 is defined by the upper slope 214 when extending from the neck 228 to the apex 215 of the protrusion 212. The apex 215 of the protrusion 212 has the maximum outer diameter of the protrusion 212, so that the protrusion 212 includes a lower slope 216 extending from the apex 215 down the outside of the process tube 102. . The upper slope 214 of the protrusion 212 is inclined away from the longitudinal axis 230, and the lower slope 216 is again inclined towards the longitudinal axis 230. In some embodiments, as shown in FIGS. 2A-2B, the angle of the upper slope 214 on the protrusion is steeper than the angle of the lower slope 216 on the protrusion 212. The lower slope 216 of the protrusion 212 meets the elongated body portion 218 of the process tube 102. The body 218 is inclined toward the longitudinal axis 230, similar to the lower slope 216 of the protrusion 212, but has a less steep angle than the lower slope 215 of the protrusion 212. The body 218 extends to the base 220 of the process tube 102. The base 220 includes an annular bottom ring 224 on the bottom of the process tube 102, defined by a divot 222 within the bottom of the process tube 102. In this embodiment, the top ring 202, annular ledge 204, neck 228, protrusions 212, and body 218 are coaxial with the longitudinal axis 230.

환형 렛지(204), 넥(228), 및 돌출부(212)가 함께 프로세스 튜브(102)의 고정 영역(200)을 규정한다. 이하에서 더 구체적으로 설명될 바와 같이, 고정 영역(200)은 이송 및 유전자 증폭기의 히터 내에서의 차후의 프로세싱을 위하여 프로세스 튜브(102)(또는 프로세스 스트립(100)의 형태의 복수의 프로세스 튜브들(102))를 캐리어에 용이하고 단단하게 부착하는 방법을 제공한다.The annular ledge 204, neck 228, and protrusion 212 together define a fixed region 200 of the process tube 102. As will be described in more detail below, the fixed region 200 is a plurality of process tubes in the form of a process tube 102 (or process strip 100) for transfer and subsequent processing in the heater of the genetic amplifier. Provided is a method for easily and firmly attaching (102) to a carrier.

이상에서 설명된 바와 같이, 프로세스 튜브들(102)이 커넥터 탭(104)에 의해 함께 연결된 튜브들(102)의 스트립(100)으로서 제조될 수 있다. 그런 다음 다수의 프로세스 튜브 스트립들(100)이 캐리어 트레이(300) 내에 단단하게 삽입될 수 있다. 도 3a는 예시적인 캐리어 트레이(300)를 도시한다. 도 3a에 도시된 바와 같이, 캐리어 트레이(300)는 캐리어 트레이(300)의 쉘프(302) 내에 복수의 포트들(306)을 하우징할 수 있다. 복수의 포트들(306)은 개별적인 프로세스 튜브들(102)을 수용하도록 구성될 수 있으며, 캐리어 트레이(300)의 컬럼(column) 내의 포트들(306)의 수는 바람직하게 프로세스 튜브 스트립들(100)의 길이를 맞추도록 설계될 수 있다. 따라서, y-방향에서의 포트들(306)의 수가 프로세스 튜브 스트립(100) 내의 프로세스 튜브들(102)의 수에 대응하도록 설계될 수 있다. 일 실시예에 있어, 캐리어 트레이(300)는, 8개의 프로세스 튜브들(102)로 구성된 프로세스 튜브 스트립(100)이 y-방향으로 캐리어 트레이(300)의 포트들(306) 내에 삽입되고 고정될 수 있도록, y-방항으로 8개의 포트들(306)을 가질 수 있다.As described above, process tubes 102 may be manufactured as a strip 100 of tubes 102 connected together by connector tabs 104. A number of process tube strips 100 can then be tightly inserted into the carrier tray 300. 3A shows an exemplary carrier tray 300. 3A, the carrier tray 300 may house a plurality of ports 306 within the shelf 302 of the carrier tray 300. The plurality of ports 306 may be configured to receive individual process tubes 102, and the number of ports 306 in a column of the carrier tray 300 is preferably process tube strips 100 ) Can be designed to fit the length. Thus, the number of ports 306 in the y-direction can be designed to correspond to the number of process tubes 102 in the process tube strip 100. In one embodiment, the carrier tray 300 is such that a process tube strip 100 consisting of 8 process tubes 102 is inserted and secured in the ports 306 of the carrier tray 300 in the y-direction. To be able to have 8 ports 306 in y-direction.

일 실시예에 있어, 캐리어 트레이(300) 내의 포트들(306)이 y-방향에서 더 큰 단면 직경을 갖는 타원 형상이다. 이러한 방식으로, 캐리어 트레이(300) 내에 삽입됐을 때 타원형 포트들(306)의 더 큰 직경의 단면들이 프로세스 튜브 스트립들(100)과 동일한 방향으로 정렬된다.In one embodiment, the ports 306 in the carrier tray 300 are oval shaped with a larger cross-sectional diameter in the y-direction. In this way, larger diameter cross-sections of the oval ports 306 are aligned in the same direction as the process tube strips 100 when inserted into the carrier tray 300.

도 3b는 예시적인 캐리어 트레이(300) 내의 단단하게 끼워 맞춰진 복수의 프로세스 튜브 스트립들(100)을 도시한다. 일단 프로세스 튜브들(102)이 캐리어 트레이(300) 내에 단단하게 삽입되면, 어세이 시약들, 예를 들어, 증폭 및 검출 시약들이 자동화된 방식으로 프로세스 튜브들(102)에 첨가될 수 있다. 일부 실시예들에 있어, 액체 시약들이 개별적인 프로세스 튜브들(102) 내로 피펫으로 따라질 수 있으며, 그 뒤 캐리어 트레이(300)가 프로세스 튜브(102)의 내부 베이스(220)의 형상으로 형성되는 고체 덩어리로 프로세스 튜브들의 하단 내의 액체 시약들을 건조하기 위해 건조기에 선택적으로 위치될 수 있다. 일부 실시예들에 있어, 액체 시약들이 프로세스 튜브들(102)에서 건조되지 않는다. 일부 실시예들에 있어, 캐리어 트레이(300) 내의 각 프로세스 튜브(102)가 동일한 시약들로 투입된다. 다른 실시예들에 있어, 프로세스 튜브 스트립(100) 내의 프로세스 튜브들(102) 중 일부 또는 그 각각이 상이한 시약들 또는 샘플들로 채워질 수 있다.3B shows a plurality of process tube strips 100 tightly fitted in an exemplary carrier tray 300. Once the process tubes 102 are tightly inserted into the carrier tray 300, assay reagents, eg, amplification and detection reagents, can be added to the process tubes 102 in an automated manner. In some embodiments, liquid reagents can be pipetted into individual process tubes 102, and then a carrier tray 300 is formed into the shape of the inner base 220 of the process tube 102. It can optionally be placed in a dryer to dry the liquid reagents in the bottom of the process tubes into a mass. In some embodiments, liquid reagents are not dried in process tubes 102. In some embodiments, each process tube 102 in carrier tray 300 is charged with the same reagents. In other embodiments, some or each of the process tubes 102 in the process tube strip 100 may be filled with different reagents or samples.

시약들이 건조되는 실시예들에서 시약들의 건조 다음에 또는 시약들이 건조되지 않는 실시예들에서 시약들의 투입 다음에, 희망되는 시약들로 채워지면, 프로세스 튜브들(102)이 프로세스 튜브(102)의 내용물들(예를 들어, 특정 시약들)을 식별하기 위한 표시자로 마킹될 수 있다. 일부 실시예들에 있어, 프로세스 튜브들(102)의 마킹이 프로세스 튜브(102)의 상단 링(202)을 프로세스 튜브들(102)의 내용물들(예를 들어, 시약들)을 나타내는 특정 컬러로 핫 스탬핑(hot stamping)함으로써 달성될 수 있다. 상단 링(202)이 또한 밀봉 접착제가 프로세스 튜브(102)의 개구(226)를 밀봉하기 위하여 도포될 수 있는 표면을 제공한다. After the drying of the reagents in embodiments in which the reagents are dried or after the introduction of the reagents in embodiments in which the reagents are not dried, the process tubes 102 are filled with the desired reagents. It can be marked with an indicator to identify the contents (eg, specific reagents). In some embodiments, marking of the process tubes 102 places the top ring 202 of the process tube 102 in a specific color that represents the contents (eg, reagents) of the process tubes 102. This can be achieved by hot stamping. The top ring 202 also provides a surface on which sealing adhesive can be applied to seal the opening 226 of the process tube 102.

이상에서 설명된 바와 같이, 도 1d는 각각의 프로세스 튜브(100)가 프로세스 튜브(100)의 환형 렛지(204)의 일 측으로부터 연장하는 렛지 연장부(110)를 포함하는 프로세스 튜브 스트립(100)을 도시한다. 렛지 연장부(110)는 개별적인 프로세스 튜브들(102)의 마킹을 위하여 환형 렛지(204) 상에 추가적인 표면적을 제공한다. 일 실시예에 있어, 렛지 연장부(110)는 프로세스 튜브 스트립(100) 내의 개별적인 프로세스 튜브(102)를 식별하기 위하여 자판 식별자(예를 들어, A, B, C, 등, 또는 1, 2, 3, 등)로 사전-마킹될 수 있다. 일 실시예에 있어, 상단 링(202)을 핫 스탬핑하는 것에 대한 대안으로서, 프로세스 튜브(102)의 렛지 연장부(110)가 프로세스 튜브들(102) 내의 시약들의 투입 다음에 프로세스 튜브들(102)의 내용물들(예를 들어, 시약들)을 식별하기 위해 핫 스탬핑되거나 또는 달라 마킹될 수 있다. 또한, 2-D 바 코드(잉크 또는 레이저)가 렛지 연장부(110) 상에 직접적으로 인쇄될 수 있다.As described above, FIG. 1D shows a process tube strip 100 in which each process tube 100 includes a ledge extension 110 extending from one side of the annular ledge 204 of the process tube 100 It shows. The ledge extension 110 provides additional surface area on the annular ledge 204 for marking of individual process tubes 102. In one embodiment, the ledge extension 110 is a keyboard identifier (eg, A, B, C, etc., or 1, 2, to identify individual process tubes 102 in the process tube strip 100). 3, etc.). In one embodiment, as an alternative to hot stamping the top ring 202, the ledge extension 110 of the process tube 102 is followed by the introduction of reagents in the process tubes 102 followed by the process tubes 102 ) Can be hot stamped or otherwise marked to identify the contents (eg, reagents). Also, a 2-D bar code (ink or laser) can be printed directly on the ledge extension 110.

도 1e에 도시된 바와 같이, 프로세스 튜브 스트립(100)의 개별적인 프로세스 튜브들(102)이 렛지 연장부(110)의 상단에 부착된 튜브 태그(112)를 포함할 수 있다. 태그(112)는, 특정 프로세스 튜브(102) 내의 시약들과 같은 내용물들을 식별하기 위하여 프로세스 튜브들(102)의 상단 링(202)을 마킹하는 것(예를 들어, 핫 스탬핑)에 더하여, 또는 이와 함께 사용될 수 있다. 태그(112)는 연관된 프로세스 튜브(102)의 내용물을 식별하는 데이터로 인코딩된 2-차원 매트릭스 바코드(예를 들어, QR 코드 또는 아즈텍 코드)일 수 있다. 프로세스 튜브(102)의 내용물들을 표시하기 위하여 태그(112)를 사용할 때, 카메라(예를 들어, CCD 카메라)가 정확한 증폭 어세이들이 연관된 시약들로 수행되는 것을 보장하기 위해 그리고 프로세스 튜브(102)의 내용물들을 스캔하고 확인하기 위해 사용될 수 있다. 카메라는 태그(112)를 판독함으로써 각 프로세스 튜브(102)의 내용물들을 빠르고 효율적으로 확인할 수 있으며, 따라서 주어진 폴리뉴클레오티드(polynucleotide) 샘플들에 대하여 요구되는 특정 증폭 어세이와 부정확한 시약들을 페어링하는 사용자 오류의 가능성을 회피한다.1E, individual process tubes 102 of the process tube strip 100 may include a tube tag 112 attached to the top of the ledge extension 110. The tag 112 is in addition to marking the top ring 202 of the process tubes 102 (eg, hot stamping) to identify contents, such as reagents within a particular process tube 102, or Can be used with this. The tag 112 can be a two-dimensional matrix barcode (eg, QR code or Aztec code) encoded with data that identifies the contents of the associated process tube 102. When using the tag 112 to display the contents of the process tube 102, the camera (eg, CCD camera) is used to ensure that the correct amplification assays are performed with the associated reagents and of the process tube 102. Can be used to scan and check contents. The camera can quickly and efficiently identify the contents of each process tube 102 by reading the tag 112, thus allowing the user to pair the specific amplification assays and incorrect reagents required for a given polynucleotide sample. Avoid the possibility of errors.

일부 경우들에 있어, 동일한 시약들이 캐리어 트레이(300) 내의 각 프로세스 튜브에 첨가될 수 있다. 일 예에 있어, 각 튜브 스트립(100)이 8개의 프로세스 튜브들(102)을 포함할 수 있으며, 그러면 튜브 스트립들이 96-포트 캐리어 트레이(300) 내에 단단하게 끼워 맞춰질 수 있다. 그런 다음, 동일한 시약들이 캐리어 트레이(300) 내의 96개의 프로세스 튜브들 각각에 첨가될 수 있다. 모든 프로세스 튜브들(102)이 동일한 시약들을 갖고 제공되는 경우, 전체 캐리어 트레이(300) 내의 모든 프로세스 튜브들(102)이 동일한 컬러로 핫 스탬핑될 수 있다. 복수의 캐리어 트레이들(300)이 적층되고 최종 사용자에게 함께 전달될 수 있다. 일부 실시예들에 있어, 프로세스 튜브 스트립(100) 내의 프로세스 튜브들(102) 중 일부 또는 그 각각이 상이한 시약들 또는 샘플들로 채워질 수 있다. 이러한 경우들에 있어, 동일한 시약들을 포함하는 프로세스 튜브(102)가 동일한 컬러로 마킹될 수 있다. 상이한 컬러들이 상이한 시약들을 포함하는 프로세스 튜브들(102)을 식별하기 위해 사용될 수 있다.In some cases, the same reagents can be added to each process tube in carrier tray 300. In one example, each tube strip 100 can include eight process tubes 102, so that the tube strips can fit tightly into a 96-port carrier tray 300. The same reagents can then be added to each of the 96 process tubes in carrier tray 300. If all process tubes 102 are provided with the same reagents, all process tubes 102 in the entire carrier tray 300 can be hot stamped in the same color. A plurality of carrier trays 300 may be stacked and delivered together to the end user. In some embodiments, some or each of the process tubes 102 in the process tube strip 100 may be filled with different reagents or samples. In these cases, the process tube 102 containing the same reagents can be marked with the same color. Different colors can be used to identify process tubes 102 that contain different reagents.

최종 사용자가 상이한 증폭 어세이들을 제공된 상이한 시약들로 실행하기 위하여 상이한 스탬핑된 프로세스 튜브들(102)을 필요로 할 수 있다. 일부 경우들에 있어, 최종 사용자가 증폭 어세이에서 상이한 시약들을 사용할 필요가 있을 수 있으며, 따라서 모두 동일한 시약들의 프로세스 튜브들(102)을 갖는 캐리어 트레이(300)가 사용되지 않을 수 있다. 이러한 경우에 있어, 주어진 증폭 어세이에 대한 시약들의 희망되는 수 및 유형을 달성하기 위하여, 최종 사용자가 단일-컬러 캐리어 트레이(300)로부터 하나 이상의 프로세스 튜브 스트립들(100)을 제거하고, 이들을 다른 캐리어 트레이(300) 내의 상이하게 컬러링된 프로세스 튜브 스트립들(100)로 교환할 수 있다. 제조사가 상이하게 컬러링된 프로세스 튜브 스트립들(100)을 갖는 캐리어 트레이(300)를 최종 사용자에게 제공할 수 있다는 것이 또한 고려된다.The end user may need different stamped process tubes 102 to run different amplification assays with different reagents provided. In some cases, the end user may need to use different reagents in the amplification assay, so the carrier tray 300 with all process tubes 102 of the same reagents may not be used. In this case, in order to achieve the desired number and type of reagents for a given amplification assay, the end user removes one or more process tube strips 100 from the single-color carrier tray 300 and removes them. It can be exchanged for differently colored process tube strips 100 in the carrier tray 300. It is also contemplated that a manufacturer can provide an end user with a carrier tray 300 having differently colored process tube strips 100.

최종 사용자는, 프로세스 튜브들(102) 사이의 커넥터 리세스(232)에서 개별적인 프로세스 튜브 스트립(100)을 따로 쪼갬으로써 증폭 어세이에서 상이한 시약들의 집합을 추가로 개량할 수 있다. 예를 들어, 8-튜브 프로세스 튜브 스트립(100)이, 1, 2, 3, 4, 5, 6, 또는 7개의 프로세스 튜브들(102)을 갖는 프로세스 튜브들의 더 작은 집합들로 쪼개질 수 있다. 프로세스 튜브 스트립들(100)을 따로 쪼개는 것이 최종 사용자가 상이한 시약들의 프로세스 튜브들(102)을 캐리어 트레이(300)의 동일한 컬럼 내의 포함시키는 것을 가능하게 한다.The end user can further refine the set of different reagents in the amplification assay by splitting the individual process tube strips 100 separately in the connector recess 232 between the process tubes 102. For example, the 8-tube process tube strip 100 can be split into smaller sets of process tubes with 1, 2, 3, 4, 5, 6, or 7 process tubes 102. . Splitting the process tube strips 100 separately allows the end user to include process tubes 102 of different reagents in the same column of the carrier tray 300.

이상에서 설명된 바와 같이, 도 3b는 프로세스 튜브들이 이미 캐리어 트레이(300) 내에 단단하게 고정된 때의 프로세스 튜브들(102)의 예시를 제공한다. 도 4는 캐리어 트레이(300) 내에 프로세스 튜브들(102)을 고정하기 이전의 캐리어 트레이(300) 내에 위치된 12개의 프로세스 튜브들(102)의 단면도이다. 이러한 도면이 도 3에 도시된 단면도 6A와 유사하지만, 그러나 이는 캐리어 트레이(300) 내에 프로세스 튜브들(102)을 고정하기 이전의 캐리어 트레이(300)의 포트들(306) 내에 놓인 프로세스 튜브들(102)을 도시한다. 도 3b 및 도 4에 도시된 바와 같이, 캐리어 트레이(300)는 베이스(304) 및 쉘프(302)를 가지며, 베이스(304)는 쉘프(302)보다 더 넓고 더 길어서 그에 따라 쉘프(302)보다 더 큰 평면 표면적을 갖는다. 캐리어 트레이(300)의 쉘프(302)가 쉘프 측면(308) 및 쉘프 상단부(310)를 포함한다. 쉘프 상단부(310)는 쉘프(302)의 수평적인 평면 부분이며, 캐리어 트레이(300)의 상단을 커버한다. 쉘프 상단부(310)가 외부 표면(312) 및 내부 표면(314)을 포함한다. 캐리어 트레이(300)의 베이스(304)가 쉘프(302)보다 더 넓고 더 길기 때문에, 베이스(304)가 수평적으로 이어져 쉘프 측면(308)과 베이스 측면(305)을 연결하는 브리지(320)를 포함한다. 브리지(320)는 내부 면(322)을 포함한다. 캐리어 트레이(300) 상의 쉘프(320)의 쉘프 측면(308)이 쉘프 상단부(310)로부터 아래로 연장하고, 브리지(320)에서 캐리어 트레이(300)의 베이스(304)를 결합한다. 도 4에 도시된 바와 같이, 프로세스 튜브 스트립(100)의 프로세스 튜브들(102)이 캐리어 트레이(300)의 쉘프(320) 내의 포트들(306) 내에 위치될 수 있다. As described above, FIG. 3B provides an example of process tubes 102 when the process tubes are already securely secured in the carrier tray 300. 4 is a cross-sectional view of twelve process tubes 102 located within a carrier tray 300 prior to securing process tubes 102 in a carrier tray 300. Although this figure is similar to sectional view 6A shown in FIG. 3, but this is the process tubes placed in the ports 306 of the carrier tray 300 prior to fixing the process tubes 102 in the carrier tray 300 ( 102). 3B and 4, the carrier tray 300 has a base 304 and a shelf 302, and the base 304 is wider and longer than the shelf 302, and thus, more than the shelf 302. It has a larger planar surface area. The shelf 302 of the carrier tray 300 includes a shelf side 308 and a shelf top 310. The shelf top portion 310 is a horizontal flat portion of the shelf 302 and covers the top of the carrier tray 300. The shelf top 310 includes an outer surface 312 and an inner surface 314. Since the base 304 of the carrier tray 300 is wider and longer than the shelf 302, the base 304 horizontally connects the bridge 320 connecting the shelf side 308 and the base side 305. Includes. Bridge 320 includes an inner surface 322. The shelf side 308 of the shelf 320 on the carrier tray 300 extends downward from the shelf top 310 and engages the base 304 of the carrier tray 300 at the bridge 320. As shown in FIG. 4, process tubes 102 of the process tube strip 100 can be located within ports 306 in the shelf 320 of the carrier tray 300.

도 5는 캐리어 트레이(300) 내에 프로세스 튜브들(102)을 고정하기 이전의 예시적인 캐리어 트레이(300) 내에 위치된 2개의 예시적인 프로세스 튜브들(102)의 근접 단면도이다. 프로세스 튜브(102)를 캐리어 트레이(300) 내에 고정하기 이전에, 프로세스 튜브(102)가 캐리어 트레이(300)의 포트(306) 내에 놓일 수 있다. 프로세스 튜브(102)의 몸체(218)의 외경은 포트(306)의 직경보다 더 작으며, 그에 따라 프로세스 튜브(102)의 몸체(218)가 포트(306)를 통해 삽입될 수 있다. 프로세스 튜브(102) 상의 돌출부(212)가 포트(306)의 적어도 하나의 직경보다 더 큰 직경을 갖는다. 예를 들어, 포트(306)가 타원형인 경우에 있어, 포트(306)의 더 작은 직경(예를 들어, 도 3a 및 도 3b의 x-방향의 폭 직경)이 돌출부(212)의 직경보다 더 작다. 일부 실시예들에 있어, 포트(306)의 더 큰 직경(예를 들어, 도 3a 및 도 3b의 y-방향의 길이 직경)이 돌출부(212)의 직경보다 더 클 수 있다. 따라서, 프로세스 튜브(102)의 몸체(128)가 포트(306) 내로 삽입될 때, 몸체(218)가 캐리어 트레이(300)의 밑면 영역에 진입하지만, 고정 영역(200)(돌출부(212), 넥(228), 및 환형 렛지(204)를 포함하는)을 포함하는 프로세스 튜브(102)의 상단 부분 및 상단 링(202)은 포트(306)에 진입하는 것이 방지된다. 이러한 방식으로, 돌출부(212)가 포트(306)의 상단 에지(318) 상에 놓이게 된다. 더 구체적으로, 돌출부(212)의 하부 슬로프(216)가 포트 상단 에지(318) 상에 놓이게 된다.5 is a close-up cross-sectional view of two exemplary process tubes 102 positioned within an exemplary carrier tray 300 prior to securing process tubes 102 in a carrier tray 300. Prior to securing the process tube 102 in the carrier tray 300, the process tube 102 can be placed within the port 306 of the carrier tray 300. The outer diameter of the body 218 of the process tube 102 is smaller than the diameter of the port 306, so that the body 218 of the process tube 102 can be inserted through the port 306. The protrusion 212 on the process tube 102 has a larger diameter than at least one diameter of the port 306. For example, in the case where the port 306 is elliptical, the smaller diameter of the port 306 (eg, the width diameter in the x-direction of FIGS. 3A and 3B) is greater than the diameter of the protrusion 212 small. In some embodiments, the larger diameter of the port 306 (eg, the length diameter in the y-direction of FIGS. 3A and 3B) may be larger than the diameter of the protrusion 212. Thus, when the body 128 of the process tube 102 is inserted into the port 306, the body 218 enters the bottom area of the carrier tray 300, but the fixed area 200 (projection 212, The top portion and top ring 202 of the process tube 102, including the neck 228, and the annular ledge 204) are prevented from entering the port 306. In this way, the protrusion 212 is placed on the top edge 318 of the port 306. More specifically, the lower slope 216 of the protrusion 212 is placed on the top edge 318 of the port.

일부 실시예들에 있어, 돌출부(212)의 정점(212)이 일정한 외경을 갖는 원형이다. 타원형 포트(306)에 대하여, 일 실시예에 있어, 포트(306)는 폭 직경보다 더 큰 길이 직경을 가질 수 있다. 이러한 실시예에 있어, 포트(306) 폭의 직경(x 방향의)이 돌출부(212)의 정점(215)의 직경보다 더 작을 수 있다. 따라서, 프로세스 튜브(102)가, 돌출부(212)에서, 포트(306)의 상단 에지(318) 상에 놓이게 된다. 일 실시예에 있어, 포트(306) 길이 직경(y 방향의)이 돌출부(212)의 정점(215)의 직경보다 더 클 수 있다. 따라서, 포트(306)의 2개의 단부들(y-방향의) 상에 작은 간극이 제공되며, 이는 포트(306) 내의 프로세스 튜브(102)의 더 용이한 고정을 가능하게 하고, 또한, 필요한 경우 포트(306)로부터의 프로세스 튜브(102)의 더 용이한 제거를 가능하게 한다. 다른 실시예들에 있어, 포트(306)가 일정한 직경을 갖는 원형일 수 있다.In some embodiments, the apex 212 of the protrusion 212 is circular with a constant outer diameter. For the elliptical port 306, in one embodiment, the port 306 can have a length diameter greater than the width diameter. In this embodiment, the diameter of the port 306 width (in the x direction) may be smaller than the diameter of the apex 215 of the protrusion 212. Thus, the process tube 102 is placed on the top edge 318 of the port 306 at the protrusion 212. In one embodiment, the port 306 length diameter (in the y direction) may be larger than the diameter of the apex 215 of the protrusion 212. Thus, a small gap is provided on the two ends (y-direction) of the port 306, which allows easier fixing of the process tube 102 in the port 306, and also, if necessary It allows for easier removal of the process tube 102 from the port 306. In other embodiments, port 306 may be circular with a constant diameter.

프로세스 튜브(102)가 포트 상단 에지(318)에 기대어(against) 포트(306) 내에 놓임에 따라, 프로세스 튜브(102)를 캐리어 트레이(300)의 포트(306) 내에 고정하기 위하여 프로세스 튜브(102)를 포트(306) 내로 더 누르기 위한 힘이 프로세스 튜브(102)의 상단에 인가될 수 있다. 프로세스 튜브(102)를 포트(306) 내에 고정하기 위한 힘이 프로세스 튜브(102)의 상단 링(202)에 인가될 수 있거나, 또는 힘이 환형 렛지(204)의 상부 표면(206)에 인가될 수 있다.As the process tube 102 is placed in the port 306 against the top edge 318 of the port, the process tube 102 is secured in the port 306 of the carrier tray 300 as it is placed in the port 306. ) Can be applied to the top of the process tube 102 to further push the port into the port 306. A force to secure the process tube 102 in the port 306 can be applied to the top ring 202 of the process tube 102, or a force can be applied to the top surface 206 of the annular ledge 204. Can be.

프로세스 튜브(102)를 포트 내에 고정하는 단계는 처음에 돌출부(212)의 하부 슬로프(216)을 포트(306) 내로 강제로 밀어 넣기 위해 프로세스 튜브(102)의 상단에 충분한 힘을 인가하는 단계를 수반한다. 하부 슬로프(216)는 프로세스 튜브(102)의 길이방향 축(230)을 향하여 각이 진다. 프로세스 튜브(102)의 상단으로 계속해서 압력이 인가됨에 따라, 돌출부(212)의 정점(215)이 포트 상단 에지(318)에 도달할 때까지, 돌출부(212)의 하부 슬로프(216)가 포트 상단 에지(318)을 따라 아래로 슬라이드한다. 포트 상단 에지(318)는 포트(306)를 통한 돌출부(212)의 이동을 용이하게 하기 위하여 둥글거나 또는 경사질 수 있다. The step of securing the process tube 102 in the port initially involves applying sufficient force to the top of the process tube 102 to force the lower slope 216 of the protrusion 212 into the port 306. Entails. The lower slope 216 is angled toward the longitudinal axis 230 of the process tube 102. As pressure continues to be applied to the top of the process tube 102, the lower slope 216 of the protrusion 212 is the port until the apex 215 of the protrusion 212 reaches the port top edge 318. Slide down along the top edge 318. Port top edge 318 may be rounded or inclined to facilitate movement of protrusion 212 through port 306.

프로세스 튜브(102)가 포트(306) 내로 밀어 넣어질 때, 포트(306) 내로 이동된 돌출부(212)의 하부 슬로프(216)의 부분들이 포트 내부 벽(316)과 접촉하지 않으며, 이는 하부 슬로프가 길이방향 축(230)을 향하여 각을 이루기 때문이다. 하부 슬로프(216)가 돌출부(212)의 정점(215)을 향해 위쪽으로 연장할 때 돌출부(212)의 하부 슬로프(216)가 점진적으로 넓어진다(외경이 증가한다). 하부 슬로프(216)의 직경이 넓어질 수록, 프로세스 튜브(102)를 포트(306) 내로 밀어 넣는 것에 대한 저항이 더 커진다. 따라서, 프로세스 튜브(102)를 포트(306) 내로 밀어 넣기 위해 인가되는 힘에 대항하는 저항력이 생성된다. 프로세스 튜브(212)가 포트(306) 내로 더 아래로 이동할 할 수록, 프로세스 튜브(102)에 대한 저항력이 증가한다(그리고 프로세스 튜브(102)를 밀어 넣기 위해 필요한 힘이 증가한다). 돌출부(212)의 정점(215)이 포트 상단 에지(318)에 도달할 때까지 프로세스 튜브(102)에 대한 저항력이 계속해서 증가한다. When the process tube 102 is pushed into the port 306, portions of the lower slope 216 of the protrusion 212 moved into the port 306 do not contact the port inner wall 316, which is the lower slope This is because it forms an angle toward the longitudinal axis 230. When the lower slope 216 extends upward toward the apex 215 of the protrusion 212, the lower slope 216 of the protrusion 212 gradually widens (the outer diameter increases). The larger the diameter of the lower slope 216, the greater the resistance to pushing the process tube 102 into the port 306. Thus, a resistance force is created against the force applied to push the process tube 102 into the port 306. As the process tube 212 moves further down into the port 306, the resistance to the process tube 102 increases (and the force required to push the process tube 102 increases). The resistance to the process tube 102 continues to increase until the apex 215 of the protrusion 212 reaches the top edge 318 of the port.

타원형 포트들(306)을 갖는 캐리어 트레이(300)의 실시예에 있어, y 방향의 포트(306)의 더 큰 직경이 프로세스 튜브(102)가 포트(306) 내로 밀어 넣어지고 캐리어 트레이(300) 내에 고정되는 것을 더 용이하게 허용할 수 있으며, 그에 따라 프로세스 튜브를 고정하는데 필요한 힘을 감소시킨다. 타원형 포트(306)가 프로세스 튜브(102)의 돌출부(212)와 2개의 단부들 상의 포트 내부(316) 사이에 여분의 공간(예를 들어, 간극)을 제공할 수 있으며, 이는 프로세스 튜브(102)가 y 방향으로 굽혀지고(flex) 및 연장하게 하고 x 방향에서 압축되게 한다.In the embodiment of the carrier tray 300 with oval ports 306, the larger diameter of the port 306 in the y direction causes the process tube 102 to be pushed into the port 306 and the carrier tray 300 It can more easily allow it to be fixed within, thereby reducing the force required to secure the process tube. The elliptical port 306 can provide an extra space (eg, a gap) between the protrusion 212 of the process tube 102 and the port interior 316 on the two ends, which is a process tube 102 ) To be flexed and extended in the y direction and compressed in the x direction.

하부 슬로프(216) 전체가 포트 상단 에지(318)를 통과하면, 돌출부의 정점(215)이 포트 상단 에지(318)를 통과하며, 돌출부(212)의 정점(215)이 포트 내부 벽(316)과 접촉하게 된다. 정점(215)이 돌출부(212)의 가장 넓은 부분(가장 큰 외경)이다. 정점(215)이 포트(306)를 통해 끼워 맞춰지고 포트 내부 벽(316)에 대하여 눌려짐에 따라, 프로세스 튜브(102)가 최대 변형을 겪으며 최대로 굽혀진다. 프로세스 튜브(102)의 상단 상에 계속해서 힘이 인가됨에 따라, 이것이 포트(306)의 하단 에지(319)에서 포트(306)를 완전히 통과할 때까지 정점(215)이 포트 내부 벽(316) 아래로 슬라이드하도록 강제된다. 정점(215)이 하단 에지(319)를 통과하면, 프로세스 튜브(102) 상의 변형이 릴리즈(release)되고 프로세스 튜브(102)가 포트(306) 내의 위치 내로 단단하게 "스냅(snap)"하며, 캐리어 트레이(300) 내에 고정되게 된다. 캐리어 트레이(300) 내의 프로세스 튜브 스트립들(100)의 각 프로세스 튜브(102)를 고정하기 위해 필요한 힘이 대략 0.7 파운드 힘(lbs. force) 내지 대략 1.7 파운드 힘의 범위일 수 있다. 일 실시예에 있어, 프로세스 튜브(102)를 포트(306) 내에 삽입하고 고정하기 위해 필요한 힘이 대략 1 파운드 힘일 수 있다. 일 실시예에 있어, 프로세스 튜브(102)를 포트(306) 내에 삽입하고 고정하기 위해 필요한 힘이 대략 1.18 파운드 힘일 수 있다.When the entire lower slope 216 passes through the port top edge 318, the apex 215 of the protrusion passes through the port top edge 318, and the apex 215 of the protrusion 212 is the port inner wall 316 Will come into contact with. The vertex 215 is the widest portion (largest outer diameter) of the protrusion 212. As the vertex 215 fits through the port 306 and is pressed against the port inner wall 316, the process tube 102 undergoes maximum deformation and flexes to the maximum. As the force continues to be applied on the top of the process tube 102, the apex 215 abuts the inner wall 316 of the port until it completely passes through the port 306 at the lower edge 319 of the port 306. It is forced to slide down. As vertex 215 passes through bottom edge 319, deformation on process tube 102 is released and process tube 102 tightly "snaps" into a position within port 306, It will be fixed in the carrier tray 300. The force required to secure each process tube 102 of the process tube strips 100 in the carrier tray 300 may range from approximately 0.7 pounds force to approximately 1.7 pounds force. In one embodiment, the force required to insert and secure process tube 102 into port 306 may be approximately 1 pound force. In one embodiment, the force required to insert and secure process tube 102 into port 306 may be approximately 1.18 pound force.

캐리어 트레이(300)는 바람직하게 캐리어 트레이들(300)의 효율적인 적층 및 이송을 위해 설계될 수 있다. 캐리어 트레이(300)는 열가소성 폴리카보네이트 수지로부터 구성될 수 있다. 도 3, 도 4 및 도 5를 참조하면, 캐리어 트레이(300)가 베이스(220)의 상단에 브리지(320)를 포함할 수 있다. 브리지(320)는 다른 빈 캐리어 트레이(300)의 하단 표면(326)이 위치될 수 있는 플랫폼을 제공한다. 2개의 캐리어 트레이들(300)이 서로의 상단 상에 적층될 때, 상단 캐리어 트레이(300)의 브리지 내부(322)가 하단 캐리어 트레이(300)의 쉘프 상단부(310) 상에 놓이게 되며, 상단 캐리어 트레이(300)의 하단 표면(326)이 하단 캐리어 트레이(300)의 브리지(320) 상에 놓이게 된다.The carrier tray 300 may preferably be designed for efficient stacking and transport of carrier trays 300. The carrier tray 300 may be constructed from thermoplastic polycarbonate resin. 3, 4 and 5, the carrier tray 300 may include a bridge 320 on the top of the base 220. The bridge 320 provides a platform on which the bottom surface 326 of other empty carrier trays 300 can be located. When the two carrier trays 300 are stacked on top of each other, the bridge interior 322 of the top carrier tray 300 is placed on the shelf top portion 310 of the bottom carrier tray 300, and the top carrier The lower surface 326 of the tray 300 is placed on the bridge 320 of the lower carrier tray 300.

캐리어 트레이들(300)이 프로세스 튜브 스트립들(100)과 함께 실장(populate)될 때, 이들이 유사한 방식으로 효율적으로 적층될 수 있다. 상단 캐리어 트레이(300) 내의 프로세스 튜브들(102)의 몸체(218)가 하단 캐리어 트레이(300) 내의 프로세스 튜브들(102)의 개구(226) 내에 위치될 수 있다. 유사하게, 상단 캐리어 트레이(300) 내의 프로세스 튜브들(102)이 그 상단 상에 적층될 다른 캐리어 트레이(300)의 내의 프로세스 튜브들(102)의 몸체(218)를 추가로 수용할 수 있다.When carrier trays 300 are populated with process tube strips 100, they can be efficiently stacked in a similar manner. The body 218 of the process tubes 102 in the top carrier tray 300 can be located in the opening 226 of the process tubes 102 in the bottom carrier tray 300. Similarly, the process tubes 102 in the top carrier tray 300 can further receive the body 218 of the process tubes 102 in another carrier tray 300 to be stacked on top of it.

도 6a는 도 4에 도시된 12개의 프로세스 튜브들(102)의, 도 3b의 라인 6A을 따라 취한 단면도이다. 도 6a는 이제 캐리어 트레이(300) 내에 고정된 프로세스 튜브들(102)을 도시한다. 도 3b의 단면 6A의 방향이 상이한 프로세스 튜브 스트립(100)으로부터의 12개의 프로세스 튜브들(102) 각각의 뷰(view)를 제공한다. 도 6b는 프로세스 튜브들(102)을 캐리어 트레이(300) 내에 고정한 후의 캐리어 트레이(300) 내에 위치된 프로세스 튜브 스트립(100) 전체의, 도 3b의 라인 6B을 따라 취한 단면도이다. 도 6b에 도시된 바와 같이, y 방향의 타원형 포트(306)의 단면 직경이 돌출부(212)의 직경보다 더 클 수 있다.6A is a cross-sectional view taken along line 6A of FIG. 3B of the 12 process tubes 102 shown in FIG. 4. 6A shows process tubes 102 now secured within the carrier tray 300. 3B of FIG. 3B provides a view of each of the 12 process tubes 102 from the process tube strip 100 in different orientations. 6B is a cross-sectional view taken along line 6B of FIG. 3B of the entire process tube strip 100 located in the carrier tray 300 after securing the process tubes 102 in the carrier tray 300. As shown in FIG. 6B, the cross-sectional diameter of the oval port 306 in the y direction may be larger than the diameter of the protrusion 212.

도 7은 도 6a에 도시된 프로세스 튜브들(102) 중 2개의 근접 뷰이며, 이는 프로세스 튜브들(102)을 캐리어 트레이(300) 내에 고정한 후의 도 5의 프로세스 튜브들(102)에 대응한다. 도 7에 도시된 바와 같이, x 방향의 타원형 포트의 단면 직경이 돌출부(212)의 직경보다 더 작을 수 있다. 돌출부(212)의 정점(215)이 하단 에지(319)를 통과할 때, 돌출부(212)의 상부 슬로프(214)가 이와 접촉하게 되며, 고정 영역(200)의 하단에서 포트(306)의 하단 에지에 기대어 머무른다. 또한, 정점(215)이 하단 에지(319)를 통과할 때, 환형 렛지(204)의 하부 표면(210)이 이와 접촉하게 되며, 고정 영역(200)의 상단에서 쉘프(302)의 쉘프 상단 외부(312)에 기대어 머무른다. 고정 영역(200)의 상단에서, 환형 렛지(204)가 포트(306)를 통과하지 못하도록 환형 렛지(204)가 포트(306) 둘레의 적어도 2개의 지점들에서 충분히 넓다. 일 실시예에 있어, 환형 렛지(204)는 포트(306) 둘레의 모든 지점들을 커버하기에 충분히 큰 직경을 가질 수 있다. 예를 들어, 환형 렛지(204)는 포트(306)의 길이 직경 및 폭 직경들보다 더 큰 직경을 가질 수 있다. 고정 영역의 높이(환형 렛지(204)의 하부 표면(210)으로부터 돌출부(212)의 상부 슬로프(214) 상의 장소까지의)가 포트 상단 에지(318)와 포트 하단 에지(319) 사이의 포트(306)의 높이에 대략적으로 대응한다.FIG. 7 is a close-up view of two of the process tubes 102 shown in FIG. 6A, which correspond to the process tubes 102 of FIG. 5 after securing the process tubes 102 in the carrier tray 300. As shown in FIG. 7, the cross-sectional diameter of the oval port in the x direction may be smaller than the diameter of the protrusion 212. When the apex 215 of the protrusion 212 passes through the bottom edge 319, the top slope 214 of the protrusion 212 comes into contact with it, and the bottom of the port 306 at the bottom of the fixed area 200 Stay leaning on the edge. In addition, when the apex 215 passes through the lower edge 319, the lower surface 210 of the annular ledge 204 comes into contact with it, at the top of the fixed region 200, outside the shelf top of the shelf 302 Stay leaning against (312). At the top of the fixed area 200, the annular ledge 204 is sufficiently wide at at least two points around the port 306 to prevent the annular ledge 204 from passing through the port 306. In one embodiment, the annular ledge 204 may have a diameter large enough to cover all points around the port 306. For example, the annular ledge 204 can have a larger diameter than the length and width diameters of the port 306. The height of the fixed area (from the lower surface 210 of the annular ledge 204 to the place on the upper slope 214 of the protrusion 212) is the port between the port top edge 318 and the port bottom edge 319 ( 306).

도 7에 도시된 바와 같이, 프로세스 튜브(102)의 넥(228)이 포트(306)의 직경보다 더 작은 외경을 가질 수 있으며, 이는 프로세스 튜브(102)와 포트 내부 벽(314) 사이에 간극(324)을 생성한다. 일 실시예에 있어, 넥(228)의 외경이 고정된 원형 직경일 수 있다. 포트(306)가 타원 형상일 수 있으며, 일 측 상의 더 긴 길이 직경 및 다른 측 상의 더 작은 폭 직경을 가질 수 있음에 따라, 간극(324)의 폭이 포트(306)의 길이 측(y 방향)과 폭 측(x 방향) 사이에서 변화할 수 있다. 예를 들어, 포트(306)의 각각의 길이 측 상의 간극(324)의 크기가 포트(306)의 각각의 폭 측 상의 간극의 크기에 대략 2배일 수 있다.As shown in FIG. 7, the neck 228 of the process tube 102 can have an outer diameter smaller than the diameter of the port 306, which is the gap between the process tube 102 and the port inner wall 314. (324). In one embodiment, the outer diameter of the neck 228 may be a fixed circular diameter. As the port 306 can be oval shaped and have a longer length diameter on one side and a smaller width diameter on the other side, the width of the gap 324 is the length side of the port 306 (y direction ) And the width side (x direction). For example, the size of the gap 324 on each length side of the port 306 can be approximately twice the size of the gap on each width side of the port 306.

간극(324)이 고정 영역(200)에서 프로세스 튜브(102)에 대한 조정 지점을 제공한다. 간극(324)이 주로 프로세스 튜브(102)의 넥(228)과 포트 내부 벽(316) 사이에 존재하지만, 간극(324)이 또한 돌출부(212)의 상부 슬로프(214)의 일 부분을 따라 그리고 환형 렛지(204)의 하부 표면(210)의 일 부분을 따라 존재한다. 간극(324)이 고정 영역(200)의 상단 부분에서 약간 확장되며, 이는 포트 상단 에지(318)의 둥근 코너들이 프로세스 튜브(102)의 넥(228)과 포트(306) 사이에 추가적인 거리를 제공하기 때문이다. 간극(324)은, 심지어 프로세스 튜브(102)가 포트(306) 내에 고정된 때에도, 프로세스 튜브(102)에 캐리어 트레이(300)의 포트(306) 내에서의 어느 정도의 자유로운 움직임을 제공할 수 있다.Gap 324 provides an adjustment point for process tube 102 in fixed region 200. The gap 324 is primarily between the neck 228 of the process tube 102 and the port inner wall 316, but the gap 324 is also along a portion of the upper slope 214 of the protrusion 212 and It exists along a portion of the lower surface 210 of the annular ledge 204. The gap 324 extends slightly in the upper portion of the anchoring region 200, which means that the rounded corners of the port top edge 318 provide an additional distance between the neck 228 and port 306 of the process tube 102. It is because. The gap 324 can provide the process tube 102 with some degree of free movement within the port 306 of the carrier tray 300, even when the process tube 102 is secured within the port 306. have.

포트(306) 내에 고정적으로 유지되는 동안 프로세스 튜브(102)가 포트(306) 내에 조정될 수 있으며, 이는 프로세스 튜브(102)가 틸팅될 필요가 있을 때 돌출부(212)의 상부 슬로프(214)와 포트 하단 에지(319) 사이의 접촉 지점이 조정될 수 있기 때문이다. 프로세스 튜브(102)가 틸팅할 때, 프로세스 튜브(102)의 고정 영역(200)과 캐리어 트레이(300)의 포트(306) 사이의 접촉 지점들의 위치들이 조정될 것이다. 예를 들어, 프로세스 튜브가 일 측으로 틸팅할 때, 상부 슬로프(214)와 포트 하단 에지(319) 사이의 프로세스 튜브(102)의 일 측 상의 접촉 지점이 상부 슬로프(214)의 상단 근처로 이동하며; 튜브의 다른 측 상의 다른 접촉 지점이 상부 슬로프(214)의 하단 근처로(정점(215) 근처로) 이동한다. 유사한 조정이 고정 영역(200)의 상단에서 가능하며, 그 결과 넥(228)이 프로세스 튜브(102)의 일 측 상의 둥근 포트 상단 에지(318)를 향해 틸팅될 수 있고, 프로세스 튜브(102)의 다른 측 상의 포트 상단 에지(318)로부터 멀어지도록 틸팅될 수 있다.The process tube 102 can be adjusted in the port 306 while it remains fixed within the port 306, which is the upper slope 214 and port of the protrusion 212 when the process tube 102 needs to be tilted This is because the point of contact between the lower edges 319 can be adjusted. When the process tube 102 is tilted, the positions of the contact points between the fixed region 200 of the process tube 102 and the port 306 of the carrier tray 300 will be adjusted. For example, when the process tube is tilted to one side, the contact point on one side of the process tube 102 between the upper slope 214 and the port lower edge 319 moves near the top of the upper slope 214, ; Another point of contact on the other side of the tube moves near the bottom of the top slope 214 (near the vertex 215). Similar adjustments are possible at the top of the fixation area 200, such that the neck 228 can be tilted towards the round port top edge 318 on one side of the process tube 102, and the process tube 102 can be tilted. It can be tilted away from the port top edge 318 on the other side.

프로세스 튜브 스트립(100)의 부분으로서 복수의 프로세스 튜브들을 캐리어 트레이(100) 내에 위치시킬 때, 간극(324)이 프로스세 튜브(102)가 조정될 수 있게 한다. 캐리어 트레이들(300) 및 프로세스 튜브들(102)의 가능한 제조 편차들 때문에, 각 캐리어 트레이(300)가 약간 상이하게 크기가 결정될 수 있으며, 각 프로세스 튜브(102)가 캐리어 트레이들(300) 내에 상이하게 끼워 맞춰질 수 있다. 캐리어 트레이(300) 내에 삽입될 때 프로세스 튜브들(102)이 보통 프로세스 튜브 스트립(102)의 부분으로서 함께 부착된다는 점을 고려하면, 고려사항들을 완화하지 않으면, 캐리어 트레이(300) 및 프로세스 튜브들(102)의 제조 편차들이 캐리어 트레이(300) 내의 전체 프로세스 튜브 스트립(100)의 정확한 배치를 방해할 수 있다. 예를 들어, 프로세스 튜브 스트립(100)의 일 단부에서의 캐리어 트레이(300) 내로의 프로세스 튜브(102)의 정확한 삽입이 프로세스 튜브 스트립(100)의 다른 단부에서의 캐리어 트레이(300) 내로의 프로세스 튜브들(102)의 정확한 삽입을 방해할 수 있으며, 이는 프로세스 튜브들(102)이 x 방향(측방) 또는 y 방향(전후) 중 하나에서 오정렬될 수 있기 때문이다. 심지어 오정렬된 것에도 불구하고 강성 프로세스 튜브 스트립(100)이 캐리어 트레이(300)의 포트들(306) 내로 강제로 밀어 넣어지는 경우, 프로세스 튜브들(102)의 강성 부착물이 프로세스 튜브들(102)이 캐리어 트레이(300) 상에 평평하게 놓이는 것을 방해할 수 있고, 이는 핫 스탬핑 프로세스를 방해할 수 있다.When placing a plurality of process tubes in the carrier tray 100 as part of the process tube strip 100, the gap 324 allows the process tube 102 to be adjusted. Due to possible manufacturing variations of carrier trays 300 and process tubes 102, each carrier tray 300 can be sized slightly differently, and each process tube 102 is within carrier trays 300. It can be fitted differently. Considering that the process tubes 102 are usually attached together as part of the process tube strip 102 when inserted into the carrier tray 300, the carrier tray 300 and the process tubes are not relaxed if considerations are not relaxed The manufacturing variations of 102 can hinder the exact placement of the entire process tube strip 100 in the carrier tray 300. For example, the correct insertion of the process tube 102 into the carrier tray 300 at one end of the process tube strip 100 allows the process into the carrier tray 300 at the other end of the process tube strip 100. It can interfere with the correct insertion of the tubes 102, since the process tubes 102 can be misaligned in either the x-direction (lateral) or y-direction (front-to-back). Even if misaligned, if the rigid process tube strip 100 is forcibly pushed into the ports 306 of the carrier tray 300, the rigid attachment of the process tubes 102 causes the process tubes 102 to This can prevent it from being laid flat on the carrier tray 300, which can interfere with the hot stamping process.

본 발명이 이러한 문제들을 복수의 방법들로 처리하며, 이들은 프로세스 튜브 스트립(100)이 캐리어 트레이(300) 내에 삽입되고 조작될 때 프로세스 튜브들(102)이 포트(306) 내에서 틸팅하고 조정되는 것을 가능하게 하는 것을 포함한다. 간극(324)이 이러한 운동(motion)을 가능하게 하기 때문에, 프로세스 튜브들(102)이 포트(306) 내에서 틸팅하고 조정될 수 있다. 포트(306)의 타원 형상이 또한 y 방향에서 가능한 조정을 향상시킨다. 또한, 프로세스 튜브들(102)을 연결하는 커넥터 탭들(104)이 프로세스 튜브들을 캐리어 트레이(300) 내에 삽입할 때 개별적인 프로세스 튜브들(102) 사이의 조작성 및 조정을 가능하게 하기에 충분히 얇고 유연하다. 이에 더하여, 커넥터 탭(104) 상의 커넥터 리세스(232)(도 2b 참조)가 프로세스 튜브들을 포트들(306) 내에 삽입할 때 개별적인 프로세스 튜브들(102) 사이의 증가된 유연성을 가능하게 한다. 이러한 방식으로, 간극들(324), 타원형 포트들(306), 및 커넥터 탭들(104)이 프로세스 튜브 스트립(100)을 캐리어 트레이(300) 내로 삽입할 때 캐리어 트레이(300) 상에서 조정되고 항상 평평하게 놓이기 위한 능력을 프로세스 튜브(102)에 제공한다. 또한, 캐리어 트레이(300) 내에서 틸팅하거나 또는 조정되기 위한 프로세스 튜브(102)의 능력이 유전자 증폭기의 히터 내로의 프로세스 튜브(102)의 삽입을 용이하게 하며, 이는 이하에서 더 상세하게 논의된다.The present invention addresses these problems in a number of ways, such that when the process tube strip 100 is inserted and manipulated in the carrier tray 300, the process tubes 102 are tilted and adjusted within the port 306. It includes making things possible. Since the gap 324 enables this motion, the process tubes 102 can be tilted and adjusted within the port 306. The elliptical shape of the port 306 also improves the possible adjustment in the y direction. Also, the connector tabs 104 connecting the process tubes 102 are thin and flexible enough to allow operability and adjustment between the individual process tubes 102 when inserting the process tubes into the carrier tray 300. . In addition, connector recess 232 on connector tab 104 (see FIG. 2B) enables increased flexibility between individual process tubes 102 when inserting process tubes into ports 306. In this way, the gaps 324, oval ports 306, and connector tabs 104 are adjusted on the carrier tray 300 and always flat when inserting the process tube strip 100 into the carrier tray 300. Provides the ability to sit in the process tube 102. In addition, the ability of the process tube 102 to tilt or adjust within the carrier tray 300 facilitates the insertion of the process tube 102 into the heater of the genetic amplifier, which is discussed in more detail below.

프로세스 튜브들(102)이 캐리어 트레이(300)의 포트들(306) 내에 고정될 때, 프로세스 튜브들(102)이 유전자 증폭기 내에서의 사용을 위한 준비 프로세싱을 겪을 수 있다. 액체 시약들이 고정된 프로세스 튜브들(102) 내로 투입될 수 있다. 캐리어 트레이(300) 내의 프로세스 튜브들(102)이 가열 또는 프로세스 튜브들(102) 내의 액체 시약들을 건조시키기 위한 건조 또는 동결건조를 위한 다른 프로세스들을 겪을 수 있다. 캐리어 트레이(300) 내에 고정되어 있는 동안, 프로세스 튜브들(102)이 또한 프로세스 튜브들(102)을 마킹하기 위해 핫 스탬핑될 수 있으며, 이는 프로세스 튜브들(102)에 첨가된 시약들의 유형을 나타낸다. 핫 스탬핑이 상단 링(202) 및/또는 환형 렛지(204) 상에 컬러 스탬핑되는 형태일 수 있다.When the process tubes 102 are secured in the ports 306 of the carrier tray 300, the process tubes 102 may undergo preparation processing for use in the genetic amplifier. Liquid reagents can be introduced into fixed process tubes 102. Process tubes 102 in the carrier tray 300 may undergo heating or other processes for drying or lyophilization to dry the liquid reagents in the process tubes 102. While fixed in the carrier tray 300, process tubes 102 can also be hot stamped to mark the process tubes 102, indicating the type of reagents added to the process tubes 102. . Hot stamping may be in the form of color stamping on top ring 202 and/or annular ledge 204.

프로세스 튜브들(102)을 캐리어 트레이(300)의 포트들(306) 내에 고정하기 위해 힘을 인가하는 프로세스, 고정된 프로세스 튜브들(102) 내로 액체 시약들을 투입하는 프로세스, 프로세스 튜브들(102) 내의 액체 시약들을 건조시키는 프로세스, 및 캐리어 트레이(300) 내의 프로세스 튜브들(102)을 핫 스탬핑하는 프로세스가 모두 자동화될 수 있고 프로세스 튜브들(102) 및 캐리어 트레이들(300)의 어셈블리 및 제조 현장에서 수행될 수 있다. 그런 다음 준비된 프로세스 튜브들(102)을 포함하는 어셈블리된 캐리어 트레이들(300)이, 유전자 증폭기에서 프로세스 튜브들(102) 내의 샘플들에 증폭 어세이를 실행하기 전에 추출된 핵산 샘플들을 프로세스 튜브들(102) 내로 투입하는 것과 같은 추가적인 프로세싱을 위해 최종 사용자에게 발송될 수 있다. 프로세스 튜브들(102)로의 추출된 핵산 샘플들의 첨가가 시약들을 환원된 용액(reconstituted solution) 내의 핵산 샘플들과 연관시키는 것을 가능하게 하기 위하여 건조된 시약들을 환원하도록 역할한다.The process of applying a force to secure the process tubes 102 in the ports 306 of the carrier tray 300, the process of injecting liquid reagents into the fixed process tubes 102, the process tubes 102 The process of drying the liquid reagents within, and the process of hot stamping the process tubes 102 in the carrier tray 300 can all be automated and the assembly and manufacturing site of the process tubes 102 and the carrier trays 300 can be automated. Can be performed at The assembled carrier trays 300 comprising the prepared process tubes 102 are then processed into the extracted nucleic acid samples prior to performing an amplification assay on the samples in the process tubes 102 in the genetic amplifier. It can be sent to the end user for further processing, such as putting into 102. The addition of extracted nucleic acid samples to process tubes 102 serves to reduce the dried reagents to enable the reagents to be associated with the nucleic acid samples in the reconstituted solution.

이상에서 설명된 바와 같이, 주어진 증폭 어세이에 대한 시약들의 희망되는 수 및 유형을 달성하기 위하여, 최종 사용자가 단일-컬러 캐리어 트레이(300)로부터 하나 이상의 프로세스 튜브 스트립들(100)을 제거하고, 이들을 다른 캐리어 트레이(300) 내의 상이하게 컬러링된 프로세스 튜브 스트립들(100)로 교환할 수 있다. 프로세스 튜브 스트립(100)을 제거하는데 필요한 힘이 이를 삽입하는데 요구되는 힘의 대략 절반일 수 있다. 일 실시예에 있어, 프로세스 튜브 스트립(100)에 대한 삽입력이 대략 0.7 파운드 힘 내지 1.7 파운드 힘의 범위를 가질 수 있으며, 프로세스 튜브 스트립(100)에 대한 제거력이 대략 0.3 파운드 힘 내지 0.8 파운드 힘의 범위를 가질 수 있다. 일 실시예에 있어, 프로세스 튜브 스트립(100)에 대한 삽입력이 대략 1 파운드 힘일 수 있으며, 프로세스 튜브 스트립(100)에 대한 제거력이 대략 0.5 파운드 힘일 수 있다. 일 실시예에 있어, 프로세스 튜브 스트립(100)을 포트(306) 내에 고정하기 위해 필요한 힘이 대략 1.18 파운드 힘일 수 있고, 프로세스 튜브 스트립(100)을 제거하기 위해 필요한 힘이 0.60 파운드 힘이다. 프로세스 튜브 스트립들(100)에 대한 미리 규정된 삽입력 및 제거력이, 프로세스 튜브 스트립(100)이 캐리어 트레이(300)로부터 제거되거나 또는 이로 삽입되기에 과도하게 어렵지 않다는 것을 보장하며, 또한 프로세스 튜브 스트립들(100)이 정상적인 처리 조건들 하에서 캐리어 트레이의 밖으로 떨어지는 것을 방지한다.As described above, to achieve the desired number and type of reagents for a given amplification assay, the end user removes one or more process tube strips 100 from the single-color carrier tray 300, They can be exchanged for differently colored process tube strips 100 in another carrier tray 300. The force required to remove the process tube strip 100 may be approximately half the force required to insert it. In one embodiment, the insertion force for the process tube strip 100 may range from approximately 0.7 pound force to 1.7 pound force, and the removal force for the process tube strip 100 may be approximately 0.3 pound force to 0.8 pound force. Can have a range of In one embodiment, the insertion force for the process tube strip 100 may be approximately 1 pound force, and the removal force for the process tube strip 100 may be approximately 0.5 pound force. In one embodiment, the force required to secure process tube strip 100 in port 306 may be approximately 1.18 pound force, and the force required to remove process tube strip 100 is 0.60 pound force. The predefined insertion force and removal force for the process tube strips 100 ensure that the process tube strip 100 is not excessively difficult to be removed from or inserted into the carrier tray 300, and also to process tube strips The fields 100 are prevented from falling out of the carrier tray under normal processing conditions.

시약들 및 핵산 샘플들의 혼합이 일어나는 동일한 캐리어 트레이(300)(프로세스 튜브(102)를 하우징하는)가 직접적으로 유전자 증폭기 내로 투입될 수 있다는 것을 주의해야 한다. 따라서, 최종 사용자가 하나의 튜브 내의 시약들 및 핵산을 혼합하고 그런 다음 다른 튜브로 혼합된 용약을 이송하거나 또는 심지어 제 1 튜브를 다른 트레이로 이동시켜야 할 필요가 없다. 본 발명에 있어, 시약들을 포함하며 캐리어 트레이(300) 내에 고정된 프로세스 튜브들(102)이 샘플들, 예를 들어, 핵산 샘플들을 수용할 수 있으며, 그런 다음 프로세스 튜브들(102)을 캐리어 트레이(300)로부터 제거하지 않고, 증폭 어세이들을 위해 유전자 증폭기 내로 투입될 수 있다.It should be noted that the same carrier tray 300 (housing the process tube 102) where mixing of reagents and nucleic acid samples takes place can be fed directly into the gene amplifier. Thus, there is no need for the end user to mix reagents and nucleic acids in one tube and then transfer the mixed solution to another tube or even move the first tube to another tray. In the present invention, process tubes 102 containing reagents and immobilized in a carrier tray 300 can receive samples, eg, nucleic acid samples, and then process tubes 102 to a carrier tray Without removing from 300, it can be introduced into a gene amplifier for amplification assays.

고체 시약들이 액체 시약들에 더하여 또는 그 대신에 프로세스 튜브들(102)에 첨가될 수 있다는 것이 또한 고려된다. 빈 프로세스 튜브들(102) 및 캐리어 트레이들(300)이 최종 사용자에게 공급될 수 있으며, 최종 사용자가 핵산 샘플들을 첨가하기 전에 고체 또는 액체 시약들을 프로세스 튜브들(102) 내로 투입할 수 있다는 것이 또한 고려된다.It is also contemplated that solid reagents may be added to the process tubes 102 in addition to or instead of the liquid reagents. It is also noted that empty process tubes 102 and carrier trays 300 can be supplied to the end user and that the end user can inject solid or liquid reagents into the process tubes 102 before adding nucleic acid samples. Is considered.

프로세스 튜브(102)를 포트(306) 내로 단단히 밀어 넣기 위해 필요한 힘인 고정력이 캐리어 트레이(300) 내의 복수의(또는 모든) 프로세스 튜브들(102)에 동시에 인가될 수 있다. 대안적으로, 필요에 따라, 고정력이 한번에 하나의 개별적인 프로세스 튜브들(102)에 독립적으로 인가될 수 있다. 고정력이 자동화된 방식으로 인가될 수 있으며, 프로세스 튜브들(102)을 시약들로 채우는 자동화된 단계 및 프로세스 튜브들(102)을 핫 스탬핑하는 자동화된 단계와 함께 동시에 수행될 수 있다. 일부 경우들에 있어, 동일한 장치가 프로세스 튜브들(102)를 핫 스탬핑하고 이에 고정력을 인가하기 위해 사용될 수 있다. 대안적으로, 별개의 장치들이 핫 스탬핑 및 고정력의 인가를 위해 사용될 수 있다.A fixing force, which is the force required to push the process tube 102 tightly into the port 306, can be simultaneously applied to a plurality of (or all) process tubes 102 in the carrier tray 300. Alternatively, if necessary, a fixing force can be applied independently to one individual process tube 102 at a time. The holding force can be applied in an automated manner and can be performed simultaneously with an automated step of filling the process tubes 102 with reagents and an automated step of hot stamping the process tubes 102. In some cases, the same device can be used to hot stamp process tubes 102 and apply a fixation force thereto. Alternatively, separate devices can be used for the application of hot stamping and fixation forces.

별개의 고정력 디바이스 및 핫 스탬핑 디바이스가 사용될 때, 프로세스 튜브들(102)의 상단 링(202)을 핫 스탬핑하기 이전에 프로세스 튜브들(102)를 캐리어 트레이(300)의 포트들(306) 내에 단단히 고정하기 위하여 고정력이 먼저 인가될 수 있다. 일부 경우들에 있어, 압력을 상단 링(202)에 인가할 때 자동화된 핫 스탬핑 장치가 프로세스 튜브들(102)의 상단 링(202)을 고정할 수 있다. 본원에서 설명된 실시예들에서의 프로세스 튜브들(102)이 캐리어 트레이(300) 내에 고정되는 신규한 방식 때문에, 핫 스탬핑 장치가 스탬핑되는 프로세스 튜브(102)로부터 떨어져 끌어 당길 때 프로세스 튜브들(102)이 캐리어 트레이(300) 밖으로 그리고 위로 끌어 당겨지지 않는다. 또한, 프로세스 튜브들(102)이 캐리어 트레이(300) 내에 고정되기 때문에, 프로세스 튜브들(102)이 캐리어 트레이(300) 밖으로 떨어질 프로세스 튜브들(102)의 위험성 없이 이송될 수 있다. 본원에서 개시되는 실시예들이 바람직하게 다른 PCR 튜브 트레이들에 존재하는 다른 문제들, 예컨대 트레이의 정렬 밖으로 떨어지는 튜브들 또는 트레이의 일 측 상의 튜브들의 번칭(bunching)을 또한 극복한다.When a separate holding force device and a hot stamping device are used, the process tubes 102 are secured in the ports 306 of the carrier tray 300 prior to hot stamping the top ring 202 of the process tubes 102. To fix it, a fixing force can be applied first. In some cases, an automated hot stamping device can secure the top ring 202 of the process tubes 102 when applying pressure to the top ring 202. Due to the novel way in which the process tubes 102 in the embodiments described herein are secured within the carrier tray 300, the process tubes 102 when the hot stamping device is pulled away from the stamped process tube 102 ) Is not pulled out of the carrier tray 300 and up. In addition, since the process tubes 102 are fixed in the carrier tray 300, the process tubes 102 can be transported without the risk of the process tubes 102 falling out of the carrier tray 300. The embodiments disclosed herein also preferably overcome other problems present in other PCR tube trays, such as bundling of tubes falling out of alignment of the tray or tubes on one side of the tray.

도 8은 유전자 증폭기(미도시)에서 사용되기 위한 예시적인 히터 어셈블리(400)의 등축도이다. 증폭 어세이들(PCR 또는 등온 증폭과 같은)이 유전자 증폭기에서 수행될 수 있다. 히터 어셈블리(400)는 유전자 증폭기의 열 사이클링-서브시스템의 부분이며, 검출 서브시스템과 같은 유전자 증폭기의 다른 서브시스템들과 함께 동작할 수 있다. 도 8에 도시된 예시적인 히터 어셈블리(400)는 96개의 히터 웰들(402)을 포함하는 96-웰 어셈블리이지만, 다른 어셈블리들이 고려된다(예를 들어, 48-웰 어셈블리들, 등). 히터 어셈블리(400)는 히터 웰들(402)과 측면 표면(410) 사이에 평평한 상단 표면(404)을 포함한다. 각각의 히터 웰(402)이 원뿔 형상이며, 내부 벽(406) 및 웰 하단부(412)로 구성된다. 히터 어셈블리(400) 내의 히터 웰들(402)이 캐리어 트레이(300) 내의 프로세스 튜브들(102)의 공간적 배열에 대응하도록 8개의 로우(row)들 및 12개의 컬럼들의 어레이로 배열된다.8 is an isometric view of an exemplary heater assembly 400 for use in a genetic amplifier (not shown). Amplification assays (such as PCR or isothermal amplification) can be performed in the gene amplifier. The heater assembly 400 is part of the thermal cycling-subsystem of the genetic amplifier and can operate in conjunction with other subsystems of the genetic amplifier, such as the detection subsystem. The exemplary heater assembly 400 shown in FIG. 8 is a 96-well assembly comprising 96 heater wells 402, but other assemblies are contemplated (eg, 48-well assemblies, etc.). The heater assembly 400 includes a flat top surface 404 between the heater wells 402 and the side surface 410. Each heater well 402 is conical and consists of an inner wall 406 and a well bottom 412. Heater wells 402 in heater assembly 400 are arranged in an array of 8 rows and 12 columns to correspond to the spatial arrangement of process tubes 102 in carrier tray 300.

각각의 히터 웰(402)이 프로세스 튜브(102)를 수용할 수 있다. 캐리어 트레이(300) 내의 모든 프로세스 튜브(102)를 동시에 히터 어셈블리(400) 내에 위치시키기 위하여, 캐리어 트레이(300)가 유전자 증폭기의 히터 어셈블리(400) 바로 위에 위치될 수 있다. 도 8에는 도시되지 않았지만, 히터 웰들(402)로 열을 전달하기 위한 필수 회로부 또는 히터 어셈블리(400) 둘레의 케이싱이 존재한다.Each heater well 402 can receive a process tube 102. In order to simultaneously place all process tubes 102 in the carrier tray 300 in the heater assembly 400, the carrier tray 300 may be positioned directly above the heater assembly 400 of the genetic amplifier. Although not shown in FIG. 8, there is a required circuitry or casing around the heater assembly 400 to transfer heat to the heater wells 402.

캐리어 트레이들(300) 및 프로세스 튜브들(102)의 가능한 제조 편차들 때문에, 각 캐리어 트레이(300)가 약간 상이하게 크기가 결정될 수 있으며, 각 프로세스 튜브(102)가 캐리어 트레이들(300) 내에 상이하게 끼워 맞춰질 수 있다. 프로세스 튜브들(102)이 캐리어 트레이(300)에 강건하게 부착된 경우, 제조 공차들이 96-튜브 캐리어 트레이(300) 내의 프로세스 튜브들 전부가 히터 웰들(402) 내에 정확하게 위치되는 것을 방해할 수 있다. 예를 들어, 히터 어셈블리(400)의 일 측 상의 히터 웰(402) 내에 프로세서 튜브(102)를 끼워 맞추는 것이 히터 어셈블리(400)의 다른 측 상의 프로세스 튜브(102)가 그 개별적인 히터 웰(402) 내로 정확하고 단단하게 위치되는 것을 방해할 수 있다. 이상에 설명된 바와 같이, 포트 내부 벽(316)과 프로세스 튜브(102)의 고정 영역(200) 사이의 간극(324) 때문에, 캐리어 트레이(300) 내에 고정될 때 프로세스 튜브들(102)이 약간 조정되거나 또는 플로팅할 수 있다. 커넥터 탭(104) 상의 커넥터 리세스(232)(도 2b 참조)가 또한 프로세스 튜브들을 히터 웰들(402) 내에 삽입할 때 개별적인 프로세스 튜브들(102) 사이의 증가된 유연성을 가능하게 한다. 캐리어 트레이(300)의 포트들(306) 내에서 프로세스 튜브들(102)이 플로팅하는 것을 가능하게 하는 것이 히터 어셈블리(400)의 히터 웰들(402) 내로 정확하고 단단하게 끼워 맞추기 위해 프로세스 튜브들(102)의 위치를 조정하는 것을 허용한다.Due to possible manufacturing variations of carrier trays 300 and process tubes 102, each carrier tray 300 can be sized slightly differently, and each process tube 102 is within carrier trays 300. It can be fitted differently. When the process tubes 102 are firmly attached to the carrier tray 300, manufacturing tolerances can prevent all of the process tubes in the 96-tube carrier tray 300 from being accurately positioned within the heater wells 402. . For example, fitting the processor tube 102 into a heater well 402 on one side of the heater assembly 400 is such that the process tube 102 on the other side of the heater assembly 400 has its individual heater well 402. It can interfere with accurate and tight positioning. As described above, due to the gap 324 between the port inner wall 316 and the fixation region 200 of the process tube 102, the process tubes 102 are slightly when secured in the carrier tray 300. It can be adjusted or floated. Connector recess 232 on connector tab 104 (see FIG. 2B) also allows increased flexibility between individual process tubes 102 when inserting process tubes into heater wells 402. Enabling the process tubes 102 to float within the ports 306 of the carrier tray 300 allows the process tubes to be accurately and securely fitted into the heater wells 402 of the heater assembly 400. 102).

도 9는 히터 어셈블리(400)의 히터 웰(402) 내에 위치된 2개의 예시적인 프로세스 튜브들(102)의 단면도이다. 프로세스 튜브(102)가 히터 웰(402) 내에 위치될 때, 프로세스 튜브(102)의 몸체(218)가 히터 웰(402)의 내부 벽(406)과 물리적으로 접촉하게 되며 이와 메이팅(mate)된다. 일부 실시예들에 있어, 히터 웰(402)이 프로세스 튜브(102)의 몸체(218)보다 더 깊으며, 그 결과 프로세스 튜브(102)가 캐리어 트레이(300)의 포트(306) 내에 고정되고, 캐리어 트레이(300)가 히터 어셈블리(400) 위에 위치되며, 프로세스 튜브(102)의 베이스(220)가 웰 하단부(412)까지 연장하지 않는다. 이러한 방식으로, 간극(414)이 프로세스 튜브(102)의 베이스(220)와 웰 하단부(412) 사이에 생성된다. 간극(414)은 프로세스 튜브(102)의 몸체(218)가 웰 내부 벽(406)과 물리적으로 접촉한 채로 남아 있는 것을 보장하며; 몸체(218)가 웰 내부 벽(406)과 접촉하기 전에 프로세스 튜브(102)의 베이스(220)가 먼저 히터 웰 하단부(412) 내에서 바닥을 친 경우, 간극이 벽(406)과 프로세스 튜브(102)의 몸체(218) 사이에 존재할 수 있고 이는 히터 웰(402)과 프로세스 튜브(102) 사이에 열악한 열 전달을 야기할 수 있다. 따라서, 프로세스 튜브(102) 아래의 간극(414)이, 벽(406)과 프로세스 튜브(102)의 몸체(218) 사이에 간극이 존재하지 않는 다는 것을 보장한다. 히터 웰(402)이 프로세스 튜브(102)의 몸체(218)를 둘러 쌀 수 있으며, 증폭 어세이의 유전자 증폭 단계들 동안 프로세스 튜브(102)의 내용물에 균일한 가열을 제공할 수 있다. 프로세스 튜브(102)가 히터 웰(402) 내에 위치될 때, 히터 웰(402)이 돌출부(212)의 하부 슬로프(216) 바로 아래의 위치까지 프로세스 튜브의 몸체(218)를 둘러 쌀 수 있다.9 is a cross-sectional view of two exemplary process tubes 102 located within the heater well 402 of the heater assembly 400. When the process tube 102 is positioned within the heater well 402, the body 218 of the process tube 102 comes into physical contact with and mates with the inner wall 406 of the heater well 402. . In some embodiments, the heater well 402 is deeper than the body 218 of the process tube 102 so that the process tube 102 is secured within the port 306 of the carrier tray 300, The carrier tray 300 is positioned over the heater assembly 400 and the base 220 of the process tube 102 does not extend to the bottom well 412 of the well. In this way, a gap 414 is created between the base 220 of the process tube 102 and the well bottom 412. The gap 414 ensures that the body 218 of the process tube 102 remains in physical contact with the well inner wall 406; If the base 220 of the process tube 102 first hits the bottom within the heater well bottom 412 before the body 218 contacts the well inner wall 406, the gap is the wall 406 and the process tube ( It can exist between the bodies 218 of the 102), which can cause poor heat transfer between the heater well 402 and the process tube 102. Thus, the gap 414 under the process tube 102 ensures that there is no gap between the wall 406 and the body 218 of the process tube 102. The heater well 402 can surround the body 218 of the process tube 102 and provide uniform heating of the contents of the process tube 102 during the gene amplification steps of the amplification assay. When the process tube 102 is positioned within the heater well 402, the heater well 402 can surround the body 218 of the process tube to a position just below the lower slope 216 of the protrusion 212.

이상의 설명이 본원에서 개시된 실시예들의 다수의 방법들 및 시스템들을 개시한다. 본원에 개시된 실시예들이, 제조 방법들 장비의 변경들뿐만 아니라, 방법들 및 재료들의 수정들에 영향을 받기 쉽다. 이러한 수정들이 본원에 개시된 본 발명의 실시 또는 본 발명의 고려로부터 당업자들에게 자명해질 것이다. 결과적으로, 본원에서 개시된 실시예들이 본원에서 개시된 특정 실시예들로 한정되도록 의도되지 않으며, 오히려 이는 본 발명의 사상 및 범위 내에 속하는 모든 수정예들 및 대안예들을 커버하도록 의도된다. The above description discloses a number of methods and systems of the embodiments disclosed herein. The embodiments disclosed herein are susceptible to modifications of manufacturing methods equipment, as well as modifications of methods and materials. These modifications will become apparent to those skilled in the art from practice of the invention disclosed herein or consideration of the invention. Consequently, the embodiments disclosed herein are not intended to be limited to the specific embodiments disclosed herein, but rather are intended to cover all modifications and alternatives falling within the spirit and scope of the invention.

예 1Example 1

이러한 예는 최종 사용자에게 제공될 프로세스 튜브들(102)을 갖는 캐리어 트레이(300)를 마련하기 위한 특정 프로세스를 예시한다.This example illustrates a specific process for preparing a carrier tray 300 with process tubes 102 to be provided to the end user.

1. 폴리프로릴렌으로부터 형성된 8개의 연결된 프로세스 튜브들을 포함하는 12개의 프로세스 튜브 스트립들을 제조한다.1. Prepare 12 process tube strips comprising 8 connected process tubes formed from polypropylene.

2. 8 x 12 어레이로 96개의 포트들을 갖는 캐리어 트레이를 폴리카보네이트로부터 제조한다.2. A carrier tray with 96 ports in an 8 x 12 array is made from polycarbonate.

3. 12개의 프로세스 튜브 스트립들을 캐리어 트레이 내에 위치시킨다.3. Twelve process tube strips are placed in the carrier tray.

4. 프로세스 튜브의 상단 링에 힘을 인가함으로써 프로세스 튜브 스트립들의 프로세스 튜브들이 캐리어 트레이의 포트들 내에 고정된다.4. The process tubes of the process tube strips are fixed in the ports of the carrier tray by applying a force to the top ring of the process tube.

5. 캐리어 트레이 내의 각각의 프로세스 튜브가 동일한 특정 액체 시약들로 채워진다.5. Each process tube in the carrier tray is filled with the same specific liquid reagent.

6. 캐리어 트레이가 프로세스 튜브들 내의 시약들을 건조시키기 위하여 가열된다.6. The carrier tray is heated to dry the reagents in the process tubes.

7. 프로세스 튜브들이 이들이 사용될 어세이를 나타내기 위하여 특정 컬러들로 핫 스탬핑된다.7. Process tubes are hot stamped with specific colors to indicate the assay in which they will be used.

8. 캐리어 트레이가 동일하거나 또는 상이한 시약들을 갖는 다른 캐리어 트레이들과 적층되고 패키징되며, 최종 사용자에게 발송된다. 8. The carrier tray is stacked and packaged with other carrier trays having the same or different reagents and shipped to the end user.

9. 최종 사용자가 전체 캐리어 트레이를 그대로 사용할 수 있거나, 또는 캐리어 트레이를 줄이고 캐리어 트레이 또는 트레이들을 다양한 시약 유형들의 개별적인 프로세스 튜브 스트립들 또는 튜브들의 혼합물로 다시 채울 수 있다.9. The end user can use the entire carrier tray as is, or reduce the carrier tray and refill the carrier tray or trays with individual process tube strips or mixtures of tubes of various reagent types.

예 2Example 2

이러한 예는 프로세스 튜브 스트립들(100)을 캐리어 트레이(300)의 포트들(306) 내에 고정하기 위해 필요한 힘 및 그 다음에 포트들(306)로부터 프로세스 튜브 스트립들을 제거하기 위해 필요한 힘을 결정하기 위한 테스트의 결과들 및 테스트 절차를 설명한다. This example determines the force required to secure the process tube strips 100 in the ports 306 of the carrier tray 300 and then the force required to remove the process tube strips from the ports 306. The test results and test procedures are described.

암텍 애큐포스 커뎃 포스 게이지(Amtek AccuForce Cadet Force Gage)(0-5 파운드)가 포트들(306) 내에 프로세스 튜브들(102)을 고정하고 제거하기 위해 필요한 힘을 측정하기 위해 사용되었다.An Amtek AccuForce Cadet Force Gage (0-5 pounds) was used to measure the force required to secure and remove process tubes 102 within ports 306.

테스트 절차Test procedure

1. 캐리어 트레이의 컬럼 내에 튜브들의 하나의 스트립을 놓는다.(아직 캐리어 트레이 내에 고정되지 않음)1. Place one strip of tubes in the column of the carrier tray (not yet secured in the carrier tray).

2. 게이지를 턴 온한다.2. Turn the gauge on.

3. 직립 위치의 게이지로 게이지를 0으로 맞춘다.3. Set the gauge to 0 with the gauge in the upright position.

4. 게이지를 클리어한다. 4. Clear the gauge.

5. 모든 튜브들이 제 위치에 끼워질 때까지 수직으로부터 약간의 각도 ~ 2-3 도에서 게이지로 "A" 로우에서 시작하여 스트립 내의 각각의 튜브를 천천히 누른다. 5. Slowly press each tube in the strip starting at the “A” row with a gauge at a slight angle from vertical to 2-3 degrees until all the tubes are in place.

6. 컬럼 번호 및 게이지 상의 힘의 값을 삽입 값들로서 기록한다.6. Record the value of the column number and force on the gauge as insertion values.

7. 메모리를 클리어하기 위해 클리어 버튼을 누른다.7. Press the clear button to clear the memory.

8. 제 2 컬럼 내에 튜브들의 제 2 스트립을 놓는다. 단계들 5-7을 반복한다.8. Place the second strip of tubes in the second column. Repeat steps 5-7.

9. 나머지 스트립들 3-12에 대해 단계들 5-7을 반복한다.9. Repeat steps 5-7 for the remaining strips 3-12.

10. 캐리어 트레이를 거꾸로 뒤집고, 제 1 스트립으로 시작하여 "A" 로우에서부터 시작하여 튜브들을 캐리어 밖으로 천천히 누른다.10. Turn the carrier tray upside down and slowly push the tubes out of the carrier starting with the "A" row starting with the first strip.

11. 컬럼 번호 및 게이지 상의 힘의 값을 제거 값들로서 기록한다.11. Record the column number and force value on the gauge as removal values.

12. 메모리를 클리어하기 위해 클리어 버튼을 누른다.12. Press the clear button to clear the memory.

13. 나머지 프로세스 튜브 스트립들에 대해 단계들 10, 11 및 12를 반복한다.13. Repeat steps 10, 11 and 12 for the remaining process tube strips.

14. 12개의 프로세스 튜브 스트립들을 캐리어 트레이 내에 재배열하고, 단계들 3-13을 반복한다.14. Rearrange the 12 process tube strips in the carrier tray and repeat steps 3-13.

결과들Results

힘 테스트의 결과들이 표 1에 제공된다. 표 1은 프로세스 튜브 스트립(100) 내의 모든 프로세스 튜브들(102)을 캐리어 트레이(300) 내에 삽입하고 고정하기 위해 필요한 힘을 도시한다. 도시된 바와 같이, 프로세스 튜브 스트립들(100)을 캐리어 트레이(300) 내에 고정하기 위한 평균 삽입력이 1.18 파운드 힘이었으며, 평균 제거력이 0.60 파운드 힘이었다.The results of the force test are provided in Table 1. Table 1 shows the force required to insert and secure all process tubes 102 in the process tube strip 100 into the carrier tray 300. As shown, the average insertion force for securing the process tube strips 100 in the carrier tray 300 was 1.18 pound force and the average removal force was 0.60 pound force.

표 1 - 프로세스 튜브 삽입 및 제거 테스트Table 1-Process tube insertion and removal testing

Figure 112015099566285-pct00001
Figure 112015099566285-pct00001

Claims (29)

시스템으로서,
복수의 타원형 포트들을 포함하는 캐리어 트레이(carrier tray)로서, 각각의 포트는 상단 에지, 하단 에지, 내부 벽, 및 폭 직경보다 더 큰 길이 직경을 갖는, 상기 캐리어 트레이; 및
상기 캐리어 트레이의 포트 내로 단단하게 스냅(snap)하는 프로세스 튜브를 포함하며,
상기 프로세스 튜브는,
상기 프로세스 튜브의 외부 상의 고정(securement) 영역으로서, 상기 고정 영역은 환형 렛지(ledge), 돌출부, 및 상기 렛지와 상기 돌출부 사이의 넥(neck)을 포함하며, 상기 돌출부의 정점에서의 상기 돌출부의 외경은 상기 넥의 외경 및 상기 포트의 외경보다 더 큰, 상기 고정 영역;
상기 돌출부 아래로 연장하는 몸체로서, 상기 돌출부는 상기 정점으로부터 상기 넥으로의 상부 슬로프, 및 상기 정점으로부터 상기 몸체로의 하부 슬로프를 포함하고, 상기 돌출부 상의 상기 상부 슬로프의 각도가 상기 돌출부 상의 상기 하부 슬로프의 각도보다 더 가파르며, 상기 돌출부의 상기 상부 슬로프는 상기 프로세스 튜브의 길이방향 축으로부터 멀어지도록 경사지고, 상기 돌출부의 상기 하부 슬로프는 상기 프로세스 튜브의 상기 길이방향 축을 향해 경사지는, 상기 몸체; 및
상기 환형 렛지로부터 수직적으로 위로 연장하고 상기 튜브에 개구를 규정(define)하는 상단 링을 포함하고, 상기 프로세스 튜브의 단면은 원형인, 시스템.
As a system,
A carrier tray comprising a plurality of oval ports, each port having a length diameter greater than a top edge, a bottom edge, an inner wall, and a width diameter; And
And a process tube that snaps tightly into the port of the carrier tray,
The process tube,
A securement area on the outside of the process tube, the fixation area comprising an annular ledge, a protrusion, and a neck between the ledge and the protrusion, wherein the protrusion at the apex of the protrusion The outer diameter is larger than the outer diameter of the neck and the outer diameter of the port, the fixed area;
As a body extending below the protrusion, the protrusion includes an upper slope from the apex to the neck, and a lower slope from the apex to the body, wherein an angle of the upper slope on the protrusion is the lower portion on the protrusion The body steeper than the angle of the slope, the upper slope of the protrusion being inclined away from the longitudinal axis of the process tube, and the lower slope of the protrusion being inclined toward the longitudinal axis of the process tube; And
And a top ring extending vertically upward from the annular ledge and defining an opening in the tube, wherein the cross section of the process tube is circular.
청구항 1에 있어서,
상기 넥의 외측 표면은 상기 프로세스 튜브를 관통하는 길이방향 축에 평행한, 시스템.
The method according to claim 1,
The outer surface of the neck is parallel to the longitudinal axis passing through the process tube.
청구항 1에 있어서,
상기 환형 렛지는 상부 표면, 하부 표면, 및 외측 표면을 포함하는, 시스템.
The method according to claim 1,
Wherein the annular ledge comprises an upper surface, a lower surface, and an outer surface.
청구항 1에 있어서,
상기 돌출부는 상기 넥의 외경보다 더 큰 외경을 갖는, 시스템.
The method according to claim 1,
Wherein the protrusion has an outer diameter greater than the outer diameter of the neck.
청구항 1에 있어서,
상기 환형 렛지는 상기 돌출부의 외경보다 더 큰 외경을 갖는, 시스템.
The method according to claim 1,
Wherein the annular ledge has an outer diameter greater than the outer diameter of the protrusion.
청구항 1에 있어서,
상기 몸체 아래에 있으며 상기 튜브의 하단부를 규정하는 베이스를 더 포함하는, 시스템.
The method according to claim 1,
Further comprising a base below the body and defining a lower end of the tube.
프로세스 튜브 스트립으로서,
상기 프로세스 튜브 스트립은 청구항 1의 복수의 프로세스 튜브들을 포함하는, 프로세스 튜브 스트립.
As a process tube strip,
Wherein the process tube strip comprises a plurality of process tubes of claim 1.
청구항 7에 있어서,
상기 복수의 프로세스 튜브들은 상기 복수의 프로세스 튜브들의 상기 환형 렛지들에 인접한 커넥터 탭에 의해 연결되는, 프로세스 튜브 스트립.
The method according to claim 7,
Wherein the plurality of process tubes are connected by a connector tab adjacent the annular ledges of the plurality of process tubes.
청구항 8에 있어서,
상기 커넥터 탭들은 그 밑면 상에 커넥터 리세스(recess)를 포함하는, 프로세스 튜브 스트립.
The method according to claim 8,
The connector tabs include a connector recess on its underside, a process tube strip.
시스템으로서,
복수의 타원형 포트들을 포함하는 캐리어 트레이로서, 각각의 포트는 상단 에지, 하단 에지, 내부 벽, 및 폭 직경보다 더 큰 길이 직경을 갖는, 상기 캐리어 트레이; 및
상기 캐리어 트레이의 포트 내로 단단하게 스냅하는 프로세스 튜브를 포함하며,
상기 프로세스 튜브는,
상기 프로세스 튜브로부터 측방으로 연장하는 환형 렛지로서, 상기 환형 렛지는 상부 표면, 하부 표면, 및 외측 표면을 포함하는, 상기 환형 렛지;
상기 환형 렛지의 상기 상부 표면으로부터 수직적으로 위로 연장하며 상기 프로세스 튜브에 개구를 규정하는 상단 링;
상기 환형 렛지 아래의 상기 프로세스 튜브 상의 위치에서 상기 프로세스 튜브로부터 측방으로 연장하는 환형 돌출부로서, 상기 돌출부는 정점, 상부 슬로프, 및 하부 슬로프를 가지며, 상기 돌출부 상의 상기 상부 슬로프의 각도가 상기 돌출부 상의 상기 하부 슬로프의 각도보다 더 가파르며, 상기 돌출부의 상기 상부 슬로프는 상기 튜브의 길이방향 축으로부터 멀어지도록 경사지고, 상기 돌출부의 상기 하부 슬로프는 상기 튜브의 상기 길이방향 축을 향해 경사지는, 상기 환형 돌출부;
상기 환형 렛지와 상기 돌출부 사이의 넥;
상기 돌출부 아래의 몸체; 및
상기 프로세스 튜브의 하단부를 규정하는 베이스를 포함하고, 상기 프로세스 튜브의 단면은 원형인, 시스템.
As a system,
A carrier tray comprising a plurality of elliptical ports, each port having a top diameter, a bottom edge, an inner wall, and a length diameter greater than the width diameter; And
And a process tube that snaps tightly into the port of the carrier tray,
The process tube,
An annular ledge extending laterally from the process tube, the annular ledge comprising an upper surface, a lower surface, and an outer surface;
A top ring extending vertically upward from the top surface of the annular ledge and defining an opening in the process tube;
An annular projection extending laterally from the process tube at a position on the process tube below the annular ledge, the projection having an apex, an upper slope, and a lower slope, wherein the angle of the upper slope on the projection is above the projection The annular projection, which is steeper than the angle of the lower slope, wherein the upper slope of the projection is inclined away from the longitudinal axis of the tube, and the lower slope of the projection is inclined toward the longitudinal axis of the tube;
A neck between the annular ledge and the protrusion;
A body under the protrusion; And
And a base defining a lower end of the process tube, wherein the cross section of the process tube is circular.
삭제delete 청구항 10에 있어서,
상기 캐리어 트레이는 쉘프(shelf) 및 베이스를 포함하며, 상기 쉘프는 상기 쉘프의 상단부를 관통하는 복수의 포트들을 포함하고, 상기 포트들은 내부 벽을 갖는, 시스템.
The method according to claim 10,
The carrier tray includes a shelf and a base, the shelf comprising a plurality of ports through the upper end of the shelf, the ports having an inner wall.
삭제delete 삭제delete 청구항 12에 있어서,
상기 프로세스 튜브의 상기 돌출부는 적어도 상기 캐리어 트레이 내의 상기 포트의 상기 폭 직경보다 더 큰 외경을 갖는, 시스템.
The method according to claim 12,
Wherein the protrusion of the process tube has an outer diameter greater than at least the width diameter of the port in the carrier tray.
청구항 15에 있어서,
상기 프로세스 튜브의 상기 넥은 상기 캐리어 트레이 내의 상기 포트의 상기 길이 및 폭 직경들보다 더 작은 외경을 갖는, 시스템.
The method according to claim 15,
Wherein the neck of the process tube has an outer diameter smaller than the length and width diameters of the port in the carrier tray.
청구항 12에 있어서,
상기 프로세스 튜브는 상기 캐리어 트레이의 상기 포트 내에 단단하게 끼워 맞춰지는, 시스템.
The method according to claim 12,
Wherein the process tube fits tightly within the port of the carrier tray.
청구항 17에 있어서,
상기 프로세스 튜브의 상기 환형 렛지의 상기 하부 표면은 상기 쉘프 상단부의 외부 상에 놓이며, 상기 돌출부의 상기 상부 슬로프는 상기 포트의 상기 내부 벽의 하단 에지 상에 놓이는, 시스템.
The method according to claim 17,
Wherein the bottom surface of the annular ledge of the process tube lies on the outside of the shelf top, and the top slope of the protrusion lies on the bottom edge of the inner wall of the port.
청구항 17에 있어서,
상기 프로세스 튜브의 상기 넥과 상기 포트의 상기 내부 벽 사이에 간극이 존재하는, 시스템.
The method according to claim 17,
A gap exists between the neck of the process tube and the inner wall of the port.
청구항 19에 있어서,
상기 간극은 상기 캐리어 트레이의 상기 포트 내에서 상기 프로세스 튜브가 틸팅(tilt)하는 것을 가능하게 하는, 시스템.
The method according to claim 19,
The gap enables the process tube to tilt within the port of the carrier tray.
청구항 10에 있어서,
상기 프로세스 튜브는, 상기 환형 렛지로부터 측방으로 연장하는 평평한 연장부로서, 상기 연장부는 프로세스 튜브를 마킹하기 위한 표면을 제공하는, 상기 평평한 연장부를 더 포함하는, 시스템.
The method according to claim 10,
Wherein the process tube is a flat extension extending laterally from the annular ledge, the extension further comprising the flat extension, providing a surface for marking the process tube.
시스템으로서,
복수의 타원형 포트들을 포함하는 캐리어 트레이로서, 각각의 포트는 상단 에지 및 하단 에지 및 내부 벽을 갖는, 상기 캐리어 트레이; 및
상기 캐리어 트레이의 포트 내로 단단하게 스냅하는 프로세스 튜브로서, 상기 프로세스 튜브는 상기 튜브의 외부 상의 고정 영역을 포함하고, 상기 고정 영역은 환형 렛지, 돌출부 및 상기 렛지와 상기 돌출부 사이의 넥으로 구성되며, 상기 돌출부는 정점, 상기 정점으로부터 상기 넥으로의 상부 슬로프, 및 상기 정점으로부터 몸체로의 하부 슬로프를 포함하고, 상기 돌출부 상의 상기 상부 슬로프의 각도가 상기 돌출부 상의 상기 하부 슬로프의 각도보다 더 가파르며, 상기 돌출부의 상기 상부 슬로프는 상기 튜브의 길이방향 축으로부터 멀어지도록 경사지고, 상기 돌출부의 상기 하부 슬로프는 상기 튜브의 상기 길이방향 축을 향해 경사지는, 상기 프로세스 튜브를 포함하며,
상기 프로세스 튜브는, 상기 렛지의 하단 표면이 상기 캐리어 트레이의 상단 표면 상에 놓이고 상기 돌출부의 상기 상부 슬로프가 상기 포트의 상기 하단 에지와 접촉하도록, 상기 캐리어 트레이의 포트 내로 단단하게 스냅하고, 상기 프로세스 튜브의 단면은 원형인, 시스템.
As a system,
A carrier tray comprising a plurality of elliptical ports, each port having a top edge and a bottom edge and an inner wall; And
A process tube that snaps tightly into a port of the carrier tray, the process tube comprising a fixed area on the outside of the tube, the fixed area consisting of an annular ledge, a protrusion and a neck between the ledge and the protrusion, The protrusion comprises an apex, an upper slope from the apex to the neck, and a lower slope from the apex to the body, wherein the angle of the upper slope on the protrusion is steeper than the angle of the lower slope on the protrusion, The upper slope of the protrusion is inclined away from the longitudinal axis of the tube, and the lower slope of the protrusion is inclined toward the longitudinal axis of the tube, and includes the process tube,
The process tube snaps tightly into the port of the carrier tray, such that the bottom surface of the ledge lies on the top surface of the carrier tray and the upper slope of the protrusion contacts the bottom edge of the port, and the The system of the process tube is circular in cross section.
청구항 22에 있어서,
상기 캐리어 트레이의 상기 포트들이 폭 직경보다 더 큰 길이 직경을 포함하는, 시스템.
The method according to claim 22,
Wherein the ports of the carrier tray include a length diameter greater than the width diameter.
청구항 23에 있어서,
상기 프로세스 튜브의 상기 환형 렛지는 상기 캐리어 트레이의 상기 포트들의 길이 및 폭 직경들보다 더 큰 외경을 가지며, 상기 프로세스 튜브의 상기 넥은 상기 포트들의 길이 및 폭 직경들보다 더 작은 외경을 갖는, 시스템.
The method according to claim 23,
Wherein the annular ledge of the process tube has an outer diameter greater than the length and width diameters of the ports of the carrier tray, and the neck of the process tube has an outer diameter less than the length and width diameters of the ports. .
청구항 23에 있어서,
상기 프로세스 튜브의 상기 돌출부는 적어도 상기 포트의 상기 폭 직경보다 더 큰 외경을 갖는, 시스템.
The method according to claim 23,
Wherein the protrusion of the process tube has an outer diameter greater than at least the width diameter of the port.
청구항 22에 있어서,
상기 프로세스 튜브는 상기 캐리어 트레이의 상기 포트 내에서 틸팅할 수 있는, 시스템.
The method according to claim 22,
Wherein the process tube is tiltable within the port of the carrier tray.
청구항 1에 있어서,
상기 프로세스 튜브는 상기 정점이 상기 캐리어 트레이의 상기 포트를 통해 슬라이드할 때 최대 변형을 겪으며 최대로 굽혀지고, 상기 정점이 상기 포트의 하단 에지를 통과할 때 상기 프로세스 튜브의 상기 변형이 릴리즈(release)되고 상기 프로세스 튜브가 제 위치에 단단하게 스냅하는, 시스템.
The method according to claim 1,
The process tube is bent to the maximum with maximum deformation when the vertex slides through the port of the carrier tray, and the deformation of the process tube is released when the vertex passes through the bottom edge of the port. And the process tube snaps tightly into place.
청구항 10에 있어서,
상기 프로세스 튜브는 상기 정점이 상기 캐리어 트레이의 상기 포트를 통해 슬라이드할 때 최대 변형을 겪으며 최대로 굽혀지고, 상기 정점이 상기 포트의 하단 에지를 통과할 때 상기 프로세스 튜브의 상기 변형이 릴리즈되고 상기 프로세스 튜브가 제 위치에 단단하게 스냅하는, 시스템.
The method according to claim 10,
The process tube is bent to the maximum with maximum deformation when the vertex slides through the port of the carrier tray, the deformation of the process tube is released and the process when the vertex passes through the bottom edge of the port System in which the tube snaps securely in place.
청구항 22에 있어서,
상기 프로세스 튜브는 상기 정점이 상기 캐리어 트레이의 상기 포트를 통해 슬라이드할 때 최대 변형을 겪으며 최대로 굽혀지고, 상기 정점이 상기 포트의 하단 에지를 통과할 때 상기 프로세스 튜브의 상기 변형이 릴리즈되고 상기 프로세스 튜브가 제 위치에 단단하게 스냅하는, 시스템.
The method according to claim 22,
The process tube is bent to the maximum with maximum deformation when the vertex slides through the port of the carrier tray, the deformation of the process tube is released and the process when the vertex passes through the bottom edge of the port System in which the tube snaps securely in place.
KR1020157029623A 2013-03-15 2013-03-15 Process tube and carrier tray KR102121852B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/US2013/032556 WO2014143044A1 (en) 2013-03-15 2013-03-15 Process tube and carrier tray

Publications (2)

Publication Number Publication Date
KR20150132849A KR20150132849A (en) 2015-11-26
KR102121852B1 true KR102121852B1 (en) 2020-06-12

Family

ID=48048238

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020157029623A KR102121852B1 (en) 2013-03-15 2013-03-15 Process tube and carrier tray

Country Status (11)

Country Link
US (1) US11433397B2 (en)
EP (1) EP2969211B1 (en)
JP (1) JP6387387B2 (en)
KR (1) KR102121852B1 (en)
CN (2) CN112831410A (en)
AU (3) AU2013381879B2 (en)
BR (1) BR112015022459B1 (en)
CA (1) CA2905204C (en)
ES (1) ES2744596T3 (en)
MX (1) MX2015011194A (en)
WO (1) WO2014143044A1 (en)

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7829025B2 (en) 2001-03-28 2010-11-09 Venture Lending & Leasing Iv, Inc. Systems and methods for thermal actuation of microfluidic devices
US8895311B1 (en) 2001-03-28 2014-11-25 Handylab, Inc. Methods and systems for control of general purpose microfluidic devices
EP2402089A1 (en) 2003-07-31 2012-01-04 Handylab, Inc. Processing particle-containing samples
US8852862B2 (en) 2004-05-03 2014-10-07 Handylab, Inc. Method for processing polynucleotide-containing samples
US10900066B2 (en) 2006-03-24 2021-01-26 Handylab, Inc. Microfluidic system for amplifying and detecting polynucleotides in parallel
US11806718B2 (en) 2006-03-24 2023-11-07 Handylab, Inc. Fluorescence detector for microfluidic diagnostic system
JP5415253B2 (en) 2006-03-24 2014-02-12 ハンディラブ・インコーポレーテッド Integrated system for processing microfluidic samples and methods of use thereof
US7998708B2 (en) 2006-03-24 2011-08-16 Handylab, Inc. Microfluidic system for amplifying and detecting polynucleotides in parallel
WO2008061165A2 (en) 2006-11-14 2008-05-22 Handylab, Inc. Microfluidic cartridge and method of making same
WO2008060604A2 (en) 2006-11-14 2008-05-22 Handylab, Inc. Microfluidic system for amplifying and detecting polynucleotides in parallel
US9186677B2 (en) 2007-07-13 2015-11-17 Handylab, Inc. Integrated apparatus for performing nucleic acid extraction and diagnostic testing on multiple biological samples
US8287820B2 (en) 2007-07-13 2012-10-16 Handylab, Inc. Automated pipetting apparatus having a combined liquid pump and pipette head system
CA2693654C (en) 2007-07-13 2018-02-13 Handylab, Inc. Polynucleotide capture materials, and methods of using same
US8182763B2 (en) 2007-07-13 2012-05-22 Handylab, Inc. Rack for sample tubes and reagent holders
US8105783B2 (en) 2007-07-13 2012-01-31 Handylab, Inc. Microfluidic cartridge
CA3082652A1 (en) 2011-04-15 2012-10-18 Becton, Dickinson And Company Scanning real-time microfluidic thermocycler and methods for synchronized thermocycling and scanning optical detection
EP2773892B1 (en) 2011-11-04 2020-10-07 Handylab, Inc. Polynucleotide sample preparation device
RU2658773C2 (en) 2012-02-03 2018-06-22 Бектон, Дикинсон Энд Компани System and method of implementation of automated assays on plurality of biological samples
WO2014164594A1 (en) 2013-03-11 2014-10-09 Meso Scale Technologies, Llc. Improved methods for conducting multiplexed assays
US11865544B2 (en) 2013-03-15 2024-01-09 Becton, Dickinson And Company Process tube and carrier tray
JP6452965B2 (en) * 2014-06-13 2019-01-16 株式会社日立ハイテクノロジーズ Nucleic acid amplification equipment
CN106179782A (en) * 2015-05-07 2016-12-07 深圳华大基因科技服务有限公司 For the orifice plate of centrifugally operated and centrifuge head and centrifuge
EP3199241A1 (en) * 2016-01-27 2017-08-02 Genomica S.A.U. Multi-well test plate assembly and method of preparing a test plate for analysis
EP3446132B1 (en) * 2016-04-22 2023-06-14 Becton, Dickinson and Company Automated analyzer piercing stoppers for aspiration
JP6768814B2 (en) * 2016-09-13 2020-10-14 富士フイルム株式会社 PCR tube, RFID sample management system, and RFID sample management method
US10766140B2 (en) 2017-04-13 2020-09-08 Battelle Memorial Institute Teach mode collision avoidance system and method for industrial robotic manipulators
GB2568279B (en) * 2017-11-10 2022-04-06 4Titude Ltd A thin walled microplate
JP2019162579A (en) * 2018-03-19 2019-09-26 株式会社リコー Integrated kit of container, container used for the same and container holder
JP6635532B1 (en) * 2019-03-25 2020-01-29 グローバルサイエンス株式会社 Sample cup assembly
USD954296S1 (en) * 2020-10-21 2022-06-07 Michael Thomas Hendrikx Laboratory utensil

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050249640A1 (en) * 2001-02-20 2005-11-10 Manfred Kansy Cuvette arrays
US20080287585A1 (en) * 2007-05-14 2008-11-20 Brown Larry R Compositions and Reaction Tubes with Improved Thermal Conductivity
US20090117648A1 (en) 2005-09-06 2009-05-07 Bioinnovations Oy Vessel and method of manufacture thereof
US20130029343A1 (en) 2010-02-22 2013-01-31 4Titude Ltd. Multiwell strips

Family Cites Families (72)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE381826B (en) 1974-01-16 1975-12-22 Duni Bila Ab PROCEDURE FOR CHEMICAL WORK OPERATIONS AND PRODUCT FOR PERFORMING THE PROCEDURE
US4956150A (en) 1985-11-27 1990-09-11 Alerchek Disposable microtiter stick
US5141718A (en) * 1990-10-30 1992-08-25 Millipore Corporation Test plate apparatus
USD342793S (en) 1991-05-07 1993-12-28 Hoffmann-La Roche Inc. Cuvette
US5462881A (en) 1993-08-23 1995-10-31 Brandeis University Temporary liquid storage cavities in a centrifuge tube
EP1245286B1 (en) 1993-10-22 2009-11-25 Abbott Laboratories Reaction tube and method of use to minimize contamination
USD367932S (en) 1994-03-03 1996-03-12 Lim Pak L Compartmented container for microbiological samples
US5514343A (en) * 1994-06-22 1996-05-07 Nunc, As Microtitration system
USD380555S (en) 1994-08-31 1997-07-01 Toa Medical Electronics Co., Ltd. Sample analysis cuvette
US5721136A (en) * 1994-11-09 1998-02-24 Mj Research, Inc. Sealing device for thermal cycling vessels
US5683659A (en) 1995-02-22 1997-11-04 Hovatter; Kenneth R. Integral assembly of microcentrifuge strip tubes and strip caps
JP3554612B2 (en) * 1995-06-12 2004-08-18 マツダ株式会社 Roll curtain for vehicles
US5736102A (en) 1996-02-21 1998-04-07 Biomerieux Vitek, Inc. Test sample positioning system
US5948363A (en) * 1996-04-22 1999-09-07 Gaillard; Patrick Micro-well strip with print tabs
US6027694A (en) 1996-10-17 2000-02-22 Texperts, Inc. Spillproof microplate assembly
US5972694A (en) * 1997-02-11 1999-10-26 Mathus; Gregory Multi-well plate
USD401700S (en) 1997-05-22 1998-11-24 Abbott Laboraties Container for use with an automatic analyzer
JP3937107B2 (en) * 1997-05-23 2007-06-27 東拓工業株式会社 Bell mouth for annular corrugated tube
US5922289A (en) * 1997-12-05 1999-07-13 Evergreen Industries Inc. Microtitration tray
US6117391A (en) 1998-06-18 2000-09-12 Bayer Corporation Cup handling subsystem for an automated clinical chemistry analyzer system
USD574506S1 (en) 1998-06-23 2008-08-05 Advanced Biotechnologies Limited Multi-well plate
US6787111B2 (en) 1998-07-02 2004-09-07 Amersham Biosciences (Sv) Corp. Apparatus and method for filling and cleaning channels and inlet ports in microchips used for biological analysis
USD445907S1 (en) 1998-09-19 2001-07-31 Advanced Biotechnologies, Limited PCR multiwell strip
US6602206B1 (en) * 1999-08-18 2003-08-05 Becton, Dickinson And Company Stopper-shield assembly
JP3750460B2 (en) 2000-02-18 2006-03-01 日立工機株式会社 Dispensing device and dispensing method
US6672458B2 (en) 2000-05-19 2004-01-06 Becton, Dickinson And Company System and method for manipulating magnetically responsive particles fluid samples to collect DNA or RNA from a sample
US7347977B2 (en) 2000-06-08 2008-03-25 Eppendorf Ag Microtitration plate
CH695544A5 (en) 2000-11-17 2006-06-30 Tecan Trading Ag Apparatus for dispensing or aspirating / dispensing liquid samples.
US6692700B2 (en) 2001-02-14 2004-02-17 Handylab, Inc. Heat-reduction methods and systems related to microfluidic devices
USD453573S1 (en) 2001-03-05 2002-02-12 3088081 Canada Inc. Microcentrifuge tube strip
US20030059823A1 (en) 2001-09-21 2003-03-27 Juki Corporation Hybridization apparatus and method for detecting nucleic acid in sample using the same
DE10212761B4 (en) * 2002-03-22 2009-12-31 Eppendorf Ag microtiter plate
SE0203781D0 (en) * 2002-12-19 2002-12-19 Alphahelix Ab Holder and method for cooling or heating samples
US7648678B2 (en) 2002-12-20 2010-01-19 Dako Denmark A/S Method and system for pretreatment of tissue slides
EP2402089A1 (en) 2003-07-31 2012-01-04 Handylab, Inc. Processing particle-containing samples
AU157690S (en) 2003-11-21 2005-03-09 Saika Tech Institute Foundation Solidus extracting cartridge
EP1746158A4 (en) 2004-05-07 2009-11-25 Konica Minolta Med & Graphic Micro-reactor for testing, genetic testing apparatus, and genetic testing method
WO2006043642A1 (en) 2004-10-20 2006-04-27 Ebara Corporation Fluid reactor
GB2428794A (en) * 2005-08-02 2007-02-07 Advanced Biotech Ltd Two part microwell plate and method of fabricating same
JP4630786B2 (en) 2005-10-04 2011-02-09 キヤノン株式会社 Biochemical treatment apparatus, DNA amplification and purification apparatus, and DNA testing apparatus including the apparatus
US20070116613A1 (en) * 2005-11-23 2007-05-24 Donat Elsener Sample tube and system for storing and providing nucleic acid samples
EP1792656B1 (en) * 2005-11-30 2011-11-02 F. Hoffmann-La Roche AG Integrally built, linear array of cuvettes, two dimensional array of cuvettes and system comprising two or more two-dimensional arrays of cuvettes
ATE531453T1 (en) * 2005-11-30 2011-11-15 Hoffmann La Roche INTEGRATED LINEAR ARRANGEMENT OF CUVETTES, TWO-DIMENSIONAL ARRANGEMENT OF CUVETTES AND SYSTEM WITH TWO OR MORE TWO-DIMENSIONAL ARRANGEMENTS OF CUVETTES
JP5415253B2 (en) 2006-03-24 2014-02-12 ハンディラブ・インコーポレーテッド Integrated system for processing microfluidic samples and methods of use thereof
US7998708B2 (en) 2006-03-24 2011-08-16 Handylab, Inc. Microfluidic system for amplifying and detecting polynucleotides in parallel
EP1839756A1 (en) 2006-03-31 2007-10-03 F.Hoffmann-La Roche Ag Apparatus for separating magnetic particles from liquids containing said particles, and an array of vessels suitable for use with such an apparatus
US20080023423A1 (en) 2006-07-31 2008-01-31 James Francis Duffy Device for Holding and Displaying Vial-shaped Beverage Containers
USD583481S1 (en) 2006-08-11 2008-12-23 Sysmex Corporation Cuvette
JP2008267950A (en) * 2007-04-19 2008-11-06 Enplas Corp Fluid handling device
US20080257882A1 (en) 2007-04-20 2008-10-23 Bioinnovations Oy Vessel for accurate analysis
US20090136385A1 (en) 2007-07-13 2009-05-28 Handylab, Inc. Reagent Tube
US9186677B2 (en) 2007-07-13 2015-11-17 Handylab, Inc. Integrated apparatus for performing nucleic acid extraction and diagnostic testing on multiple biological samples
GB0719193D0 (en) * 2007-10-02 2007-11-07 Advanced Biotech Ltd A Vessel
US20090260285A1 (en) * 2008-04-18 2009-10-22 Smith Thomas J Self-orientating plant pot and tray system
JP4669024B2 (en) * 2008-05-30 2011-04-13 丸山金属工業株式会社 Eyelet bracket and mounting method
USD621521S1 (en) 2008-11-18 2010-08-10 Thermo Fisher Scientific Oy Cuvette
CN201316627Y (en) * 2008-12-10 2009-09-30 天津彰科科技有限公司 Micro centrifuge tube
USD608013S1 (en) 2009-01-29 2010-01-12 ABgene Limited PCR multi-well plate
USD679830S1 (en) 2011-09-07 2013-04-09 ABgene Limited PCR multiwell plate
USD692162S1 (en) 2011-09-30 2013-10-22 Becton, Dickinson And Company Single piece reagent holder
USD684703S1 (en) 2011-11-28 2013-06-18 Acea Biosciences, Inc. Set of inserts for co-culture of cells in microtiter plates
USD687965S1 (en) 2012-04-20 2013-08-13 Stratec Biomedical Ag Cuvette
USD687964S1 (en) 2012-04-20 2013-08-13 Stratec Biomedical Ag Cuvette
USD687567S1 (en) 2012-10-22 2013-08-06 Qiagen Gaithersburg, Inc. Tube strip for automated processing systems
USD703345S1 (en) 2012-10-29 2014-04-22 Universal Bio Research Co., Ltd. Plurality of reaction vessels with lids
AU2013202778A1 (en) 2013-03-14 2014-10-02 Gen-Probe Incorporated Systems, methods, and apparatuses for performing automated reagent-based assays
USD759835S1 (en) 2013-03-15 2016-06-21 Becton, Dickinson And Company Process tube strip
USD709624S1 (en) 2013-03-15 2014-07-22 Becton, Dickinson And Company Process tube
USD709625S1 (en) 2013-03-15 2014-07-22 Becton, Dickinson And Company Process tube strip
USD762873S1 (en) 2013-03-15 2016-08-02 Becton, Dickinson And Company Process tube
US10220392B2 (en) 2013-03-15 2019-03-05 Becton, Dickinson And Company Process tube and carrier tray
USD717468S1 (en) 2013-06-24 2014-11-11 Bioptic, Inc. Microwell strip

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050249640A1 (en) * 2001-02-20 2005-11-10 Manfred Kansy Cuvette arrays
US20090117648A1 (en) 2005-09-06 2009-05-07 Bioinnovations Oy Vessel and method of manufacture thereof
US20080287585A1 (en) * 2007-05-14 2008-11-20 Brown Larry R Compositions and Reaction Tubes with Improved Thermal Conductivity
US20130029343A1 (en) 2010-02-22 2013-01-31 4Titude Ltd. Multiwell strips

Also Published As

Publication number Publication date
JP6387387B2 (en) 2018-09-05
EP2969211A1 (en) 2016-01-20
ES2744596T3 (en) 2020-02-25
US11433397B2 (en) 2022-09-06
BR112015022459B1 (en) 2021-10-19
AU2020220176A1 (en) 2020-09-10
CA2905204A1 (en) 2014-09-18
CN112831410A (en) 2021-05-25
AU2013381879A1 (en) 2015-09-17
BR112015022459A2 (en) 2017-07-18
EP2969211B1 (en) 2019-06-26
MX2015011194A (en) 2016-03-04
US20190151854A1 (en) 2019-05-23
AU2020220176B2 (en) 2022-06-30
JP2016515805A (en) 2016-06-02
AU2013381879B2 (en) 2018-08-16
KR20150132849A (en) 2015-11-26
WO2014143044A1 (en) 2014-09-18
CA2905204C (en) 2021-08-10
AU2018264066B2 (en) 2020-05-21
AU2018264066A1 (en) 2018-12-06
CN105228747A (en) 2016-01-06

Similar Documents

Publication Publication Date Title
KR102121852B1 (en) Process tube and carrier tray
US10220392B2 (en) Process tube and carrier tray
US20210317437A1 (en) Diagnostic apparatus to extract nucleic acids including a magnetic assembly and a heater assembly
US9701957B2 (en) Reagent holder, and kits containing same
KR102121853B1 (en) Unitized reagent strip
EP1883475B1 (en) Sample tube holder
US11268885B2 (en) Sample collection device
WO2008003693A1 (en) Collecting device for biologically relevant samples
US11865544B2 (en) Process tube and carrier tray
JP6902509B2 (en) Process tube and transport tray
US20130225453A1 (en) Biomaterial detecting device
EP3199241A1 (en) Multi-well test plate assembly and method of preparing a test plate for analysis

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E90F Notification of reason for final refusal
E701 Decision to grant or registration of patent right