KR102119861B1 - Moldable silicone resin, composition and semiconductor light emitting device thereof - Google Patents

Moldable silicone resin, composition and semiconductor light emitting device thereof Download PDF

Info

Publication number
KR102119861B1
KR102119861B1 KR1020180098996A KR20180098996A KR102119861B1 KR 102119861 B1 KR102119861 B1 KR 102119861B1 KR 1020180098996 A KR1020180098996 A KR 1020180098996A KR 20180098996 A KR20180098996 A KR 20180098996A KR 102119861 B1 KR102119861 B1 KR 102119861B1
Authority
KR
South Korea
Prior art keywords
silicone resin
present
resin composition
molding
silicone
Prior art date
Application number
KR1020180098996A
Other languages
Korean (ko)
Other versions
KR20190024731A (en
Inventor
홍지에 쑨
쓰치 덩
Original Assignee
베이징 케이엠티 테크놀로지 코.,엘티디.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 베이징 케이엠티 테크놀로지 코.,엘티디. filed Critical 베이징 케이엠티 테크놀로지 코.,엘티디.
Publication of KR20190024731A publication Critical patent/KR20190024731A/en
Application granted granted Critical
Publication of KR102119861B1 publication Critical patent/KR102119861B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K13/00Use of mixtures of ingredients not covered by one single of the preceding main groups, each of these compounds being essential
    • C08K13/02Organic and inorganic ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/20Polysiloxanes containing silicon bound to unsaturated aliphatic groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/06Preparatory processes
    • C08G77/08Preparatory processes characterised by the catalysts used
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/0025Crosslinking or vulcanising agents; including accelerators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/483Containers
    • H01L51/50
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2237Oxides; Hydroxides of metals of titanium
    • C08K2003/2241Titanium dioxide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/20Applications use in electrical or conductive gadgets

Abstract

본 발명은 몰드 성형이 가능한 실리콘 수지, 조성물 및 그 반도체 발광소자에 관한 것이다. 우선, 몰드 성형이 가능한 실리콘 수지 및 그 제조방법을 제공한다. 실리콘 수지가 25℃에서 고체이고, 융점이 50℃ 미만인 것과 같이, 실리콘 수지 중 [MeSiO3/2] 단위, [PhSiO3/2] 단위, [R2SiO2/2] 단위 및 수산기의 몰비를 특정 수치 범위 내로 제어함으로써 축합형 실리콘 성형재료에 적합하고 융점이 비교적 낮고 몰드 성형이 가능한 실리콘 수지가 얻어진다. 본 발명은 또한 몰드 성형이 가능한 실리콘 수지 조성물을 제공한다. 본 발명에 기재된 실리콘 수지를, 적어도 가교제, 무기 충전제, 축합 촉매와 혼합하여 양호한 저온 가공성 및 내후성을 갖는 축합형 실리콘 성형재료를 얻을 수 있다. 또한, 본 발명은 또한 몰드 성형체 및 그 제조방법, LED 하우징 및 반도체 발광소자를 제공한다.The present invention relates to a silicone resin, a composition capable of mold molding, and a semiconductor light emitting device thereof. First, a silicone resin capable of mold molding and a method of manufacturing the same are provided. The molar ratio of [MeSiO 3/2 ] units, [PhSiO 3/2 ] units, [R 2 SiO 2/2 ] units, and hydroxyl groups in the silicone resin, as the silicone resin is solid at 25° C. and the melting point is less than 50° C. By controlling within a specific numerical range, a silicone resin suitable for condensation-type silicone molding materials, having a relatively low melting point, and capable of molding is obtained. The present invention also provides a silicone resin composition capable of mold molding. The silicone resin described in the present invention can be mixed with at least a crosslinking agent, an inorganic filler, and a condensation catalyst to obtain a condensed silicone molding material having good low-temperature processability and weather resistance. In addition, the present invention also provides a molded body and a manufacturing method thereof, an LED housing and a semiconductor light emitting device.

Description

몰드 성형이 가능한 실리콘 수지, 조성물 및 이의 반도체 발광소자{MOLDABLE SILICONE RESIN, COMPOSITION AND SEMICONDUCTOR LIGHT EMITTING DEVICE THEREOF}Moldable silicone resin, composition and semiconductor light emitting device thereof {MOLDABLE SILICONE RESIN, COMPOSITION AND SEMICONDUCTOR LIGHT EMITTING DEVICE THEREOF}

본 발명은 몰드(mold) 성형이 가능한 실리콘 수지, 조성물 및 이의 반도체 발광소자에 관한 것으로, 특히 축합형 실리콘 성형재료에 적합하게 사용되며, 융점이 비교적 낮고 몰드 성형이 가능한 실리콘 수지, 조성물, LED 하우징 및 반도체 발광소자에 관한 것이다.The present invention relates to a silicone resin that can be molded, a composition, and a semiconductor light emitting device thereof, and is particularly suitably used for condensation type silicone molding materials, and has a relatively low melting point and is capable of mold molding. And a semiconductor light emitting device.

LED 등의 반도체 발광소자는 소형, 고효율, 긴 수명, 뛰어난 발광성과 같은 이점이 있어, 최근 널리 주목 받고 있다. 전형적인 반도체 발광소자는 일반적으로 폴리아미드, 에폭시 수지 등의 성형재료를 몰드 성형하여 하우징하고, 칩과 리드를 상기 하우징 내에 배치하고, 또한 봉지재(encapsulment)에 상기 하우징을 충전 후 경화시켜 밀봉함으로써 형성된다. 상기 하우징 재료는 내열성 및 내광성이 떨어지기 때문에 장기간 사용하면 황변이 생겨 반사율이 저하되고, 기계적 강도가 저하되는 등의 문제가 생긴다. 실리콘 성형재료(SMC)는 양호한 내열성 및 내광성을 가지며, 폴리아미드, 에폭시 수지를 대신하여 반도체 발광소자의 하우징 제조에 이용되게 되었다.Semiconductor light emitting devices, such as LEDs, have advantages such as small size, high efficiency, long life, and excellent luminescence, and have been recently attracting wide attention. A typical semiconductor light emitting device is generally formed by molding a molded material such as polyamide or epoxy resin, housing it, placing chips and leads in the housing, and filling and sealing the housing with an encapsulment to seal it. do. Since the housing material has poor heat resistance and light resistance, yellowing occurs when used for a long period of time, resulting in problems such as a decrease in reflectance and a decrease in mechanical strength. Silicone molding material (SMC) has good heat resistance and light resistance, and has been used to manufacture a housing for a semiconductor light emitting device in place of polyamide and epoxy resin.

실리콘 성형재료는 주로 부가형와 축합형의 두 가지로 크게 구분된다. 부가형 실리콘 성형재료는 하이드로실릴레이션(hydrosilylation) 반응에 의해 경화를 실현하는 것이다. 그 필수성분은 일반적으로 알케닐기 함유 폴리실록산, 하이드로겐폴리실록산, 백금 촉매, 무기 충전제, 억제제 등을 포함하고, 배합이 복잡하며 또한 사용하는 알케닐기 함유 유기 폴리실록산 및 유기 하이드로겐폴리실록산은 합성 과정이 복잡하고 비용이 높다. 이와 비교하여, 축합형 실리콘 성형재료는 축합반응에 의해 경화를 실현하는 것이다. 그 필수성분은 일반적으로 실리콘 수지, 축합반응 촉매, 무기 충전제 등을 포함하고, 배합이 비교적 간단하며 또한 이용하는 실리콘 수지는 합성이 편리하고 비용이 상대적으로 낮다.Silicone molding materials are mainly classified into two types: addition type and condensation type. Additive silicone molding material is to realize curing by hydrosilylation reaction. The essential components generally include alkenyl group-containing polysiloxanes, hydrogen polysiloxanes, platinum catalysts, inorganic fillers, inhibitors, and the like, and the compounding is complicated, and the alkenyl group-containing organic polysiloxanes and organic hydrogen polysiloxanes used are complex in synthesis. The cost is high. In comparison, the condensation type silicone molding material achieves curing by condensation reaction. The essential components generally include a silicone resin, a condensation reaction catalyst, an inorganic filler, etc., and the compounding is relatively simple, and the silicone resin used is easy to synthesize and has a relatively low cost.

중국 특허 CN101519531B에서는 120 ~ 190℃에서 30 ~ 600초 몰드 성형으로 LED 하우징을 제작할 수 있으며, 양호한 내열성, 내광성 및 낮은 황변성 또한 나타내는 축합형 실리콘 성형재료가 개시되어 있다. 상기 축합형 실리콘 성형재료는 평균 조성식이 R1 aSi(OR2)b(OH)cO(4-a-b-c)/2인 실리콘 수지를 포함한다. 상기 실리콘 수지는 자신의 구조 및 성능이 제한되어 있기 때문에, 그 융점은 40 ~ 130℃, 바람직하게는 70 ~ 80℃로 제어해야 한다. 융점이 40℃ 미만이면, 상기 실리콘 수지는 고체가 되지 않거나 표면이 끈적거리는 고체가 되기 때문에 몰드 성형이 곤란하다. 사용하는 실리콘 수지는 융점이 높기 때문에 성형재료의 배합시, 상기 실리콘 수지는 일반 배합 온도(일반적으로 100℃ 이하)에서 다른 성분과 균일하게 혼합하는 것이 곤란하다. 또한 성형재료의 성형시 성형재료의 충전성을 향상시키기 위해 일반적으로 성형 온도를 150 ~ 190℃의 고온으로 제어할 필요가 있다. 이러한 결함으로 인해 상기 축합형 실리콘 성형재료의 저온 가공성이 나쁘고, 비교적 저온에서의 배합 및 몰드 성형이 곤란하다. 또한 상기 문헌을 포함한 선행기술은, 어떻게 하면 축합형 실리콘 성형재료에 바람직한 저온 가공성을 부여하며, 내후성을 보다 개선시킬 수 있는지에 대한 교시가 없다.The Chinese patent CN101519531B discloses a condensation-type silicone molding material that can manufacture an LED housing by mold molding at 120 to 190°C for 30 to 600 seconds, and also exhibits good heat resistance, light resistance, and low yellowing. The condensation-type silicone molding material includes a silicone resin having an average composition formula of R 1 a Si(OR 2 ) b (OH) c O (4-abc)/2 . Since the silicone resin is limited in its structure and performance, its melting point should be controlled to 40 to 130°C, preferably 70 to 80°C. If the melting point is less than 40°C, mold molding is difficult because the silicone resin does not become a solid or becomes a sticky solid. Since the silicone resin used has a high melting point, it is difficult to mix the silicone resin uniformly with other components at the general mixing temperature (generally 100° C. or less) when mixing the molding material. In addition, in order to improve the filling property of the molding material during molding of the molding material, it is generally necessary to control the molding temperature to a high temperature of 150 to 190°C. Due to these defects, the low-temperature processability of the condensation type silicone molding material is poor, and it is difficult to mix and mold at a relatively low temperature. In addition, the prior art including the above documents does not teach how to give the condensation type silicone molding material a desirable low-temperature processability and to further improve weather resistance.

따라서 현재, 축합형 실리콘 성형재료에 적합하고 융점이 비교적 낮고 몰드 성형이 가능한 실리콘 수지의 개발이 급선무가 되고, 축합형 실리콘 성형재료의 저온 가공성 및 내후성의 개선도 시급하다.Therefore, at present, the development of silicone resins suitable for condensation-type silicone molding materials and having a relatively low melting point and capable of mold molding becomes an urgent need, and improvement of low-temperature processability and weatherability of condensation-type silicone molding materials is also urgent.

본 발명은 축합형 실리콘 성형재료에 적합하고 융점이 비교적 낮고 몰드 성형이 가능한 실리콘 수지 및 그 제조방법을 제공하는 것을 목적으로 하고 있다. 본 발명은 또한 양호한 저온 가공성 및 내후성을 갖는 축합형 실리콘 성형재료를 제공하는 것을 목적으로 하고 있다. 본 발명의 추가적인 목적은, 상기 축합형 실리콘 성형재료로 제조되는 몰드 성형체 및 그 제조방법을 제공하는 것이다. 본 발명의 추가적인 목적은 상기 축합형 실리콘 성형재료로 제조되는 LED 하우징을 제공하고, 또한 상기 LED 하우징을 구비하는 반도체 발광소자를 제공하는 것이다.It is an object of the present invention to provide a silicone resin suitable for condensation type silicone molding materials, having a relatively low melting point, and capable of mold molding, and a method for manufacturing the same. Another object of the present invention is to provide a condensed silicone molding material having good low-temperature processability and weather resistance. An additional object of the present invention is to provide a molded molded body made of the condensation type silicone molding material and a method for manufacturing the molded body. An additional object of the present invention is to provide an LED housing made of the condensation type silicone molding material, and also to provide a semiconductor light emitting device having the LED housing.

본 발명의 목적을 달성하기 위해 본 발명은 식 (1)의 평균 단위식으로 도시된 실리콘 수지로, 상기 실리콘 수지는 25℃에서 고체이고 융점이 50℃ 미만인 몰드 성형이 가능한 실리콘 수지를 제공한다.In order to achieve the object of the present invention, the present invention is a silicone resin shown in the average unit formula of formula (1), wherein the silicone resin is solid at 25°C and has a melting point of less than 50°C.

[MeSiO3/2]a[PhSiO3/2]b[R2SiO2/2]c[HO1/2]d (1)[MeSiO 3/2 ] a [PhSiO 3/2 ] b [R 2 SiO 2/2 ] c [HO 1/2 ] d (1)

(식 1 중, R은 Me 또는 Ph를 나타낸다. a, b, c, d는 몰비를 나타내며, a가 0.3 ~ 0.9, b가 0.05 ~ 0.5, c가 0.05 ~ 0.5, d가 0.001 ~ 0.3이며, 및 a + b + c = 1이라는 요건을 충족한다.)(In Formula 1, R represents Me or Ph. a, b, c, and d represent molar ratios, a is 0.3 to 0.9, b is 0.05 to 0.5, c is 0.05 to 0.5, d is 0.001 to 0.3, And a + b + c = 1.)

본 발명에 따른 실리콘 수지는 바람직하게는 a가 0.4 ~ 0.8이며, b가 0.1 ~ 0.4이며, c가 0.1 ~ 0.3이고, d는 0 0.01 ~ 0.2이며, 및 a + b + c = 1이다.The silicone resin according to the present invention preferably has a of 0.4 to 0.8, b of 0.1 to 0.4, c of 0.1 to 0.3, d of 0 0.01 to 0.2, and a + b + c = 1.

본 발명에 따른 실리콘 수지는 바람직하게는 융점이 25 ~ 40℃이다.The silicone resin according to the present invention preferably has a melting point of 25 to 40°C.

본 발명은 또한 실리콘 수지를 제조하는 방법으로서,The present invention is also a method for producing a silicone resin,

(a) 물, 산성 촉매 및 제1 유기용매를 포함하는 제1 혼합물을, 클로로실란(chlorosilane) 및 제2 유기용매를 포함하는 제2 혼합물에 첨가하여, 상기 클로로실란을 가수분해 반응시켜, 가수분해 반응물로부터 유기상(organic phase)과 수상(aqueous phase)을 분리하는 가수분해 공정과,(a) a first mixture comprising water, an acidic catalyst and a first organic solvent is added to a second mixture comprising chlorosilane and a second organic solvent to hydrolyze the chlorosilane, A hydrolysis process for separating an organic phase and an aqueous phase from a decomposition reaction product,

(b) 분리된 유기상의 pH를 7 ~ 14로 중화한 후 축합반응시키는 축합 공정을 포함하고,(b) neutralizing the pH of the separated organic phase to 7 to 14 and then condensing to condense the reaction,

상기 클로로실란이 MeSiCl3, PhSiCl3 및 R2SiCl2의 조합(여기서 R은 Me 또는 Ph를 나타냄)인, 본 발명에 따른 실리콘 수지를 제조하는 방법을 제공한다.Provided is a method for preparing a silicone resin according to the present invention, wherein the chlorosilane is a combination of MeSiCl 3 , PhSiCl 3 and R 2 SiCl 2 (where R represents Me or Ph).

본 발명은 또한, 실리콘 수지 조성물로서,The present invention is also a silicone resin composition,

(A) 제 1항 내지 제 3항 중 어느 한 항에 기재된 실리콘 수지, 또는 제 4항에 기재된 방법으로 제조된 실리콘 수지 100 중량부;(A) 100 parts by weight of the silicone resin according to any one of claims 1 to 3, or the silicone resin produced by the method according to claim 4;

(B) 규소 원자에 결합하는 수산기(hydroxyl group), 알콕시기(alkoxy group), 아실옥시기(acyloxy group), 아미드기(amide group), 케톡심기(ketoxime group) 또는 이소프로페닐옥시기(isopropenyloxy group)를 적어도 3개 갖는 가교제 1 내지 30 중량부;(B) a hydroxyl group, an alkoxy group, an acyloxy group, an amide group, a ketoxime group or an isopropenyloxy group (isopropenyloxy) that binds to a silicon atom group) 1 to 30 parts by weight of a crosslinking agent having at least three;

(C) 무기 충전제 1 ~ 800 중량부; 및(C) 1 to 800 parts by weight of an inorganic filler; And

(D) 촉매로서 유효양의 축합 촉매;(D) a condensation catalyst in an effective amount as a catalyst;

를 포함하는 몰드 성형이 가능한 실리콘 수지 조성물을 제공한다.It provides a silicone resin composition capable of mold molding comprising a.

본 발명에 따른 실리콘 수지 조성물은 상기 실리콘 수지(A) 100 중량부에 대하여 1 ~ 100 중량부의 (E)백색 안료를 추가적으로 함유한다.The silicone resin composition according to the present invention further contains 1 to 100 parts by weight of the (E) white pigment relative to 100 parts by weight of the silicone resin (A).

본 발명은 또한 본 발명에 따른 실리콘 수지, 본 발명에 따른 방법으로 제조되는 실리콘 수지 또는 본 발명에 따른 실리콘 수지 조성물을 몰드 성형하여 이루어지는 몰드 성형체를 제공한다.The present invention also provides a molded article formed by mold molding the silicone resin according to the invention, the silicone resin produced by the method according to the invention or the silicone resin composition according to the invention.

본 발명은 또한 본 발명에 따른 실리콘 수지, 본 발명에 따른 방법으로 제조되는 실리콘 수지 또는 본 발명에 따른 실리콘 수지 조성물을 몰드 성형하는 것을 포함 몰드 성형체의 제조방법을 제공한다.The present invention also provides a method of manufacturing a molded article comprising molding a silicone resin according to the invention, a silicone resin produced by the method according to the invention or a silicone resin composition according to the invention.

본 발명은 또한 본 발명에 따른 실리콘 수지 조성물을 몰드 성형하여 이루어지는 LED 하우징을 제공한다.The present invention also provides an LED housing formed by mold molding the silicone resin composition according to the present invention.

본 발명은 또한 본 발명에 따른 LED 하우징을 구비하는 반도체 발광소자를 제공한다.The present invention also provides a semiconductor light emitting device having the LED housing according to the present invention.

본 발명은, 본 발명에 따른 실리콘 수지가 25℃에서 고체이며, 융점이 50℃인 것과 같이, 실리콘 수지 중 [MeSiO3/2] 단위, [PhSiO3/2] 단위, [R2SiO2/2] 단위 및 수산기(OH)의 몰비를 특정 수치 범위 내로 제어함으로써 축합형 실리콘 성형재료에 적합하고 융점이 비교적 낮고 몰딩 가능한 실리콘 수지가 얻어진다. 또한, 본 발명은 상기 실리콘 수지를, 적어도 가교제, 무기 충전제, 축합 촉매와 혼합하여 양호한 저온 가공성 및 내후성을 갖는 축합형 실리콘 성형재료를 얻을 수 있다. 또한, 본 발명은 상기 축합형 실리콘 성형재료를 몰드 성형하여 몰드 성형체 및 LED 하우징을 제조하였다. 또한, 본 발명은 추가적으로 상기 LED 하우징을 구비하는 반도체 발광소자를 제조하였다.In the present invention, the silicone resin according to the present invention is solid at 25° C., and has a melting point of 50° C. [MeSiO 3/2 ] units, [PhSiO 3/2 ] units, [R 2 SiO 2 / 2 ] By controlling the molar ratio of units and hydroxyl groups (OH) within a specific numerical range, a silicone resin suitable for condensation type silicone molding materials, having a relatively low melting point, and being moldable is obtained. In addition, the present invention can be obtained by mixing the silicone resin with at least a crosslinking agent, an inorganic filler, and a condensation catalyst to obtain a condensed silicone molding material having good low-temperature processability and weather resistance. In addition, the present invention mold-molded the condensation-type silicone molding material to produce a molded body and an LED housing. In addition, the present invention additionally manufactured a semiconductor light emitting device having the LED housing.

[도 1] 도 1은 본 발명에 따른 반도체 발광소자를 나타낸 도면이다.1 is a view showing a semiconductor light emitting device according to the present invention.

본 발명에 기재된 "LED 하우징"은, "LED 케이스", "LED 반사품", "LED 반사체", "LED 브라켓"이라고 불리는, 이러한 용어는 본 발명에 있어서 동일한 의미를 가진다.The terms "LED housing" described in the present invention, referred to as "LED case", "LED reflector", "LED reflector" and "LED bracket", have the same meaning in the present invention.

본 발명에서 말하는 "실온"는 별도의 언급이 없는 한 25℃를 말한다.In the present invention, "room temperature" refers to 25°C unless otherwise specified.

본 발명에서 말하는 "촉매로서 유효양"은 당업계에 알려진 통상의 의미를 가지며, 축합반응의 원활한 진행을 효과적으로 촉매할 수 있는 촉매의 배합량을 가리킨다.The "effective amount as a catalyst" referred to in the present invention has a conventional meaning known in the art, and refers to a compounding amount of a catalyst capable of effectively catalyzing the smooth progression of the condensation reaction.

본 발명에서 말하는 "실리콘 수지"는 별도로 명시하지 않는 한, "몰드 성형이 가능한 실리콘 수지"와 동일한 의미이다.The term "silicone resin" as used in the present invention has the same meaning as "silicone resin that can be molded" unless otherwise specified.

본 발명에서 말하는 "실리콘 수지 조성물"은 별도로 명시하지 않는 한, "몰드 성형이 가능한 실리콘 수지 조성물", "축합형 실리콘 성형재료"와 동일한 의미이다.The term "silicone resin composition" as used in the present invention has the same meanings as "silicone resin composition capable of mold molding" and "condensation type silicone molding material" unless otherwise specified.

본 발명에서 말하는 "Ph"는 페닐기를 나타내고, "Me"는 메틸기를 나타낸다.In the present invention, "Ph" represents a phenyl group, and "Me" represents a methyl group.

이하, 구체적인 실시예에 의해 본 발명을 상세히 설명한다. 그러나, 본 발명에 따른 범위는 이러한 구체적인 실시예에 한정되는 것은 아니다.Hereinafter, the present invention will be described in detail by specific examples. However, the scope according to the present invention is not limited to these specific embodiments.

<실리콘 수지><silicone resin>

본 발명에 따른 실리콘 수지는, 식 (1)의 평균 단위식으로 도시되며 상기 실리콘 수지는 25℃에서 고체이고 융점이 50℃ 미만이다.The silicone resin according to the present invention is shown in the average unit formula of formula (1) and the silicone resin is solid at 25°C and has a melting point of less than 50°C.

[MeSiO3/2]a[PhSiO3/2]b[R2SiO2/2]c[HO1/2]d (1)[MeSiO 3/2 ] a [PhSiO 3/2 ] b [R 2 SiO 2/2 ] c [HO 1/2 ] d (1)

(식 1에서, R은 Me 또는 Ph를 나타내고, a, b, c, d는 몰비를 나타내며, a는 0.3 ~ 0.9, b는 0.05 ~ 0.5, c는 0.05 ~ 0.5, d는 0.001 ~ 0.3이며, a + b + c = 1이라는 요건을 충족한다.)(In Formula 1, R represents Me or Ph, a, b, c, d represents a molar ratio, a is 0.3 to 0.9, b is 0.05 to 0.5, c is 0.05 to 0.5, d is 0.001 to 0.3, a + b + c = 1.

식 1에서, a는 바람직하게는 0.4 ~ 0.8이며, b는 바람직하게는 0.1 ~ 0.4이며, c는 바람직하게는 0.1 ~ 0.3이며, d는 바람직하게는 0.01 ~ 0.2이며, 및 a + b + c = 1이다.In formula 1, a is preferably 0.4 to 0.8, b is preferably 0.1 to 0.4, c is preferably 0.1 to 0.3, d is preferably 0.01 to 0.2, and a + b + c = 1.

바람직하게는, 본 발명에 따른 실리콘 수지는 융점이 25 ~ 40℃이다.Preferably, the silicone resin according to the present invention has a melting point of 25 to 40°C.

본 발명자는 실리콘 수지는 25℃에서 고체이며 융점이 50℃ 미만인 것과 같이, 실리콘 수지 중 [MeSiO3/2] 단위, [PhSiO3/2] 단위, [R2SiO2/2] 단위 및 수산기(OH)의 몰비를 특정 수치 범위 내로 제어함으로써 축합형 실리콘 성형재료에 적합하고 융점이 비교적 낮고 몰딩 가능한 실리콘 수지를 얻을 수 있는 것을 발견하였다.The present inventor is that the silicone resin is solid at 25°C and has a melting point of less than 50°C. [MeSiO 3/2 ] units, [PhSiO 3/2 ] units, [R 2 SiO 2/2 ] units and hydroxyl groups ( It has been found that by controlling the molar ratio of OH) within a specific numerical range, it is possible to obtain a silicone resin suitable for condensation type silicone molding materials and having a relatively low melting point and being moldable.

상온에서의 표면 점착성(stickiness)으로 몰드 성형성을 평가하는 경우, 본 발명에 따른 실리콘 수지는 상온에서의 표면 점착성이 모두 3.0 gf 미만이며, 보다 바람직하게는 2.0 gf 미만이며, 가장 바람직하게는 1.5 gf이다. 본 발명에 기재된 실리콘 수지는 상온에서의 표면 점착성이 3.0 gf 미만이기 때문에 상온에서 표면에 끈적거림이 없고, 축합형 실리콘 성형재료의 몰드 성형에 적합하다. 상기 상온에서의 표면 점착성 평가 방법은 본 발명의 실시예에서 상세히 설명하기 위해 여기에서는 상세한 설명을 생략한다.When evaluating mold moldability by stickiness at room temperature, the silicone resin according to the present invention has a surface adhesiveness at room temperature of less than 3.0 gf, more preferably less than 2.0 gf, most preferably 1.5. gf. Since the silicone resin described in the present invention has a surface tack at room temperature of less than 3.0 gf, there is no stickiness on the surface at room temperature, and is suitable for mold molding of condensed silicone molding materials. The method for evaluating the surface tack at room temperature is omitted herein in order to be described in detail in the Examples of the present invention.

또한, 본 발명은 실리콘 수지 중 [MeSiO3/2] 단위, [PhSiO3/2] 단위, [R2SiO2/2] 단위 및 수산기(OH)의 몰비를 특정 수치 범위 내로 제어하여 본 발명에 기재된 실리콘 수지를 적어도 가교제, 무기 충전제, 축합 촉매와 혼합할 때 양호한 저온 가공성 및 내후성을 갖는 축합형 실리콘 성형재료를 얻을 수 있는 것으로 나타났다.In addition, the present invention is the present invention by controlling the molar ratio of [MeSiO 3/2 ] units, [PhSiO 3/2 ] units, [R 2 SiO 2/2 ] units and hydroxyl groups (OH) in the silicone resin within a specific numerical range. It has been found that condensation-type silicone molding materials having good low-temperature processability and weather resistance when mixing the described silicone resin with at least a crosslinking agent, an inorganic filler, and a condensation catalyst can be obtained.

<실리콘 수지의 제조방법><Method of manufacturing silicone resin>

본 발명에 따른 실리콘 수지의 제조방법은Method of manufacturing a silicone resin according to the present invention

(a) 물, 산성 촉매 및 제1 유기용매를 포함하는 제1 혼합물을, 클로로실란 및 제2 유기용매를 포함하는 제2 혼합물에 첨가하여, 상기 클로로실란을 가수분해 반응시켜, 가수분해 반응물로부터 유기상과 수상을 분리하는 가수분해 공정과,(a) A first mixture comprising water, an acidic catalyst and a first organic solvent is added to a second mixture comprising chlorosilane and a second organic solvent to hydrolyze the chlorosilane, thereby A hydrolysis process for separating the organic phase from the aqueous phase,

(b) 분리된 유기상의 pH를 7 ~ 14로 중화한 후 축합반응시키는 축합 공정을 포함하고,(b) neutralizing the pH of the separated organic phase to 7 to 14 and then condensing to condense the reaction,

상기 클로로실란이 MeSiCl3, PhSiCl3 및 R2SiCl2의 조합(여기서 R은 Me 또는 Ph를 나타냄)이다.The chlorosilane is a combination of MeSiCl 3 , PhSiCl 3 and R 2 SiCl 2 (where R represents Me or Ph).

상기 가수분해 공정 (a)에 있어서, 상기 물은 탈이온수인 것이 바람직하다.In the hydrolysis step (a), it is preferable that the water is deionized water.

상기 가수분해 공정 (a)에 있어서, 상기 산성 촉매의 종류로는 특별히 한정되지 않는다. 그 구체적인 예로는, 황산, 염산, 질산, 인산, 붕산 등의 무기산; 포름산, 아세트산, 프로피온산, 옥살산, 말레산, 메탄술폰산(methanesulfonic acid), 캄포술폰산(camphorsulfonic acid), 벤젠술폰산, p-톨루엔술폰산, 트리플루오로프로피온산(trifluoropropionic acid), 트리플루오로메탄술폰산 등의 유기산; 산성 백토(acid clay), 술폰화 이온교환수지 등의 고체산; 또는 이들의 혼합물을 들 수 있으나, 이에 한정되지 않는다.In the hydrolysis step (a), the type of the acidic catalyst is not particularly limited. Specific examples thereof include inorganic acids such as sulfuric acid, hydrochloric acid, nitric acid, phosphoric acid and boric acid; Organic acids such as formic acid, acetic acid, propionic acid, oxalic acid, maleic acid, methanesulfonic acid, camphorsulfonic acid, benzenesulfonic acid, p-toluenesulfonic acid, trifluoropropionic acid, and trifluoromethanesulfonic acid ; Solid acids such as acid clay and sulfonated ion exchange resins; Or mixtures thereof, but are not limited thereto.

상기 가수분해 공정 (a)에 있어서, 상기 제1 유기용매 및 상기 제2 유기용매는 동일할 수도 상이할 수도 있고, 각각 독립적으로, 벤젠, 톨루엔, 크실렌, 석유 에테르(petroleum ether) 또는 이들의 혼합물에서 선택된다.In the hydrolysis step (a), the first organic solvent and the second organic solvent may be the same or different, and each independently, benzene, toluene, xylene, petroleum ether, or mixtures thereof Is selected from.

상기 가수분해 공정 (a)에 있어서, 상기 R2SiCl2는 Me2SiCl2, Ph2SiCl2, MePhSiCl2 또는 이들의 임의의 조합일 수 있다. 바람직하게는, 상기 R2SiCl2는 Me2SiCl2이다.In the hydrolysis step (a), the R 2 SiCl 2 may be Me 2 SiCl 2 , Ph 2 SiCl 2 , MePhSiCl 2 or any combination thereof. Preferably, the R 2 SiCl 2 is Me 2 SiCl 2 .

상기 가수분해 공정 (a)에 있어서, 물, MeSiCl3, PhSiCl3 및 R2SiCl2의 사용량으로는, 본 발명에 따른 실리콘 수지 중 a, b, c, d는 a가 0.3 ~ 0.9, b가 0.05 ~ 0.5, c가 0.05 ~ 0.5, d가 0.001 ~ 0.3이며, a + b + c = 1이라는 요건을 충족시키는 양인 것이 바람직하다.In the hydrolysis step (a), the amount of water, MeSiCl 3 , PhSiCl 3 and R 2 SiCl 2 is a, b, c, d in the silicone resin according to the present invention where a is 0.3 to 0.9, b is It is preferable that 0.05 to 0.5, c is 0.05 to 0.5, d is 0.001 to 0.3, and it is an amount that satisfies the requirements of a + b + c = 1.

상기 가수분해 공정 (a)에 있어서, 상기 가수분해 반응의 반응 온도가 0 ~ 120℃일 수 있고, 바람직하게는 50 ~ 100℃이고, 상기 가수분해 반응의 반응 시간이 0.5 ~ 24시간일 수 있고, 바람직하게는 1 ~ 12시간이다.In the hydrolysis step (a), the reaction temperature of the hydrolysis reaction may be 0 to 120°C, preferably 50 to 100°C, and the reaction time of the hydrolysis reaction may be 0.5 to 24 hours, , Preferably 1 to 12 hours.

상기 축합 공정 (b)에 있어서, 상기 중화는 중화제를 첨가하여 수행하는 것이 바람직하다. 본 발명에 사용되는 중화제로서는 특별히 한정되지 않는다. 그 구체적인 예로는, 수산화 리튬, 수산화 나트륨, 수산화 칼륨 등의 알칼리 금속의 수산화물, 수산화 테트라메틸암모늄(tetramethylammonium hydroxide), 수산화 테트라부틸암모늄 등의 제4급 암모늄 수산화물; 수산화 테트라메틸포스포늄(tetrabutylphosphonium Hydroxide), 수산화 테트라부틸포스포늄 등의 제4급 포스포늄의 수산화물; 또는 이들의 혼합물을 들 수 있으나, 이에 한정되지 않는다.In the condensation step (b), the neutralization is preferably performed by adding a neutralizing agent. The neutralizing agent used in the present invention is not particularly limited. Specific examples include alkali metal hydroxides such as lithium hydroxide, sodium hydroxide and potassium hydroxide, quaternary ammonium hydroxides such as tetramethylammonium hydroxide and tetrabutylammonium hydroxide; Hydroxides of quaternary phosphoniums such as tetrabutylphosphonium hydroxide and tetrabutylphosphonium hydroxide; Or mixtures thereof, but are not limited thereto.

상기 축합 공정 (b)에 있어서, 상기 축합반응의 반응 온도가 0 ~ 120일 수 있고, 바람직하게는 50 ~ 100℃이고, 상기 축합반응의 반응 시간이 0.5 ~ 24시간일 수 있으며, 바람직하게는 1 ~ 12시간이다.In the condensation step (b), the reaction temperature of the condensation reaction may be 0 to 120, preferably 50 to 100°C, and the reaction time of the condensation reaction may be 0.5 to 24 hours, preferably 1 to 12 hours.

본 발명에 따른 실리콘 수지의 제조방법에 있어서, 상기 가수분해 공정 (a) 및/또는 축합 공정 (b)는 환류 공정을 추가적으로 포함하는 것이 바람직하다.In the method for producing a silicone resin according to the present invention, it is preferable that the hydrolysis step (a) and/or the condensation step (b) further include a reflux process.

본 발명에 따른 실리콘 수지의 제조방법에 있어서, 상기 축합 공정 (b) 후에, 유기용매를 제거하는 공정을 추가적으로 포함하는 것이 바람직하다.In the method for producing a silicone resin according to the present invention, it is preferable to further include a step of removing the organic solvent after the condensation step (b).

<실리콘 수지 조성물><Silicone resin composition>

본 발명에 기재된 실리콘 수지 조성물은The silicone resin composition described in the present invention

(A) 본 발명에 따른 실리콘 수지 100 중량부,(A) 100 parts by weight of the silicone resin according to the present invention,

(B) 규소 원자에 결합하는 수산기, 알콕시기, 아실옥시기, 아미드기, 케톡심기 또는 이소프로페닐옥시기를 적어도 3개 갖는 가교제 1 내지 30 중량부,(B) 1 to 30 parts by weight of a crosslinking agent having at least three hydroxyl groups, an alkoxy group, an acyloxy group, an amide group, a ketoxime group, or an isopropenyloxy group bonded to a silicon atom,

(C) 무기 충전제 1 ~ 800 중량부,(C) 1 to 800 parts by weight of an inorganic filler,

(D) 촉매로서 유효양의 축합 촉매를 포함한다.(D) As a catalyst, an effective amount of a condensation catalyst is included.

본 발명은 본 발명에 따른 실리콘 수지를, 적어도 가교제, 무기 충전제, 축합 촉매와 혼합하여 양호한 저온 가공성 및 내후성을 갖는 축합형 실리콘 성형재료를 얻을 수 있는 것을 발견했다. 상기 저온 가공성 및 내후성의 평가는 본 발명의 실시예에서 설명하기 위해 여기에서 상세한 설명을 생략한다.The present invention has found that the silicone resin according to the present invention can be mixed with at least a crosslinking agent, an inorganic filler, and a condensation catalyst to obtain a condensed silicone molding material having good low-temperature processability and weather resistance. The evaluation of the low-temperature processability and weatherability is omitted here for the sake of explanation in the Examples of the present invention.

<가교제><Crosslinking system>

본 발명에 따른 실리콘 수지 조성물은 규소 원자에 결합하는 수산기, 알콕시기, 아실옥시기, 아미드기, 케톡심기 또는 이소프로페닐옥시기를 적어도 3개 갖는 가교제 (B)를 포함한다. 본 발명에 있어서, 상기 가교제 (B)는 본 발명에 따른 실리콘 수지 조성물의 경화물의 탄성률을 높이는 기능을 갖는다.The silicone resin composition according to the present invention comprises a crosslinking agent (B) having at least three hydroxyl groups, alkoxy groups, acyloxy groups, amide groups, ketoxime groups or isopropenyloxy groups that are bonded to silicon atoms. In the present invention, the crosslinking agent (B) has a function of increasing the elastic modulus of the cured product of the silicone resin composition according to the present invention.

본 발명에 사용되는 가교제 (B)의 구체적인 예로는Specific examples of the crosslinking agent (B) used in the present invention

메틸 트리히드록시실란(methyltrihydroxysilane), 에틸 트리히드록시실란, 프로필 트리히드록시실란, 비닐 트리히드록시실란, 페닐 트리히드록시실란 또는 테트라 히드록시실란 등의 히드록시실란(hydroxysilane);Hydroxysilanes such as methyl trihydroxysilane, ethyl trihydroxysilane, propyl trihydroxysilane, vinyl trihydroxysilane, phenyl trihydroxysilane, or tetra hydroxysilane;

메틸 트리메톡시실란(methyltrimethoxysilane), 메틸 트리에톡시실란, 메틸 트리프로폭시실란, 에틸 트리메톡시실란, 에틸 트리에톡시실란, 에틸 트리프로폭시실란, 프로필 트리메톡시실란, 프로필 트리에톡시실란, 프로필 트리메톡시실란, 페닐 트리메톡시실란, 페닐 트리에톡시실란, 페닐 트리프로폭시실란, 비닐 트리메톡시실란, 비닐 트리에톡시실란, 비닐 트리프로폭시실란, 테트라 메톡시실란, 테트라 에톡시실란 또는 테트라 프로폭시실란 등의 알콕시실란(alkoxysilane);Methyl trimethoxysilane, methyl triethoxysilane, methyl tripropoxysilane, ethyl trimethoxysilane, ethyl triethoxysilane, ethyl tripropoxysilane, propyl trimethoxysilane, propyl triethoxysilane , Propyl trimethoxysilane, phenyl trimethoxysilane, phenyl triethoxysilane, phenyl tripropoxysilane, vinyl trimethoxysilane, vinyl triethoxysilane, vinyl tripropoxysilane, tetramethoxysilane, tetraether Alkoxysilanes such as oxysilane or tetra propoxysilane;

메틸 트리아세톡시실란(methyltriacetoxysilane), 에틸 트리아세톡시실란, 프로필 트리아세톡시실란, 비닐 트리아세톡시실란, 페닐 트리아세톡시실란 또는 테트라 아세톡시실란 등의 아실옥시실란(acyloxysilane);Acyloxysilanes such as methyl triacetoxysilane, ethyl triacetoxysilane, propyl triacetoxysilane, vinyl triacetoxysilane, phenyl triacetoxysilane or tetra acetoxysilane;

메틸트리스(디메틸 케톡심)실란[Methyltris(dimethyl ketooxime)silane], 에틸트리스(디메틸 케톡심)실란, 프로필 트리스(디메틸 케톡심)실란, 비닐트리스(디메틸 케톡심)실란, 페닐트리스(디메틸 케톡심)실란, 메틸트리스(메틸에틸 케톡심)실란, 에틸트리스(메틸에틸 케톡심)실란, 프로필트리스(메틸에틸 케톡심)실란, 비닐트리스(메틸에틸 케톡심)실란, 페닐트리스(메틸에틸 케톡심)실란, 테트라 프로필케톡심실란 또는 테트라 부틸케톡심실란 등의 케톡심실란(ketoximesilane);Methyltris(dimethyl ketooxime)silane, ethyltris(dimethyl ketoxime)silane, propyl tris(dimethyl ketoxime)silane, vinyltris(dimethyl ketoxime)silane, phenyltris(dimethyl ketoxime) )Silane, methyltris(methylethyl ketoxime)silane, ethyltris(methylethyl ketoxime)silane, propyltris(methylethyl ketoxime)silane, vinyltris(methylethyl ketoxime)silane, phenyltris(methylethyl ketoxime) Ketoximesilane, such as silane, tetra propyl ketoxime silane, or tetra butyl ketoxime silane;

메틸 트리이소프로폭시실란(methyltriisopropoxysilane), 에틸 트리이소프로폭시실란, 프로필 트리이소프로폭시실란, 비닐 트리이소프로폭시실란, 페닐 트리이소프로폭시실란 또는 테트라 이소프로폭시실란 등의 이소프로페닐옥시실란(isopropenyloxysilane)을 들 수 있으나, 이에 한정되지 않는다.Isopropenyloxysilanes such as methyl triisopropoxysilane, ethyl triisopropoxysilane, propyl triisopropoxysilane, vinyl triisopropoxysilane, phenyl triisopropoxysilane, or tetra isopropoxysilane (isopropenyloxysilane), but is not limited thereto.

본 발명에 따른 실리콘 수지 조성물에 있어서, 상기 실리콘 수지 (A) 100 중량부에 대하여, 상기 가교제 (B)의 사용량은 1 ~ 30 중량부일 수 있고, 바람직하게는 5 내지 20 중량부이다.In the silicone resin composition according to the present invention, with respect to 100 parts by weight of the silicone resin (A), the amount of the crosslinking agent (B) used may be 1 to 30 parts by weight, preferably 5 to 20 parts by weight.

<무기 충전제><Inorganic filler>

본 발명에 따른 실리콘 수지 조성물은 무기 충전제 (C)를 포함한다. 본 발명에 있어서, 상기 무기 충전제 (C)는 본 발명에 따른 실리콘 수지 조성물의 경화물의 팽윤율을 저하시켜 그 기계적 강도를 향상시키는 기능을 갖는다.The silicone resin composition according to the present invention comprises an inorganic filler (C). In the present invention, the inorganic filler (C) has a function of improving the mechanical strength of the swelling rate of the cured product of the silicone resin composition according to the present invention.

본 발명에 이용되는 무기 충전제의 종류로는 특별히 한정되지 않는다. 그 구체적인 예로는 구형의 실리카, 알루미나(alumina), 유리 섬유, 유리 구슬(glass bead), 산화 티탄(titanium oxide), 산화 아연, 리토폰(lithopone)을 들 수 있으나, 이에 한정되지 않는다.It does not specifically limit as a kind of inorganic filler used for this invention. Specific examples include, but are not limited to, spherical silica, alumina, glass fibers, glass beads, titanium oxide, zinc oxide, and litopone.

본 발명에 따른 실리콘 수지 조성물에 있어서, 상기 실리콘 수지 (A) 100 중량부에 대하여, 상기 무기 충전제 (C)의 사용량은 1 ~ 800 중량부일 수 있고, 바람직하게는 1 ~ 600 중량부이다.In the silicone resin composition according to the present invention, with respect to 100 parts by weight of the silicone resin (A), the amount of the inorganic filler (C) may be 1 to 800 parts by weight, and preferably 1 to 600 parts by weight.

<축합 촉매><Condensation catalyst>

본 발명에 따른 실리콘 수지 조성물은 축합 촉매 (D)를 포함한다. 본 발명에 있어서, 상기 축합 촉매 (D)는 상기 실리콘 수지 분자 내에서, 실리콘 수지 분자끼리, 및 실리콘 수지 분자와 가교제 분자 사이의 축합반응이 원활하게 진행되도록 촉매하는 기능을 갖는다.The silicone resin composition according to the present invention comprises a condensation catalyst (D). In the present invention, the condensation catalyst (D) has a function of catalyzing within the silicone resin molecule, between the silicone resin molecules, and the condensation reaction between the silicone resin molecule and the crosslinker molecule to proceed smoothly.

본 발명에 사용되는 축합 촉매 (D)의 종류로는 특별히 한정되지 않는다. 그 구체적인 예로는The type of condensation catalyst (D) used in the present invention is not particularly limited. A concrete example

수산화 리튬, 수산화 나트륨, 수산화 칼륨, 수산화 마그네슘, 탄산나트륨, 탄산 칼륨, 탄산 세슘, 탄산 수소 나트륨, 나트륨 메톡시드(sodium methoxide), 포름산 나트륨, 포름산 칼륨, 아세트산 나트륨, 아세트산 칼륨, 프로피온산 나트륨, 프로피온산 칼륨, 수산화 트리메틸 벤질 암모늄, 수산화 테트라 메틸 암모늄, n-헥실아민, 디에틸아민, 트리에틸아민, 트리부틸아민, 이미다졸, 피리딘, 트라이페닐포스핀(triphenylphosphine), 디아자비시클로운데센(1,8-Diazabicyclo[5.4.0]undec-7-ene) 또는 디시안디아미드(dicyandiamide) 등의 염기성 화합물;Lithium hydroxide, sodium hydroxide, potassium hydroxide, magnesium hydroxide, sodium carbonate, potassium carbonate, cesium carbonate, sodium hydrogen carbonate, sodium methoxide, sodium formate, potassium formate, sodium acetate, potassium acetate, sodium propionate, potassium propionate, Trimethyl benzyl ammonium hydroxide, tetra methyl ammonium hydroxide, n-hexylamine, diethylamine, triethylamine, tributylamine, imidazole, pyridine, triphenylphosphine, diazabicycloundecene (1,8- Basic compounds such as Diazabicyclo[5.4.0]undec-7-ene) or dicyandiamide;

테트라이소프로필 티타네이트(tetraisopropyl titanate), 테트라부틸 티타네이트, 티타늄 아세틸아세토네이트(titanium acetylacetonate), 디이소프로폭시비스(에틸 아세토아세테이트)티타늄[diisopropoxy-bisethylacetoacetatotitanate], 트리이소부톡시 알루미늄(triisobutoxy aluminum), 트리이소프로폭시알루미늄, 알루미늄 트리 아세틸아세토네이트, 알루미늄 비스 에틸 아세토아세테이트·모노 아세틸아세토네이트(aluminum bis ethylacetoacetate·mono acetylacetonate), 지르코늄 테트라 아세틸아세토네이트(zirconium(IV) acetylacetonate), 테트라 부티르산 지르코늄, 나프텐산 코발트(cobalt naphthenate), 옥탄산 코발트, 코발트 아세틸아세토네이트, 철 아세틸아세토네이트, 주석 아세틸아세토네이트, 디메틸 히드록시 주석 올레이트(dimethyl hydroxy tin olate), 디옥틸 주석 말레이트(dioctyltin maleate), 디-n-부틸 주석 디말레이트, 디부틸 주석 디말레이트, 디부틸 주석 디옥테이트(dibutyl tin dioctoate), 디부틸 주석 디라우레이트(dibutyl tin dilaurate), 초산 제1주석, 옥탄산 제1주석, 옥 틸산 아연, p-tert-부틸 벤조산 아연, 라우르산 아연(zinc laurate), 스테아린산 아연(zinc stearate) 또는 나프텐산 납(lead naphthenate) 등의 유기 금속 화합물을 들 수 있으나, 이에 한정되지 않는다.Tetraisopropyl titanate, tetrabutyl titanate, titanium acetylacetonate, diisopropoxybis(ethyl acetoacetate) titanium [diisopropoxy-bisethylacetoacetatotitanate], triisobutoxy aluminum, Triisopropaluminum aluminum, aluminum tri acetylacetonate, aluminum bis ethyl acetoacetate, mono acetylacetonate, zirconium tetra acetylacetonate, zirconium (IV) acetylacetonate, tetrabutyrate zirconate Cobalt (cobalt naphthenate), cobalt octanoate, cobalt acetylacetonate, iron acetylacetonate, tin acetylacetonate, dimethyl hydroxy tin olate, dioctyltin maleate, di- n-butyl tin dimalate, dibutyl tin dimaleate, dibutyl tin dioctoate, dibutyl tin dilaurate, stannous acetate, stannous octanoate, zinc octylate , p-tert-butyl zinc benzoate, zinc laurate, zinc stearate or lead naphthenate, and the like, but are not limited thereto.

본 발명에 따른 실리콘 수지 조성물에 있어서, 상기 실리콘 수지 (A) 100 중량부에 대하여, 상기 축합 촉매 (D)의 사용량은 0.005 ~ 10 중량부, 바람직하게는 0.001 ~ 5 중량부이다.In the silicone resin composition according to the present invention, with respect to 100 parts by weight of the silicone resin (A), the amount of the condensation catalyst (D) used is 0.005 to 10 parts by weight, preferably 0.001 to 5 parts by weight.

<백색 안료><White pigment>

본 발명에 따른 실리콘 수지 조성물은, 백색 안료 (E)를 추가적으로 함유하는 것이 바람직하다. 본 발명에 있어서, 백색 안료 (E)는 본 발명에 따른 실리콘 수지 조성물의 경화물의 백색도를 향상시켜 반도체 발광소자의 하우징 재료의 높은 반사율에 대한 특성 요구를 충족시킬 수 있는 기능을 가진다.It is preferable that the silicone resin composition which concerns on this invention contains a white pigment (E) further. In the present invention, the white pigment (E) has a function of improving the whiteness of the cured product of the silicone resin composition according to the present invention to satisfy the property demand for high reflectivity of the housing material of the semiconductor light emitting device.

본 발명에 사용되는 백색 안료의 종류로는 특별히 한정되지 않는다. 그 구체적인 예로는 이산화 티타늄, 알루미나, 지르코니아(zirconia), 황화 아연, 산화 아연, 산화 마그네슘, 산화 칼슘, 황산 바륨 또는 그 조합을 들 수 있으나, 이에 한정되지 않는다. 높은 굴절률을 얻는 관점에서, 상기 백색 안료는 이산화 티타늄인 것이 바람직하다. 상기 이산화 티타늄은 루틸형(rutile type), 아나타제형(anatase type), 부룻카이토형(brookite type) 중 1종일 수 있다. 높은 굴절률을 얻는 관점에서, 상기 이산화 티타늄은 루틸형인 것이 바람직하다.It does not specifically limit as a kind of white pigment used for this invention. Specific examples thereof include titanium dioxide, alumina, zirconia, zinc sulfide, zinc oxide, magnesium oxide, calcium oxide, barium sulfate, or a combination thereof, but are not limited thereto. From the viewpoint of obtaining a high refractive index, it is preferable that the white pigment is titanium dioxide. The titanium dioxide may be one of a rutile type, an anatase type, and a brookite type. From the viewpoint of obtaining a high refractive index, the titanium dioxide is preferably rutile.

본 발명에 따른 실리콘 수지 조성물에 있어서, 상기 실리콘 수지 (A) 100 중량부에 대하여, 상기 백색 안료 (E)의 사용량은 1 ~ 100 중량부, 바람직하게는 1 ~ 60 중량부이다.In the silicone resin composition according to the present invention, based on 100 parts by weight of the silicone resin (A), the amount of the white pigment (E) used is 1 to 100 parts by weight, preferably 1 to 60 parts by weight.

<기타 첨가제><Other additives>

본 발명의 목적을 벗어나지 않고 다른 요구 특성을 충족시키기 위해 본 발명에 따른 실리콘 수지 조성물은 또한 다른 첨가제를 함유할 수 있다. 본 발명에 사용되는 다른 첨가제로는, 스테아린산, 스테아린산염, 실리콘 오일, 왁스류 등의 이형제(mold releasing agent); KH-550, KH-560, KH-570 등의 커플링제를 들 수 있지만 이에 한정되지 않는다. 본 발명에 있어서, 상기 다른 첨가제의 사용량은 특별히 한정되지 않지만, 당업계의 일반적인 양일 수 있다.The silicone resin composition according to the present invention may also contain other additives in order to satisfy other required characteristics without departing from the object of the present invention. Other additives used in the present invention include mold releasing agents such as stearic acid, stearate, silicone oil, and waxes; And coupling agents such as KH-550, KH-560, and KH-570, but are not limited thereto. In the present invention, the amount of the other additive is not particularly limited, but may be a general amount in the art.

<실리콘 수지 조성물의 제조방법><Method for manufacturing silicone resin composition>

본 발명에 따른 실리콘 수지 조성물의 제조방법은 특별히 한정되지 않지만, 당업계에 공지된 방법을 사용할 수 있다.The method for producing the silicone resin composition according to the present invention is not particularly limited, and methods known in the art can be used.

일반적으로, 본 발명에 따른 실리콘 수지 조성물의 제조방법은,In general, the method of manufacturing a silicone resin composition according to the present invention,

(a) 적어도 상기 실리콘 수지 (A), 가교제 (B), 무기 충전제 (C), 및 축합 촉매 (D)를 포함하는 성분을 균일하게 혼합한 후, 용융혼련 장치를 이용하여 용융혼련 처리하고, 용융혼련물을 형성하는 용융혼련 공정과,(a) After at least uniformly mixing the components containing the silicone resin (A), the crosslinking agent (B), the inorganic filler (C), and the condensation catalyst (D), the mixture is melt-kneaded using a melt-kneading apparatus, A melt-kneading process to form a melt-kneaded product,

(b) 얻어진 용융혼련물을 냉각 경화시켜 그 경화물을 분쇄하여 입자로 만드는 조립(granulation) 공정을 포함한다.(b) a granulation process in which the obtained melt-kneaded product is cooled and hardened to pulverize the cured product into particles.

상기 용융혼련 공정 (a)에 있어서, 해당 성분은 또한 백색 안료 (E)를 포함하는 것이 바람직하다. 필요에 따라, 상기 성분은 또 다른 첨가제를 포함한다.In the melt-kneading step (a), it is preferable that the component also contains a white pigment (E). If necessary, the component contains another additive.

상기 용융혼련 공정 (a)에 있어서, 상기 용융혼련 장치로는 특별히 한정되지 않지만, 열 롤(heated roll), 니더(kneader) 또는 압출기를 들 수 있으나, 이에 한정되는 것은 아니다.In the melt-kneading step (a), the melt-kneading device is not particularly limited, but may include a heat roll, a kneader, or an extruder, but is not limited thereto.

상기 용융혼련 공정 (a)에 있어서, 상기 용융혼련 처리 온도로는 특별히 한정되지 않지만, 20 ~ 100℃일 수 있고, 바람직하게는 25 ~ 60℃이다.In the melt-kneading step (a), the melt-kneading treatment temperature is not particularly limited, but may be 20 to 100°C, and preferably 25 to 60°C.

본 발명자는 축합형 실리콘 성형재료에 적합하고 융점이 비교적 낮고 몰드 성형이 가능한 본 발명에 따른 실리콘 수지를 이용하는 것으로, 본 발명에 따른 실리콘 수지 조성물은 비교적 저온 하에서도 각 성분의 용융혼련을 실현할 수 있고 또한 혼합이 비교적 균일하며, 이로 인해 양호한 저온 가공성을 나타내는 것을 발견하였다.The present inventor uses the silicone resin according to the present invention which is suitable for condensation type silicone molding materials, has a relatively low melting point, and can be molded. The silicone resin composition according to the present invention can realize melt kneading of each component even at relatively low temperatures. It has also been found that mixing is relatively uniform, and thereby exhibits good low-temperature processability.

<몰드 성형체 및 그 제조방법><Mold molded body and manufacturing method thereof>

본 발명에 따른 몰드 성형체는 본 발명에 따른 실리콘 수지 조성물을 몰드 성형하여 이루어지는 것이다.The molded article according to the present invention is formed by mold molding the silicone resin composition according to the present invention.

본 발명에 따른 몰드 성형체의 제조방법은 본 발명에 따른 실리콘 수지 조성물을 몰드 성형하는 것을 포함한다.The method for manufacturing a molded article according to the present invention includes molding a silicone resin composition according to the present invention.

본 발명에 있어서, 상기 몰드 성형은 트랜스퍼 성형(transfer molding), 몰드 프레스 성형, 사출 성형 또는 압출 성형인 것이 바람직하고, 트랜스퍼 성형인 것이 보다 바람직하다.In the present invention, the mold molding is preferably transfer molding, mold press molding, injection molding or extrusion molding, and more preferably transfer molding.

본 발명에 있어서, 상기 몰드 성형의 성형 온도는 바람직하게는 20 ~ 150℃이며, 보다 바람직하게는 50 ~ 130℃, 가장 바람직하게는 50 ~ 120℃이다. 상기 몰드 성형의 성형 시간은 바람직하게는 20 ~ 600초이며, 보다 바람직하게는 25 ~ 400초이며, 가장 바람직하게는 30 ~ 300초이다.In the present invention, the molding temperature of the mold molding is preferably 20 ~ 150 ℃, more preferably 50 ~ 130 ℃, most preferably 50 ~ 120 ℃. The molding time of the mold molding is preferably 20 to 600 seconds, more preferably 25 to 400 seconds, and most preferably 30 to 300 seconds.

본 발명에 따른 몰드 성형체는 필요에 따라 애프터 큐어(aftercure) 처리를 수행할 수 있다. 상기 애프터 큐어 처리 온도는 특별히 한정되지 않지만, 50 ~ 300℃일 수 있고, 바람직하게는 100 ~ 250℃이다. 상기 애프터 큐어 처리 시간은 특별히 한정되지 않지만, 1분 ~ 5시간 이어도 좋고, 바람직하게는 10분 ~ 2시간이다.The molded article according to the present invention may perform an aftercure treatment if necessary. The after-cure treatment temperature is not particularly limited, but may be 50 to 300°C, preferably 100 to 250°C. The after-cure treatment time is not particularly limited, but may be from 1 minute to 5 hours, and preferably from 10 minutes to 2 hours.

본 발명자는 축합형 실리콘 성형재료에 적합하고 융점이 비교적 낮고 몰드 성형이 가능한 본 발명의 실리콘 수지를 이용하는 것으로, 본 발명에 따른 실리콘 수지 조성물은 비교적 저온 하에서도 몰드 성형체에 몰드 성형을 할 수 있어 양호한 저온 가공성을 나타내며 또한 양호한 내후성을 가지는 것으로 나타났다.The present inventors use the silicone resin of the present invention which is suitable for condensation type silicone molding materials, has a relatively low melting point, and can be molded. The silicone resin composition according to the present invention can be molded on a molded body even at relatively low temperatures. It exhibits low-temperature processability and is also found to have good weatherability.

<LED 케이스><LED case>

본 발명에 따른 LED 하우징은 본 발명에 따른 실리콘 수지 조성물을 몰드 성형하여 이루어지는 것이다. 본 발명에 있어서, 본 발명에 기재된 LED 하우징을 제조하기 위한 몰드 성형 방법은 상술한 몰드 성형체의 제조방법과 동일할 수 있다. 여기서 중복 설명을 생략한다.The LED housing according to the present invention is formed by mold molding the silicone resin composition according to the present invention. In the present invention, the mold molding method for manufacturing the LED housing described in the present invention may be the same as the method for manufacturing the molded body described above. Redundant description is omitted here.

<반도체 발광소자><Semiconductor light emitting device>

본 발명에 따른 반도체 발광소자는 본 발명에 따른 LED 하우징을 포함한다.The semiconductor light emitting device according to the present invention includes the LED housing according to the present invention.

본 발명의 일 구체적인 실시예에 따르면, 본 발명의 반도체 발광소자는 도 1과 같다. 상기 반도체 발광소자는 칩(1), 리드(2), 렌즈(3), 밀봉재(4) 및 하우징(5)을 갖춘다. 하우징(5)은 본 발명에 따른 실리콘 수지 조성물을 몰드 성형함으로써 제조된다.According to one specific embodiment of the present invention, the semiconductor light emitting device of the present invention is shown in FIG. 1. The semiconductor light emitting device is provided with a chip (1), a lead (2), a lens (3), a sealing material (4) and a housing (5). The housing 5 is manufactured by mold molding the silicone resin composition according to the present invention.

실시예Example

이하, 실시예에 의해 본 발명을 더욱 설명한다. 그러나, 본 발명에 따른 범위는 실시예에 한정되는 것은 아니다.Hereinafter, the present invention will be further described by examples. However, the scope according to the present invention is not limited to the examples.

<평균 단위식의 평가><Evaluation of average unit formula>

스위스 Bruker 사의 AVANCE II 400MHz 형 핵자기공명장치를 이용하여 실리콘 수지의 수소 핵자기공명 스펙트럼(1H-NMR) 및 실리콘 핵자기공명 스펙트럼(29Si-NMR)을 측정함으로써, 실리콘 수지의 평균 단위식을 확인했다.The average unit formula of the silicone resin is confirmed by measuring the hydrogen nuclear magnetic resonance spectrum (1H-NMR) and the silicon nuclear magnetic resonance spectrum (29Si-NMR) of the silicone resin using the AVANCE II 400MHz nuclear magnetic resonance apparatus from Bruker, Switzerland did.

<융점의 측정><Measurement of melting point>

독일 Netzsch 사의 DSC 204HP 형 시차주사 열량계를 이용하여 실리콘 수지의 DSC 곡선을 측정함으로써, 실리콘 수지의 융점을 확인했다.The melting point of the silicone resin was confirmed by measuring the DSC curve of the silicone resin using a DSC 204HP differential scanning calorimeter manufactured by Netzsch, Germany.

<상온에서의 표면 점착성에 대한 평가><Evaluation of surface adhesion at room temperature>

실리콘 수지를 치수가 10cm × 10cm × 2mm의 시험 샘플에 몰드 프레스 성형한 후, 치수가 15cm × 15cm × 1mm이고 표면이 평평한 스테인레스판의 표면에 두었다. 시험 샘플을 올린 스테인레스판을 영국 Stable Micro Systems 사의 TA. TX Plus 형 물성 분석 장비(텍스쳐 분석기)의 스테이지의 중앙에 놓고, P35 프로브를 선택하여, 측정 전 속도가 1.0 mm/s, 측정 속도가 0.5 mm/s, 측정 후 속도가 10.0 mm/s, 접촉 시간이 2.0s, 반환 거리가 5.0 mm, 유도력이 Auto-10gf가 되도록 측정 프로그램을 설정했다. 프로그램에 의해 프로브는 아래쪽을 향하여 수직으로 샘플 내부의 소정 깊이까지 삽입하도록 제어하고, 이어서 샘플 내부로부터 프로브를 윗쪽을 향해 수직으로 끌어 올리는데 필요한 힘을 측정하고, 이를 통해 시험 샘플의 해당 위치의 실온에서의 표면 점착성(단위: gf (gf))를 측정하여 평가한다. 같은 방법을 사용하여 시험 샘플의 상이한 10개소에서 상온에서의 표면 점착성을 측정하고, 그 평균치를 시험 샘플의 실온에서의 표면 점착성으로 한다.The silicone resin was mold-press molded into a test sample having dimensions of 10 cm × 10 cm × 2 mm, and then placed on the surface of a stainless plate having a dimension of 15 cm × 15 cm × 1 mm and having a flat surface. The stainless steel plate on which the test sample was placed is TA of Stable Micro Systems, UK. Place in the center of the stage of the TX Plus type material analysis equipment (texture analyzer), select the P35 probe, the speed before measurement is 1.0 mm/s, the measurement speed is 0.5 mm/s, the measurement speed is 10.0 mm/s, contact The measurement program was set so that the time was 2.0 s, the return distance was 5.0 mm, and the guide force was Auto-10gf. The program controls the probe to be inserted vertically downwards to a predetermined depth inside the sample, and then measures the force required to vertically pull the probe upwards from inside the sample, thereby allowing the probe sample to be at room temperature at that location. It is evaluated by measuring the surface adhesiveness (unit: gf (gf)). Using the same method, the surface tack at room temperature was measured at 10 different places of the test sample, and the average value was taken as the surface tack at room temperature of the test sample.

<저온 가공성 평가><Evaluation of low-temperature processability>

실리콘 수지 조성물의 각 성분을 균일하게 혼합한 후, 니더에 가하여 40℃에서 용융혼련 처리를 수행하고, 얻어진 용융혼련물을 냉각 경화시킨 후 입자로 분쇄했다. 얻어진 입자를 트랜스퍼 성형기에 가하여 80℃에서 7 MPa의 압력으로 상기 입자를 구멍의 크기가 50cm × 50cm × 5mm의 금속 금형에 끼워 넣어 200 초간 유지하고 몰드 성형하였다. 금형을 실온까지 냉각한 후 금형을 열고 성형체를 꺼내 시험 샘플로 했다. 시험 샘플의 외관을 관찰하여 평가하였다. 시험 샘플의 표면에 5개 이하의 균열이나 공극이 있는 경우 "○", 시험 샘플의 표면에 5개 이상의 균열 또는 공극이 있는 경우 "×"로 표기된다.After mixing the components of the silicone resin composition uniformly, it was added to a kneader to perform a melt-kneading treatment at 40°C, and the obtained melt-kneaded product was cooled and hardened and pulverized into particles. The obtained particles were added to a transfer molding machine, and the particles were inserted into a metal mold having a pore size of 50 cm × 50 cm × 5 mm at 80° C. at a pressure of 7 MPa, held for 200 seconds, and mold-molded. After the mold was cooled to room temperature, the mold was opened, and the molded body was taken out as a test sample. The appearance of the test sample was observed and evaluated. It is denoted by "○" when the surface of the test sample has 5 or less cracks or voids, and "X" when the surface of the test sample has 5 or more cracks or voids.

<내후성 평가><Weatherability evaluation>

실리콘 수지 조성물을 치수가 10cm × 10cm × 2mm의 시험 샘플에 몰드 프레스 성형했다. 시험 샘플을 자외선 가시 분광 광도계에 놓고 350 nm ~ 400 nm의 빛 반사율을 측정하고, 초기 반사율 r0로 표기했다. 이어서, 시험 샘플을 꺼내, 온도가 85℃, 상대습도 85%의 환경에서 1000시간 방치한 후 350 nm ~ 400 nm의 빛 반사율을 다시 측정하여 최종 반사율 r1로 표기했다. 식 Δr = ((r0-r1)/r0) × 100%에 기초하여 반사율의 감쇠량 Δr(%)을 산출하고, 이를 통해 실리콘 수지 조성물의 내후성을 평가했다.The silicone resin composition was mold press molded into a test sample having dimensions of 10 cm×10 cm×2 mm. The test sample was placed on an ultraviolet visible spectrophotometer, the light reflectance of 350 nm to 400 nm was measured, and the initial reflectance r 0 was indicated. Subsequently, the test sample was taken out and left for 1000 hours in an environment having a temperature of 85° C. and a relative humidity of 85%, and the light reflectances of 350 nm to 400 nm were measured again to indicate final reflectance r 1 . Based on the formula Δr = ((r 0 -r 1 )/r 0 ) × 100%, the attenuation amount Δr(%) of the reflectance was calculated, and the weather resistance of the silicone resin composition was evaluated.

<합성예 1><Synthesis Example 1>

교반기, 온도계, 응축 환류 수단을 구비한 반응기에, 교반기를 '온'으로 하고 탈이온수 504.0 g(28.0 몰), 농도 0.05 N의 염산 9.0 g, 톨루엔 1000.0 g을 넣어 제1 혼합액을 제조하였다. 상기 반응기를 서서히 승온시키면서, 상기 반응기에 메틸 트리클로로실란 747.5 g(5.0 몰), 페닐 트리클로로실란 634.5 g(3.0 몰), 디메틸 디클로로실란 258.0 g(2. 0 몰) 및 톨루엔 1000.0 g으로 이루어진 제2 혼합물을 천천히 적하했다. 상기 제2 혼합물의 적하 종료 후 반응기의 내부 온도를 70℃로 유지하고 환류 상태에서 3시간 가수분해 반응시켜 가수분해 반응물을 얻었다. 얻어진 가수분해 반응물을 냉각, 정치하여 층을 분리시켜 유기상과 수상을 분리하였다. 분리된 유기상을 수산화 칼륨으로 pH 9로 조정한 후, 상기 반응기와 동일하게 설치된 반응기에 넣고 교반기를 '온'으로 하고 반응기의 내부 온도를 70℃로 유지하여 환류 상태에서 2시간 축합반응시켜 축합반응물을 얻었다. 감압 증류에 의해 축합반응 생성물의 용매 및 저비점 물질을 제거하고, 약 898.0 g의 무색 투명한 고체(이하, 실리콘 수지 A-1)를 얻었다.In a reactor equipped with a stirrer, thermometer, and condensation reflux means, the stirrer was turned'on' and 504.0 g (28.0 mol) of deionized water, 9.0 g hydrochloric acid with a concentration of 0.05 N, and 1000.0 g of toluene were prepared. While slowly heating the reactor, the reactor was made of 747.5 g (5.0 mol) of methyl trichlorosilane, 634.5 g (3.0 mol) of phenyl trichlorosilane, 258.0 g (2. 0 mol) of dimethyl dichlorosilane, and 1000.0 g of toluene. 2 The mixture was slowly added dropwise. After the dropping of the second mixture was completed, the internal temperature of the reactor was maintained at 70°C and hydrolyzed for 3 hours under reflux to obtain a hydrolysis reaction product. The obtained hydrolysis reaction product was cooled and left to stand, and the layers were separated to separate an organic phase and an aqueous phase. After adjusting the separated organic phase to pH 9 with potassium hydroxide, put it in a reactor installed in the same manner as the reactor, set the stirrer to'on' and maintain the internal temperature of the reactor at 70°C to condense the reactant for 2 hours under reflux. Got The solvent and low boiling point material of the condensation reaction product were removed by distillation under reduced pressure to obtain about 898.0 g of a colorless transparent solid (hereinafter, silicone resin A-1).

1H-NMR 및 29Si-NMR에 의해 상기 실리콘 수지 A-1의 평균 단위식은 식 (1-1)에 나타낸 대로임이 확인되었다. It was confirmed by 1 H-NMR and 29 Si-NMR that the average unit formula of the silicone resin A-1 was as shown in formula (1-1).

[MeSiO3/2]0.5[PhSiO3/2]0.3[Me2SiO2/2]0.2[HO1/2]0.03 (1-1)[MeSiO 3/2 ] 0.5 [PhSiO 3/2 ] 0.3 [Me 2 SiO 2/2 ] 0.2 [HO 1/2 ] 0.03 (1-1)

상기 실리콘 수지 A-1의 성능은 표 1과 같다.The performance of the silicone resin A-1 is shown in Table 1.

<합성예 2><Synthesis Example 2>

교반기, 온도계, 응축 환류 수단을 구비 한 반응기에 교반기를 '온'으로 하고 탈이온수 540.0 g(30.0 몰), 농도 0.05 N의 염산 10.0 g, 톨루엔 1500.0 g을 넣어 제1 혼합액을 제조 하였다. 상기 반응기를 서서히 승온시키면서, 상기 반응기에 메틸 트리클로로실란 897.0 g(6 몰), 페닐 트리클로로실란 423.0 g(2.0 몰), 디메틸 디클로로실란 258.0 g(2.0 몰) 및 톨루엔 1500.0 g으로 이루어진 제2 혼합물을 천천히 적하했다. 상기 제2 혼합물의 적하 종료 후 반응기의 내부 온도를 80℃로 유지하고 환류 상태에서 5시간 가수분해 반응시켜 가수분해 반응물을 얻었다. 얻어진 가수분해 반응물을 냉각, 정치하여 층을 분리시겨 유기상과 수상을 분리하였다. 분리된 유기상을 수산화 칼륨으로 pH 8로 조정한 후, 상기 반응기와 동일하게 설치된 반응기에 넣고 교반기를 '온'으로 하고 반응기의 내부 온도를 75℃로 유지하여 환류 상태에서 5시간 축합반응시켜 축합반응물을 얻었다. 감압 증류에 의해 축합반응 생성물의 용매 및 저비점 물질을 제거하고 약 868.5 g의 무색 투명한 고체(이하, 실리콘 수지 A-2)를 얻었다.In a reactor equipped with a stirrer, thermometer, and condensation reflux means, the stirrer was turned'on' and 540.0 g (30.0 mol) of deionized water, 10.0 g of hydrochloric acid with a concentration of 0.05 N, and 1500.0 g of toluene were prepared. While slowly heating the reactor, a second mixture of 897.0 g (6 moles) of methyl trichlorosilane, 423.0 g (2.0 moles) of phenyl trichlorosilane, 258.0 g (2.0 moles) of dimethyl dichlorosilane and 1500.0 g of toluene was added to the reactor. Dropped slowly. After completion of the dropping of the second mixture, the internal temperature of the reactor was maintained at 80° C. and hydrolysis reaction was performed for 5 hours under reflux to obtain a hydrolysis reaction product. The obtained hydrolysis reaction product was cooled and left to separate the layers to separate the organic phase and the aqueous phase. After adjusting the separated organic phase to pH 8 with potassium hydroxide, put it in a reactor installed in the same manner as the reactor, turn on the stirrer and maintain the internal temperature of the reactor at 75° C. to condense for 5 hours under reflux to condensate reactants. Got The solvent and low-boiling-point material of the condensation reaction product were removed by distillation under reduced pressure to obtain about 868.5 g of a colorless transparent solid (hereinafter, silicone resin A-2).

1H-NMR 및 29Si-NMR에 의해 상기 실리콘 수지 A-2의 평균 단위식은 식 (1-2)에 나타낸 대로임이 확인되었다. It was confirmed by 1 H-NMR and 29 Si-NMR that the average unit formula of the silicone resin A-2 was as shown in formula (1-2).

[MeSiO3/2]0.6[PhSiO3/2]0.2[Me2SiO2/2]0.2[HO1/2]0.1 (1-2)[MeSiO 3/2 ] 0.6 [PhSiO 3/2 ] 0.2 [Me 2 SiO 2/2 ] 0.2 [HO 1/2 ] 0.1 (1-2)

상기 실리콘 수지 A-2의 성능은 표 1과 같다.The performance of the silicone resin A-2 is shown in Table 1.

<합성예 3><Synthesis Example 3>

교반기, 온도계, 응축 환류 수단을 구비 한 반응기에 교반기를 '온'으로 하고 탈이온수 720.0 g(40.0 몰), 농도 0.05 N의 염산 8.0 g, 톨루엔 2000.0 g을 넣어 제1 혼합액을 제조 하였다. 상기 반응기를 서서히 승온시키면서, 상기 반응기에 메틸 트리클로로실란 1046.5 g(7.0 몰), 페닐 트리클로로실란 423.0 g(2.0 몰), 디메틸 디클로로실란 129.0 g(1. 0 몰) 및 톨루엔 1600.0 g으로 이루어진 제2 혼합물을 천천히 적하했다. 상기 제2 혼합물의 적하 종료 후 반응기의 내부 온도를 70℃로 유지하고 환류 상태에서 10시간 가수분해 반응시켜 가수분해 반응물을 얻었다. 얻어진 가수분해 반응물을 냉각, 정치하여 층 분리시키고 유기상과 수상으로 분리하였다. 분리된 유기상을 수산화 칼륨으로 pH 10으로 조정한 후, 상기 반응기와 동일하게 설치된 반응기에 넣고 교반기를 '온'으로 하고 반응기의 내부 온도를 80℃로 유지하고 환류 상태에서 10시간 축합반응시켜 축합반응물을 얻었다. 감압 증류에 의해 축합반응 생성물의 용매 및 저비점 물질을 제거하고 약 866.8 g의 무색 투명한 고체(이하, 실리콘 수지 A-3)를 얻었다.In a reactor equipped with a stirrer, thermometer, and condensation reflux means, the first stirrer was prepared by putting the stirrer'on' and adding 720.0 g (40.0 mol) of deionized water, hydrochloric acid with a concentration of 0.05 N, and 2000.0 g of toluene. While gradually raising the reactor, the reactor consisted of 1046.5 g (7.0 mol) of methyl trichlorosilane, 423.0 g (2.0 mol) of phenyl trichlorosilane, 129.0 g (1. 0 mol) of dimethyl dichlorosilane, and 1600.0 g of toluene. 2 The mixture was slowly added dropwise. After completion of the dropping of the second mixture, the internal temperature of the reactor was maintained at 70° C., and hydrolysis reaction was performed at reflux for 10 hours to obtain a hydrolysis reaction product. The obtained hydrolysis reaction was cooled and left standing to separate the layers and separated into an organic phase and an aqueous phase. After adjusting the separated organic phase to pH 10 with potassium hydroxide, put it in the same reactor as the above reactor, set the stirrer to'on', maintain the internal temperature of the reactor at 80° C., and condense the reactant for 10 hours under reflux. Got The solvent and low boiling point material of the condensation reaction product were removed by distillation under reduced pressure to obtain about 866.8 g of a colorless transparent solid (hereinafter, silicone resin A-3).

1H-NMR 및 29Si-NMR에 의해 상기 실리콘 수지 A-3의 평균 단위식은 식 (1-3)에 나타낸 대로임이 확인되었다. It was confirmed by 1 H-NMR and 29 Si-NMR that the average unit formula of the silicone resin A-3 was as shown in Formula (1-3).

[MeSiO3/2]0.7[PhSiO3/2]0.2[Me2SiO2/2]0.1[HO1/2]0.1 (1-3)[MeSiO 3/2 ] 0.7 [PhSiO 3/2 ] 0.2 [Me 2 SiO 2/2 ] 0.1 [HO 1/2 ] 0.1 (1-3)

상기 실리콘 수지 A-3의 성능은 표 1과 같다.The performance of the silicone resin A-3 is shown in Table 1.

<합성예 4><Synthesis Example 4>

교반기, 온도계, 응축 환류 수단을 구비 한 반응기에 교반기를 '온'으로 하고 탈이온수 1044.0 g(58.0 몰), 농도 0.05 N의 염산 15.0 g, 톨루엔 1000.0 g을 넣어 제1 혼합액을 제조하였다. 상기 반응기를 서서히 승온시키면서, 상기 반응기에 메틸 트리클로로실란 1196.0 g(8.0 몰), 페닐 트리클로로실란 211.5 g(1.0 몰), 디메틸 디클로로실란 129.0 g(1. 0 몰) 및 톨루엔 2000.0 g으로 이루어진 제2 혼합물을 천천히 적하했다. 상기 제2 혼합물의 적하 종료 후 반응기의 내부 온도를 70℃로 유지하고 환류 상태에서 1시간 가수분해 반응시켜 가수분해 반응물을 얻었다. 얻어진 가수분해 반응물을 냉각, 정치하여 층을 분리시키고 유기상과 수상으로 분리하였다. 분리된 유기상을 수산화 칼륨에 pH 9로 조정한 후, 상기 반응기와 동일하게 설치된 반응기에 넣고 교반기를 선택하고 반응기의 내부 온도를 75℃로 유지하고 환류 상태에서 10시간 축합반응시켜 축합반응물을 얻었다. 감압 증류에 의해 축합반응 생성물의 용매 및 저비점 물질을 제거하고 약 847.2 g의 무색 투명한 고체(이하, 실리콘 수지 A-4)를 얻었다.In a reactor equipped with a stirrer, a thermometer, and a condensation reflux means, a stirrer was turned'on' and 1044.0 g (58.0 mol) of deionized water, 15.0 g of hydrochloric acid with a concentration of 0.05 N, and 1000.0 g of toluene were prepared. While slowly heating the reactor, the reactor was made of 1196.0 g (8.0 mol) of methyl trichlorosilane, 211.5 g (1.0 mol) of phenyl trichlorosilane, 129.0 g (1. 0 mol) of dimethyl dichlorosilane, and 2000.0 g of toluene. 2 The mixture was slowly added dropwise. After the dropping of the second mixture was completed, the internal temperature of the reactor was maintained at 70° C. and hydrolysis reaction was carried out for 1 hour under reflux to obtain a hydrolysis reaction product. The obtained hydrolysis reaction was cooled and allowed to stand to separate the layers and separated into an organic phase and an aqueous phase. After adjusting the separated organic phase to pH 9 in potassium hydroxide, put it in a reactor installed in the same manner as the reactor, select a stirrer, maintain the internal temperature of the reactor at 75° C., and condense for 10 hours under reflux to obtain a condensation reaction product. The solvent and low-boiling-point material of the condensation reaction product were removed by distillation under reduced pressure to obtain about 847.2 g of a colorless transparent solid (hereinafter, silicone resin A-4).

1H-NMR 및 29Si-NMR에 의해 상기 실리콘 수지 A-4의 평균 단위식은 식 (1-4)에 나타낸 바와 같다는 것을 확인하였다. It was confirmed by 1 H-NMR and 29 Si-NMR that the average unit formula of the silicone resin A-4 was as shown in Formula (1-4).

[MeSiO3/2]0.8[PhSiO3/2]0.1[Me2SiO2/2]0.1[HO1/2]0.2 (1-4)[MeSiO 3/2 ] 0.8 [PhSiO 3/2 ] 0.1 [Me 2 SiO 2/2 ] 0.1 [HO 1/2 ] 0.2 (1-4)

상기 실리콘 수지 A-4의 성능은 표 1과 같다.The performance of the silicone resin A-4 is shown in Table 1.

<비교 합성예 1><Comparative Synthesis Example 1>

교반기, 온도계, 응축 환류 수단을 구비한 반응기에 교반기를 '온'으로 하고 탈이온수 504.0 g(28.0 몰), 농도 0.05 N의 염산 7.0 g, 톨루엔 700.0 g을 넣고 제1 혼합액을 제조하였다. 상기 반응기를 서서히 승온시키면서, 상기 반응기에 메틸 트리클로로실란 1196.0 g(8.0 몰), 디메틸 디클로로실란 258.0 g(2.0 몰) 및 톨루엔 700.0 g으로 이루어진 제2 혼합액을 천천히 적하했다. 상기 제2 혼합물의 적하 종료 후 반응기의 내부 온도를 75℃로 유지하고 환류 상태에서 5시간 가수분해 반응시켜 가수분해 반응물을 얻었다. 얻어진 가수분해 반응물을 냉각, 정치하여 층 분리시키고 유기상과 수상으로 분리하였다. 분리된 유기상을 수산화 칼륨으로 pH 8로 조정한 후, 상기 반응기와 동일하게 설치된 반응기에 넣고 교반기를 '온'으로 하고 반응기의 내부 온도를 80℃로 유지하고 환류 상태에서 3시간 축합반응시켜 축합반응물을 얻었다. 감압 증류에 의해 축합반응 생성물의 용매 및 저비점 물질을 제거하고 약 615.7 g의 무색 투명한 고체(이하, 실리콘 수지 A'-1)를 얻었다.In a reactor equipped with a stirrer, thermometer, and condensation reflux means, the stirrer was turned'on' and 504.0 g (28.0 mol) of deionized water, 7.0 g of hydrochloric acid at a concentration of 0.05 N, and 700.0 g of toluene were prepared to prepare a first mixed solution. While gradually heating the reactor, a second mixture of 1196.0 g (8.0 mol) of methyl trichlorosilane, 258.0 g (2.0 mol) of dimethyl dichlorosilane and 700.0 g of toluene was slowly added dropwise to the reactor. After the dropping of the second mixture was completed, the internal temperature of the reactor was maintained at 75° C. and hydrolysis reaction was performed for 5 hours under reflux to obtain a hydrolysis reaction product. The obtained hydrolysis reaction was cooled and left standing to separate the layers and separated into an organic phase and an aqueous phase. After adjusting the separated organic phase to pH 8 with potassium hydroxide, put it in a reactor installed in the same manner as the above reactor, set the stirrer to'on', maintain the internal temperature of the reactor at 80° C., and condense the reactant for 3 hours under reflux. Got The solvent and low-boiling-point material of the condensation reaction product were removed by distillation under reduced pressure to obtain about 615.7 g of a colorless transparent solid (hereinafter, silicone resin A'-1).

1H-NMR 및 29Si-NMR에 의해 상기 실리콘 수지 A'-1의 평균 단위식은 식 (1-5)에 나타낸 바와 같은 것을 확인하였다. It was confirmed by 1 H-NMR and 29 Si-NMR that the average unit formula of the silicone resin A'-1 was as shown in Formula (1-5).

[MeSiO3/2]0.8[Me2SiO2/2]0.2[HO1/2]0.1 (1-5)[MeSiO 3/2 ] 0.8 [Me 2 SiO 2/2 ] 0.2 [HO 1/2 ] 0.1 (1-5)

상기 실리콘 수지 A'-1의 성능은 표 1과 같다.The performance of the silicone resin A'-1 is shown in Table 1.

<비교 합성예 2><Comparative Synthesis Example 2>

교반기, 온도계, 응축 환류 수단을 구비한 반응기에 교반기를 '온'으로 하고 탈이온수 540.0 g(30.0 몰), 농도 0.05 N의 염산 8.0 g, 톨루엔 1700.0 g을 넣어 제1 혼합액을 제조하였다. 상기 반응기를 서서히 승온시키면서, 상기 반응기에 메틸 트리클로로실란 897.0 g(6.0 몰), 페닐 트리클로로실란 846.0 g(4.0 몰) 및 톨루엔 1700.0 g으로 이루어진 제2 혼합액을 천천히 적하했다. 상기 제2 혼합물의 적하 종료 후 반응기의 내부 온도를 70℃로 유지하고 환류 상태에서 3시간 가수분해 반응시켜 가수분해 반응물을 얻었다. 얻어진 가수분해 반응물을 냉각, 정치하여 층 분리시키고 유기상과 수상으로 분리하였다. 분리된 유기상을 수산화 칼륨으로 pH 9로 조정한 후, 상기 반응기와 동일하게 설치된 반응기에 넣고 교반기를 선택하고 반응기의 내부 온도를 75℃로 유지하고 환류 상태에서 5시간 축합반응시켜 축합반응물을 얻었다. 감압 증류에 의해 축합반응 생성물의 용매 및 저비점 물질을 제거하고 약 628.4 g의 무색 투명한 고체(이하, 실리콘 수지 A'-2)를 얻었다.In a reactor equipped with a stirrer, a thermometer, and a condensation reflux means, a stirrer was turned on and 540.0 g (30.0 mol) of deionized water, 8.0 g of hydrochloric acid with a concentration of 0.05 N, and 1700.0 g of toluene were prepared. While gradually raising the reactor, a second mixed solution consisting of 897.0 g (6.0 mol) of methyl trichlorosilane, 846.0 g (4.0 mol) of phenyl trichlorosilane and 1700.0 g of toluene was slowly added dropwise to the reactor. After the dropping of the second mixture was completed, the internal temperature of the reactor was maintained at 70°C and hydrolyzed for 3 hours under reflux to obtain a hydrolysis reaction product. The obtained hydrolysis reaction was cooled and left standing to separate the layers and separated into an organic phase and an aqueous phase. After adjusting the separated organic phase to pH 9 with potassium hydroxide, put it in a reactor installed in the same manner as the reactor, select a stirrer, maintain the internal temperature of the reactor at 75° C., and condense for 5 hours under reflux to obtain a condensation reaction product. The solvent and low boiling point material of the condensation reaction product were removed by distillation under reduced pressure to obtain about 628.4 g of a colorless transparent solid (hereinafter, silicone resin A'-2).

1H-NMR 및 29Si-NMR에 의해 상기 실리콘 수지 A'-2의 평균 단위식은 식 (1-6)에 나타낸 바와 같은 것으로 확인되었다. It was confirmed by 1 H-NMR and 29 Si-NMR that the average unit formula of the silicone resin A'-2 was as shown in Formula (1-6).

[MeSiO3/2]0.6[PhSi3/2]0.4[HO1/2]0.1 (1-6)[MeSiO 3/2 ] 0.6 [PhSi 3/2 ] 0.4 [HO 1/2 ] 0.1 (1-6)

상기 실리콘 수지 A'-2의 성능은 표 1과 같다.The performance of the silicone resin A'-2 is shown in Table 1.

<비교 합성예 3><Comparative Synthesis Example 3>

교반기, 온도계를 갖춘 반응기에 교반기를 '온'으로 하고 탈이온수 1008.0 g(56.0 mol)을 넣고, 메틸 트리메톡시실란 816.0 g(6.0 몰), 페닐 트리메톡시실란 396.0 g(2.0 몰), 디메틸 디메톡시실란 302.0 g(2.0 몰) 및 톨루엔 3000 g으로 이루어진 혼합물을 상기 반응기에 천천히 적하했다. 상기 혼합물의 적하 종료 후 반응기의 내부 온도를 50℃로 유지하고 1시간 가수분해 반응시켜 가수분해 반응물을 얻었다. 얻어진 가수분해 반응물을 50℃에서 1시간 에이징(aging)한 후 탈이온수를 첨가하여 세척을 실시했다. 그 후, 공비 탈수, 여과, 감압 증류를 실시하여 용매 및 저비점 물질을 제거하고 약 748.9 g의 무색 투명한 고체(이하, 실리콘 수지 A'-3)를 얻었다.In a reactor equipped with a stirrer and a thermometer, turn on the stirrer and add 1008.0 g (56.0 mol) of deionized water, 816.0 g (6.0 mol) of methyl trimethoxysilane, 396.0 g (2.0 mol) of phenyl trimethoxysilane, and dimethyl A mixture consisting of 302.0 g (2.0 moles) of dimethoxysilane and 3000 g toluene was slowly added dropwise into the reactor. After the dropwise addition of the mixture, the internal temperature of the reactor was maintained at 50° C. and hydrolysis reaction was performed for 1 hour to obtain a hydrolysis reaction product. The obtained hydrolysis reaction was aged at 50°C for 1 hour, and then washed with deionized water. Subsequently, azeotropic dehydration, filtration, and distillation under reduced pressure were performed to remove the solvent and the low-boiling-point substance to obtain about 748.9 g of a colorless transparent solid (hereinafter, silicone resin A'-3).

1H-NMR 및 29Si-NMR에 의해 상기 실리콘 수지 A'-3의 평균 단위식은 식 (1-7)에 나타낸 바와 같다는 것으로 확인되었다. It was confirmed by 1 H-NMR and 29 Si-NMR that the average unit formula of the silicone resin A'-3 was as shown in Formula (1-7).

[MeSiO3/2]0.6[PhSi3/2]0.2[Me2SiO2/2]0.2[MeO1/2]0.04[HO1/2]0.06 (1-7)[MeSiO 3/2 ] 0.6 [PhSi 3/2 ] 0.2 [Me 2 SiO 2/2 ] 0.2 [MeO 1/2 ] 0.04 [HO 1/2 ] 0.06 (1-7)

상기 실리콘 수지 A'-3의 성능은 표 1과 같다.The performance of the silicone resin A'-3 is shown in Table 1.

성능Performance 합성예Synthetic example 비교합성예Comparative Synthesis Example 1One 22 33 44 1One 22 33 실리콘 수지Silicone resin A-1A-1 A-2A-2 A-3A-3 A-4A-4 A'-1A'-1 A'-2A'-2 A'-3A'-3 외관의 형태(25℃)Appearance form (25℃) 고체solid 고체solid 고체solid 고체solid 고체solid 고체solid 고체solid 융점(℃)Melting point (℃) 2727 3131 3434 4040 2828 2727 2222 실온에서의 표면 점착성(gf)Surface adhesion at room temperature (gf) 1.91.9 1.71.7 1.41.4 1.31.3 4.14.1 4.34.3 7.27.2

표 1에서, 본 발명의 실시예 1 ~ 4에서 얻어진 실리콘 수지 A-1, A-2, A-3 및 A-4는 [MeSiO3/2] 단위, [PhSiO3/2] 단위, [R2SiO2/2] 단위 및 수산기의 몰비가 모두 본 발명에서 요구되는 수치 범위를 충족하며, 상온에서 고체이고, 한편 융점이 50℃ 미만이며, 상온에서 표면 점착성이 모두 2.0 gf 미만이고, 상온에서 표면에 끈적거림이 없고, 축합형 실리콘 성형재료의 몰드 성형에 적합한 것으로 나타났다.In Table 1, the silicone resins A-1, A-2, A-3 and A-4 obtained in Examples 1 to 4 of the present invention are [MeSiO 3/2 ] units, [PhSiO 3/2 ] units, [R 2 SiO 2/2 ] The molar ratio of the unit and the hydroxyl group both satisfy the numerical range required by the present invention, and are solid at room temperature, while the melting point is less than 50°C, and the surface adhesion at room temperature is both less than 2.0 gf, and at room temperature. It was found that there is no stickiness on the surface and it is suitable for mold molding of condensation type silicone molding material.

또한 비교를 통해 알 수 있듯이, 비교 합성예 1의 실리콘 수지 A'-1 및 본 발명의 실시예 2의 실리콘 수지 A-2는, 양자의 3관능 실록산 단위, 2관능 실록산 단위 및 수산기의 몰비가 동일하고, 비교 합성예 1의 실리콘 수지 A'-1은 3관능 실록산 단위가 PhSiO3/2 단위를 포함하지 않는 반면, 본 발명의 실시예 2의 실리콘 수지 A-2는 3관능 실록산 단위가 일정량의 PhSiO3/2 단위를 포함한 점에서만 차이가 있다. 비교 합성예 2의 실리콘 수지 A'-2 및 본 발명의 실시예 2의 실리콘 수지 A-2는, 양자의 수산기의 몰비가 동일하고, 비교 합성예 2의 실리콘 수지 A'- 2는 2관능 실록산 단위를 포함하지 않고 3관능 실록산 단위만을 포함하는 반면, 본 발명의 실시예 2의 실리콘 수지 A-2는 3관능 실록산 단위 뿐만 아니라 2관능 실록산 단위도 포함한다는 점에서만 차이가 있다. 비교 합성예 3의 실리콘 수지 A'-3 및 본 발명의 실시예 2의 실리콘 수지 A-2는, 양자의 [MeSiO3/2] 단위, [PhSiO3/2] 단위, [R2SiO2/2] 단위 및 잔존하는 축합 가능한 그룹(즉, 수산기 및/또는 알콕시기)의 몰비가 같고, 비교 합성예 3의 실리콘 수지 A'-3에 잔존하는 축합 가능한 그룹이 일정량의 메톡시 그룹을 포함한 반면, 본 발명의 실시예 2의 실리콘 수지 A-2에 잔존하는 축합 가능한 그룹은 모두 수산기인 점에서만 차이가 있다. 측정 결과로부터 알 수 있듯이, 비교 합성예 1 ~ 3에서 얻어진 실리콘 수지 A'-1, A'-2 및 A'-3은 본 발명의 실시예 2에서 얻어진 실리콘 수지 A -2와 비교하여 실온에서 모두 고체이며, 융점이 50℃ 미만이지만, 상온에서 표면 점착성이 모두 4.0 gf 보다 크고, 실온에서 표면이 끈적하기 때문에, 축합형 실리콘 성형재료의 몰드 성형에는 적합하지 않다.In addition, as can be seen through comparison, the silicone resin A'-1 of Comparative Synthesis Example 1 and the silicone resin A-2 of Example 2 of the present invention have a molar ratio of both trifunctional siloxane units, bifunctional siloxane units, and hydroxyl groups. The same, the silicone resin A'-1 of Comparative Synthesis Example 1 does not contain PhSiO 3/2 units of the trifunctional siloxane unit, while the silicone resin A-2 of Example 2 of the present invention has a certain amount of trifunctional siloxane units The only difference is that it contains 3/2 units of PhSiO. The silicone resin A'-2 of Comparative Synthesis Example 2 and the silicone resin A-2 of Example 2 of the present invention have the same molar ratio of both hydroxyl groups, and the silicone resin A'-2 of Comparative Synthesis Example 2 is a bifunctional siloxane While it does not contain a unit and includes only a trifunctional siloxane unit, the silicone resin A-2 of Example 2 of the present invention differs only in that it contains a difunctional siloxane unit as well as a trifunctional siloxane unit. The silicone resin A'-3 of Comparative Synthesis Example 3 and the silicone resin A-2 of Example 2 of the present invention are both [MeSiO 3/2 ] units, [PhSiO 3/2 ] units, and [R 2 SiO 2/ 2 ] The molar ratio of the unit and the remaining condensable group (that is, hydroxyl group and/or alkoxy group) is the same, and the condensable group remaining in the silicone resin A'-3 of Comparative Synthesis Example 3 contains a certain amount of methoxy group. , The condensable groups remaining in the silicone resin A-2 of Example 2 of the present invention differ only in that they are hydroxyl groups. As can be seen from the measurement results, the silicone resins A'-1, A'-2 and A'-3 obtained in Comparative Synthesis Examples 1-3 were compared with the silicone resin A-2 obtained in Example 2 of the present invention at room temperature. They are all solid and have a melting point of less than 50°C, but the surface tack at room temperature is greater than 4.0 gf, and the surface is sticky at room temperature, and therefore is not suitable for mold molding of condensed silicone molding materials.

이와 같이 본 발명은, 본 발명의 실리콘 수지가 25℃에서 고체이며, 융점이 50℃ 미만인 것과 같이, 실리콘 수지 중 [MeSiO3/2] 단위, [PhSiO3/2] 단위, [R2SiO2/2] 단위 및 수산기의 몰비를 특정 수치 범위 내로 제어함으로써 축합형 실리콘 성형재료에 적합하고 융점이 비교적 낮고 몰드 성형이 가능한 실리콘 수지를 얻었다.As described above, the present invention is [SiSiO 3/2 ] unit, [PhSiO 3/2 ] unit, [R 2 SiO 2 ] in silicone resin, as the silicone resin of the present invention is solid at 25° C. and has a melting point of less than 50° C. /2 ] By controlling the molar ratio of units and hydroxyl groups within a specific numerical range, a silicone resin suitable for condensation type silicone molding materials, having a relatively low melting point, and capable of mold molding was obtained.

합성예 1에서 제조된 실리콘 수지 A-1 100 중량부, 가교제 B-1 (테트라에톡시실란) 7 중량부, 무기 충전제 C-1 (이산화 규소) 400 중량부, 축합 촉매 D-1 (디부틸 주석 디라우레이트) 1 중량부, 백색 안료 E-1 (루틸형 이산화 티타늄) 40 중량부를 균일하게 혼합한 후, 니더에 가해 40℃에서 용융혼련하고, 얻어진 용융혼련물을 냉각 경화시킨 후 분쇄하여 입자로 만든 후, 이를 통해 실리콘 수지 조성물 1을 얻었다. 그 성능을 표 2에 나타낸다.100 parts by weight of silicone resin A-1 prepared in Synthesis Example 1, 7 parts by weight of crosslinking agent B-1 (tetraethoxysilane), 400 parts by weight of inorganic filler C-1 (silicon dioxide), condensation catalyst D-1 (dibutyl Tin dilaurate) 1 part by weight, 40 parts by weight of white pigment E-1 (rutile type titanium dioxide) are uniformly mixed, melt-kneaded at 40°C by adding to a kneader, and then cooled and hardened, and then crushed. After being made of particles, silicone resin composition 1 was obtained through this. Table 2 shows the performance.

합성예 1의 실리콘 수지 A-1 대신 합성예 2에서 제조된 실리콘 수지 A-2를 사용한 것을 제외하고, 다른 재료 및 제조 공정은 모두 실시예 1과 동일하게 하여 실리콘 수지 조성물 2를 얻었다. 그 성능을 표 2에 나타낸다.Except for using the silicone resin A-2 prepared in Synthesis Example 2 instead of the silicone resin A-1 in Synthesis Example 1, all other materials and manufacturing processes were the same as in Example 1 to obtain a silicone resin composition 2. Table 2 shows the performance.

합성예 1의 실리콘 수지 A-1 대신 합성예 3에서 제조된 실리콘 수지 A-3를 사용한 것을 제외하고, 다른 재료 및 제조 공정은 모두 실시예 1과 동일하게 하여 실리콘 수지 조성물 3을 얻었다. 그 성능을 표 2에 나타낸다.The silicone resin composition 3 was obtained in the same manner as in Example 1, except that the silicone resin A-3 prepared in Synthesis Example 3 was used instead of the silicone resin A-1 in Synthesis Example 1. Table 2 shows the performance.

합성예 1의 실리콘 수지 A-1 대신 합성예 4에서 제조된 실리콘 수지 A-4를 사용한 것을 제외하고, 다른 재료 및 제조 공정은 모두 실시예 1과 동일하게 하여 실리콘 수지 조성물 4를 얻었다. 그 성능을 표 2에 나타낸다.A silicone resin composition 4 was obtained in the same manner as in Example 1, except for the silicone resin A-4 prepared in Synthesis Example 4, instead of the silicone resin A-1 in Synthesis Example 1. Table 2 shows the performance.

[비교 실시예 1][Comparative Example 1]

합성예 1의 실리콘 수지 A-1 대신 비교 합성예 1에서 제조된 실리콘 수지 A'-1을 사용한 것을 제외하고, 다른 재료 및 제조 공정은 모두 실시예 1과 동일하게 하여 실리콘 수지 조성물 1'을 얻었다. 그 성능을 표 2에 나타낸다.The silicone resin composition 1'was obtained in the same manner as in Example 1, except for the silicone resin A'-1 prepared in Comparative Synthesis Example 1 instead of the silicone resin A-1 in Synthesis Example 1. . Table 2 shows the performance.

[비교 실시예 2][Comparative Example 2]

합성예 1의 실리콘 수지 A-1 대신 비교 합성예 2에서 제조된 실리콘 수지 A'-2를 사용한 것을 제외하고, 다른 재료 및 제조 공정은 모두 실시예 1과 동일하게 하여 실리콘 수지 조성물 2'를 얻었다. 그 성능을 표 2에 나타낸다.The silicone resin composition 2'was obtained in the same manner as in Example 1 except for the silicone resin A'-2 prepared in Comparative Synthesis Example 2 instead of the silicone resin A-1 in Synthesis Example 1. . Table 2 shows the performance.

[비교 실시예 3][Comparative Example 3]

합성예 1의 실리콘 수지 A-1 대신 비교 합성예 3에서 제조된 실리콘 수지 A'-3를 사용한 것을 제외하고, 다른 재료 및 제조 공정은 모두 실시예 1과 동일하게 하여 실리콘 수지 조성물 3'을 얻었다. 그 성능을 표 2에 나타낸다.A silicone resin composition 3'was obtained in the same manner as in Example 1 except for the silicone resin A'-3 prepared in Comparative Synthesis Example 3 instead of the silicone resin A-1 in Synthesis Example 1, all of which were the same as in Example 1. . Table 2 shows the performance.

[비교 실시예 4][Comparative Example 4]

합성예 1의 실리콘 수지 A-1 대신 CN101519531B의 합성 실시예 2와 동일한 방법으로 제조된, 융점이 80.7℃의 실리콘 수지(이하, 실리콘 수지 A'-4)를 사용한 것을 제외하고, 이외 다른 재료 및 제조 공정은 모두 실시예 1과 동일하게 하여 실리콘 수지 조성물 4'를 얻었다. 그 성능을 표 2에 나타낸다.Materials other than the silicone resin A-1 of Synthesis Example 1 prepared in the same manner as in Synthesis Example 2 of CN101519531B, except that a silicone resin having a melting point of 80.7° C. (hereinafter, silicone resin A′-4) was used. The manufacturing process was the same as in Example 1 to obtain a silicone resin composition 4'. Table 2 shows the performance.

조성
(중량부)
Furtherance
(Parts by weight)
실시예Example 비교실시예Comparative Example
1One 22 33 44 1One 22 33 44 실리콘 수지 조성물Silicone resin composition 1One 22 33 44 1'One' 2'2' 3'3' 4'4' 실리콘 수지Silicone resin A-1A-1 100100 A-2A-2 100100 A-3A-3 100100 A-4A-4 100100 A'-1A'-1 100100 A'-2A'-2 100100 A'-3A'-3 100100 A'-4A'-4 100100 가교제Crosslinker B-1B-1 1010 1010 1010 1010 1010 1010 1010 1010 무기충진제Inorganic filler C-1C-1 400400 400400 400400 400400 400400 400400 400400 400400 축합촉매Condensation catalyst D-1D-1 1One 1One 1One 1One 1One 1One 1One 1One 백색안료White pigment E-1E-1 4040 4040 4040 4040 4040 4040 4040 4040 저온가공성Low temperature processability XX XX XX XX 내후성(%)Weatherability (%) 14.314.3 8.58.5 6.76.7 5.15.1 5.25.2 48.948.9 23.623.6 17.817.8

표 2에서, 본 발명의 실시예 1 ~ 4의 실리콘 수지 조성물 1 ~ 4 및 비교 실시예 1 ~ 4의 실리콘 수지 조성물 1' ~ 4'는 모두 실리콘 수지와 가교제, 무기 충전제, 축합 촉매를 혼합하여 얻은 것이며, 본 발명의 실시예 1 ~ 4에서 이용한 실리콘 수지는 각각 순차적으로 합성예 1 ~ 4의 실리콘 수지 A-1 ~ A-4인 반면, 비교 실시예 1 ~ 4에서 이용한 실리콘 수지는 각각 순차적으로 비교 합성예 1 ~ 3의 실리콘 수지 A'-1 ~ A'-3 및 CN101519531B의 합성 실시예 2에 의해 제조된 실리콘 수지 A'-4인 점에서만 상이한 것을 알 수 있다. 측정 결과로부터 알 수 있는 바와 같이, 본 발명의 실시예 1 ~ 4의 실리콘 수지 조성물 1 ~ 4는 모두 저온 가공성을 갖는 반면, 비교 실시예 1 ~ 4의 실리콘 수지 조성물 1' ~ 4'는 모두 저온 가공성이 없다. 또한, 본 발명의 실시예 1 ~ 4의 실리콘 수지 조성물 1 ~ 4는 비교 실시예 2 ~ 4의 실리콘 수지 조성물 2' ~ 4' 보다 내후성이 우수하다.In Table 2, silicone resin compositions 1 to 4 of Examples 1 to 4 of the present invention and silicone resin compositions 1'to 4'of Comparative Examples 1 to 4 are all mixed with a silicone resin, a crosslinking agent, an inorganic filler, and a condensation catalyst. The silicone resins used in Examples 1 to 4 of the present invention are each sequentially the silicone resins A-1 to A-4 of Synthesis Examples 1 to 4, whereas the silicone resins used in Comparative Examples 1 to 4 are sequentially It can be seen that the differences are only in that the silicone resins A'-4 prepared by Synthesis Example 2 of Comparative Synthesis Examples 1 to 3 of the silicone resins A'-1 to A'-3 and CN101519531B. As can be seen from the measurement results, all of the silicone resin compositions 1 to 4 of Examples 1 to 4 of the present invention have low-temperature processability, while all of the silicone resin compositions 1'to 4'of Comparative Examples 1 to 4 are low temperature. There is no processability. In addition, the silicone resin compositions 1 to 4 of Examples 1 to 4 of the present invention have better weather resistance than the silicone resin compositions 2'to 4'of Comparative Examples 2 to 4.

이와 같이 본 발명은, 본 발명에 따른 실리콘 수지를 적어도 가교제, 무기 충전제, 축합 촉매와 혼합함으로써, 양호한 저온 가공성 및 내후성을 갖는 축합형 실리콘 성형재료를 얻을 수 있었다.Thus, the present invention, by mixing the silicone resin according to the present invention with at least a crosslinking agent, an inorganic filler, and a condensation catalyst, it was possible to obtain a condensed silicone molding material having good low-temperature processability and weather resistance.

1 칩
2 리드
3 렌즈
4 봉지재
5 하우징
1 chip
2 leads
3 lenses
4 encapsulant
5 housing

Claims (10)

식 (1)의 평균 단위식으로 도시된 실리콘 수지로서,
[MeSiO3/2]a[PhSiO3/2]b[R2SiO2/2]c[HO1/2]d (1)
(식 1에서, R은 Me 또는 Ph를 나타내고, a, b, c, d는 몰비를 나타내며, a는 0.3 ~ 0.9, b는 0.05 ~ 0.5, c는 0.05 ~ 0.5, d는 0.001 ~ 0.3, 및 a + b + c = 1이라는 요건을 충족한다.)
상기 실리콘 수지는 25℃에서 고체이고, 융점이 50℃ 미만인, 몰드 성형이 가능한 실리콘 수지.
As a silicone resin shown in the average unit formula of formula (1),
[MeSiO 3/2 ] a [PhSiO 3/2 ] b [R 2 SiO 2/2 ] c [HO 1/2 ] d (1)
(In Formula 1, R represents Me or Ph, a, b, c, d represents a molar ratio, a is 0.3 to 0.9, b is 0.05 to 0.5, c is 0.05 to 0.5, d is 0.001 to 0.3, and a + b + c = 1.
The silicone resin is a solid at 25 °C, the melting point is less than 50 °C, a silicone resin capable of mold molding.
제 1항에 있어서, a는 0.4 ~ 0.8, b는 0.1 ~ 0.4, c는 0.1 ~ 0.3, d는 0.01 ~ 0.2, 및 a + b + c = 1인 것을 특징으로 하는, 실리콘 수지.
The silicone resin according to claim 1, wherein a is 0.4 to 0.8, b is 0.1 to 0.4, c is 0.1 to 0.3, d is 0.01 to 0.2, and a + b + c = 1.
제 1항 내지 제 2항 중 어느 한 항에 있어서, 상기 실리콘 수지의 융점이 25 ~ 40℃인 것을 특징으로 하는, 실리콘 수지.
The silicone resin according to any one of claims 1 to 2, wherein the silicone resin has a melting point of 25 to 40°C.
제 1항의 실리콘 수지를 제조하는 방법으로서,
(a) 물, 산성 촉매 및 제1 유기용매를 포함하는 제1 혼합물을, 클로로실란(chlorosilane) 및 제2 유기용매를 포함하는 제2 혼합물에 첨가하여, 상기 클로로실란을 가수분해 반응시켜, 가수분해 반응물로부터 유기상(organic phase)과 수상(aqueous phase)을 분리하는 가수분해 공정과,
(b) 분리된 유기상의 pH를 7 ~ 14로 중화한 후 축합반응시키는 축합 공정을 포함하고,
상기 클로로실란이 MeSiCl3, PhSiCl3 및 R2SiCl2의 조합(여기서 R은 Me 또는 Ph를 나타냄)인, 실리콘 수지를 제조하는 방법.
A method for manufacturing the silicone resin of claim 1,
(a) a first mixture comprising water, an acidic catalyst and a first organic solvent is added to a second mixture comprising chlorosilane and a second organic solvent to hydrolyze the chlorosilane, A hydrolysis process for separating an organic phase and an aqueous phase from a decomposition reaction product,
(b) neutralizing the pH of the separated organic phase to 7 to 14 and then condensing to condense the reaction,
Method of producing a silicone resin, wherein the chlorosilane is a combination of MeSiCl 3 , PhSiCl 3 and R 2 SiCl 2 (where R represents Me or Ph).
실리콘 수지 조성물로서,
(A) 제 1항의 실리콘 수지 100 중량부;
(B) 규소 원자에 결합하는 수산기(hydroxyl group), 알콕시기(alkoxy group), 아실옥시기(acyloxy group), 아미드기(amide group), 케톡심기(ketoxime group) 또는 이소프로페닐옥시기(isopropenyloxy group)를 적어도 3개 갖는 가교제 1 내지 30 중량부;
(C) 무기 충전제 1 ~ 800 중량부; 및
(D) 촉매로서 유효양의 축합 촉매;
를 포함하는 몰드 성형이 가능한 실리콘 수지 조성물.
As a silicone resin composition,
(A) 100 parts by weight of the silicone resin of claim 1;
(B) a hydroxyl group, a alkoxy group, an acyloxy group, an amide group, a ketoxime group or an isopropenyloxy group (isopropenyloxy) that binds to a silicon atom group) 1 to 30 parts by weight of a crosslinking agent having at least three;
(C) 1 to 800 parts by weight of an inorganic filler; And
(D) a condensation catalyst in an effective amount as a catalyst;
Silicone resin composition capable of mold molding comprising a.
제 5항에 있어서, 상기 실리콘 수지 조성물은 상기 실리콘 수지(A) 100 중량부에 대하여 1 ~ 100 중량부의 (E)백색 안료를 추가적으로 함유하는 것을 특징으로 하는, 실리콘 수지 조성물.
The silicone resin composition according to claim 5, wherein the silicone resin composition further contains 1 to 100 parts by weight of the (E) white pigment relative to 100 parts by weight of the silicone resin (A).
제 1항의 실리콘 수지를 포함하는 실리콘 수지 조성물을 몰드 성형하여 이루어지는, 몰드 성형체.
A molded article obtained by mold molding a silicone resin composition comprising the silicone resin of claim 1.
제 1항의 실리콘 수지를 포함하는 실리콘 수지 조성물을 몰드 성형하는 것을 포함하는, 몰드 성형체의 제조방법.
A method of manufacturing a molded article comprising molding a silicone resin composition comprising the silicone resin of claim 1.
제 5항 또는 제 6항에 기재된 실리콘 수지 조성물을 몰드 성형하여 이루어지는, LED 하우징.
An LED housing formed by mold molding the silicone resin composition according to claim 5 or 6.
제 9항의 LED 하우징을 구비하는 반도체 발광소자.
A semiconductor light emitting device comprising the LED housing of claim 9.
KR1020180098996A 2017-08-29 2018-08-24 Moldable silicone resin, composition and semiconductor light emitting device thereof KR102119861B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710758019.6A CN107501942B (en) 2017-08-29 2017-08-29 Moldable silicone resin, composition and semiconductor light-emitting element thereof
CN201710758019.6 2017-08-29

Publications (2)

Publication Number Publication Date
KR20190024731A KR20190024731A (en) 2019-03-08
KR102119861B1 true KR102119861B1 (en) 2020-06-08

Family

ID=60694262

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020180098996A KR102119861B1 (en) 2017-08-29 2018-08-24 Moldable silicone resin, composition and semiconductor light emitting device thereof

Country Status (4)

Country Link
JP (1) JP6626168B2 (en)
KR (1) KR102119861B1 (en)
CN (1) CN107501942B (en)
TW (1) TWI665236B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109517175A (en) * 2018-11-27 2019-03-26 湖北新四海化工股份有限公司 LED encapsulation high-quality phenyl vinyl MTQ silicone resin and preparation method
CN113372758A (en) * 2021-08-12 2021-09-10 北京康美特科技股份有限公司 White organic silicon printing ink, reflecting layer, backlight substrate and backlight module
CN116102733A (en) * 2021-11-30 2023-05-12 广州市斯洛柯高分子聚合物有限公司 Solid pure organic silicon resin, preparation method thereof and organic silicon resin composition

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100359392B1 (en) 1995-02-02 2003-01-24 다우 코닝 아시아 리미티드 Thermosetting silicone resins
JP2014185293A (en) 2013-03-25 2014-10-02 Mitsubishi Chemicals Corp Curable silicone resin

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3683770B2 (en) * 2000-03-21 2005-08-17 東レ・ダウコーニング株式会社 Silicone rubber sponge-forming composition, silicone rubber sponge and method for producing silicone rubber sponge
WO2005017058A1 (en) * 2003-08-01 2005-02-24 Dow Corning Corporation Silicone based dielectric coatings and films for photovoltaic applications
JP4849814B2 (en) * 2005-03-29 2012-01-11 東レ・ダウコーニング株式会社 Hot-melt silicone adhesive
MY141236A (en) * 2007-06-29 2010-03-31 Dow Corning Toray Co Ltd Silicone resin composition, curable resin composition, and cured resin
JP4623322B2 (en) * 2007-12-26 2011-02-02 信越化学工業株式会社 White thermosetting silicone resin composition for forming optical semiconductor case, optical semiconductor case and molding method thereof
JP2010106243A (en) * 2008-09-30 2010-05-13 Shin-Etsu Chemical Co Ltd Silicone resin composition for optical semiconductor device
CN101508776B (en) * 2009-03-13 2011-04-20 杭州师范大学 Method of preparing methyl phenyl polysiloxane
CN103951828B (en) * 2010-01-25 2018-04-27 Lg化学株式会社 Organic siliconresin
KR101881604B1 (en) * 2011-11-21 2018-07-24 신에쓰 가가꾸 고교 가부시끼가이샤 White thermosetting silicone resin composition useful as led reflector and optical semiconductor device using the same
CN106604970B (en) * 2014-09-01 2023-01-20 Ddp特种电子材料美国第9有限公司 Curable silicone composition, curable hot-melt silicone, and optical device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100359392B1 (en) 1995-02-02 2003-01-24 다우 코닝 아시아 리미티드 Thermosetting silicone resins
JP2014185293A (en) 2013-03-25 2014-10-02 Mitsubishi Chemicals Corp Curable silicone resin

Also Published As

Publication number Publication date
JP6626168B2 (en) 2019-12-25
KR20190024731A (en) 2019-03-08
CN107501942B (en) 2020-10-02
TW201912684A (en) 2019-04-01
TWI665236B (en) 2019-07-11
JP2019044166A (en) 2019-03-22
CN107501942A (en) 2017-12-22

Similar Documents

Publication Publication Date Title
KR101497158B1 (en) Silicone resin composition for optical semiconductor device
KR101865150B1 (en) Silicon-containing curable composition and cured product of same
KR101520510B1 (en) Silicone resin composition for optical semiconductor device and optical semiconductor device
US8013056B2 (en) White heat-curable silicone resin composition, optoelectronic part case, and molding method
US8013057B2 (en) White thermosetting silicone resin composition for molding an optical semiconductor case and optical semiconductor case
KR102119861B1 (en) Moldable silicone resin, composition and semiconductor light emitting device thereof
US7807736B2 (en) Semiconductor device encapsulated by silicone resin composition, and silicone resin tablet for encapsulating semiconductor device
EP2295499B1 (en) Underfill composition and an optical semiconductor device
JP5218298B2 (en) Thermosetting silicone resin-epoxy resin composition and premolded package molded with the resin
KR102081074B1 (en) Condensation Reaction Silicone Composition and Cured Product
JP2011032392A (en) Silicone resin composition for optical semiconductor apparatus
JP2003012767A (en) Curable epoxy resin composition
JP2014177570A (en) Thermosetting silicone resin composition
JP5246880B2 (en) Underfill material composition and optical semiconductor device
JP5556794B2 (en) White thermosetting silicone resin composition useful as LED reflector and optical semiconductor device using the composition
JP2011132299A (en) Silicone resin composition
JP5640957B2 (en) White thermosetting silicone resin composition useful as LED reflector and optical semiconductor device using the composition
KR20130056184A (en) White thermosetting silicone resin composition useful as led reflector and optical semiconductor device using the same
CN108463509B (en) Silicon-containing curable composition and cured product thereof
KR101613788B1 (en) Curable silicon composition
CN117795010A (en) Silicone polymer composition, cured product, electronic component, optical component, and composite member
CN116102733A (en) Solid pure organic silicon resin, preparation method thereof and organic silicon resin composition

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant