KR102113294B1 - 절연구간이 개선된 플라즈마 발생기 - Google Patents

절연구간이 개선된 플라즈마 발생기 Download PDF

Info

Publication number
KR102113294B1
KR102113294B1 KR1020180062762A KR20180062762A KR102113294B1 KR 102113294 B1 KR102113294 B1 KR 102113294B1 KR 1020180062762 A KR1020180062762 A KR 1020180062762A KR 20180062762 A KR20180062762 A KR 20180062762A KR 102113294 B1 KR102113294 B1 KR 102113294B1
Authority
KR
South Korea
Prior art keywords
reactor body
plasma
insulator
discharge channel
plasma generator
Prior art date
Application number
KR1020180062762A
Other languages
English (en)
Other versions
KR20190136710A (ko
Inventor
최대규
Original Assignee
(주) 엔피홀딩스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주) 엔피홀딩스 filed Critical (주) 엔피홀딩스
Priority to KR1020180062762A priority Critical patent/KR102113294B1/ko
Priority to PCT/KR2019/095024 priority patent/WO2019231308A1/ko
Publication of KR20190136710A publication Critical patent/KR20190136710A/ko
Application granted granted Critical
Publication of KR102113294B1 publication Critical patent/KR102113294B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/46Generating plasma using applied electromagnetic fields, e.g. high frequency or microwave energy
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/46Generating plasma using applied electromagnetic fields, e.g. high frequency or microwave energy
    • H05H1/4645Radiofrequency discharges
    • H05H1/4652Radiofrequency discharges using inductive coupling means, e.g. coils
    • H05H2001/4652

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Electromagnetism (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Plasma Technology (AREA)

Abstract

본 발명의 절연구간이 개선된 플라즈마 발생기는 가스를 공급받아 토로이달 형상의 플라즈마 방전 채널에서 플라즈마를 방전하는 제1반응기 몸체 및 제2 반응기 몸체를 갖는 반응기 몸체; 상기 플라즈마 방전 채널에 쇄교하도록 상기 반응기 몸체에 결합되는 페라이트 코어; 상기 페라이트 코어에 권선되는 일차 권선 코일; 및 상기 제1 반응기 몸체와 상기 제2 반응기 몸체의 사이에 구비되는 절연부를 포함하며, 상기 제1 반응기 몸체와 상기 제2 반응기 몸체가 연결되는 부분의 내부 단면적은 서로 상이하여, 상기 제1 반응기 몸체와 상기 제2 반응기 몸체가 끼워져 결합되고, 상기 절연부는 상기 제1 반응기 몸체와 상기 제2 반응기 몸체가 결합되는 부분에 위치할 수 있다.

Description

절연구간이 개선된 플라즈마 발생기{Plasma generator having improved insulation part}
본 발명은 절연구간이 개선된 플라즈마 발생기에 관한 것이며, 구체적으로 구조를 개선하여 절연기능이 상실되는 것을 방지한 절연구간이 개선된 플라즈마 발생기에 관한 것이다.
플라즈마 방전은 가스를 여기시켜 이온, 자유 라디칼, 원자 및 분자를 함유하는 활성화된 가스를 생성하도록 사용될 수 있다. 활성화된 가스는 반도체 웨이퍼와 같은 고형 물질, 파우더, 및 기타 가스를 처리하는 것을 포함하는 다양한 산업 및 과학 분야에서 사용된다. 플라즈마의 변수 및 처리되는 물질에 대한 플라즈마의 노출에 관한 조건은 기술 분야에 따라 넓게 변화한다. 예를 들면, 몇몇 분야에서는 처리되는 물질이 손상되기 쉬우므로 이온을 낮은 운동 에너지(즉, 몇 전자 볼트)로 사용할 것을 필요로 한다. 이방성 에칭 또는 평탄화된 절연체 증착과 같은 다른 분야에서는 높은 운동 에너지로 이온을 사용할 것을 필요로 한다. 반응성 이온 빔 에칭과 같은 또 다른 분야에서는 이온 에너지의 정밀 제어를 필요로 한다.
몇몇 분야에서는 처리되는 물질을 높은 밀도의 플라즈마에 직접 노출시키는 것을 필요로 한다. 이러한 분야 중 하나는 이온-활성화된 화학 반응을 생성하는 것이다. 다른 이러한 분야는 높은 종횡비 구조의 에칭 및 그 안으로의 물질 증착을 포함한다. 다른 분야는, 처리되는 물질이 플라즈마로부터 차폐되는 동안, 물질이 이온에 의해 손상되기 쉽거나 처리 공정이 높은 선택비 요구 조건을 갖기 때문에, 원자 및 활성화된 분자를 함유하는 중성 활성화된 가스를 필요로 한다.
다양한 플라즈마 공급원은 DC 방전, 고주파(RF) 방전, 및 마이크로웨이브 방전을 포함하는 다양한 방식으로 플라즈마를 생성할 수 있다. DC 방전은 가스 내의 두 개의 전극 사이에 전위를 인가함으로써 달성된다. RF 방전은 전원으로부터 플라즈마 내로 에너지를 정전기 또는 유도 결합시킴으로써 달성된다. 평행 판들은 에너지를 플라즈마 내에 유도 결합시키도록 통상적으로 사용된다. 유도 코일은 전류를 플라즈마 내에 유도하도록 통상적으로 사용된다. 마이크로웨이브 방전은 가스를 수용하는 방전 챔버 내에 마이크로웨이브 통과 윈도우를 통해 마이크로웨이브 에너지를 직접 결합시킴으로써 달성된다. 마이크로웨이브 방전은 높게 이온화된 전자 사이클론공명(ECR) 플라즈마를 포함하는 넓은 범위의 방전 조건을 지원하도록 사용될 수 있다.
마이크로웨이브 또는 다른 타입의 RF 플라즈마 공급원과 비교하여, 토로이달(toroidal) 플라즈마 공급원은 낮은 전기장, 낮은 플라즈마 챔버 부식, 소형화, 및 비용 효과 면에서 장점을 갖는다. 토로이달 플라즈마 공급원은 낮은 전계로 동작하며 전류-종료 전극 및 관련 음극 전위 강하를 내재적으로 제거한다. 낮은 플라즈마 챔버 부식은 토로이달 플라즈마 공급원이 다른 방식의 플라즈마 공급원보다 높은 전력 밀도에서 작동하도록 한다. 또한, 고 투과성 페라이트 코어를 사용하여 전자기 에너지를 플라즈마에 효율적으로 결합시킴으로써, 토로이달 플라즈마 챔버이 상대적으로 낮은 RF 주파수에서 작동하도록 하여 전력 공급 비용을 낮추게 된다. 토로이달 플라즈마 챔버는 반도체 웨이퍼, 평판 디스플레이, 및 다양한 물질의 처리를 위해 불소, 산소, 수소, 질소 등을 포함하는 화학적으로 활성 가스를 생성하도록 사용되어 왔다.
등록특허 제10-1680707호와 같은 종래의 플라즈마 발생기에서 플라즈마 발생되는 용기는 두 개의 블록으로 분리되어 결합될 수 있다. 이러한 형상의 용기는 조립 및 가공 비용을 절감할 수 있는 장점이 있다. 반면에, 용기는 좌우 비대칭 구조로 형성되어 가스가 공급되는 부분과 가스가 배출되는 부분이 일측으로 쏠리는 문제점이 발생할 수 있다. 이러한 문제점으로 인해 가스 분해율이 떨어질 수 있고, 가스 쏠림 현상에 의해 많은 양의 파티클이 생성될 수 있다.
또 다른 플라즈마 발생기에서 플라즈마 발생되는 용기는 여섯 개의 블록으로 분리되어 결합될 수 있다. 이러한 형상의 용기는 좌우 대칭 구조로 형성되어 가스가 전체적으로 균일하게 공급되어 가스 분해율이 높아질 수 있다. 반면에, 다수 개의 블록을 가공 및 조립해야하므로 가공비용 및 조립 비용이 높아질 수 있는 단점이 존재할 수 있다.
상기에서 언급된 종래의 플라즈마 발생기는 모두 플라즈마 이온이 용기 내부와 충돌하여 대량의 파티클이 발생하는 문제점이 존재할 수 있다. 또한 다수 개의 용기가 결합되는 부분에 형성된 절연구간은 매우 미세한 간극으로 형성될 수 있다. 이러한 절연구간의 간극에 파티클이 쌓이는 경우, 파티클에 의해 아킹(arcing)이 발생하거나 절연구간의 절연 기능을 상실하는 문제점이 발생할 수 있다.
본 발명의 목적은 절연구간에 파티클이 쌓여 절연기능을 상실하는 것을 방지하고, 파티클에 의해 아킹이 발생하는 것을 방지하는 절연구간이 개선된 플라즈마 발생기를 제공하는 데 있다.
상기와 같은 기술적 과제를 해결하기 위해, 본 발명의 일 실시 예에 따른 절연구간이 개선된 플라즈마 발생기는 가스를 공급받아 토로이달 형상의 플라즈마 방전 채널에서 플라즈마를 방전하는 제1반응기 몸체 및 제2 반응기 몸체를 갖는 반응기 몸체; 상기 플라즈마 방전 채널에 쇄교하도록 상기 반응기 몸체에 결합되는 페라이트 코어; 상기 페라이트 코어에 권선되는 일차 권선 코일; 및 상기 제1 반응기 몸체와 상기 제2 반응기 몸체의 사이에 구비되는 절연부를 포함하며, 상기 제1 반응기 몸체와 상기 제2 반응기 몸체가 연결되는 부분의 내부 단면적은 서로 상이하여, 상기 제1 반응기 몸체와 상기 제2 반응기 몸체가 끼워져 결합되고, 상기 절연부는 상기 제1 반응기 몸체와 상기 제2 반응기 몸체가 결합되는 부분에 위치할 수 있다.
실시 예에 있어서, 상기 반응기 몸체는 상기 가스를 공급받는 주입구; 및 방전된 플라즈마에 의해 분해된 라디칼을 배출하는 배출구를 포함하고, 상기 절연부는 상기 주입구 또는 상기 배출구에 인접하도록 구비될 수 있다.
실시 예에 있어서, 상기 절연부는, 상기 제1 반응기 몸체와 상기 제2 반응기 몸체 사이에 구비되는 진공씰; 및 상기 제1 반응기 몸체와 상기 제2 반응기 몸체 사이에 구비되고, 상기 진공씰이 상기 플라즈마 방전 채널에 노출되지 않도록 구비되는 절연체를 포함할 수 있다.
실시 예에 있어서, 상기 절연체의 일부는 상기 플라즈마 방전 채널을 향해 돌출 형성된 돌출부를 갖는 절연체를 포함할 수 있다.
실시 예에 있어서, 상기 돌출부는, 상기 절연체의 내측을 향해 형성되는 적어도 하나 이상의 홈을 포함할 수 있다.
본 발명의 일 실시 예에 따른 절연구간이 개선된 플라즈마 발생기는 가스를 공급받아 토로이달 형상의 플라즈마 방전 채널에서 플라즈마를 방전하는 제1반응기 몸체 및 제2 반응기 몸체를 갖는 반응기 몸체; 상기 플라즈마 방전 채널에 쇄교하도록 상기 반응기 몸체에 결합되는 페라이트 코어; 상기 페라이트 코어에 권선되는 일차 권선 코일; 및 상기 제1 반응기 몸체와 상기 제2 반응기 몸체의 사이에 구비되는 절연부를 포함하며, 상기 절연부는 상기 제1 반응기 몸체와 상기 제2 반응기 몸체 사이에 구비되는 진공씰; 및 상기 제1 반응기 몸체와 상기 제2 반응기 몸체 사이에 구비되고, 상기 진공씰이 상기 플라즈마 방전 채널에 노출되지 않도록 구비되는 절연체; 상기 절연체의 일부가 상기 플라즈마 방전 채널을 향해 돌출 형성된 돌출부를 포함할 수 있다.
실시 예에 있어서, 상기 돌출부는, 상기 절연체의 내측을 향해 형성되는 적어도 하나 이상의 홈을 포함할 수 있다.
실시 예에 있어서, 상기 반응기 몸체는 상기 가스를 공급받는 주입구; 및 방전된 플라즈마에 의해 분해된 라디칼을 배출하는 배출구를 포함하고, 상기 절연부는, 상기 주입구 또는 상기 배출구에 인접하도록 구비될 수 있다.
본 발명에 따른 절연구간이 개선된 플라즈마 발생기의 효과에 대해 설명하면 다음과 같다.
본 발명의 실시 예들 중 적어도 하나에 의하면, 플라즈마 발생기의 절연구간에 파티클이 쌓이는 것을 방지하여 절연구간의 절연기능이 유지되도록 할 수 있다. 또한 플라즈마 발생기를 두 개의 몸체로 형성함으로써 몸체의 조립 및 설치 비용을 절감할 수 있다.
또한 플라즈마 발생기는 내부 단면적이 상이한 두 개의 몸체를 끼워 결합할 수 있어 용이한 조립이 가능할 수 있다.
도 1은 본 발명의 바람직한 실시 예에 따른 플라즈마 발생기가 구비된 기판 처리 시스템을 도시한 도면이다.
도 2a 내지 도 2d는 본 발명의 제1 실시 예에 따른 플라즈마 발생기를 도시한 도면이다.
도 3은 도 2에 도시된 플라즈마 발생기에 설치되는 제 1 실시 예에 따른 절연체의 설치 예를 도시한 도면이다.
도 4는 도 2에 도시된 플라즈마 발생기에 설치되는 제 2 실시 예에 따른 절연체의 설치 예를 도시한 도면이다.
도 5a 내지 도 5d는 본 발명의 제2 실시 예에 따른 플라즈마 발생기를 도시한 도면이다.
도 6a 내지 도 6d는 도 5에 도시된 플라즈마 발생기에 설치되는 제3 실시 예에 따른 절연체를 도시한 도면이다.
도 7은 도 5에 도시된 플라즈마 발생기에 설치되는 제4 실시 예에 따른 절연체를 도시한 도면이다.
도 8은 본 발명의 제3 실시 예에 따른 플라즈마 발생기를 도시한 도면이다.
도 9a 내지 도 9d는 본 발명의 제4 실시 예에 따른 플라즈마 발생기를 도시한 도면이다.
이하, 첨부된 도면을 참조하여 본 명세서에 개시된 실시 예를 상세히 설명하되, 도면 부호에 관계없이 동일하거나 유사한 구성요소는 동일한 참조 번호를 부여하고 이에 대한 중복되는 설명은 생략하기로 한다. 이하의 설명에서 사용되는 구성요소에 대한 접미사 "모듈" 및 "부"는 명세서 작성의 용이함만이 고려되어 부여되거나 혼용되는 것으로서, 그 자체로 서로 구별되는 의미 또는 역할을 갖는 것은 아니다. 또한, 본 명세서에 개시된 실시 예를 설명함에 있어서 관련된 공지 기술에 대한 구체적인 설명이 본 명세서에 개시된 실시 예의 요지를 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략한다. 또한, 첨부된 도면은 본 명세서에 개시된 실시 예를 쉽게 이해할 수 있도록 하기 위한 것일 뿐, 첨부된 도면에 의해 본 명세서에 개시된 기술적 사상이 제한되지 않으며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.
제1, 제2 등과 같이 서수를 포함하는 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 상기 구성요소들은 상기 용어들에 의해 한정되지는 않는다. 상기 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다.
어떤 구성요소가 다른 구성요소에 "연결되어" 있다거나 "접속되어" 있다고 언급된 때에는, 그 다른 구성요소에 직접적으로 연결되어 있거나 또는 접속되어 있을 수도 있지만, 중간에 다른 구성요소가 존재할 수도 있다고 이해되어야 할 것이다. 반면에, 어떤 구성요소가 다른 구성요소에 "직접 연결되어" 있다거나 "직접 접속되어" 있다고 언급된 때에는, 중간에 다른 구성요소가 존재하지 않는 것으로 이해되어야 할 것이다.
단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다.
본 출원에서, "포함한다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
이하, 도면들을 참조하여 본 발명의 실시 예에 대해 상세히 설명하기로 한다. 본 발명은 본 발명의 정신 및 필수적 특징을 벗어나지 않는 범위에서 다른 특정한 형태로 구체화될 수 있음은 당업자에게 자명하다.
도 1은 본 발명의 바람직한 실시 예에 따른 플라즈마 발생기가 구비된 기판 처리 시스템을 도시한 도면이다.
도 1을 참조하면, 기판 처리 시스템(100)은 공정챔버(120), 플라즈마 발생기(130), 트랩(140), 펌프(150) 및 스크러버(160)를 포함할 수 있다.
공정챔버(120)는 내부 공간에서 기판의 식각, 증착 및 세정 공정 중 적어도 하나의 기판 처리 공정을 수행할 수 있다. 공정챔버(120)의 내부에는 기판 지지대가 구비될 수 있다. 기판 지지대에는 식각, 증착 공정을 수행하기 위한 기판이 안착될 수 있다. 기판은 웨이퍼 또는 디스플레이용 기판(유리)일 수 있다.
공정챔버(120)에서 증착 공정에 의해 생성된 배기유체에는 공정챔버(120)에서 증착 공정 시 생성되는 금속 전구체, 비금속 전구체 및 공정가스, 클리닝(cleaning) 가스의 부산물들이 포함되어 있다. 이러한 부산물들이 포함된 배기유체는 처리되지 않으면, 펌프(150)의 내부에 축적되거나 대기 중으로 배출될 수 있다.
공정챔버(120)의 하부에는 공정챔버(120) 내부를 진공으로 형성하거나 미반응 가스가 포함된 배기유체를 배출하기 위한 배출구가 구비될 수 있다. 배출구는 포어라인을 통해 펌프(150)와 연결될 수 있다.
플라즈마 발생기(130)는 공정챔버(120)의 포어라인에 연결될 수 있다. 플라즈마 발생기(130)는 공정챔버(120)에서 배출되는 배기유체를 분해하여 처리할 수 있다. 구제적으로 플라즈마 발생기(130)는 공정챔버(120)와 펌프(150) 사이에 구비될 수 있다. 플라즈마 발생기(130)는 공정챔버(120)에서 배기되는 배기유체를 분해하여 인체에 무해한 물질로 처리할 수 있다.
펌프(150)는 포어라인의 끝단에 연결될 수 있다. 펌프(150)는 공정챔버(120) 및 플라즈마 발생기(130)와 포어라인을 통해 연결될 수 있다. 펌프(150)를 구동하여 공정챔버(120) 내부를 진공으로 형성할 수도 있고, 배기유체를 공정챔버(120) 외부로 배출할 수도 있다.
플라즈마 발생기(130)와 펌프(150) 사이에는 트랩(140)이 구비될 수 있다. 플라즈마 발생기(130)를 통과하며 분해되지 않은 배기유체는 트랩(140)에 의해 포집될 수 있다.
공정챔버(120)의 상부에는 기판의 처리공정 또는 세정을 위한 원격 플라즈마 발생기(110)가 구비될 수 있다. 원격 플라즈마 발생기(110)는 내부에서 플라즈마를 방전하여 공정챔버(120) 내로 라디칼을 공급할 수 있다. 원격 플라즈마 발생기(110)는 공정챔버(120)의 상부에 구비되고, 발생된 라디칼을 공정챔버(120) 내로 공급할 수 있다. 원격 플라즈마 발생기(110)는 기판을 처리하는 공정용으로 사용될 수도 있고, 공정챔버(120) 내부를 세정하는 세정용으로 사용될 수도 있다.
기판 처리 시스템(100)은 하나 이상의 공정챔버(120)를 포함할 수 있다. 하나 이상의 공정챔버(120)는 각각 플라즈마 발생기(130), 트랩(140) 및 펌프(150)와 연결될 수 있다. 또는 다수 개의 공정챔버(120)는 하나의 플라즈마 발생기(130)와 연결될 수도 있다.
본 발명에서의 플라즈마 발생기(130)를 이용하면 공정챔버(120)에서 배기되는 배기유체를 분해하거나 포집할 수 있어 펌프(150) 및 트랩(140)에 배기유체가 축적되지 않아 펌프(150) 및 트랩(140)의 수명을 연장시킬 수 있다. 그러므로 펌프(150) 및 트랩(140)의 세정주기(또는 교체주기)를 늘릴 수 있으므로 공정챔버(120)의 공정 시간도 늘릴 수 있다.
도 2a 내지 도 2d는 본 발명의 제1 실시 예에 따른 플라즈마 발생기를 도시한 도면이다.
도 2a 내지 도 2d를 참조하면, 플라즈마 발생기(210)는 반응기 몸체(212), 변압기 및 전원 공급부를 포함할 수 있다.
반응기 몸체(212)는 내부에 플라즈마가 방전되는 공간으로 토로이달 형상의 플라즈마 방전 채널(211)을 갖는다. 반응기 몸체(212)는 알루미늄과 같은 금속성 물질로 제작될 수 있다. 반응기 몸체(212)를 금속성 물질로 제작하는 경우, 양극 산화처리(anodized)된 알루미늄과 같은 피복된 금속을 사용하는 것이 바람직하다. 또는 석영과 같은 절연 물질로 제작될 수 있다. 또는 반응기 몸체(212)를 금속성 물질로 제작하는 경우 복합소재 예를 들어, 탄소나노튜브와 공유결합된 알루미늄으로 구성되는 복합소재를 사용하는 것이 매우 유용할 수 있다.
플라즈마 방전 채널 일부에 쇄교하도록 반응기 몸체(212)에 변압기가 설치될 수 있다. 반응기 몸체(212)는 플라즈마 발생기(210)의 상부에 위치되는 제1 반응기 몸체(212a) 및 플라즈마 발생기(210)의 하부에 위치되는 제2 반응기 몸체(212b)를 포함할 수 있다. 제1 반응기 몸체(212a) 및 제2 반응기 몸체(212b)는 결합되어 토로이달 형상의 플라즈마 방전 채널(211)을 형성할 수 있다. 두 개의 몸체를 이용하여 토로이달 형상의 플라즈마 방전 채널(211)을 형성할 수 있으므로 다수 개의 몸체를 결합하는 구조에 비해 결합이 용이하며, 제조비용을 절감할 수 있다.
제1 반응기 몸체(212a)는 가스가 플라즈마 방전 채널(211)로 공급될 수 있는 주입구(231)를 포함할 수 있다. 주입구(231)는 별도의 상부 어댑터(230)에 연결될 수 있다. 제2 반응기 몸체(212b)는 플라즈마 방전 채널(211)에서 분해된 가스를 배출하는 배출구(241)를 포함할 수 있다. 배출구(241)는 별도의 하부 어댑터(240)에 연결될 수 있다. 제1 반응기 몸체(212a)와 제2 반응기 몸체(212b)는 내부에 구비된 플라즈마 방전 채널(211)의 전체 단면적이 동일할 수 있다. 또는 제1 반응기 몸체(212a)와 제2 반응기 몸체(212b)의 내부 단면적은 상이하고, 제1 반응기 몸체(212a)와 제2 반응기 몸체(212b)가 만나 연결되는 부분의 단면적만 동일할 수도 있다.
반응기 몸체(212)에는 변압기가 설치될 수 있다. 변압기는 페라이트 코어(216) 및 페라이트 코어(216)에 권선되는 일차 권선 코일(218)을 포함할 수 있다. 플라즈마 방전 채널(211)의 일부를 쇄교하도록 반응기 몸체(212)에 페라이트 코어(216)가 설치되고, 페라이트 코어(216)에 일차 권선 코일(218)이 권선될 수 있다. 일차 권선 코일(218)은 전원 공급부(219)와 연결되어 전원 공급부(219)로부터 전력을 공급받아 구동될 수 있다. 일차 권선 코일(218)이 구동되면 반응기 몸체(212) 내부의 플라즈마 방전 채널(211)이 이차 권선으로 기능하여 플라즈마 방전 채널(211)내에서 플라즈마가 방전될 수 있다. 플라즈마 방전 채널(211)에서 분해된 라디칼은 배출구(241)를 통해 배출될 수 있다. 페라이트 코어(216)의 설치 위치는 도면의 도시된 위치에 국한되지 않고, 주입구(231) 또는 배출구(241) 와 근접하게 설치될 수 있다.
제1 반응기 몸체(212a) 및 제2 반응기 몸체(212b)는 도체로 형성될 수 있다. 그러므로 제1 반응기 몸체(212a) 및 제2 반응기 몸체(212b)가 연결되는 부분에는 와류를 방지하기 위한 절연부(214)가 구비될 수 있다. 절연부(214)는 유도된 전류가 제1 반응기 몸체(212a) 및 제2 반응기 몸체(212b)에 흐르는 것을 방지하기 위하여 하나 이상의 전기적 절연 구간이다.
도 2a에 도시된 바와 같이, 제1 반응기 몸체(212a) 및 제2 반응기 몸체(212b)는 동일한 형상으로 상, 하 대칭 구조를 이룬다. 그러므로 절연부(214)는 제1 반응기 몸체(212a) 및 제2 반응기 몸체(212b)가 결합되는 부분인 반응기 몸체(212)의 중앙에 위치될 수 있다.
또는 도 2b에 도시된 바와 같이, 제1 반응기 몸체(212a)의 길이는 제2 반응기 몸체(212b)의 길이보다 길게 형성됨으로써, 절연부(214)는 가스가 배출되는 배출구(241)에 인접하게 구비될 수 있다.
또는 도 2c에 도시된 바와 같이, 제2 반응기 몸체(212b)의 길이는 제1 반응기 몸체(212a)의 길이보다 길게 형성됨으로써, 절연부(214)는 가스가 주입되는 주입구(241)에 인접하게 구비될 수 있다.
그리고, 도 2d에 도시된 바와 같이, 제1반응기 몸체(212a) 및 제2반응기 몸체(212b)의 길이는 동일하게 형성되고, 절연부(214)가 주입구(241) 및 배출구(241)에 인접하게 각각 구비될 수 있다.
도 3은 도 2a 내지 도 2d에 도시된 플라즈마 발생기에 설치되는 제 1 실시 예에 따른 절연체의 설치 예를 도시한 도면이다.
도 3을 참조하면, 절연부는 진공씰(317) 및 절연체(316)를 포함할 수 있다. 진공씰(317)은 탄성 부재로 제1 반응기 몸체(312a)와 제2 반응기 몸체(312b) 사이에 구비되어 플라즈마 발생기 내부가 진공 상태를 유지할 수 있도록 한다. 절연체(316)는 비탄성 부재(예를 들어, 세라믹 재질)플라즈마 발생기의 플라즈마 방전 채널에서 방전된 플라즈마에 진공씰(317)이 노출되어 진공씰(317)이 손상되는 것을 방지하고, 제1 반응기 몸체(312a) 와 제2 반응기 몸체(312b) 사이가 절연 되도록 한다.
도 3(a)에 도시된 바와 같이, 절연체(316)는 제1 반응기 몸체(312a) 및 제2 반응기 몸체(312b)의 내면과 동일한 위치에 구비되도록 설치될 수 있다. 다시 말해, 절연체(316)는 제1 반응기 몸체(312a) 및 제2 반응기 몸체(312b) 의 내면에서 돌출되지 않도록 제1 반응기 몸체(312a)와 제2 반응기 몸체(312b) 사이에 구비될 수 있다.
도 3(b)에 도시된 바와 같이, 절연체(316)는 제1 반응기 몸체(312a) 및 제2 반응기 몸체(312b)의 내면보다 플라즈마 방전 채널을 향해 돌출되는 돌출부를 포함할 수 있다.
절연체(316)에 의해 제1 반응기 몸체(312a) 및 제2 반응기 몸체(312b) 사이의 간극이 넓어지게 되므로 절연체(316)가 설치되는 부분에는 파티클이 적재되지 않는다. 그러므로 절연부에 적재된 파티클에 의해 제1 반응기 몸체(312a)와 제2 반응기 몸체(312b) 간에 쇼트 또는 아킹이 발생하는 것을 방지할 수 있다.
도 4는 도 2에 도시된 플라즈마 발생기에 설치되는 제 2 실시 예에 따른 절연체의 설치 예를 도시한 도면이다.
도 4를 참조하면, 절연체(416)는 플라즈마 방전 채널 방향으로 형성된 홈(416a)을 포함할 수 있다. 홈(416a)은 절연체(416)의 내측을 향해 하나 이상의 홈이 구비되어 형성될 수 있다. 홈(416a)은 절연체(416)의 내측을 향해 형성되어 홈(416a)에 의해 절연체(416)에 파티클이 적재되는 것을 방지할 수 있다.
도 4(a)를 참조하면, 절연체(416)는 제1 반응기 몸체(412a)와 제2 반응기 몸체(412b)의 내면과 동일하게 설치될 수 있다. 이때, 홈(416a)는 제1 반응기 몸체(412a)와 제2 반응기 몸체(412b)의 내면보다 내측으로 형성될 수 있다. 홈(416a)에 의해 절연부에 파티클이 쌓여 제1 반응기 몸체(412a)와 제2 반응기 몸체(412b)가 전기적으로 연결되거나 쇼트되는 것을 방지할 수 있다.
도 4(b)를 참조하면, 절연체(416)는 제1 반응기 몸체(412a)와 제2 반응기 몸체(412b)의 내면보다 플라즈마 방전 채널 방향으로 소정의 부분 돌출되어 설치될 수 있다. 절연체(416)의 돌출된 부분에 의해 절연부에 파티클이 쌓이는 것을 방지할 수 있다.
도 5a 내지 도 5d는 본 발명의 제2 실시 예에 따른 플라즈마 발생기를 도시한 도면이다.
도 5a 내지 도 5d를 참조하면, 플라즈마 발생기(510)는 제1 반응기 몸체(512a)와 제2 반응기 몸체(512b)의 내부 단면적(내면적)이 서로 상이할 수 있다. 제1 반응기 몸체(512a)의 내부 단면적은 제2 반응기 몸체(512b)의 내부 단면적보다 작게 형성될 수 있다. 제1 반응기 몸체(512a)의 내부 단면적이 제2 반응기 몸체(512b)의 내부 단면적보다 작게 형성됨으로써, 상부 어댑터(530)의 주입구(531)로 주입된 가스가 플라즈마 방전 공간(511)을 원활하게 통과하여 하부 어댑터(540)의 배출구(541)로 배출될 수 있다.
다른 실시 예로, 제1 반응기 몸체(512a)의 내면적과 제2 반응기 몸체(512b)의 내부 단면적은 동일하고, 제1 반응기 몸체(512a)와 제2 반응기 몸체(512b)가 연결되는 부분의 내부 단면적만 상이할 수 있다. 다시 말해, 제1 반응기 몸체(512a)에서 연결되는 부분의 내부 단면적보다 제2 반응기 몸체(512b)에서 연결되는 부분의 내부 단면적이 더 크게 형성될 수 있다. 그리하여 제1 반응기 몸체(512a)는 제2 반응기 몸체(512b)의 내로 끼워져 결합될 수 있다. 그러므로 제1 반응기 몸체(512a)와 제2 반응기 몸체(512b)의 결합이 용이할 수 있다.
이때, 제1 반응기 몸체(512a)와 제 2 반응기 몸체(512b) 사이에 절연부(514)가 구비될 수 있다. 절연부(514)에 의해 제1 반응기 몸체(512a)와 제2 반응기 몸체(512b)가 이격됨으로써 제1반응기 몸체(512a)와 제2 반응기 몸체(512b)가 전기적으로 절연될 수 있다.
특히, 제1 반응기 몸체(512a)와 제2 반응기 몸체(512b)는 끼워져 결합되므로, 절연부(514)는 제1 반응기 몸체(512a)의 외부와 제2 반응기 몸체(512b)의 내부 사이에 구비될 수 있다. 그리하여 제1 반응기 몸체(512a)와 제2 반응기 몸체(512b) 사이의 간격이 커질 수 있다.
도 5a, 도 5b, 도 5c와 같이, 절연부의 위치는 플라즈마 발생기의 중앙, 주입구(531)와 근접한 상부, 배출구와 근접한 하부에 위치될 수 있다. 그리고, 도 5d와 같이, 절연부의 위치는 플라즈마 발생기의 주입구(531) 및 배출구와 근접한 상하부에 각각 위치될 수 있다.
도 6a 내지 도 6d는 도 5a 내지 도 5d에 도시된 플라즈마 발생기에 설치되는 제3 실시 예에 따른 절연체를 도시한 도면이다.
도 6a 내지 도 6d를 참조하면, 제1 반응기 몸체(612a)와 제2 반응기 몸체(612b)의 내부 단면적이 상이하여 제1 반응기 몸체(612a)와 제2 반응기 몸체(612b)가 끼워져 결합될 수 있다. 그러므로 제1 반응기 몸체(612a)의 내부 직경(a)은 제2 반응기 몸체(612b)의 내부 직경(b)보다 작게 형성될 수 있다. 제1 반응기 몸체(612a)와 제2 반응기 몸체(612b) 사이에 진공씰(617) 및 절연체(616)가 구비될 수 있다.
제1 반응기 몸체(612a)는 내측 일부가 소정의 길이를 갖도록 형성되어, 제2 반응기 몸체(612b) 내에 끼워질 수 있다. 이때, 절연체(616)는 "ㄱ"자 형상으로 절곡되게 형성되어 제1 반응기 몸체(612a)와 제2 반응기 몸체(612b) 사이에 설치될 수 있다.
도 6a에 도시된 바와 같이, 절연체(616)의 일부는 플라즈마 방전 채널을 향해 돌출되어 설치될 수 있다. 그러므로 절연체(616)의 돌출된 부분에 의해 제1 반응기 몸체(612a)와 제2 반응기 몸체(612b) 간격이 커질 수 있다.
도 6b에 도시된 바와 같이, 절연체(616)는 제1 반응기 몸체(612a)의 돌출된 부분과 동일한 위치에 설치될 수도 있다.
도 6c에 도시된 바와 같이, 절연체(616)는 제1 반응기 몸체(612a)의 내측 일부가 돌출된 부분 내로 설치될 수 있다. 그러면 제1 반응기 몸체(612a)에서 돌출된 부분과 제 2 반응기 몸체(612b)의 내면 사이에 공간이 형성될 수 있다. 제1 반응기 몸체(612a)의 돌출된 부분과 제2 반응기 몸체(612b)의 내면 사이에서 용량 결합 플라즈마가 방전될 수 있다.
도 6d에 도시된 바와 같이, 절연체(616)는 끝단이 경사지게 형성되어 제1반응기 몸체(612a)와의 사이에 공간이 형성될 수 있다.
도 7은 도 5a 내지 도 5d에 도시된 플라즈마 발생기에 설치되는 제4 실시 예에 따른 절연체를 도시한 도면이다.
도 7을 참조하면, 제1 반응기 몸체(712a)와 제2 반응기 몸체(712b)는 끼워져 결합되고, 제1 반응기 몸체(712a)와 제2 반응기 몸체(712b) 사이에 진공씰(717) 및 절연체(716)가 설치될 수 있다. 절연체(716)는 플라즈마 방전 채널을 향해 하나 이상의 홈(716a)이 구비될 수 있다. 홈(716a)에 의해 절연체(716)에 파티클이 적재되는 것을 방지하여 제1 반응기 몸체(712a)와 제2 반응기 몸체(712b) 사이의 간격을 유지할 수 있다.
절연체(716)는 제1 반응기 몸체(712a) 및 제2 반응기 몸체(712b) 내면에서 일부가 돌출되거나 내측으로 삽입되는 형태로 설치될 수 있다. 또는 제1 반응기 몸체(712a) 및 제2 반응기 몸체(712b)의 내면과 동일한 위치가 되도록 절연체(716)가 설치될 수 있다.
도 8은 본 발명의 제3 실시 예에 따른 플라즈마 발생기를 도시한 도면이다.
도 8을 참조하면, 제1 반응기 몸체(812a)의 내부 단면적은 제2 반응기 몸체(812b)의 내부 단면적 보다 작게 형성될 수 있다. 제1 반응기 몸체(812a)의 내부 직경(a)보다 제2 반응기 몸체(812b)의 내부 직경(b)이 더 크게 형성될 수 있다.
특히, 제2 반응기 몸체(812b)는 내부 직경이 점차 작아지는 형상(b -> a)으로 형성될 수 있다. 제2 반응기 몸체(812b)의 내부는 깔대기 형상으로 경사면을 갖도록 형성될 수 있다. 그러면 제1 반응기 몸체(812a)와 제2 반응기 몸체(812b)가 결합되는 부분에서 와류가 형성되지 않고 원활하게 가스가 유동될 수 있다.
도 9a 내지 도 9d는 본 발명의 제4 실시 예에 따른 플라즈마 발생기를 도시한 도면이다.
도 9a 내지 도 9d를 참조하면, 플라즈마 발생기(910)는 상부 어댑터(930)에 구비된 주입구(931)에 근접하도록 페라이트 코어(916)를 제1 반응기 몸체(912a)에 설치할 수 있다. 또한 하부 어댑터(940)에 구비된 배출구(941)에 근접하도록 마그네틱 코어(916)를 제2 반응기 몸체(912b)에 설치할 수 있다. 제1 반응기 몸체(912a) 및 제2 반응기 몸체(912b) 사이에는 절연부(914)가 구비될 수 있다.
도 9a를 참조하면, 상기 절연부(914)는 주입구(931)보다 배출구(941)에 근접하게 형성되고, 도 9b를 참조하면, 상기 절연부(914)는 배출구(941)보다 주입구(931)에 근접하게 형성되며, 도 9c를 참조하면, 상기 절연부(914)는 주입구(931) 및 배출구(941)의 중간에 형성된다.
또한, 도 9d를 참조하면, 상기 절연부(914)는 주입구(931) 및 배출구(941)에 각각 인접하도록 상하로 구비될 수 있다.
절연부(914)의 형상 및 설치 예는 상기에서 설명한 바와 동일하게 적용할 수 있다.
제1 반응기 몸체(912a)에 설치된 페라이트 코어(916)에 의해 제1 반응기 몸체(912a)의 주입구(931) 근방에서 플라즈마가 방전되고, 제2 반응기 몸체(912b)에 설치된 페라이트 코어(916)에 의해 제2 반응기 몸체(912b)의 배출구(941) 근방에서 플라즈마가 방전될 수 있다. 그러므로 주입구(931)로 공급된 가스는 플라즈마 방전 채널을 따라 바로 배출구(941)로 배출되지 않고, 방전된 플라즈마에 의해 플라즈마 방전 채널 내에서 체류하는 시간이 길어질 수 있다. 가스의 체류 시간이 길어지면, 방전된 플라즈마와 가스의 반응 시간이 길어져 가스 분해율을 향상시킬 수 있다.
이상의 상세한 설명은 모든 면에서 제한적으로 해석되어서는 아니되고 예시적인 것으로 고려되어야 한다. 본 발명의 범위는 첨부된 청구항의 합리적 해석에 의해 결정되어야 하고, 본 발명의 등가적 범위 내에서의 모든 변경은 본 발명의 범위에 포함된다.

Claims (8)

  1. 가스를 공급받아 토로이달 형상의 플라즈마 방전 채널에서 플라즈마를 방전하는 제1반응기 몸체 및 제2 반응기 몸체를 갖는 반응기 몸체;
    상기 플라즈마 방전 채널에 쇄교하도록 상기 반응기 몸체에 결합되는 페라이트 코어;
    상기 페라이트 코어에 권선되는 일차 권선 코일; 및
    상기 제1 반응기 몸체와 상기 제2 반응기 몸체의 사이에 구비되는 절연부를 포함하며,
    상기 제1 반응기 몸체와 상기 제2 반응기 몸체가 연결되는 부분의 내부 단면적은 서로 상이하여, 상기 제1 반응기 몸체와 상기 제2 반응기 몸체가 끼워져 결합되고,
    상기 절연부는 상기 제1 반응기 몸체와 상기 제2 반응기 몸체가 끼워져 결합되는 부분에 위치하고,
    상기 절연부는,
    상기 제1 반응기 몸체와 상기 제2 반응기 몸체 사이에 구비되는 진공씰; 및
    상기 제1 반응기 몸체와 상기 제2 반응기 몸체 사이에 구비되고, 상기 진공씰이 상기 플라즈마 방전 채널에 노출되지 않도록 구비되는 절연체를 포함하고,
    상기 절연체는,
    상기 절연체의 내측을 향해 형성되는 적어도 하나 이상의 홈을 포함하는, 절연구간이 개선된 플라즈마 발생기.
  2. 제 1항에 있어서,
    상기 반응기 몸체는
    상기 가스를 공급받는 주입구; 및
    방전된 플라즈마에 의해 분해된 라디칼을 배출하는 배출구를 포함하고,
    상기 절연부는 상기 주입구 또는 상기 배출구에 인접하도록 구비되는 절연구간이 개선된 플라즈마 발생기.
  3. 삭제
  4. 제1항에 있어서,
    상기 절연체의 일부는 상기 플라즈마 방전 채널을 향해 돌출 형성된 돌출부를 갖는 절연체를 포함하는 절연구간이 개선된 플라즈마 발생기.
  5. 삭제
  6. 가스를 공급받아 토로이달 형상의 플라즈마 방전 채널에서 플라즈마를 방전하는 제1반응기 몸체 및 제2 반응기 몸체를 갖는 반응기 몸체;
    상기 플라즈마 방전 채널에 쇄교하도록 상기 반응기 몸체에 결합되는 페라이트 코어;
    상기 페라이트 코어에 권선되는 일차 권선 코일; 및
    상기 제1 반응기 몸체와 상기 제2 반응기 몸체의 사이에 구비되는 절연부를 포함하며,
    상기 절연부는
    상기 제1 반응기 몸체와 상기 제2 반응기 몸체 사이에 구비되는 진공씰; 및
    상기 제1 반응기 몸체와 상기 제2 반응기 몸체 사이에 구비되고, 상기 진공씰이 상기 플라즈마 방전 채널에 노출되지 않도록 구비되는 절연체;
    상기 절연체의 일부가 상기 플라즈마 방전 채널을 향해 돌출 형성된 돌출부를 포함하고,
    상기 돌출부는,
    상기 절연체의 내측을 향해 형성되는 적어도 하나 이상의 홈을 포함하는, 절연구간이 개선된 플라즈마 발생기.
  7. 삭제
  8. 제6항에 있어서,
    상기 반응기 몸체는
    상기 가스를 공급받는 주입구; 및
    방전된 플라즈마에 의해 분해된 라디칼을 배출하는 배출구를 포함하고,
    상기 절연부는,
    상기 주입구 또는 상기 배출구에 인접하도록 구비되는 절연구간이 개선된 플라즈마 발생기.
KR1020180062762A 2018-05-31 2018-05-31 절연구간이 개선된 플라즈마 발생기 KR102113294B1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020180062762A KR102113294B1 (ko) 2018-05-31 2018-05-31 절연구간이 개선된 플라즈마 발생기
PCT/KR2019/095024 WO2019231308A1 (ko) 2018-05-31 2019-05-30 절연구간이 개선된 플라즈마 발생기

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020180062762A KR102113294B1 (ko) 2018-05-31 2018-05-31 절연구간이 개선된 플라즈마 발생기

Publications (2)

Publication Number Publication Date
KR20190136710A KR20190136710A (ko) 2019-12-10
KR102113294B1 true KR102113294B1 (ko) 2020-06-16

Family

ID=68698383

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020180062762A KR102113294B1 (ko) 2018-05-31 2018-05-31 절연구간이 개선된 플라즈마 발생기

Country Status (2)

Country Link
KR (1) KR102113294B1 (ko)
WO (1) WO2019231308A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022035300A1 (ko) * 2020-08-14 2022-02-17 (주) 엔피홀딩스 플라즈마 발생 장치, 및 플라즈마 발생 장치를 포함하는 공정 처리 장치
KR20220021881A (ko) * 2020-08-14 2022-02-22 (주) 엔피홀딩스 플라즈마 발생 장치, 및 플라즈마 발생 장치를 포함하는 공정 처리 장치

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6872909B2 (en) * 2003-04-16 2005-03-29 Applied Science And Technology, Inc. Toroidal low-field reactive gas and plasma source having a dielectric vacuum vessel
EP1631128A4 (en) * 2003-05-14 2010-07-28 Sekisui Chemical Co Ltd PLASMA PROCESSING APPARATUS AND METHOD FOR PRODUCING THE APPARATUS
KR101296717B1 (ko) * 2007-01-13 2013-08-20 최대규 다중 경로 유도 결합 플라즈마 반응기
WO2014104753A1 (ko) * 2012-12-28 2014-07-03 주식회사 뉴파워 프라즈마 플라즈마 반응기 및 이를 이용한 플라즈마 점화 방법
KR101670296B1 (ko) * 2014-10-28 2016-10-28 최도현 파티클 저감 구조를 갖는 플라즈마 챔버

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022035300A1 (ko) * 2020-08-14 2022-02-17 (주) 엔피홀딩스 플라즈마 발생 장치, 및 플라즈마 발생 장치를 포함하는 공정 처리 장치
KR20220021881A (ko) * 2020-08-14 2022-02-22 (주) 엔피홀딩스 플라즈마 발생 장치, 및 플라즈마 발생 장치를 포함하는 공정 처리 장치
KR102661030B1 (ko) * 2020-08-14 2024-04-25 (주) 엔피홀딩스 플라즈마 발생 장치, 및 플라즈마 발생 장치를 포함하는 공정 처리 장치

Also Published As

Publication number Publication date
WO2019231308A1 (ko) 2019-12-05
KR20190136710A (ko) 2019-12-10

Similar Documents

Publication Publication Date Title
JP7187500B2 (ja) 自己共振装置を備えたプラズマ点火装置および方法
KR101094124B1 (ko) 균일한 프로세스 레이트를 발생시키는 안테나
US6239553B1 (en) RF plasma source for material processing
KR101349195B1 (ko) 코어 커버를 구비한 유도 결합 플라즈마 반응기
KR101570277B1 (ko) 플라스마 처리장치
KR20040014130A (ko) 챔버 배기장치내의 플라즈마용 자기 배리어
KR20180001799A (ko) 복합 플라즈마 소스를 갖는 플라즈마 챔버
KR20100072316A (ko) 높은 가스 유량 공정을 위한 환형 플라즈마 챔버
WO2003012821A2 (en) Method and apparatus for producing uniform process rates
KR20120004040A (ko) 플라즈마 발생장치
KR102113294B1 (ko) 절연구간이 개선된 플라즈마 발생기
KR100972371B1 (ko) 복합 플라즈마 소스 및 이를 이용한 가스 분리 방법
KR101881537B1 (ko) 가스 분해 효율 향상을 위한 플라즈마 챔버
KR102452084B1 (ko) 파티클 저감을 위한 플라즈마 반응기
KR20090076159A (ko) 다중 무선 주파수 안테나를 갖는 유도 결합 플라즈마반응기
KR102589743B1 (ko) 균일한 가스 분배를 위한 가스 분배 플레이트를 포함하는 플라즈마 챔버
KR100520407B1 (ko) 대기압 플라즈마 발생장치
KR100743842B1 (ko) 자속 채널에 결합된 플라즈마 챔버를 구비한 플라즈마반응기
KR102619010B1 (ko) 페라이트 코어의 설치 위치를 변경한 플라즈마 챔버
KR102616743B1 (ko) 플라즈마 상태 측정 센서가 구비된 일체형 연결부를 갖는 플라즈마 챔버 및 플라즈마 상태 측정 센서가 구비된 어댑터
KR102619012B1 (ko) 다중 플라즈마 채널을 갖는 플라즈마 챔버
KR102613232B1 (ko) 챔버블럭을 이용하여 플라즈마 점화가 가능한 플라즈마 챔버
KR102467296B1 (ko) 차폐 구조의 점화전극
KR20180010816A (ko) 빗각 결합 구조를 갖는 플라즈마 챔버
KR20070025543A (ko) 분리된 상부링을 갖는 플라즈마를 이용한 반도체 제조 장치

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right