KR102112722B1 - Induction heating module and water purifier having the same - Google Patents
Induction heating module and water purifier having the same Download PDFInfo
- Publication number
- KR102112722B1 KR102112722B1 KR1020180044610A KR20180044610A KR102112722B1 KR 102112722 B1 KR102112722 B1 KR 102112722B1 KR 1020180044610 A KR1020180044610 A KR 1020180044610A KR 20180044610 A KR20180044610 A KR 20180044610A KR 102112722 B1 KR102112722 B1 KR 102112722B1
- Authority
- KR
- South Korea
- Prior art keywords
- cover
- hot water
- water tank
- working coil
- temperature sensor
- Prior art date
Links
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 title claims abstract description 583
- 230000006698 induction Effects 0.000 title claims abstract description 109
- 238000010438 heat treatment Methods 0.000 title claims description 119
- 239000012212 insulator Substances 0.000 claims description 45
- 238000003466 welding Methods 0.000 claims description 36
- 238000000034 method Methods 0.000 claims description 22
- 238000000746 purification Methods 0.000 claims description 9
- 230000004308 accommodation Effects 0.000 claims description 3
- 239000007769 metal material Substances 0.000 claims description 3
- 238000000926 separation method Methods 0.000 claims description 2
- 230000000630 rising effect Effects 0.000 claims 1
- 239000002210 silicon-based material Substances 0.000 claims 1
- 125000006850 spacer group Chemical group 0.000 abstract description 89
- 239000007788 liquid Substances 0.000 abstract description 48
- 239000008213 purified water Substances 0.000 description 58
- 239000003507 refrigerant Substances 0.000 description 23
- 239000000463 material Substances 0.000 description 18
- 239000002245 particle Substances 0.000 description 13
- 239000003063 flame retardant Substances 0.000 description 12
- 238000001816 cooling Methods 0.000 description 11
- 230000008569 process Effects 0.000 description 11
- 229910001220 stainless steel Inorganic materials 0.000 description 11
- 239000010935 stainless steel Substances 0.000 description 11
- 238000011144 upstream manufacturing Methods 0.000 description 11
- RNFJDJUURJAICM-UHFFFAOYSA-N 2,2,4,4,6,6-hexaphenoxy-1,3,5-triaza-2$l^{5},4$l^{5},6$l^{5}-triphosphacyclohexa-1,3,5-triene Chemical compound N=1P(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP=1(OC=1C=CC=CC=1)OC1=CC=CC=C1 RNFJDJUURJAICM-UHFFFAOYSA-N 0.000 description 10
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 10
- 229910052710 silicon Inorganic materials 0.000 description 10
- 239000010703 silicon Substances 0.000 description 10
- 238000012546 transfer Methods 0.000 description 10
- 238000005057 refrigeration Methods 0.000 description 9
- 238000003860 storage Methods 0.000 description 9
- 238000010292 electrical insulation Methods 0.000 description 8
- 239000011521 glass Substances 0.000 description 8
- 239000010445 mica Substances 0.000 description 8
- 229910052618 mica group Inorganic materials 0.000 description 8
- 230000002265 prevention Effects 0.000 description 8
- 239000010453 quartz Substances 0.000 description 8
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 8
- 239000000571 coke Substances 0.000 description 7
- 239000002826 coolant Substances 0.000 description 7
- 239000000498 cooling water Substances 0.000 description 7
- 238000004891 communication Methods 0.000 description 6
- 230000008878 coupling Effects 0.000 description 6
- 238000010168 coupling process Methods 0.000 description 6
- 238000005859 coupling reaction Methods 0.000 description 6
- 239000000565 sealant Substances 0.000 description 6
- 230000008859 change Effects 0.000 description 5
- 230000007797 corrosion Effects 0.000 description 5
- 238000005260 corrosion Methods 0.000 description 5
- 238000001914 filtration Methods 0.000 description 5
- 238000011045 prefiltration Methods 0.000 description 5
- 239000004020 conductor Substances 0.000 description 4
- 238000009434 installation Methods 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 238000013021 overheating Methods 0.000 description 4
- 230000007547 defect Effects 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 230000020169 heat generation Effects 0.000 description 3
- 230000035515 penetration Effects 0.000 description 3
- 229920001296 polysiloxane Polymers 0.000 description 3
- 229910000859 α-Fe Inorganic materials 0.000 description 3
- 238000009529 body temperature measurement Methods 0.000 description 2
- 238000011109 contamination Methods 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000007599 discharging Methods 0.000 description 2
- 239000000428 dust Substances 0.000 description 2
- 230000005489 elastic deformation Effects 0.000 description 2
- 238000000605 extraction Methods 0.000 description 2
- 230000017525 heat dissipation Effects 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 238000005304 joining Methods 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 238000007789 sealing Methods 0.000 description 2
- 230000001629 suppression Effects 0.000 description 2
- 238000003809 water extraction Methods 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 235000013361 beverage Nutrition 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 230000006837 decompression Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 230000035622 drinking Effects 0.000 description 1
- 230000005674 electromagnetic induction Effects 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 239000003673 groundwater Substances 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000000615 nonconductor Substances 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 230000008707 rearrangement Effects 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000008400 supply water Substances 0.000 description 1
- 239000008399 tap water Substances 0.000 description 1
- 235000020679 tap water Nutrition 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D35/00—Filtering devices having features not specifically covered by groups B01D24/00 - B01D33/00, or for applications not specifically covered by groups B01D24/00 - B01D33/00; Auxiliary devices for filtration; Filter housing constructions
- B01D35/18—Heating or cooling the filters
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D35/00—Filtering devices having features not specifically covered by groups B01D24/00 - B01D33/00, or for applications not specifically covered by groups B01D24/00 - B01D33/00; Auxiliary devices for filtration; Filter housing constructions
- B01D35/02—Filters adapted for location in special places, e.g. pipe-lines, pumps, stop-cocks
- B01D35/04—Plug, tap, or cock filters filtering elements mounted in or on a faucet
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D35/00—Filtering devices having features not specifically covered by groups B01D24/00 - B01D33/00, or for applications not specifically covered by groups B01D24/00 - B01D33/00; Auxiliary devices for filtration; Filter housing constructions
- B01D35/14—Safety devices specially adapted for filtration; Devices for indicating clogging
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D35/00—Filtering devices having features not specifically covered by groups B01D24/00 - B01D33/00, or for applications not specifically covered by groups B01D24/00 - B01D33/00; Auxiliary devices for filtration; Filter housing constructions
- B01D35/30—Filter housing constructions
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D37/00—Processes of filtration
- B01D37/04—Controlling the filtration
- B01D37/048—Controlling the filtration by temperature measuring
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B6/00—Heating by electric, magnetic or electromagnetic fields
- H05B6/02—Induction heating
- H05B6/10—Induction heating apparatus, other than furnaces, for specific applications
- H05B6/105—Induction heating apparatus, other than furnaces, for specific applications using a susceptor
- H05B6/108—Induction heating apparatus, other than furnaces, for specific applications using a susceptor for heating a fluid
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B6/00—Heating by electric, magnetic or electromagnetic fields
- H05B6/02—Induction heating
- H05B6/36—Coil arrangements
- H05B6/362—Coil arrangements with flat coil conductors
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Engineering & Computer Science (AREA)
- Water Supply & Treatment (AREA)
- Water Treatment By Sorption (AREA)
Abstract
본 발명은, 워킹 코일; 상기 워킹 코일로부터 이격된 위치에서 상기 워킹 코일을 마주보도록 배치되고, 내부 공간을 통과하는 액체를 가열하도록 상기 워킹 코일에 의해 유도 가열되는 온수 탱크; 상기 워킹 코일을 사이에 두고 상기 온수 탱크와 결합되는 브라켓; 및 상기 워킹 코일과 상기 온수 탱크 사이의 일정한 간격을 유지하도록 상기 워킹 코일과 상기 온수 탱크 사이에 배치되며, 상기 온수 탱크와 상기 브라켓의 결합에 의해 압착되더라도 일정한 두께를 유지하도록 형성되는 스페이서를 포함하는 정수기를 제공한다.The present invention, a working coil; A hot water tank arranged to face the working coil at a position spaced apart from the working coil and induction heated by the working coil to heat liquid passing through the inner space; A bracket coupled to the hot water tank with the working coil interposed therebetween; And a spacer disposed between the working coil and the hot water tank to maintain a constant distance between the working coil and the hot water tank, and formed to maintain a constant thickness even when compressed by the combination of the hot water tank and the bracket. Provide a water purifier.
Description
본 발명은 유도 가열 방식으로 온수를 생성하는 정수기에 관한 것이다.The present invention relates to a water purifier that generates hot water in an induction heating method.
일반적으로 정수기는 본체 내부에 설치된 여러 단계의 필터에 의해 수돗물이나 지하수 등의 원수에 포함되어 있는 인체에 유해한 각종 유해성분을 여과시킴으로써 안전하고 위생적인 음료수로 전환시키는 장치이다.In general, the water purifier is a device that converts safe and sanitary beverages into water by filtering various harmful components contained in raw water such as tap water or ground water by filtering at various stages installed inside the main body.
정수기는 이를 위해서 상기 필터를 통과한 정수된 물을 사용자의 선택에 따라, 출수부로 공급 가능하도록, 냉수유로와 온수유로 그리고 정수유로 등을 형성하고, 기계식 또는 전자식 밸브로 물의 흐름을 제어하는 장치이다.To this end, the water purifier is a device that forms a cold water flow path, a hot water flow path, and a water purification flow path so that purified water that has passed through the filter can be supplied to the water outlet according to a user's choice, and controls the flow of water with a mechanical or electronic valve. .
정수기는 저수조를 구비하는지 여부에 따라 저수조형과 직수형으로 구분될 수 있다. 저수조형 정수기는 정수를 저수조에 보관하고 있다가 사용자가 출수부를 조작하였을 때 저수조에 저장된 정수를 제공하도록 이루어진다. 이에 반해 직수형 정수기는 저수조를 구비하지 않고, 사용자가 출수부를 조작하였을 때 즉시 원수를 여과하여 사용자에게 정수를 제공하도록 이루어진다. 직수형 정수기는 저수조형 정수기에 비해 위생적이고 물을 절약할 수 있는 것으로 인식되어 있어, 최근에는 직수형 정수기에 대한 사용자의 선호도가 증가하고 있다.The water purifier can be divided into a water storage tank type and a direct water tank type depending on whether or not a water tank is provided. The water storage tank type water purifier is configured to store purified water in a water storage tank and provide purified water stored in the water storage tank when a user operates the water outlet. On the other hand, the direct-type water purifier does not have a water storage tank, and when the user operates the water outlet, the raw water is immediately filtered to provide the user with purified water. The direct water purifier is recognized as being more hygienic and water-saving than the water tank type water purifier, and recently, the user's preference for the direct water purifier has increased.
정수기는 상온수 외에 온수와 냉수를 제공하기도 한다. 온수와 냉수를 제공하는 정수기는 그 내부에 가열 장치와 냉각 장치를 별도로 구비한다. 가열 장치는 정수를 가열하여 온수를 생성하도록 이루어지고, 냉각 장치는 정수를 냉각하여 냉수를 생성하도록 이루어진다.In addition to room temperature water, water purifiers also provide hot and cold water. A water purifier providing hot and cold water has separate heating and cooling devices therein. The heating device is configured to heat the purified water to generate hot water, and the cooling device is configured to cool the purified water to generate cold water.
직수형 정수기가 온수 또는 냉수를 제공하기 위해서는 정수를 짧은 시간 안에 가열 또는 냉각할 수 있어야 한다. 가열 장치가 짧은 시간 안에 정수를 가열하는 방식은 여러 가지가 있을 수 있다.In order to provide hot or cold water, a direct water purifier must be able to heat or cool the water in a short time. There are various ways in which the heating device heats the purified water in a short time.
예를 들어 대한민국 등록특허공보 제10-0817832호(2008.03.31.)에는 면상 발열 히터를 이용하여 정수를 가열하는 구성이 개시되어 있다. 또한, 대한민국 공개특허공보 제10-2005-0103723호(2005.11.01.)에는 유도 가열 방식으로 정수를 가열하는 구성이 개시되어 있다.For example, Republic of Korea Patent Publication No. 10-0817832 (2008.03.31.) Discloses a configuration for heating the purified water using a planar heating heater. In addition, Korean Patent Application Publication No. 10-2005-0103723 (2005.11.01.) Discloses a configuration for heating purified water by an induction heating method.
유도 가열이란 전자기 유도를 이용하여 피가열체를 가열하는 방식을 가리킨다. 코일에 전류가 공급되면, 피가열체에 와전류(eddy current)가 발생하고, 금속의 저항에 의해 발생된 줄열(Joule heating)이 피가열체의 온도를 높이게 된다.Induction heating refers to a method of heating an object using electromagnetic induction. When a current is supplied to the coil, an eddy current is generated in the object to be heated, and Joule heating generated by resistance of the metal increases the temperature of the object to be heated.
코일과 피가열체 사이의 간격에 의해 유도 가열의 출력값이 달라진다. 예를 들어 유도 가열의 출력값이 정상 범위를 초과하면(고출력) 물이 끓어 스팀이 발생하게 된다. 반대로 유도 가열 출력값이 정상 범위에 미치지 못하면(저출력) 정수를 충분히 가열하지 못하게 된다.The output value of induction heating varies depending on the distance between the coil and the object to be heated. For example, if the output value of induction heating exceeds the normal range (high power), water boils and steam is generated. Conversely, if the induction heating output value does not reach the normal range (low power), it is impossible to sufficiently heat the purified water.
따라서 코일과 피가열체 사이의 간격을 일정하게 유지하는 것은 매우 중요하다. 그러나 종래에 개시된 기술에는 코일과 피가열체 사이의 간격을 일정하게 유지할 수 있는 수단에 대해 충분히 개시되어 있지 못하다.Therefore, it is very important to maintain a constant distance between the coil and the object to be heated. However, the technique disclosed in the prior art is not sufficiently disclosed as a means for maintaining a constant distance between the coil and the object to be heated.
본 발명의 제1 목적은 워킹 코일과 온수 탱크 사이의 일정한 간격을 유지하기 위해 워킹 코일과 온수 탱크 사이에 배치되는 스페이서를 포함하는 정수기를 제안하기 위한 것이다.The first object of the present invention is to propose a water purifier including a spacer disposed between the working coil and the hot water tank to maintain a constant distance between the working coil and the hot water tank.
본 발명의 제2 목적은 실런트(sealant) 없이 워킹 코일, 온수 탱크 및 스페이서를 조립하여도, 워킹 코일과 온수 탱크 사이의 일정한 간격이 유지될 수 있는 조립구조를 제공하기 위한 것이다.The second object of the present invention is to provide an assembly structure in which a constant distance between the working coil and the hot water tank can be maintained even when the working coil, the hot water tank, and the spacer are assembled without a sealant.
본 발명의 제3 목적은 유도 가열 모듈을 포함하는 정수기를 대량 생산하더라도, 개별 정수기마다 유도 가열 출력을 정확하게 제어할 수 있는 구조의 정수기를 제안하기 위한 것이다.The third object of the present invention is to propose a water purifier having a structure capable of accurately controlling the induction heating output for each water purifier even if a large amount of the water purifier including the induction heating module is produced.
본 발명의 제4 목적은 워킹 코일과 온수 탱크에서 발생된 열이 인접한 부품으로 전달되는 것을 억제할 수 있는 구조의 정수기를 제공하기 위한 것이다.A fourth object of the present invention is to provide a water purifier having a structure capable of suppressing heat generated from the working coil and the hot water tank from being transferred to adjacent parts.
본 발명의 제5 목적은 워킹 코일과 온수 탱크 사이의 일정한 간격을 유지하면서 워킹 코일을 냉각시킬 수 있는 구조의 정수기를 제안하기 위한 것이다.The fifth object of the present invention is to propose a water purifier having a structure capable of cooling the working coil while maintaining a constant distance between the working coil and the hot water tank.
본 발명의 유도 가열 모듈은 워킹 코일, 워킹 코일에 의해 유도 가열되는 온수 탱크, 및 워킹 코일과 온수 탱크 사이의 일정한 간격을 유지하도록 워킹 코일과 온수 탱크 사이에 배치되는 스페이서를 포함한다.The induction heating module of the present invention includes a working coil, a hot water tank induction heated by the working coil, and a spacer disposed between the working coil and the hot water tank to maintain a constant distance between the working coil and the hot water tank.
스페이서는 (1) 워킹 코일과 온수 탱크 사이의 일정한 간격 유지, (2) 전기적 절연, (3) 열전달 억제, (4) 내열성을 갖는 난연재, (5), 워킹 코일의 양단을 통과시킬 수 있는 구조, (6) 워킹 코일의 냉각을 구현할 수 있는 구조의 조건을 갖춘다.The spacer is (1) maintaining a constant distance between the working coil and the hot water tank, (2) electrical insulation, (3) heat transfer suppression, (4) flame retardant material having heat resistance, (5), a structure capable of passing both ends of the working coil , (6) It has the condition of the structure that can realize the cooling of the working coil.
상기 조건을 만족하기 위해, 스페이서는 운모, 석영, 유리 또는 실리콘으로 형성될 수 있다.To satisfy the above conditions, the spacer can be formed of mica, quartz, glass or silicon.
또한 상기 조건을 만족하기 위해 스페이서는 환형으로 형성되며, 스페이서의 제1부분은 환형의 어느 일부를 형성하고, 스페이서의 제2부분은 환형의 나머지 일부를 형성하며 제1부분보다 좁은 폭을 갖는다.In addition, in order to satisfy the above conditions, the spacer is formed in an annular shape, the first part of the spacer forms any part of the annulus, and the second part of the spacer forms the remaining part of the annulus and has a narrower width than the first part.
또한 상기 조건을 만족하기 위해 스페이서는 온수 탱크와 워킹 코일을 서로 마주보게 하는 홀을 구비한다.In addition, in order to satisfy the above condition, the spacer is provided with a hole that faces the hot water tank and the working coil.
온수 탱크와 워킹 코일 사이의 간격이 스페이서의 두께에 의해 결정되도록 스페이서의 일면은 온수 탱크에 밀착되고 스페이서의 타면은 워킹 코일에 밀착된다. 스페이서는 복수로 구비될 수 있으며, 이 경우 복수의 스페이서는 서로 밀착되도록 배치된다. 온수 탱크와 브라켓은 워킹 코일과 스페이서를 사이에 두고 스크류에 의해 서로 결합된다.One surface of the spacer is in close contact with the hot water tank and the other side of the spacer is in close contact with the working coil so that the distance between the hot water tank and the working coil is determined by the thickness of the spacer. A plurality of spacers may be provided, and in this case, the plurality of spacers are disposed to be in close contact with each other. The hot water tank and the bracket are joined to each other by screws with a working coil and a spacer therebetween.
구체적으로 브라켓은 서로 이격되게 배치되는 복수의 보스부를 구비하고, 온수 탱크와 브라켓은 보스부에 삽입되는 스크류에 의해 서로 결합된다. 온수 태크와 브라켓의 결합이 완료되면, 스크류의 헤드와 보스부 사이에 온수 탱크의 테두리가 배치된다.Specifically, the bracket is provided with a plurality of boss portions which are spaced apart from each other, and the hot water tank and the bracket are coupled to each other by screws inserted into the boss portion. When the combination of the hot water tag and the bracket is completed, an edge of the hot water tank is disposed between the head of the screw and the boss portion.
브라켓은 베이스부, 보스부, 온수 탱크 지지부, 위치 고정부, 코어 수용부, 온도 센서 수용부 및 과열 방지 퓨즈 수용부를 구비하며, 유도 가열 모듈의 부품들을 정수기 본체의 내부에 고정하도록 이루어진다.The bracket includes a base portion, a boss portion, a hot water tank support portion, a position fixing portion, a core receiving portion, a temperature sensor receiving portion, and an overheat preventing fuse receiving portion, and is configured to fix components of the induction heating module to the interior of the water purifier body.
절연체는 (1) 전기적 절연, (2) 열전달 억제, (3) 내열성을 갖는 난연재, (4), 워킹 코일의 양단을 통과시킬 수 있는 구조, (5) 워킹 코일의 냉각을 구현할 수 있는 구조의 조건을 갖춘다.The insulator has (1) electrical insulation, (2) heat transfer suppression, (3) heat-resistant flame retardant, (4), a structure capable of passing both ends of the working coil, and (5) a structure capable of cooling the working coil. Conditions are met.
상기 조건을 만족하기 위해, 절연체는 운모, 석영, 유리 또는 실리콘으로 형성될 수 있다.In order to satisfy the above conditions, the insulator can be formed of mica, quartz, glass or silicon.
또한 상기 조건을 만족하기 위해 절연체는 환형으로 형성되며, 절연체의 제1부분은 환형의 어느 일부를 형성하고, 절연체의 제2부분은 환형의 나머지 일부를 형성하며 제1부분보다 좁은 폭을 갖는다.In addition, in order to satisfy the above conditions, the insulator is formed in an annular shape, the first portion of the insulator forms any part of the annular shape, and the second portion of the insulator forms the remaining portion of the annular shape and has a narrower width than the first portion.
또한 상기 조건을 만족하기 위해 절연체는 홀을 구비한다.In addition, in order to satisfy the above conditions, the insulator has holes.
이와 같은 본 발명의 일 목적을 달성하기 위하여 본 발명은 유도 가열 모듈을 포함하는 정수기를 개시한다. 정수기는 상기 유도 가열 모듈의 과제 해결 수단을 갖는다.In order to achieve such an object of the present invention, the present invention discloses a water purifier including an induction heating module. The water purifier has a means for solving the problems of the induction heating module.
상기와 같은 구성의 본 발명에 의하면, 온수 탱크와 워킹 코일 사이에 배치되는 스페이서가 운모(mica), 석영 또는 유리로 형성됨에 따라 온수 탱크와 워킹 코일 사이의 일정한 간격 유지하도록 이루어질 수 있다.According to the present invention, the spacer disposed between the hot water tank and the working coil may be formed of mica, quartz, or glass to maintain a constant distance between the hot water tank and the working coil.
특히 온수 탱크와 브라켓이 스크류에 의해 서로 결합됨에 따라 스페이서가 압착되더라도, 스페이서의 두께는 일정하게 유지될 수 있다. 스페이서는 온수 탱크 및 워킹 코일에 밀착된 상태를 유지하므로, 온수 탱크와 워킹 코일 사이의 간격은 스페이서에 의해 결정된다. 따라서 스페이서의 두께가 일정하게 유지될 수 있다는 것은 온수 탱크와 워킹 코일 사이의 간격도 일정하게 유지될 수 있음을 의미한다.In particular, although the spacer is compressed as the hot water tank and the bracket are coupled to each other by screws, the thickness of the spacer can be kept constant. Since the spacer remains in close contact with the hot water tank and the working coil, the space between the hot water tank and the working coil is determined by the spacer. Therefore, that the thickness of the spacer can be kept constant means that the gap between the hot water tank and the working coil can also be kept constant.
온수 탱크와 브라켓이 스크류에 의해 서로 결합되더라도 온수 탱크와 워킹 코일 사이의 간격이 일정하게 유지될 수 있으므로, 본 발명의 구조에 의하면 실런트(sealant) 없이 워킹 코일, 온수 탱크 및 스페이서의 위치가 고정될 수 있다.Even if the hot water tank and the bracket are coupled to each other by screws, the distance between the hot water tank and the working coil can be kept constant, and according to the structure of the present invention, the positions of the working coil, the hot water tank, and the spacer can be fixed without a sealant. Can be.
나아가 실런트와 달리 스크류 체결 구조는 공정에 따라 다른 결과를 유발하지 않으므로 본 발명의 구조는 대량 생산에 유리하다.Furthermore, unlike the sealant, the screw fastening structure does not cause different results depending on the process, so the structure of the present invention is advantageous for mass production.
스페이서와 절연체가 운모(mica), 석영, 유리 또는 실리콘으로 형성됨에 따라 본 발명에서는 열전달을 억제하는 효과를 얻을 수 있다. 특히 유도 가열 모듈에서 발생된 열이 인접한 부품으로 전달되면 열에 의한 손상이 유발될 수 있으나, 스페이서와 절연체에 의해 열전달이 억제되면 열에 의한 손상이 방지될 수 있다.As the spacer and the insulator are formed of mica, quartz, glass or silicon, an effect of suppressing heat transfer can be obtained in the present invention. In particular, when heat generated from the induction heating module is transferred to adjacent parts, damage due to heat may be caused, but when heat transfer is suppressed by a spacer and an insulator, damage caused by heat may be prevented.
스페이서와 절연체는 홀을 구비하여 워킹 코일과 공기의 접촉 면적을 확보 가능하도록 이루어진다. 따라서 워킹 코일과 온수 탱크 사이의 일정한 간격을 유지하면서 워킹 코일의 공랭이 구현될 수 있다.The spacer and the insulator are provided with holes to secure a contact area between the working coil and air. Therefore, air cooling of the working coil may be realized while maintaining a constant distance between the working coil and the hot water tank.
도 1은 본 발명과 관련된 정수기의 외관을 보인 사시도다.
도 2는 본 발명의 관련된 정수기의 내부 구성을 보인 분해 사시도다.
도 3은 본 발명과 관련된 정수기의 유로 구성을 보인 개념도다.
도 4는 본 발명과 관련된 유도 가열 모듈과 제어 모듈의 분해 사시도다.
도 5는 본 발명과 관련된 유도 가열 모듈의 일부 구성품을 보인 분해 사시도다.
도 6은 유도 가열 모듈의 결합 구조를 보이기 위해 도 5의 라인 A-A에 대응되는 구성을 보인 측면도다.1 is a perspective view showing the appearance of a water purifier related to the present invention.
Figure 2 is an exploded perspective view showing the internal configuration of the water purifier of the present invention.
3 is a conceptual view showing a flow path configuration of a water purifier related to the present invention.
4 is an exploded perspective view of an induction heating module and a control module related to the present invention.
5 is an exploded perspective view showing some components of an induction heating module related to the present invention.
6 is a side view showing a configuration corresponding to the line AA of FIG. 5 to show the coupling structure of the induction heating module.
도 1은 본 발명의 정수기(1000)를 보인 사시도다.1 is a perspective view showing a
정수기(1000)는 커버(1010), 출수부(1020), 베이스(1030) 및 트레이(1040)를 포함한다.The
커버(1010)는 정수기(1000)의 외관을 형성한다. 커버(1010)에 의해 형성되는 정수기(1000)의 외관은 정수기(1000)의 본체로 명명될 수 있다. 원수를 여과하기 위한 부품들은 정수기(1000) 본체의 내부에 설치된다. 커버(1010)는 상기 부품들을 보호하도록 상기 부품들을 감싼다. 커버(1010)라는 명칭은 케이스 또는 하우징 등으로 바뀌어 호명될 수 있다. 어느 명칭이건 정수기(1000)의 외관을 형성하고 원수를 여과하는 부품들을 감싸도록 이루어진다면 본 발명에서 설명하는 커버(1010)에 해당한다.The
커버(1010)는 단일 부품으로 형성될 수도 있으나, 여러 부품들의 결합에 의해 형성될 수 있다. 일 예로 도 1에 도시된 바와 같이 커버(1010)는 프론트 커버(1011), 리어 커버(1014), 사이드 패널(1013a), 어퍼 커버(1012) 및 탑 커버(1015)를 포함할 수 있다.The
프론트 커버(1011)는 정수기(1000)의 전방에 배치된다. 리어 커버(1014)는 정수기(1000)의 후방에 배치된다. 여기서 정수기(1000)의 전방과 후방은 각각 사용자의 시선에서 출수부(1020)를 정면으로 바라보는 방향을 기준으로 설정한 것이다. 다만, 정수기(1000)의 전방과 후방이라는 개념이 절대적인 것은 아니므로, 정수기(1000)를 묘사하는 방식에 따라 달라질 수 있다.The
사이드 패널(1013a)은 정수기(1000)의 좌우에 각각 배치된다. 사이드 패널(1013a)은 프론트 커버(1011)와 리어 커버(1014) 사이에 배치된다. 사이드 패널(1013a)은 프론트 커버(1011) 및 리어 커버(1014)와 각각 결합될 수 있다. 사이드 패널(1013a)은 실질적으로 정수기(1000)의 옆면을 형성한다.The
어퍼 커버(1012)는 정수기(1000)의 전방에 배치된다. 어퍼 커버(1012)는 프론트 커버(1011)보다 높은 위치에 설치된다. 어퍼 커버(1012)와 프론트 커버(1011) 사이의 공간으로 출수부(1020)가 노출된다. 어퍼 커버(1012)는 프론트 커버(1011)와 함께 정수기(1000) 전면의 외관을 형성한다.The
탑 커버(1015)는 정수기(1000)의 윗면을 형성한다. 탑 커버(1015)의 전방에는 입출력부(1016)가 형성될 수 있다. 입출력부(1016)는 입력부와 출력부를 포함하는 개념이다. 입력부는 사용자의 제어 명령을 인가받도록 이루어진다. 입력부가 사용자의 제어 명령을 인가받는 방식은 터치 입력, 물리적인 가압 등을 모두 포함하거나 선택적으로 포함할 수 있다. 출력부는 사용자에게 정수기(1000)의 상태 정보를 시청각적으로 제공하도록 이루어진다.The
출수부(취출부 또는 코크 어셈블리, 1020)는 사용자의 제어 명령에 따라 사용자에게 정수를 제공하는 기능을 한다. 출수부(1020)의 적어도 일부는 물을 공급하기 위해 정수기(1000) 본체의 외부로 노출된다. 특히 상온의 정수, 상온보다 차가운 냉수 및 상온보다 뜨거운 온수를 제공하도록 이루어지는 정수기(1000)에서는 사용자로부터 인가받은 제어 명령에 따라 상온의 정수, 냉수 및 온수 중 적어도 하나가 출수부(1020)를 통해 배출될 수 있다.The water outlet part (take-out part or coke assembly, 1020) functions to provide water to the user according to a user's control command. At least a portion of the
출수부(1020)는 사용자의 조작에 따라 회전 가능하도록 이루어질 수 있다. 프론트 커버(1011)와 어퍼 커버(1012)는 그 사이에 출수부(1020)의 회전 영역을 형성하고, 출수부(1020)는 상기 회전 영역에서 좌우로 회전될 수 있다. 출수부(1020)의 회전은 사용자가 출수부(1020)에 물리적으로 가하는 힘에 의해 이루어질 수 있다. 또한 출수부(1020)의 회전은 사용자가 입출력부(1016)에 인가하는 제어 명령에 근거하여 이루어질 수 있다. 출수부(1020)의 회전을 구현하는 구성은 정수기(1000)의 내부에 설치될 수 있으며, 구체적으로 어퍼 커버(1012)에 의해 가려지는 영역에 설치될 수 있다. 그리고, 입출력부(1016)도 출수부(1020)의 회전 시 출수부(1020)와 함께 회전하도록 구현될 수 있다.The
베이스(1030)는 정수기(1000)의 바닥을 형성한다. 정수기(1000)의 내부 부품들은 베이스(1030)에 의해 지지된다. 정수기(1000)가 바닥이나 선반 등에 놓여져 있을 때, 베이스(1030)는 바닥이나 선반 등을 마주보게 된다. 따라서 정수기(1000)가 바닥이나 선반 등에 놓여져 있을 때 베이스(1030)의 구조가 외부로 노출되지 않는다.The base 1030 forms the bottom of the
트레이(1040)는 출수부(1020)를 마주하도록 배치된다. 정수기(1000)가 도 1과 같이 설치되었을 경우를 기준으로, 트레이(1040)는 출수부(1020)를 상하 방향으로 마주한다. 트레이(1040)는 출수부(1020)를 통해 배출되는 정수 등을 담기 위한 용기 등을 지지하도록 형성된다. 또한 트레이(1040)는 출수부(1020)에서 떨어지는 잔수를 수용하도록 형성된다. 트레이(1040)가 출수부(1020)에서 떨어지는 잔수를 받아 수용하면, 정수기(1000) 주위에 잔수로 인한 오염의 발생을 방지할 수 있다.The
트레이(1040)는 출수부(1020)에서 떨어지는 잔수를 받아내야 하므로, 트레이(1040)도 출수부(1020)와 함께 회전하도록 구현될 수 있다. 입출력부(1016)와 트레이(1040)는 출수부(1020)와 같은 방향으로 회전하도록 구현되는 것이 바람직하다.Since the
도 2는 도 1에 도시된 정수기(1000)의 내부 구성을 보인 분해 사시도다.FIG. 2 is an exploded perspective view showing an internal configuration of the
필터부(1060)는 프론트 커버(1011)의 내측에 설치된다. 필터부(1060)는 원수 공급부로부터 공급되는 원수를 여과하여 정수를 생성하도록 이루어진다. 하나의 필터만으로 사용자가 음용하기에 적절한 정수를 생성하기 어려울 수 있으므로, 필터부(1060)는 복수의 단위 필터들(1061, 1062)을 포함할 수 있다. 단위 필터들(1061, 1062)은 예를 들어, 카본 블럭, 흡착 필터 등의 프리 필터(prefilter)와 헤파 필터(HEPA filter : High Efficiency Particulate Air filter), UF 필터(Ultra Filteration 또는 Ultra Filteration filter) 등의 고성능 필터등을 포함한다. 도 2에는 두 개의 단위 필터들(1061, 1062)이 설치되어 있으나, 단위 필터들(1061, 1062)의 수는 필요에 따라 확장되거나 축소될 수 있다.The
복수의 단위 필터들(1061, 1062)은 기설정된 순서에 따라 연결된다. 기설정된 순서란 필터부(1060)가 물을 여과하기에 적절한 순서를 의미하는 것이다. 원수에는 다양한 이물질이 포함되어 있을 수 있다. 머리카락이나 먼지 등의 큰 입자들은 헤파 필터나 UF 필터와 같은 고성능 필터들의 여과 성능 저하를 유발하므로, 상기 고성능 필터들은 머리카락이나 먼지 등의 큰 입자들로부터 보호되어야 한다. 따라서 고성능 필터들의 보호를 위해서는 프리 필터가 고성능 필터들의 상류측에 설치되어야 한다.The plurality of
프리 필터는 큰 입자들을 물로부터 제거하도록 이루어진다. 프리 필터가 고성능 필터들의 상류측에 배치되어 원수에 포함된 큰 입자들을 먼저 제거하면, 큰 입자들을 포함하지 않는 원수가 고성능 필터로 공급되므로 고성능 필터들이 보호될 수 있다. 프리 필터를 통과한 원수는 이어서 헤파 필터나 UF 필터 등에 의해 여과된다.The pre-filter is made to remove large particles from the water. If the pre-filter is disposed on the upstream side of the high-performance filters and the large particles included in the raw water are first removed, the high-performance filters can be protected because the raw water not containing the large particles is supplied to the high-performance filters. The raw water that has passed through the pre-filter is then filtered by a HEPA filter or UF filter.
필터부(1060)에 의해 생성된 정수는 곧바로 출수부(1020)를 통해 사용자에게 제공될 수 있다. 이 경우 사용자에게 제공되는 정수의 온도는 상온에 해당한다. 이와 달리, 필터부(1060)에 의해 생성된 정수는 유도 가열 모듈(1100)에 의해 가열되거나 냉수 탱크 조립체(1200)에 의해 냉각될 수 있다.The purified water generated by the
필터 브라켓 조립체(1070)는 필터부(1060)의 단위 필터(1061, 1062)들을 고정시키고, 정수나 냉수 등의 출수 유로, 밸브, 센서 등의 부품들을 고정하는 구조물이다.The
필터 브라켓 조립체(1070)의 하부(1071)는 트레이(1040)와 결합된다. 필터 브라켓 조립체(1070)의 하부(1071)는 트레이(1040)의 돌출 결합부(1041)를 수용하도록 형성된다. 트레이(1040)의 돌출 결합부(1041)가 필터 브라켓 조립체(1070)의 하부(1071)에 삽입됨에 따라 필터 브라켓 조립체(1070)와 트레이(1040)의 결합이 이루어진다.The
필터 브라켓 조립체(1070)의 하부(1071)와 트레이(1040)는 서로 대응되는 곡면을 갖는다. 필터 브라켓 조립체(1070)의 하부(1071)는 필터 브라켓 조립체(1070)의 나머지 부분에 대해 독립적으로 회전될 수 있다.The
필터 브라켓 조립체(1070)의 상부(1072)는 출수부(1020)를 지지하도록 이루어진다. 필터 브라켓 조립체(1070)의 상부(1072)는 출수부(1020)의 회전 경로를 형성한다. 출수부(1020)는 정수기(1000)의 외부로 돌출되는 취출 코크부(1021)와 정수기(1000)의 내부에 배치되는 회전부(1022)로 구분될 수 있다. 회전부(1022)는 도 2에 도시된 바와 같이 회전을 위해 원형으로 형성될 수 있다. 회전부(1022)는 필터 브라켓 조립체(1070)의 상부(1072)에 거치된다. 필터 브라켓 조립체(1070)의 상부(1072)에 거치된 출수부(1020)는 필터 브라켓 조립체(1070)에 대하여 상대 회전되도록 이루어진다.The
필터 브라켓 조립체(1070)의 하부(1071)와 상부(1072)는 상하 연결부(1073)에 의해 서로 연결될 수 있다. 상하 연결부(1073)에 의해 서로 연결되는 필터 브라켓 조립체(1070)의 하부(1071)와 상부(1072)는 서로 동일한 방향으로 회전될 수 있다. 만일 사용자가 출수부(1020)를 회전시키면, 출수부(1020)와 연결되는 필터 브라켓 조립체(1070)의 상부(1072), 상하 연결부(1073), 하부(1071) 및 트레이(1040)가 출수부(1020)와 함께 회전될 수 있다.The
필터 브라켓 조립체(1070)의 하부(1071)와 상부(1072) 사이에는 필터부(1060)의 단위 필터들(1061, 1062)을 수용하도록 이루어지는 필터 설치 영역(1074)이 형성된다. 필터 설치 영역(1074)은 단위 필터들(1061, 1062)의 설치 공간을 제공한다.A
필터 설치 영역(1074)의 반대쪽에는 정수기(1000)의 후방을 향해 돌출되는 지지대(1075)가 형성된다. 지지대(1075)는 제어 모듈(1080)과 유도 가열 모듈(1100)을 지지하도록 이루어진다. 제어 모듈(1080)은 유도 가열 모듈(1100)은 지지대(1075)에 거치된다. 지지대(1075)는 유도 가열 모듈(1100)에서 형성된 열이 압축기(1051) 등으로 전도되는 것을 차단하도록 유도 가열 모듈(1100)과 압축기(1051) 사이에 배치된다.On the opposite side of the
제어 모듈(1080)은 정수기(1000)의 전반적인 제어를 구현하도록 이루어진다. 제어 모듈(1080)에는 정수기(1000)의 동작을 제어하는 다양한 인쇄회로기판들이 내장될 수 있다.The
유도 가열 모듈(1100)은 필터부(1060)에서 생성된 정수를 가열하여 온수를 생성하도록 형성된다. 유도 가열 모듈(1100)은 유도 가열 방식으로 정수를 가열할 수 있는 부품들을 구비한다. 유도 가열 모듈(1100)은 필터부(1060)로부터 정수를 공급받으며, 유도 가열 모듈(1100)에서 생성된 온수는 출수부(1020)를 통해 배출된다.The
유도 가열 모듈은 온수 생성을 제어하는 인쇄회로기판을 포함할 수 있다. 유도 가열 모듈의 일측에는 상기 인쇄회로기판으로 물이 침투하는 것을 방지하고 화재 발생 시 인쇄회로기판을 보호하기 위한 보호 커버(1161)가 결합될 수 있다.The induction heating module may include a printed circuit board that controls the production of hot water. A protective cover 1161 may be coupled to one side of the induction heating module to prevent water from entering the printed circuit board and to protect the printed circuit board in the event of a fire.
냉동 사이클 장치(1050)는 냉수를 생성하도록 형성된다. 냉동 사이클 장치(1050)란 냉매의 압축-응축-팽창-증발 과정이 연속적으로 일어나는 장치들의 집합을 가리킨다. 냉수 탱크 조립체(1200)에서 냉수를 생성하기 위해서는 우선 냉동 사이클 장치(1050)가 작동하여 냉수 탱크 조립체(1200)의 내부에 채워져 있는 냉각수를 저온으로 만들어야 한다.The
냉동 사이클 장치(1050)는 압축기(1051), 응축기(1052), 모세관(1053), 증발기(미도시, 냉수 탱크 조립체의 내측에 배치), 드라이어(1055) 및 이들을 서로 연결하는 냉매 유로를 포함한다. 냉매 유로는 배관 등에 의해 형성될 수 있으며, 냉매 유로는 압축기(1051), 응축기(1052), 팽창장치(1053) 및 증발기를 서로 연결하여 냉매의 순환 유로를 형성한다.The
압축기(1051)는 냉매를 압축하도록 이루어진다. 압축기(1051)는 냉매 유로에 의해 응축기(1052)와 연결되며, 압축기(1051)에서 압축된 냉매는 냉매 유로를 통해 응축기(1052)로 흘러가게 된다. 압축기(1051)는 지지대(1075)의 아래에 배치될 수 있으며, 베이스(1030)에 의해 지지되도록 설치된다.The
응축기(1052)는 냉매를 응축하도록 이루어진다. 압축기(1051)에서 압축된 냉매는 냉매 유로를 통해 응축기(1052)로 흘러 들어오고, 응축기(1052)에 의해 응축된다. 응축기(1052)에서 응축된 냉매는 냉매 유로를 통해 드라이어(1055)로 흘러 가게 된다.The
*드라이어(1055)는 냉매에서 수분을 제거하도록 이루어진다. 냉동 사이클 장치(1050)의 효율을 향상시키기 위해서는 모세관(1053)과 증발기로 유입될 냉매에서 수분이 미리 제거되어야 한다. 드라이어(1055)는 응축기(1052)와 모세관(1053)의 사이에 설치되며, 냉매로부터 수분을 제거하여 냉동 사이클 장치(1050)의 효율을 향상시킨다.*
냉매의 팽창은 모세관(1053)에 의해 구현된다. 모세관(1053)는 냉매를 팽창시키도록 이루어지며, 설계에 따라 교축밸브 등이 모세관(1053) 대신 팽창장치를 구성할 수도 있다. 모세관(1053)은 좁은 공간 내에서 충분한 길이 확보를 위해 코일 형태로 말려 있을 수 있다.The expansion of the refrigerant is realized by
증발기는 냉매를 증발시키도록 이루어지며, 냉수 탱크 조립체(1200)의 내측에 설치된다. 냉수 탱크 조립체(1200)의 내측에 채워진 냉각수와 냉동 사이클 장치(1050)의 냉매는 증발기에 의해 서로 열교환되며, 열교환에 의해 냉각수는 저온으로 유지될 수 있다. 그리고 저온으로 유지되는 냉각수에 의해 정수가 냉각될 수 있다.The evaporator is made to evaporate the refrigerant, and is installed inside the cold
증발기에서 냉각수와 열교환하여 가열된 냉매는 냉매 유로를 따라 다시 압축기(1051)로 복귀되고, 냉동 사이클 장치(1050)를 지속적으로 순환하게 된다.The refrigerant heated by heat exchange with the cooling water in the evaporator is returned to the
베이스(1030)는 압축기(1051), 프론트 커버(1011), 리어 커버(1014), 양측 사이드 패널(1013a, 1013b), 필터 브라켓 조립체(1070), 응축기(1052) 및 팬(1033) 등을 지지하도록 형성된다. 이들 구성 요소들을 지지하기 위해 베이스(1030)는 높은 강성을 갖는 것이 바람직하다.
응축기(1052)와 팬(1033)은 정수기(1000)의 후방측에 설치될 수 있는데, 응축기(1052)의 방열을 위해서는 지속적인 공기의 순환이 필요하다. 공기의 순환을 위해 베이스(1030)의 바닥에 흡기구(1034)가 형성될 수 있다. 흡기구(1034)를 통해 흡입된 공기는 팬(1033)에 의해 유동하게 된다. 공기는 응축기(1052)를 향해 유동하면서 공랭식의 냉각을 구현하게 된다. 베이스(1030)에는 응축기(1052)의 방열 효율을 높이기 위해 팬(1033)과 응축기(1052)를 감싸는 덕트 구조물(1032)이 고정될 수 있다.The
덕트 구조물(1032)의 뒤쪽으로는 드레인(1035)이 설치된다. 드레인(1035)은 정수기(1000)의 외측으로 노출되어 배수 유로를 형성한다. 정수기(1000)의 내부 유로는 모두 통하도록 이루어지기 때문에, 드레인(1035)이 어느 하나의 내부 유로와만 연결되어도 상기 내부 유로에 존재하는 유체는 모두 드레인(1035)을 통해 배출될 수 있다.A
응축기(1052)의 상부에는 냉수 탱크 조립체(1200)를 지지하도록 이루어지는 받침대(1031)가 설치될 수 있다. 받침대(1031)는 후방측에 제1홀(1031a)을 구비하고, 리어 커버(1014)는 제2홀(1014a)을 구비한다. 제1홀(1031a)과 제2홀(1014a)은 서로 대응되는 위치에 형성된다. 제1홀(1031a)과 제2홀(1014a)은 냉수 탱크 조립체(1200)에 채워진 냉각수의 배수를 위한 드레인 밸브를 배치하기 위한 것이다.A
냉수 탱크 조립체(1200)는 내부에 냉각수를 수용하도록 형성된다. 냉수 탱크 조립체(1200)는 필터부(1060)에서 생성된 정수를 공급받는다. 특히 별도의 저수조를 구비하지 않는 직수형 정수기(1000)의 경우, 냉수 탱크 조립체(1200)는 필터부(1060)로부터 직접 정수를 공급받을 수 있다.The cold
냉수 탱크 조립체(1200)에 채워진 냉각수의 온도는 냉동 사이클 장치(1050)의 작동에 의해 낮아진다. 냉수 탱크 조립체(1200)는 냉각수로 정수를 냉각하여 냉수를 형성하도록 이루어진다.The temperature of the coolant filled in the cold
냉각수는 냉수 탱크 조립체(1200)에 저장되어 있고 순환하지 않기 때문에 오랜 시간이 지나면 냉각수의 오염도가 증가하게 된다. 위생을 위해서는 주기적으로 냉수 냉크 조립체에 저장된 냉각수는 외부로 배출시키고, 새로운 냉각수가 냉수 탱크 조립체(1200)에 채워져야 한다.Since the coolant is stored in the cold
도 3은 본 발명과 관련된 정수기(1000)의 유로 구성을 보인 개념도다. 도 3의 실선은 물의 유로를 나타낸다. 물의 유로는 필터부(1060)를 기준으로 필터부(1060)의 상류측은 원수 라인(1400), 필터부(1060)의 하류측은 정수 라인(1500)으로 구분될 수 있다. 여기서 상류측 또는 하류측은 물의 흐름을 기준으로 한 구분이다.3 is a conceptual view showing a flow path configuration of the
급수 밸브(1312)는 입력부(1016, 도 1 참조)를 통해 입력되는 제어 명령에 근거하여 개폐된다. 입력부(1016)를 통해 정수, 온수 또는 냉수를 출수시키는 제어 명령이 입력되면, 급수 밸브(1312)가 개방되며, 원수 공급부(10)로부터 필터부(1060)로 원수의 공급이 이루어진다.The
원수는 필터부(1060)로 공급되는 과정에서 감압 밸브(1311)를 통과한다. 감압 밸브(1311)는 원수 공급부(10)와 필터부(1060) 사이에 설치된다. 감압 밸브(1311)는 원수 공급부(10)로부터 공급되는 원수의 압력을 감압하도록 이루어진다.Raw water passes through the
직수형 정수기(1000)는 저수조를 구비하지 않으므로, 출수부(1020)를 통해 출수되는 정수의 압력은 원수 공급부(10)에서 공급되는 원수의 압력에 의해 결정된다. 일반적으로 원수 공급부(10)에서 공급되는 원수의 압력은 고압이기 때문에, 감압 밸브(1311)가 없다면 출수부(1020)에서는 과도하게 높은 압력으로 출수가 이루어진다. 또한 필터부(1060)의 단위 필터들(1061, 1062)은 원수의 압력에 의해 물리적으로 손상될 위험도 존재한다. 따라서 원수의 감압이 요구된다.Since the direct-
감압 밸브(1311)는 원수 공급부(10)에서 필터부(1060)로 공급되는 원수를 감압한다. 이에 따라 필터부(1060)가 보호될 수 있으며, 출수부(1020)에서는 적정 압력으로 출수가 이루어질 수 있다.The
원수는 필터부(1060)의 단위 필터들(1061, 1062)을 순차적으로 통과하면서 여과된다. 필터부(1060)를 기준으로 그 상류측의 물은 원수로 명명되고, 하류측의 물은 정수로 명명될 수 있다.Raw water is filtered while sequentially passing through the unit filters 1061 and 1062 of the
필터부(1060)에서 생성된 정수는 급수 밸브(1312)와 유량 센서(1313)를 순차적으로 통과한다. 유량 센서(1313)는 필터부(1060)로부터 공급되는 유량을 측정하도록 이루어진다. 유량 센서(1313)에서 측정되는 유량은 정수기의 제어에 이용된다.The purified water generated in the
예를 들어 정수기(1000)의 입력부(1060)를 통해 일정량의 정수를 출수하는 제어 명령이 입력되면, 일정량에 대응되는 펄스값이 제어 모듈(1080)에 의해 유량 센서(1313)에 입력되고, 제어 모듈(1080)의 제어에 의해 급수 밸브(1312)가 열리게 된다. 상기 펄스값에 대응되는 유량의 정수가 유량 센서(1313)를 지나가게 되면, 제어 모듈(1080)은 유량 센서(1313)로부터 피드백을 받아 급수 밸브(1312)를 제어하게 되며, 급수 밸브(1312)는 제어 모듈(1080)의 제어에 의해 닫히게 된다. 이러한 과정 등을 통해 유량 센서(1313)에서 측정되는 유량은 정수기(1000)의 제어에 이용될 수 있다.For example, when a control command for extracting a predetermined amount of purified water is input through the
유량 센서(1313)에 연결된 정수 라인(1500)은 두 갈래(1600, 1700)로 분기되어 한 갈래는 유량 조절 밸브(1351)와 유도 가열 모듈(1100)에 순차적으로 연결된다. 유량 조절 밸브(1351)와 유도 가열 모듈(1100)에 순차적으로 연결되는 이 갈래는 온수 라인(1700)으로 명명될 수 있다. 나머지 한 갈래(1600)에는 체크 밸브(1321)가 설치되며, 이 갈래는 체크 밸브(1321)의 하류측에서 다시 정수 라인(1601)과 냉수 라인(1602)으로 분기된다. 정수 라인(1601)에는 정수 출수 밸브(1330)가 설치되고, 냉수 라인(1602)에는 냉수 출수 밸브(1340)가 설치된다. 정수 라인(1601)과 냉수 라인(1602)은 다시 하나로 합류되어 출수부(1020)에 연결되며, 합류된 유로(1603)에는 체크 밸브(1322)가 설치된다.The
정수 출수 밸브(1330)와 냉수 출수 밸브(1340)의 상류측과 하류측에 설치되는 두 체크 밸브(1321, 1322)는 서로 구분되기 위해 제1 체크 밸브(1321)와 제2 체크 밸브(1322)로 명명될 수 있다. 제1 체크 밸브(1321)와 제2 체크 밸브(1322)는 잔수 발생을 방지하기 위한 것이다.The two
온수 공급을 위한 제어 명령이 정수기에 입력되면 급수 밸브(1312), 유량 조절 밸브(1351) 및 온수 출수 밸브(1353)가 개방되며, 온수 라인(1700)을 통해 온수가 출수된다. 이 과정에서 정수 라인(1601)과 냉수 라인(1602) 내부의 압력이 낮아지게 되어 정수 출수 밸브(1330) 또는 냉수 출수 밸브(1340)가 순간적으로 열렸다가 닫히는 현상일 발생할 수 있다. 출수부(1020)가 하나의 취출 코크만을 구비하고 이 취출 코크를 통해 냉수와 온수가 모두 출수되는 구조에서는 잔수의 문제가 없다. 하지만 서로 다른 두 취출 코크를 통해 냉수와 온수가 모두 출수되는 구조에서는 어느 하나의 취출 코크에서 온수가 출수되는 동안 다른 하나의 취출 코크에서 미량의 잔수가 배출될 수 있다.When a control command for supplying hot water is input to the water purifier, the
그러나 제1 체크 밸브(1321)가 정수 라인(1500)과 냉수 라인(1602)의 분기점의 상류측에 설치되어 있으면, 온수 라인(1700)을 통한 온수의 출수 과정에서 형성되는 압력 변화가 정수 라인(1601)과 냉수 라인(1602)으로 전달되는 것을 차단할 수 있다. 이에 따라 정수 출수 밸브(1330) 또는 냉수 출수 밸브(1340)가 순간적으로 열렸다가 닫히는 현상의 발생을 방지할 수 있다.However, if the
냉수 출수 밸브(1340)가 냉수 탱크 조립체(1200)의 상류측에 설치되는 구성과 냉수 출수 밸브(1340)가 냉수 탱크 조립체(1200)의 하류측에 설치되는 구성을 서로 비교하면, 전자가 후자에 비해 냉수를 조금이라도 더 얻을 수 있다. 냉수 탱크 조립체(1200)와 냉수 출수 밸브(1340) 사이의 유로 길이에 해당하는 양의 냉수가 더 공급될 수 있기 때문이다. 따라서 냉수 출수 밸브(1340)는 도시한 바와 같이 냉수 탱크 조립체(1200)의 상류측에 설치되는 것이 바람직하다. 그러나 냉수 탱크 조립체(1200)의 상류측에 냉수 출수 밸브(1340)가 설치되는 구조에서는 냉수 라인(1602) 내부의 압력 변화에 의해 냉수 라인(1602)에 잔수가 발생할 수 있으며, 출수가 정지되었음에도 미량의 잔수가 출수부(1020)를 통해 배출될 수 있다.When comparing the configuration in which the cold
그러나 제2 체크 밸브(1322)가 정수 라인(1601) 냉수 라인(1602)의 합류 유로(1603)에 설치되면, 냉수 라인(1602)의 압력 변화가 출수부(1020)로 전달되는 것을 차단할 수 있다. 이에 따라 출수가 정지되었을 때 미량의 잔수가 출수부(1020)를 통해 배출되는 현상이 발생하는 것을 방지할 수 있다.However, when the
유량 센서(1313)를 통과한 정수는 상온의 상태로 사용자에게 곧바로 공급될 수도 있고, 온수 또는 냉수가 된 후에 사용자에 공급될 수도 있다.The purified water that has passed through the
정수 출수 밸브(1330)와 냉수 출수 밸브(1340)는 각각 입력부(1016)를 통해 입력되는 제어 명령에 근거하여 개폐되도록 이루어진다. 입력부(1016)를 통해 정수를 출수하는 제어 명령이 입력되면, 급수 밸브(1312)와 정수 출수 밸브(1330)가 개방된다. 필터부(1060)에서 생성된 정수는 정수 라인(1601)을 통해 출수부(1020)로 출수된다. 마찬가지로 입력부(1016)를 통해 냉수를 출수하는 제어 명령이 입력되면, 급수 밸브(1312)와 냉수 출수 밸브(1340)가 개방된다. 필터부(1060)에서 생성된 정수는 냉수 라인(1602)을 따라 냉수 탱크 조립체(1200)로 유입되며 냉수 탱크 조립체(1200)를 통과하면서 냉각된다. 냉수 탱크 조립체(1200)에서 생성된 냉수는 출수부(1020)를 통해 출수된다.The purified
냉수 탱크 조립체(1200)에는 드레인 밸브(1280)가 설치되며, 냉수 탱크 조립체(1200)에 채워져 있는 냉각수는 드레인 밸브(1280)를 통해 외부로 배출될 수 있다.A
온수 라인(1700)에는 유량 조절 밸브(1351)가 설치된다. 온수 탱크(1130, 도 4 참조)에 적정량 이상의 유량이 유입되면, 충분한 가열이 이루어지지 않을 수 있기 때문에 항상 적정량의 유량만 유입되도록 조절되어야 한다. 유량 조절 밸브(1351)는 유도 가열 모듈(1100)의 상류측에 설치되어 온수 탱크(1130)로 유입되는 정수의 유량을 조절하도록 형성된다.The
유량 조절 밸브(1351)에는 서미스터(1352)가 함께 설치될 수 있다. 서미스터(1352)에 의해 측정된 정수의 온도는 유도 가열 모듈(1100)의 제어에 활용된다. 예를 들어 서미스터(1352)에 의해 측정된 정수의 온도가 상대적으로 저온이면, 유도 가열 모듈(1100)이 고출력으로 작동될 수 있다. 반대로 서미스터(1352)에 의해 측정된 정수의 온도가 상대적으로 고온이면, 유도 가열 모듈(1100)이 저출력으로 작동될 수 있다.The
온수 출수 밸브(1353)는 온수 탱크(1130)의 하류측에 설치된다. 온수를 출수하는 제어 명령이 입력부(1016)를 통해 입력되면, 급수 밸브(1312)와 온수 출수 밸브(1353)가 개방되고 온수 라인(1700)을 따라 온수가 출수된다.The hot
온수 라인(1700)으로부터 분기된 유로에는 안전 밸브(safety valve)(1360)가 설치될 수 있다. 안전 밸브(1360)는 압력에 물의 유로에 형성되는 압력 변화에 의해 작동하도록 형성된다. 유도 가열 모듈(1100)이 비정상적으로 작동하는 등 정수기(1000)의 유로가 과압되면 안전 밸브(1360)가 개방되며, 드레인(1035)을 통해 정수가 배수된다.A
도 4는 본 발명과 관련된 유도 가열 모듈(1100)과 제어 모듈(1080)의 분해 사시도다.4 is an exploded perspective view of the
유도 가열 모듈(1100)은 필터부(1060, 도 2 참조)에서 생성된 정수를 공급받아 온수를 생성하는 부품들의 집합을 가리킨다. 특히 별도의 저수조를 구비하지 않는 직수형 정수기(1000, 도 1 내지 도 3 참조)의 경우, 정수는 저수조를 거치지 않고 필터부(1060, 도 2 참조)로부터 직접 유도 가열 모듈(1100)로 공급될 수 있다.The
유도 가열 모듈(1100)은 유도 가열 인쇄회로기판(1110), 유도 가열 인쇄회로기판 커버(1121, 1122), 온수 탱크(1130), 워킹 코일(1140), 브라켓(1060) 및 쉴드 플레이트(1190)를 포함한다.The
유도 가열 인쇄회로기판(1110)은 워킹 코일(1140)의 유도 가열 동작을 제어한다. 워킹 코일(1140)의 양단은 유도 가열 인쇄회로기판(1110)에 연결되며, 유도 가열 인쇄회로기판(1110)에 의해 제어된다. 예를 들어 사용자가 온수를 취출하기 위해 정수기(1000, 도 1 및 도 2 참조)의 입력부(1016)를 통해 제어 명령을 입력하면, 필터부(1060, 도 2 참조)에서 생성된 정수는 온수 탱크(1130)로 공급된다. 유도 가열 인쇄회로기판(1110)은 워킹 코일(1140)에 전류가 흐르도록 제어한다. 워킹 코일(1140)에 공급되는 전류에 의해 온수 탱크(1130)는 유도 가열된다. 정수는 온수 탱크(1130)를 통과하는 동안 순간적으로 가열되어 온수가 된다.The induction heating printed
유도 가열 인쇄회로기판 커버(1121, 1122)는 유도 가열 인쇄회로기판(1110)을 감싸도록 이루어진다. 유도 가열 인쇄회로기판 커버(1121, 1122)는 제1 유도 가열 커버(1121)와 제2 유도 가열 커버(1122)를 포함한다.The induction heating printed circuit board covers 1121 and 1122 are made to surround the induction heating printed
제1 유도 가열 커버(1121)와 제2 유도 가열 커버(1122)에 의해 형성되는 내부 공간에 유도 가열 인쇄회로기판(1110)이 설치된다. 제1 유도 가열 커버(1121)와 제2 유도 가열 커버(1122)는 물의 침투를 방지하도록 테두리끼리 서로 결합된다. 또한 제1 유도 가열 커버(1121)와 제2 유도 가열 커버(1122)의 테두리에는 물의 침투를 방지하도록 실링 부재(미도시)가 결합될 수 있다. 제1 유도 가열 커버(1121)와 제2 유도 가열 커버(1122)는 화재에 의해 유도 가열 인쇄회로기판(1110)이 손상되는 것을 방지하도록 난연 재질로 이루어지는 것이 바람직하다.An induction heating printed
온수 탱크(1130)는 정수를 가열하여 온수를 생성한다. 온수 탱크(1130)는 액체를 가열하기 위한 내부 공간을 구비한다. 온수 탱크(1130)는 워킹 코일(1140)에 의해 형성되는 자기력선에 영향을 받아 유도 가열된다. 액체는 온수 탱크(1130)의 내부 공간을 통과하는 동안 가열되어 온수가 된다. 온수 탱크(1130)는 기밀을 유지할 수 있도록 이루어진다.The
정수기(1000, 도 1 참조) 또는 냉장고 등과 같은 물 공급 장치의 소형화를 위해서는 온수 탱크(1130)를 소형화하는 것이 필요하다. 온수 탱크(1130)의 길이나 폭뿐만 아니라 두께도 종래보다 축소시켜야 물 공급 장치의 소형화가 구현될 수 있다. 따라서 온수 탱크(1130)는 납작하게 형성될수록 물 공급 장치의 소형화를 구현하기 용이하다. 그러나 도 4에 도시된 바와 같이 전체적으로 납작한 형태의 온수 탱크(1130)는 몇 가지의 문제점을 유발한다.For miniaturization of a water supply device such as a water purifier (see FIG. 1) or a refrigerator, it is necessary to miniaturize the
첫째 문제는 온수 탱크(1130)의 변형이다. 온수 탱크(1130)의 내부 공간에서 액체가 가열되면, 액체는 팽창된다. 액체의 팽창에 따라 상기 내부 공간의 압력은 급격히 증가하게 된다. 압력의 급격한 증가는 온수 탱크(1130)의 변형을 유발하게 된다.The first problem is the deformation of the
둘째 문제는 불충분한 가열이다. 매우 큰 온수 탱크(1130)를 이용하여 액체를 가열한다면 액체를 가열할 수 있는 시간이 충분하므로, 액체는 충분히 가열될 수 있다. 그러나 소형화된 온수 탱크(1130)는 액체를 가열할 수 있는 시간을 충분히 갖지 못하므로, 액체가 충분히 가열되지 못할 수 있다.The second problem is insufficient heating. If the liquid is heated using the very large
상기 두 가지 문제는 반드시 온수 탱크(1130)의 소형화에 의해서만 유발되는 것은 아니다. 하지만 온수 탱크(1130)를 소형화하면 할수록 그 문제가 갖는 심각성은 더욱 커지게 된다. 본 발명의 온수 탱크(1130)는 이러한 문제점을 개선할 수 있는 구조를 갖는다. 온수 탱크(1130)의 세부 구조는 도 5를 참조하여 후술한다.The two problems are not necessarily caused only by miniaturization of the
워킹 코일(1140)은 온수 탱크(1130)의 유도 가열을 위한 자기력선을 형성한다. 워킹 코일(1140)은 온수 탱크(1130)를 마주보도록 온수 탱크(1130)의 일측에 배치된다. 워킹 코일(1140)에 전류가 공급되면, 워킹 코일(1140)에서 자기력선이 형성된다. 이 자기력선은 온수 탱크(1130)에 영향을 주게 되며, 온수 탱크(1130)는 자기력선에 영향을 받아 유도 가열된다.The working
쉴드 플레이트(1190)는 워킹 코일(1140)의 일측에 배치된다. 쉴드 플레이트(1190)는 워킹 코일(1140)을 기준으로 온수 탱크(1130)의 반대측에 배치된다. 쉴드 플레이트(1190)는 워킹 코일(1140)에서 발생되는 자기력선이 온수 탱크(1130)를 제외한 나머지 영역으로 방사되는 것을 방지하기 위한 것이다. 쉴드 플레이트(1190)는 자기력선의 흐름을 변경시켜 주는 알루미늄 또는 기타 소재로 이루어질 수 있다.The
제어 모듈(1080)은 컨트롤 인쇄회로기판(1082), 노이즈 인쇄회로기판(1083), NFC(Near Field Communication) 인쇄회로기판(1084), 버저(Buzzer)(1085), 메인 인쇄회로기판(1086) 및 메인 인쇄회로기판 커버(1087, 1088)를 포함한다.The
컨트롤 인쇄회로기판(1082)은 디스플레이 인쇄회로기판(미도시)의 서브 구성이다. 컨트롤 인쇄회로기판(1082)은 정수기(1000, 도 1 참조)와 같은 물 공급 장치를 구동하기 위한 필수적인 구성은 아니지만, 디스플레이 인쇄회로기판(미도시)의 보조 역할을 한다.The control printed
노이즈 인쇄회로기판(1083)은 유도 가열 인쇄회로기판(1110)에 전원을 공급하기 위한 것이다. 유도 가열을 위한 출력 전압은 매우 높기 때문에 충분한 전원이 공급되어야 한다. 노이즈 인쇄회로기판(1083)도 정수기(1000, 도 1 참조)와 같은 물 공급 장치를 구동하기 위한 필수적인 구성은 아니다. 그러나 정수기(1000, 도 1 참조)와 같은 물 공급 장치는 유도 가열에 필요한 전원이 충분히 공급되지 않을 경우를 대비하여 노이즈 인쇄회로기판(1083)을 가질 수 있다. 노이즈 인쇄회로기판(1083)은 유도 가열 인쇄회로기판(1110)에 별도의 전원을 공급하여 유도 가열을 위한 출력 전압을 만족시킬 수 있다. 노이즈 인쇄회로기판(1083)은 유도 가열 인쇄회로기판(1110)뿐만 아니라 다른 구성에도 보조 전원을 제공하는 역할을 할 수 있다.The noise printed
버저(1085)는 정수기(1000, 도 1 참조)와 같은 물 공급 장치에서 불량이 발생하였을 때, 사용자에게 정확한 불량 정보를 제공할 수 있도록 음향을 출력한다. 버저(1085)는 불량에 따라 기 입력된 코드의 특정 음향을 출력할 수 있다.The
NFC 인쇄회로기판(1084)은 통신 기기와 데이터를 주고받기 위한 것이다. 현재는 스마트폰 등 개인용 통신 기기가 보편적으로 보급되어 있다. 따라서 소비자가 개인용 통신 기기를 이용하여 정수기의 상태를 확인하거나 제어 명령을 입력할 수 있다면 소비자의 편의성을 향상시킬 수 있다. NFC 인쇄회로기판(1084)은 페어링 된 개인용 통신 기기에 물 공급 장치의 상태 정보를 제공하고, 개인용 통신 기기로부터 사용자의 제어 명령을 전송받을 수 있다.The NFC printed
메인 인쇄회로기판(1086)은 정수기(1000, 도 1 참조)와 같은 물 공급 장치의 전반적인 작동을 제어한다. 도 1에서 설명한 입출력부(1016, 도 1 참조)나 도 2에서 설명한 압축기(1051, 도 2 참조)의 구동도 메인 인쇄회로기판(1086)에 의해 제어될 수 있다. 메인 인쇄회로기판(1086)은 전원이 부족할 경우 노이즈 인쇄회로기판(1083)을 통해 부족한 전원을 공급받을 수 있다.The main printed
메인 인쇄회로기판 커버(1087, 1088)는 메인 인쇄회로기판(1086)을 감싸도록 이루어진다. 메인 인쇄회로기판 커버(1087, 1088)는 제1 메인 커버(1087)와 제2 메인 커버(1088)를 포함한다.The main printed circuit board covers 1087 and 1088 are made to surround the main printed
제1 메인 커버(1087)와 제2 메인 커버(1088)에 의해 형성되는 내부 공간에 메인 인쇄회로기판(1086)이 설치된다.The main printed
제1 메인 커버(1087)와 제2 메인 커버(1088)는 물의 침투를 방지하도록 테두리끼리 서로 결합된다. 제1 메인 커버(1087)와 제2 메인 커버(1088)에는 물의 침투를 방지하도록 실링 부재(미도시)가 설치될 수 있다. 또한 제1 메인 커버(1087)와 제2 메인 커버(1088)는 화재에 의해 메인 인쇄회로기판(1086)이 손상되는 것을 방지하도록 난연 재질로 이루어지는 것이 바람직하다.The first
이하에서는 변형 방지 및 유량 분배(또는 유속 제어)를 구현하는 온수 탱크(1130)의 구조에 대하여 설명한다. 또한 워킹 코일(1140)과 온수 탱크(1130) 사이의 일정한 간격을 유지할 수 있는 구조에 대하여 설명한다.Hereinafter, a structure of the
도 5는 본 발명과 관련된 유도 가열 모듈(1100, 도 4 참조)의 일부 구성품을 보인 분해 사시도다.5 is an exploded perspective view showing some components of the induction heating module 1100 (see FIG. 4) related to the present invention.
온수 탱크(1130)는 제1커버(1131)와 제2커버(1132)의 테두리끼리 서로 결합되어 형성된다. 제1커버(1131)의 테두리와 제2커버(1132)의 테두리는 기밀을 유지하도록 서로 용접 등에 의해 결합될 수 있다. 온수 탱크(1130)는 액체를 가열하기 위한 내부 공간을 구비한다. 상기 내부 공간은 제1커버(1131)와 제2커버(1132)의 결합에 의해 형성된다.The
온수 탱크(1130)는 입수관(1132a)과 출수관(1132b)을 포함한다. 입수관(1132a)과 출수관(1132b)은 제2커버(1132)에 형성될 수 있다. 입수관(1132a)을 가열될 액체가 유입되는 유로에 해당한다. 출수관(1132b)은 가열된 액체가 배출되는 유로에 해당한다. 입수관(1132a)과 출수관(1132b)은 서로 반대쪽에 형성될 수 있다.The
제1커버(1131)는 워킹 코일(1140)에 의해 형성되는 자기력선에 영향을 받아 열을 발생시키도록 이루어진다. 제1커버(1131)는 워킹 코일(1140)에 의해 유도 가열되므로, 제1커버(1131)의 출력이 정확하게 제어되기 위해서는 제1커버(1131)와 워킹 코일(1140) 사이의 간격이 일정하게 유지되어야 한다. 유도 가열의 정확한 제어란 유도 가열 모듈(1110)의 출력을 제어하는 것을 의미한다.The
만일 워킹 코일(1140)이 기준 위치에서 벗어나게 되면 제1커버(1131)의 유도 가열이 정확하게 제어되기 어렵다. 여기서 기준 위치란 워킹 코일(1140)에 의한 제1커버(1131)의 유도 가열이 정확하게 제어될 수 있는 워킹 코일(1140)의 위치를 가리킨다. 제1커버(1131)와 워킹 코일(1140)의 간격은 후술하는 스페이서(1151, 1152)에 의해 유지된다.If the working
마찬가지로 제1커버(1131)의 일 부분이 다른 부분에 비해 워킹 코일(1140)로부터 너무 멀리 이격되어 있거나 워킹 코일(1140)에 너무 가까이 배치되면, 상기 일 부분의 유도 가열은 정확하게 제어되기 어렵다. 따라서 제1커버(1131)의 모든 부분이 워킹 코일(1140)로부터 균일하게 적정 거리에 위치하도록, 제1커버(1131)는 평판의 형상을 갖는 것이 바람직하다.Likewise, if one portion of the
제1커버(1131)는 발열을 위한 적절한 소재로 이루어질 수 있다. 제1커버(1131)는 스테인리스 소재로 이루어질 수 있으며, 바람직하게는 4계열의 스테인리스 소재로 이루어질 수 있다. 더욱 바람직하게는 제1커버(1131)가 STS(STainless Steel, 한국공업규격) 439 소재로 이루어질 수 있다. STS 439는 STS430에 비해 강화된 내식성을 갖는다. 내식성이란 물과의 접촉에 의해 부식되는 것을 억제할 수 있는 성질을 가리킨다. 제1커버(1131)는 약 0.8mm 내외의 두께를 가질 수 있다.The
제2커버(1132)는 제1커버(1131)를 기준으로 워킹 코일(1140)의 반대쪽에 배치되고 자기력선의 영향이 적기 때문에, 제1커버(1131)에 비해 발열과의 관련성이 적다. 따라서 제2커버(1132)는 발열 특성보다 내식성을 갖는 소재로 이루어지는 것이 바람직하다. 제2커버(1132)는 스테인리스 소재로 이루어질 수 있으며, 바람직하게는 3계열의 스테인리스 소재로 이루어질 수 있다. 더욱 바람직하게는 제2커버(1132)가 STS 304 소재로 이루어질 수 있다. STS 304는 STS 430이나 STS 439에 비해 더욱 강화된 내식성을 갖는다. 제2커버(1132)는 약 1.0mm 내외의 두께를 가질 수 있다.Since the
제2커버(1132)는 유도 가열과 관련성이 적으므로, 반드시 워킹 코일(1140)로부터 일정한 간격을 유지해야 하는 것은 아니다. 따라서 제2커버(1132)의 일 부분이 다른 부분에 비해 워킹 코일(1140)로부터 멀리 떨어져 있거나 워킹 코일에 가까이 배치될 수도 있다.Since the
제2커버(1132)는 베이스 면(1132c), 돌출면(1132d), 용접부(1132e), 돌기부(1132f)를 포함한다. 상기 베이스 면(1132c), 돌출면(1132d), 돌기부(1132f)는 프레스 가공에 의해 일체로 형성될 수 있다. 베이스 면(1132c)을 갖는 제2커버(1132)를 부분적으로 프레스 가공하면, 제2커버(1132)에 돌출면(1132d)과 돌기부(1132f)가 형성될 수 있다. 일체로 형성된다는 것은 별개의 구성요소로 이루어지는 것이 아니라 하나의 구성요소로 이루어지는 것을 의미하는 것으로, 상기 베이스 면(1132c), 돌출면(1132d) 및 돌기부(1132f)는 제2커버(1132)의 어느 부분을 다른 부분과 구분하기 위해 명명된 것으로 이해되어야 한다. 베이스 면(1132c), 돌출면(1132d) 및 돌기부(1132f)는 제2커버(1132)의 각 부분들을 가리키는 명칭이다.The
베이스 면(1132c)은 제1커버(1131)로부터 이격된 위치에서 제1커버(1131)를 마주본다. 앞서 온수 탱크(1130)는 액체를 가열하기 위한 내부 공간을 구비한다고 설명한 바 있다. 베이스 면(1132c)은 상기 내부 공간을 형성하도록 제1커버(1131)로부터 이격되어 있다.The
돌출면(1132d)은 베이스 면(1132c)으로부터 제1커버(1131)를 향해 돌출된다. 돌출면(1132d)은 제1커버(1131)에 밀착될 수 있다. 돌출면(1132d)의 둘레는 베이스 면(1132c)과 돌출면(1132d)을 서로 연결한다. 돌출면(1132d)을 형성하기 위해 제2커버(1132)를 프레스 가공하면 자연스럽게 베이스 면(1132c)과 돌출면(1132d)을 서로 연결하는 둘레가 형성된다. 돌출면(1132d)의 둘레는 경사지게 형성될 수 있다.The protruding
용접부(1131e)는 제1커버(1131)와 제2커버(1132)의 용접에 의해 형성된다. 보다 구체적으로 용접부(1131e)는 제1커버(1131)와 돌출면(1132d)의 용접에 의해 형성된다. 따라서 용접부(1131e)는 돌출면(1132d)에 형성될 뿐만 아니라 제1커버(1131)에도 형성된다.The welding portion 1131e is formed by welding the
베이스 면(1132c)은 온수 탱크(1130)의 내부 공간을 형성하기 위해 제1커버(1131)로부터 이격되어 있으므로 제1커버(1131)에 용접될 수 없다. 돌출면(1132d)의 둘레도 베이스 면(1132c)에 가까워질수록 제1커버(1131)로부터 멀어지므로, 제1커버(1131)에 용접되기 어렵다. 이에 반해 돌출면(1132d)은 제1커버(1131)에 밀착되도록 돌출되어 있으므로 제1커버(1131)에 용이하게 용접될 수 있다. 돌출면(1132d)은 그 자체로 기술적 의미를 갖기보다 용접부(1131e)를 형성하기 위해 전제되는 구성이라 할 수 있다.The
용접부(1131e)는 제1커버(1131)의 변형을 방지하기 위한 것이다. 유도 가열 모듈(1100, 도 3 참조)의 작동에 의해 온수 탱크(1130)의 내부에서 액체의 온도가 상승하게 되면, 액체는 점점 팽창하고 온수 탱크(1130) 내부의 압력은 점차 상승하게 된다. 물이 증발하여 증기가 되면 부피가 약 1700배 가까이 커지는 것으로 알려져 있기 때문에, 온수 탱크(1130) 내부의 압력은 온수 생성 과정에서 매우 높게 상승할 수 있다. 그리고 급격히 증가하는 온수 탱크(1130)의 내부 압력은 제1커버(1131)의 변형을 유발할 수 있다.The welding portion 1131e is for preventing deformation of the
제1커버(1131)는 유도 가열의 정확한 제어를 위해 평판의 형상을 가져야 한다는 조건이 있으며, 평판은 압력 상승에 의한 변형 방지 구조를 갖는 것에 제한을 받는다. 이러한 제한 내에서 제1커버(1131)의 변형을 방지할 수 있도록 용접부(1131e)를 도입하였다.The
용접이란 접합을 희망하는 위치에 국부적으로 열을 가해 금속재료의 일부를 용융시키고 원자 결합을 재배열하여 두 금속재료를 서로 접합하는 작업을 가리킨다. 용접에 의한 접합은 원자 결합의 재배열에 의해 매우 강한 결합력을 갖는다. 용접부(1131e)는 돌출면(1132d)과 제1커버(1131)의 용접에 의해 형성되는 것이므로, 제1커버(1131)가 용접부(1131e)를 갖는다고 설명될 수 있고, 제2커버(1132)가 용접부(1132e)를 갖는다고 설명될 수도 있으며, 제1커버(1131)와 제2커버(1132)가 용접부(1131e)를 갖는다고 설명될 수도 있다. 나아가 용접부(1131e)는 제1커버(1131)와 제2커버(1132) 사이에 형성되는 것으로 설명될 수도 있다. 도 5에서 제2커버(1132)의 용접부(미도시)는 도시되지 않았지만, 제1커버(1131)의 용접부(1131e)로부터 그 형상과 위치를 유추할 수 있다.Welding refers to a process of joining two metal materials to each other by locally applying heat to melt a part of the metal material and rearranging the atomic bonds to a desired position. Joining by welding has a very strong bonding force by rearrangement of atomic bonds. Since the welding portion 1131e is formed by welding the protruding
용접부(1131e)가 제1커버(1131)와 제2커버(1132)를 강하게 결합시키므로, 온수 탱크(1130)의 내부 압력이 상승하더라도 제1커버(1131)의 변형이 방지될 수 있다. 나아가 용접부(1131e)는 제1커버(1131)와 제2커버(1132)를 상호 결합시킨다는 점에서 제1커버(1131)뿐만 아니라 제2커버(1132)의 변형까지도 방지할 수 있는 것으로 이해될 수 있다.Since the welding portion 1131e strongly couples the
용접부(1132e)의 위치가 특정 위치로 제한되는 것은 아니다. 용접부(1132e)는 온도 센서(1181)와 중첩되지 않는 위치에 형성되는 것이 바람직하나 반드시 그래야 하는 것은 아니다. 중첩되는 위치란 제2커버(1132)에서 워킹 코일 조립체(1140)를 정면으로 바라보았을 때 용접부(1132e)와 온도 센서(1181)가 동일한 영역에 투영되는 것을 의미한다.The position of the
온도 센서(1181)는 제1커버(1131)를 기준으로 제2커버(1132)의 반대쪽에 배치된다. 온도 센서(1181)는 온수 탱크(1130)의 내부 공간을 통과하는 액체의 온도를 측정하도록 이루어진다. 온도 센서(1181)가 액체의 온도를 측정하려면 온도 센서(1181)와 중첩되는 위치에 액체가 존재해야 한다. 그러나 만약 용접부(1131e)가 온도 센서(1181)와 중첩되는 위치에 형성된다면 온도 센서(1181)와 중첩되는 위치에 액체가 존재하지 않고, 용접부(1131e)만 존재하게 된다. 따라서 이 구조에서는 온도 센서(1181)에 의한 온수 온도 측정이 부정확할 수도 있다.The
용접부(1131e)는 폐곡선의 형상을 가진다. 만일 용접부(1131e)가 직선이나 곡선과 같이 끝점을 갖는 형상으로 형성되면, 온수 탱크(1130) 내에 형성되는 고압력의 영향이 상기 끝점에 집중된다. 이에 따라 상기 끝점에서부터 제1커버(1131)와 제2커버(1132)의 분리가 발생할 수 있다. 이에 반해 용접부(1132e)가 폐곡선의 형상을 가지면 고압력의 영향이 어느 한 부분에 집중되지 않고 폐곡선에 고르게 분배될 수 있다. 따라서 폐곡선의 용접부(1131e)는 온수 탱크(1130)의 내압 성능을 향상시킬 수 있다.The welding portion 1131e has a closed curve shape. If the welding portion 1131e is formed in a shape having an end point such as a straight line or a curve, the effect of high pressure formed in the
이 명세서에서 말하는 폐곡선이란 직선이나 곡선 위의 한 점을 찍었을 때 시작점과 끝점이 같은 도형을 의미한다. 예를 들어 원, 타원뿐만 아니라 다각형도 상기 폐곡선에 해당하므로, 상기 폐곡선이 반드시 곡선으로만 형성되어야 하는 것은 아니고 직선의 집합에 의해 형성될 수도 있다. 따라서, 폐곡선이란 명칭 대신 닫힌 도형 또는 단일 폐곡선이라는 명칭이 사용될 수도 있다.The closed curve in this specification means a figure having the same start point and end point when a point on a straight line or a curve is taken. For example, since polygons as well as circles and ellipses correspond to the closed curves, the closed curves may not necessarily be formed only by curves, but may also be formed by a set of straight lines. Accordingly, a closed figure or a single closed curve may be used instead of the closed curve.
돌기부(1132f)는 베이스 면(1132c)으로부터 제1커버(1131)를 향해 돌출된다. 돌출면(1132d)이 제1커버(1131)에 밀착되는 것과 달리, 돌기부(1132f)는 제1커버(1131)에 밀착되는 것은 아니고 제1커버(1131)로부터 이격 상태를 유지한다. 다만, 돌기부(1132f)는 베이스 면(1132c)보다는 제1커버(1131)에 가깝게 형성된다.The
돌기부(1132f)는 온수 탱크(1130)의 입수관(1132a)과 출수관(1132b)을 향해 연장된다. 예를 들어 입수관(1132a)과 출수관(1132b)이 온수 탱크(1130)의 상하 방향을 기준으로 서로 반대쪽에 배치된 경우에는, 돌기부(1132f)도 입수관(1132a)과 출수관(1132b)을 향해 상하 방향으로 연장될 수 있다. 돌기부(1132f)는 제1커버(1131)를 향해 돌출 및 입수관(1132a)과 출수관(1132b)을 향해 연장되는 구조를 통해 제2커버(1132)의 강성(또는 강도)을 보강할 수 있다.The
돌기부(1132f)는 제2커버(1132)의 변형 방지 및 액체의 유량 분배(또는 액체의 유속 제어)를 위한 것이다. 앞서 설명한 바와 같이 온수 탱크(1130)의 내부 압력이 상승하게 되면, 제1커버(1131)뿐만 아니라 제2커버(1132)의 변형이 유발될 수 있다. 돌기부(1132f)는 돌출된 상태로 연장되는 구조를 통해 제2커버(1132)의 강성을 보강하므로, 온수 탱크(1130)의 내부 압력이 상승하게 되더라도 돌기부(1132f)에 의해 제2커버(1132)의 변형이 방지될 수 있다. 나아가 제2커버(1132)는 용접부(1132e)에 의해 제1커버(1131)에 강하게 결합되어 있으므로, 용접부(1132e)와 돌기부(1132f)에 의한 상호 작용에 의해 제2커버(1132)의 변형이 방지될 수 있다.The
돌기부(1132f)는 연장 방향에 교차하는 방향으로 일정한 폭을 갖는다. 예를 들어 돌기부(1132f)의 연장 방향은 입수관(1132a)과 출수관(1132b)을 향하는 상하 방향이다. 상기 연장 방향에 교차하는 방향은 좌우 방향이다. 돌기부(1132f)가 좌우 방향으로 일정한 폭을 가지므로, 입수관(1132a)을 통해 유입된 액체의 입자는 돌기부(1132f)에 충돌하게 된다. 그리고 충돌된 액체의 입자는 사방으로 퍼져나가게 된다. 이러한 매커니즘을 통해 돌기부(1132f)는 유량을 온수 탱크(1130) 내부의 곳곳으로 분배할 수 있다.The
나아가 돌기부(1132f)는 유속을 제어한다. 이를테면 돌기부(1132f)는 유동 저항을 형성하여 액체의 유속을 저하시킨다. 입수관(1132a)을 통해 온수 탱크(1130)로 유입된 액체의 입자는 돌기부(1132f)에 충돌함에 따라 유동에 저항을 받는다. 따라서 액체의 입자가 돌기부(1132f)에 충돌하면 액체의 유속은 저하된다. 이것은 액체가 온수 탱크(1130) 내에서 충분히 가열되지 못하고 과도하게 빨리 배출되는 것을 방지하기 위한 것이다. 돌기부(1132f)는 액체를 온수 탱크(1130)에 충분히 머무를 수 있도록 유속을 제어한다. 이에 따라 액체는 온수 탱크(1130) 내에서 충분히 가열될 수 있다.Furthermore, the
돌기부(1132f)는 제1돌기부(1132f1)와 제2돌기부(1132f2)를 포함한다.The
제1돌기부(1132f1)는 온수 탱크 조립체(1130)의 입수관(1132a)과 출수관(1132b)을 향해 연장된다. 제1돌기부(1132f1)는 제2커버(1132)의 변형을 방지하기 위한 것이다. 제1돌기부(1132f1)는 제2돌기부(1132f2)보다 작은 폭을 가질 수 있다.The first protrusion 1132f1 extends toward the
제2돌기부(1132f2)는 제1돌기부(1132f1)의 연장 방향과 교차하는 방향으로 연장된다. 예를 들어 제1돌기부(1132f1)는 상하 방향으로 연장되며, 제2돌기부(1132f2)는 상기 상하 방향에 교차되는 좌우 방향으로 연장된다.The second protrusion 1132f2 extends in a direction crossing the extending direction of the first protrusion 1132f1. For example, the first protrusion 1132f1 extends in the vertical direction, and the second protrusion 1132f2 extends in the horizontal direction intersecting the vertical direction.
제2돌기부(1132f2)의 좌우 연장 길이는 제1돌기부(1132f1)의 폭보다 길다. 이것은 제2돌기부(1132f2)가 제2커버(1132)의 유량의 분배와 유속의 제어를 위한 구성이기 때문이다. 온수 탱크(1130)에서 가열될 액체를 분산하기 위해서는 제2돌기부(1132f2)가 액체의 입자와 충돌할 수 있어야 한다. 제2돌기부(1132f2)의 연장 길이는 액체 입자와의 충돌 면적을 제공하도록 제1돌기부(1132f1)의 폭보다 길게 형성된다. 그리고 제2돌기부(1132f2)는 충돌 면적 제공을 위해 제1돌기부(1132f1)에 비해 상대적으로 제1커버(2131)에 더 가깝게 돌출될 수 있다.The left and right extension lengths of the second protrusion 1132f2 are longer than the width of the first protrusion 1132f1. This is because the second projection 1132f2 is configured to distribute the flow rate of the
제2돌기부(1132f2)는 제1돌기부(1132f1)의 양 단부에 각각 형성될 수 있다. 도 5에서 제1돌기부(1132f1)의 양 단부를 각각 제1단부와 제2단부라고 하면, 제1단부는 입수관(1132a)에 가깝게 배치되고, 제2단부는 출수관(1132b)에 가깝게 배치된다. 제2돌기부(1132f2)는 제1돌기부(1132f1)의 제1단부와 제2단부에 각각 형성될 수 있으며, 상기 제1단부와 제2단부 사이에 형성될 수도 있다.The second protrusions 1132f2 may be formed at both ends of the first protrusions 1132f1, respectively. In FIG. 5, when both ends of the first protrusion 1132f1 are referred to as a first end and a second end, respectively, the first end is disposed close to the
온수 탱크(1130)는 제1돌기부(1132f1)와 제2돌기부(1132f2)를 복수로 구비할 수 있다. 복수의 제2돌기부(1132f2) 중 적어도 일부는 입수관(1132a)을 통해 유입된 액체 또는 출수관(1132b)을 통해 배출될 액체와 접촉하도록 배치된다. 액체와의 접촉은 액체 입자와의 충돌을 의미한다. 이러한 제2돌기부(1132f2)의 구조를 통해 유량 분배 및 유속 제어가 이루어질 수 있다.The
복수의 제2돌기부(1132f2) 중 제1돌기부(1132f1)의 제1단부(입수관(1132a) 쪽 단부)에 형성되는 것들은 유량의 분배와 유속의 제어를 위한 것이다. 입수관(1132a)을 통해 온수 탱크(1130) 내부로 유입된 액체 입자는 제2돌기부(1132f2)와 충돌하여 액체의 유량은 사방으로 퍼지게 된다. 이에 따라 액체가 온수 탱크(1130) 내에서 충분히 가열될 수 있다.Among the plurality of second protrusions 1132f2, those formed at the first end (end of the
복수의 제2돌기부(1132f2) 중 제1돌기부(1132f1)의 제2단부(출수관(1132b) 쪽 단부)에 형성되는 것들은 유속의 제어를 위한 것이다. 유속의 제어에 의해 액체가 온수 탱크(1130)로부터 배출되기 전에 서로 혼합되면, 균일한 온도 범위의 온수가 제공될 수 있다.Among the plurality of second protrusions 1132f2, those formed at the second end (end of the
제1돌기부(1132f1)와 제2돌기부(1132f2)는 프레스 가공에 의해 일체로 형성될 수 있다. 베이스 면(1132c)을 갖는 제2커버(1132)에 제1돌기부(1132f1)의 연장 방향과 제2돌기부(1132f2)의 연장 방향을 고려하여 프레스 가공을 하면 제1돌기부(1132f1)와 제2돌기부(1132f2)는 베이스 면(1132c)과 함께 일체로 형성된다. 돌출면(1132d)도 프레스 가공에 의해 형성될 수 있기 때문에 돌기부(1132f)와 돌출면(1132d)은 1회의 프레스 가공에 의해 동시에 형성될 수 있다.The first protrusion 1132f1 and the second protrusion 1132f2 may be integrally formed by press working. When the press processing is performed considering the extension direction of the first protrusion 1132f1 and the extension direction of the second protrusion 1132f2 to the
제1돌기부(1132f1), 제2돌기부(1132f2) 및 용접부(1132e)의 위치와 수는 선택적으로 변경될 수 있다. 돌기부(1132f)의 위치는 특별히 한정되지 않는다. 돌기부(1132f)는 온도 센서(1181)와 중첩되는 위치에 형성되더라도 무방하다.The positions and numbers of the first protrusions 1132f1, the second protrusions 1132f2, and the
워킹 코일(1140)은 온수 탱크(1130)의 일측에 배치된다. 워킹 코일(1140)과 온수 탱크(1130)는 이격된 위치에서 서로 마주보도록 배치된다. 도 5를 참조하면 워킹 코일(1140)는 제1커버(1131)의 외면(外面)을 마주보는 위치에 배치되는 것으로 설명될 수 있다. 설명의 편의를 위해 제1커버(1131)의 두 면 중 제2커버(1132)를 바라보는 면을 내면(內面)으로 구분하고, 워킹 코일(1140)을 바라보는 면을 외면으로 구분하였다. 따라서 온수 탱크(1130)의 일측이란 제1커버(1131)의 외면을 마주보는 위치에 해당한다.The working
워킹 코일(1140)은 환형으로 감긴 도선에 의해 형성된다. 워킹 코일(1140)은 단일 가닥 또는 여러 가닥의 구리 또는 기타 도선으로 이루어진다. 워킹 코일(1140)이 여러 가닥의 도선으로 이루어지는 경우 각각의 가닥들은 절연되어 있다.The working
워킹 코일(1140)은 상기 워킹 코일(1140)에 인가되는 전류에 의해 자기장 또는 자기력선을 형성한다. 제1커버(1131)는 워킹 코일(1140)에 의해 형성되는 자기력선에 영향을 받아 열을 발생시킨다.The working
온수 탱크(1130)는 워킹 코일(1140)에 의해 유도 가열되기 때문에, 워킹 코일(1140)과 온수 탱크(!130) 사이의 일정한 간격 유지는 유도 가열의 제어를 위해 매우 중요하다. 스페이서(1151, 1152)는 워킹 코일(1140)과 온수 탱크(1130) 사이의 일정한 간격을 유지하도록 워킹 코일(1140)과 온수 탱크(1130) 사이에 배치된다.Since the
스페이서(1151, 1152)는 다음의 여섯 가지 조건을 만족할 수 있어야 한다.The
*첫 번째 조건은, 스페이서(1151, 1152)가 온수 탱크(1130)와 워킹 코일(1140)에 의해 압착되더라도 스페이서(1151, 1152)가 워킹 코일(1140)과 온수 탱크(1130) 사이의 일정한 간격을 유지할 수 있어야 한다는 것이다. 유도 가열을 정확하게 제어하기 위해서는 온수 탱크(1130)와 워킹 코일(1140) 사이의 간격이 일정하게 유지되어야 함을 앞서 설명한 바 있다. 스페이서(1151, 1152)가 온수 탱크(1130)와 워킹 코일(1140) 사이에 배치된 상태에서, 스페이서(1151, 1152)의 일면이 온수 탱크(1130)에 밀착되고 스페이서(1151, 1152)의 타면이 워킹 코일(1140)에 밀착되면, 온수 탱크(1130)와 워킹 코일(1140) 사이의 간격은 스페이서(1151, 1152)의 두께에 의해 결정된다.* In the first condition, even if the
만일 스페이서(1151, 1152)가 온수 탱크(1130)와 워킹 코일(1140)에 의해 압착되어 탄성 변형된다면, 스페이서(1151, 1152)의 두께는 압착되기 전보다 얇아질 것이며, 온수 탱크(1130)와 워킹 코일(1140) 사이의 간격은 일정하게 유지될 수 없다. 따라서 스페이서(1151, 1152)는 온수 탱크(1130)와 워킹 코일(1140)에 의해 압착되더라도 변형을 일으키지 않고 원래의 두께를 유지할 수 있어야 한다.If the
스페이서(1151, 1152)가 적절한 강도를 가지면, 온수 탱크(1130)와 워킹 코일(1140)에 의해 압착되더라도 탄성 변형을 일으키기 않고, 원래의 두께를 유지할 수 있다. 따라서 스페이서(1151, 1152)의 첫 번째 조건은 온수 탱크(1130)와 워킹 코일(1140)에 의한 압착에도 변형을 일으키지 않는 강도를 가져야 한다는 것과 같은 의미다.If the
두 번째 조건은, 스페이서(1151, 1152)가 온수 탱크(1130)와 워킹 코일(1140) 사이의 전기적 절연을 유지할 수 있어야 한다는 것이다. 유도 가열을 위해 워킹 코일(1140)에는 전류가 인가된다. 그런데 워킹 코일(1140)에 인가된 전류가 온수 탱크(1130)로 전도되면, 온수 탱크(1130)의 유도 가열에 영향을 일으키게 된다. 유도 가열은 금속의 전기적 저항에 의해 발생된 줄열(joule heating)을 이용한 가열이기 때문이다.The second condition is that the
온수 탱크(1130)와 워킹 코일(1140) 사이의 전기적 절연이 유지되지 않으면, 온수 탱크(1130)의 유도 가열이 정확하게 제어되기 어렵다. 스페이서(1151, 1152)는 온수 탱크(1130)와 워킹 코일(1140) 사이에 배치되기 때문에 스페이서(1151, 1152)가 전기적 절연체로 이루어져야 한다.If electrical insulation between the
세 번째 조건은, 스페이서(1151, 1152)가 온수 탱크(1130)와 워킹 코일(1140) 사이의 열전달을 억제할 수 있어야 한다는 것이다. 워킹 코일(1140)에 전류가 흐르면 워킹 코일(1140)은 발열하고, 워킹 코일(1140)에 의해 유도 가열된 온수 탱크(1130)도 발열하기 때문에 두 발열체에 의한 과발열로 인해 화재의 위험이 있을 수 있다.The third condition is that the
또한 유도 가열 모듈(1100, 도 4 참조)은 온도 센서(1181)에서 측정되는 온도에 근거하여 제어된다. 온도 센서(1181)가 너무 많은 요소에 영향을 받게 되면 유도 가열 모듈의 정확한 제어가 점점 어려워지므로, 유도 가열 모듈(1100)이 정확하게 제어되기 위해서는 온도 센서(1181)에 영향을 미치는 요소가 가급적 적은 것이 바람직하다.In addition, the induction heating module 1100 (see FIG. 4) is controlled based on the temperature measured by the
*그런데 온수 탱크(1130)와 워킹 코일(1140) 사이의 열전달이 억제되지 않으면 온도 센서(1181)에서 측정되는 온도에 영향을 미치는 요소가 많아지기 때문에 유도 가열 모듈(1100)의 정확한 제어를 점점 어렵게 만든다. 스페이서(1151, 1152)는 온수 탱크(1130)와 워킹 코일(1140) 사이에 배치되기 때문에 스페이서(1151, 1152)가 온수 탱크(1130)와 워킹 코일(1140)의 열전도를 억제할 수 있어야 한다.* However, if the heat transfer between the
네 번째 조건은, 스페이서(1151, 1152)가 내열성을 갖는 난연재로 이루어져야 한다는 것이다. 스페이서(1151, 1152)는 워킹 코일(1140)과 온수 탱크(1130) 사이에 배치되며, 워킹 코일(1140)과 온수 탱크(1130)의 온도는 150℃ 내외까지 상승하기 때문에 스페이서(1151, 1152)가 내열성을 갖지 못한다면 열에 의해 손상될 수 있다.The fourth condition is that the
따라서 스페이서(1151, 1152)는 가열된 워킹 코일(1140)과 유도 가열된 온수 탱크(1130)의 온도보다 높은 온도에서도 손상되지 않도록 적어도 200~300℃까지 내열성을 갖는 난연재로 이루어져야 한다.Therefore, the
첫 번째 내지 네 번째 조건을 만족하도록 스페이서(1151, 1152)는 운모(mica), 석영(quartz) 또는 유리(glass) 중 어느 하나로 형성될 수 있다. 운모, 석영 및 유리는 온수 탱크(1130)와 워킹 코일(1140)에 의해 압착되더라도 스스로의 두께를 유지할 수 있으며, 전기적 절연성을 갖고, 열전도를 억제할 수 있으며, 충분한 내열성을 갖는 난연재다.To satisfy the first to fourth conditions, the
또한 두 번째 내지 네 번째 조건을 만족하도록 스페이서(1151, 1152)는 실리콘(Si)으로 형성될 수 있다. 실리콘은 전기적 절연성을 갖고, 열전도를 억제할 수 있으며, 충분한 내열성을 갖는 난연재다. 그러나 실리콘은 온수 탱크(1130)와 워킹 코일(1140)에 의해 과도하게 압착되었을 때 탄성 변형을 일으킬 수 있다. 따라서 실리콘은 온수 탱크(1130)와 워킹 코일(1140)에 의해 과도하게 압착되지 않는 경우에만 스페이서(1151, 1152)의 소재로 이용될 수 있다.In addition, the
스페이서(1151, 1152)의 다섯 번째 조건은, 스페이서(1151, 1152)가 워킹 코일(1140)의 양단을 통과시킬 수 있는 구조를 가져야 한다는 것이다. 워킹 코일(1140)은 환형으로 도선에 의해 형성되며, 워킹 코일(1140)은 일단은 환형의 내측에서 연장되어 유도 가열 인쇄회로기판(1110, 도 4 참조)에 연결되고, 워킹 코일(1140)의 타단은 환형의 외측에서 연장되어 유도 가열 인쇄회로기판에 연결된다.The fifth condition of the
스페이서(1151, 1152)는 워킹 코일(1140)에 대응되도록 환형으로 형성되고, 워킹 코일(1140)의 양단을 통과시킬 수 있도록 제1부분(1151a, 1152a)과 제2부분(온수 탱크에 의해 가려짐, 1152b)을 포함한다. 제1부분(1151a, 1152a)은 환형의 어느 일부를 형성한다. 제2부분(1152b)은 환형의 나머지 일부를 형성하며, 제1부분(1151a, 1152a)보다 좁은 폭을 갖는다. 특히 제2부분(1152)은 환형의 내측과 외측에서 각각 리세스 되어 제1부분(1151a, 1152a)보다 좁은 폭을 갖는다. 이에 따라 환형의 내측과 외측에 각각 워킹 코일(1140)의 양단이 통과할 수 있는 틈이 형성된다. 환형의 내측으로 워킹 코일(1140)의 일단이 통과하게 되고, 환형의 외측으로 워킹 코일(1140)의 타단이 통과하게 된다.The
스페이서(1151, 1152)의 여섯 번째 조건은, 스페이서(1151, 1152)가 워킹 코일(1140)의 냉각을 구현할 수 있는 구조로 이루어져야 한다. 유도 가열에 의해 온수 탱크(1130)에서 발생된 열은 온수 탱크(1130)를 통과하는 액체에 전달되기 때문에, 온수 탱크(1130)는 액체에 의한 냉각이 이루어진다. 이에 반해 워킹 코일(1140)은 스페이서(1151, 1152)와 후술할 절연체(1153)에 밀착되며, 스페이서(1151, 1152)와 절연체(1153)는 열전달을 억제하도록 이루어지기 때문에, 워킹 코일(1140)은 공기를 제외하고는 열을 전달할 대상이 없다.The sixth condition of the
따라서 워킹 코일(1140)의 냉각을 위해서는 워킹 코일(1140)과 공기가 충분히 접촉할 수 있는 면적이 제공되어야 한다. 스페이서(1151, 1152)는 온수 탱크(1130)과 워킹 코일(1140)을 서로 마주보게 하는 홀(1151c, 1152c)을 구비한다. 홀(1151c, 1152c)은 제1부분(1151a, 1152a)에 형성될 수 있으며, 복수로 구비되어 환형의 스페이서(1151, 1152)를 따라 서로 이격되게 형성될 수 있다.Therefore, in order to cool the working
워킹 코일(1140)과 온수 탱크(1130)는 이격된 위치에서 서로 마주보도록 배치되므로, 홀(1151c, 1152c)을 통해 워킹 코일(1140)과 온수 탱크(1130)는 서로 마주보게 될 수 있다. 워킹 코일(1140)은 온수 탱크(1130)로부터 이격되어 있으므로, 워킹 코일(1140)은 홀(1151c, 1152c)을 통해 공기와 접촉될 수 있다. 따라서 홀(1151c, 1152c)은 워킹 코일(1140)과 공기의 접촉 면적을 형성하는 구성이다.Since the working
다시 도 2를 참조하면, 정수기(1000)는 팬(1033)을 구비하며, 팬(1033)에서 생성된 바람은 정수기(1000) 내부의 공기 유동을 촉진한다. 따라서 팬(1033)에 의해 생성된 바람이 홀(1151c, 1152c)을 통해 워킹 코일(1140)에 전달되면, 공기의 자연 대류에 비해 워킹 코일(1140)의 냉각이 더욱 촉진될 수 있다.Referring to FIG. 2 again, the
스페이서(1151, 1152)는 복수로 구비될 수 있다. 예를 들어 온수 탱크(1130)와 워킹 코일(1140) 사이의 간격이 3.5mm로 일정하게 유지되어야 한다면, 1mm의 두께를 갖는 스페이서(1151) 3장과, 0.5mm의 두께를 갖는 스페이서(1152) 1장이 온수 탱크(1130)와 워킹 코일(1140) 사이에 배치될 수 있다. 온수 탱크(1130)와 워킹 코일(1140) 사이의 간격이 스페이서(1151, 1152)의 두께에 의해 결정되도록 복수의 스페이서(1151, 1152)는 서로 밀착되도록 배치되어야 한다.The
절연체(1153)는 워킹 코일(1140)을 기준으로 스페이서(1151, 1152)의 반대쪽에 배치된다. 절연체(1153)는 워킹 코일(1140)과 후술하는 브라켓(1160) 사이에 배치되는 것으로 이해될 수도 있다. 절연체(1153)도 스페이서(1151, 1152)와 마찬가지로 다음의 다섯 가지 조건을 만족하여야 한다. 다만, 스페이서(1151, 1152)처럼 간격을 유지할 수 있어야 하는 조건은 절연체(1153)에는 해당되지 않는다.The
첫 번째 조건은, 절연체(1153)가 워킹 코일(1140)과 코어(1170) 사이의 전기적 절연을 유지할 수 있어야 한다는 것이다. 코어(1170)는 전류의 손실을 억제하기 위한 것이며, 코어(1170)의 소재로는 일반적으로 페라이트(ferrite)가 사용된다. 따라서 워킹 코일(1140)에 인가된 전류가 전도성 소재인 페라이트에 전달되면 코어(1170)의 정상적인 작동을 방해할 수 있다. 따라서 절연체(1153)는 전기적 절연을 유지할 수 있는 소재로 이루어져야 한다.The first condition is that the
두 번째 조건은, 절연체(1153)가 워킹 코일(1140)과 브라켓(1160) 사이의 열전달을 억제할 수 있어야 한다는 것이다. 브라켓(1160)은 사출에 의해 형성될 수 있으며, 사출물은 일반적으로 열에 약하다. 따라서 워킹 코일(1140)에서 발생하는 열이 브라켓(1160)으로 전달되면 브라켓(1160)이 열에 의해 손상될 수 있다. 브라켓(1160)이 열에 의해 손상되는 것을 방지하도록 절연체(1153)는 열전달을 억제할 수 있는 소재로 이루어져야 한다.The second condition is that the
세 번째 조건은, 절연체(1153)가 내열성을 갖는 난연재로 이루어져야 한다는 것이다. 절연체(1153)가 내열성을 갖는 난연재로 이루어져야 하는 이유는 스페이서(1151, 1152)가 내열성을 갖는 난연재로 이루어져야 하는 이유와 동일하다.The third condition is that the
첫 번째 내지 세 번째 조건을 만족하도록 절연체(1153)는 운모(mica), 석영(quartz), 유리(glass) 또는 실리콘(Si) 중 어느 하나로 형성될 수 있다. 운모, 석영, 유리 및 실리콘은 전기적 절연성을 갖고, 열전도를 억제할 수 있으며, 충분한 내열성을 갖는 난연재다. 특히 절연체(1153)는 간격 유지와 관련된 조건을 필요로 하지 않으므로, 실리콘이 제약없이 절연체(1153)의 소재로 이용될 수 있다.The
절연체(1153)의 네 번째 조건은, 절연체(1153)가 워킹 코일(1140)의 양단을 통과시킬 수 있는 구조를 가져야 한다는 것이다. 절연체(1153)가 워킹 코일(1140)의 양단을 통과시킬 수 있는 구조를 가져야 하는 것은 스페이서(1151, 1152)가 워킹 코일(1140)의 양단을 통과시킬 수 있는 구조를 가져야 하는 것과 동일하다. 이에 따라 절연체(1153)는 실질적으로 스페이서(1151, 1152)와 동일한 구조를 가질 수 있다.The fourth condition of the
절연체(1153)는 워킹 코일(1140)에 대응되도록 환형으로 형성되고, 워킹 코일(1140)의 양단을 통과시킬 수 있도록 제1부분(1153a)과 제2부분(1153b)을 포함한다. 제1부분(1153a)은 환형의 어느 일부를 형성한다. 제2부분(1153b)은 환형의 나머지 일부를 형성하며, 제1부분(1153a)보다 좁은 폭을 갖는다. 특히 제2부분(1153b)은 환형의 내측과 외측에서 각각 리세스 되어 제1부분(1153a)보다 좁은 폭을 갖는다. 이에 따라 환형의 내측과 외측에 각각 워킹 코일(1140)의 양단이 통과할 수 있는 틈이 형성된다. 환형의 내측으로 워킹 코일(1140)의 일단이 통과하게 되고, 환형의 외측으로 워킹 코일(1140)의 타단이 통과하게 된다.The
절연체(1153)의 다섯 번째 조건은, 절연체(1153)가 워킹 코일(1140)의 냉각을 구현할 수 있는 구조로 이루어져야 한다. 절연체(1153)가 워킹 코일(1140)의 냉각을 구현할 수 있는 구조로 이루어져야 하는 이유는 스페이서(1151, 1152)가 워킹 코일(1140)의 냉각을 구현할 수 있는 구조로 이루어져야 하는 이유와 동일하다. 절연체(1153)에도 스페이서(1151, 1152)와 마찬가지로 워킹 코일(1140)과 공기의 접촉을 위한 홀(1153c)이 형성된다.The fifth condition of the
이상에서 설명한 바에 의하면 스페이서(1151, 1152)와 절연체(1153)는 간격 유지 조건을 제외하고 실질적으로 동일한 조건을 만족해야 한다. 따라서 스페이서(1151, 1152)와 절연체(1153)는 동일한 소재로 이루어지고 동일한 구조를 가질 수 있다. 스페이서(1151, 1152)와 절연체(1153)라는 명칭도 서로 구분하기 위한 것일 뿐, 그 명칭에 의해 서로 전혀 다른 구성으로 구분되어야 하는 것은 아니다.As described above, the
브라켓(1160)은 온수 탱크(1130)를 정수기(1000, 도 1 참조) 본체의 내부에 고정하도록 형성된다. 다시 도 4를 참조하면, 메인 인쇄회로기판 커버(1087)의 전면과 브라켓(1160)에는 서로 대응되는 보스부(1087a, 1087b)(1162a, 1162b)가 형성된다. 서로 대응되기만 한다면 두 보스부(1087a, 1087b)(1162a, 1162b)의 위치는 설계에 따라 변경될 수 있으며, 도 4와 도 5를 비교하면 보스부의 위치가 변경되었음을 알 수 있다. 스크류(미도시)가 브라켓(1160)의 보스부(1162a, 1162b)를 통과해 메인 인쇄회로기판 커버(1087)의 보스부(1087a, 1087b)에 삽입되면, 브라켓(1160)이 정수기(1000) 본체의 내부에 고정된다. 브라켓(1160)은 온수 탱크(1130)과 결합되므로, 브라켓(1160)은 온수 탱크(1130)를 정수기(1000) 본체의 내부에 고정할 수 있다.The
다시 도 5를 참조하면, 브라켓(1160)과 온수 탱크(1130)는 스페이서(1151, 1152), 워킹 코일(1140) 및 절연체(1153)를 사이에 두고 서로 결합된다. 브라켓(1160)에는 온수 탱크(1130)의 테두리와 대응되는 위치에 복수의 보스부(1161a, 1161b, 1161c, 1161d)가 형성된다. 복수의 보스부(1161a, 1161b, 1161c, 1161d)는 온수 탱크(1130)의 테두리와 대응되는 라인을 따라 서로 이격되게 배치된다. 온수 탱크(1130)와 브라켓(1160)은 보스부(1161a, 1161b, 1161c, 1161d)에 삽입되는 스크류(1800a, 1800b, 1800c, 1800d)에 의해 서로 결합된다.Referring to FIG. 5 again, the
스크류(1800a, 1800b, 1800c, 1800d)에 의해 온수 탱크(1130)와 브라켓(1160)이 서로 결합된 상태에서 각 스크류(1800a, 1800b, 1800c, 1800d)의 헤드와 각 보스부(1161a, 1161b, 1161c, 1161d) 사이에 온수 탱크(1130)의 테두리가 배치되게 된다. 이 구조에 의해 온수 탱크(1130)는 스크류 체결을 위한 별도의 홀을 구비하지 않고도 브라켓(1160)에 결합될 수 있다.The heads of each
브라켓(1160)과 온수 탱크(1130)가 스크류(1800a, 1800b, 1800c, 1800d)에 의해 결합되면 스페이서(1151, 1152)의 양면은 온수 탱크(1130)와 워킹 코일(1140)에 의해 압착된다. 그럼에도 불구하고 브라켓(1160)과 온수 탱크(1130)가 스크류(1800a, 1800b, 1800c, 1800d)에 의해 결합될 수 있는 이유는 스페이서(1151, 1152)가 온수 탱크(1130)과 워킹 코일(1140) 사이의 간격을 일정하게 유지시킬 수 있기 때문이다.When the
만일 브라켓(1160)과 온수 탱크(1130)가 스크류(1800a, 1800b, 1800c, 1800d)에 의해 결합되는 과정에서 온수 탱크(1130)와 워킹 코일(1140) 사이의 간격이 좁아진다면, 유도 가열이 정확하게 제어될 수 없다. 그러나 스페이서(1151, 1152)는 온수 탱크(1130)와 워킹 코일(1140) 사이의 간격을 일정하게 유지시킬 수 있으므로, 브라켓(1160)과 온수 탱크(1130)가 스크류(1800a, 1800b, 1800c, 1800d)에 의해 결합될 수 있으며, 유도 가열의 제어에 문제가 발생하지 않는다.If the
브라켓(1160)은 베이스부(1168)를 구비하며, 앞서 설명한 브라켓의 두 보스부(1161a, 1161b, 1161c, 1161d)(1162a, 1162b)는 베이스부(1168)의 테두리를 따라 형성된다. 복수의 온수 탱크 지지부(1163)는 온수 탱크(1130)를 지지하도록 베이스부(1168)에서 돌출된다. 온수 탱크 지지부(1163)는 온수 탱크(1130)의 테두리와 대응되는 라인을 따라 서로 이격되게 형성될 수 있다. 온수 탱크(1130)의 중심으로부터의 거리를 기준으로 온수 탱크(1130)의 테두리를 외측과 내측으로 구분하면, 외측은 스크류(1800a, 1800b, 1800c, 1800d)에 의해 보스부(1161a, 1161b, 1161c, 1161d)에 고정되고, 내측은 온수 탱크 지지부(1130)에 의해 지지된다.The
브라켓(1160)은 방사형으로 배치되는 복수의 코어 수용부(1164)를 구비한다. 코어 수용부(1164)는 절연체(1153)로부터 멀어지는 방향으로 리세스되어 형성된다. 복수의 코어(1170)는 각각의 코어 수용부(1164)에 삽입된다.The
코어(1170)는 전류의 손실을 억제하기 위한 것으로, 자기력선의 차폐막 역할을 한다. 코어(1170)의 소재로는 페라이트(ferrite)가 사용될 수 있음을 앞서 설명한 바 있다.The
온도 센서(1181)는 온수 탱크(1130)에서 가열되는 액체의 온도를 측정하도록 이루어진다. 브라켓(1160)에는 온도 센서(1181)를 수용하도록 형성되는 온도 센서 수용부(1165)가 형성되며, 온도 센서(1181)는 상기 온도 센서 수용부(1165)에 삽입된다. 환형을 갖는 워킹 코일(1140)의 중심은 비어 있으므로, 온도 센서(1181)는 상기 워킹 코일(1140)의 중심(또는 환형의 내측)에 배치될 수 있다.The
온도 센서(1181)에 의해 측정된 온도는 도 4에서 설명한 유도 가열 인쇄회로기판(1110)과 제어 모듈(1080)에 제공된다. 유도 가열 인쇄회로기판(1110)과 제어 모듈(1080)은 온도 센서(1181)에서 측정된 액체의 온도를 기초로 추가 가열 또는 가열 정지 여부를 결정한다. 바꾸어 말하면, 유도 가열 모듈(1100)의 출력은 온도 센서(1181)에서 측정된 온도를 기초하여 결정될 수 있다. 온도 센서(1181)로는 서미스터(thermistor)가 사용될 수 있다.The temperature measured by the
과열 방지 퓨즈(1182)는 온수 탱크(1130) 내의 액체가 지나치게 많이 과열되었을 때 유도 가열 모듈(1100)의 전원을 차단하는 안전 장치다. 온도 센서(1181)가 복귀형 센서로 분류되는 것과 달리 과열 방지 퓨즈(1182)는 한 번 작동하면 교체되어야 하기 때문에 비복귀형 센서로 분류될 수 있다.The
브라켓(1160)에는 과열 방지 퓨즈(1182)를 수용하도록 형성되는 과열 방지 퓨즈 수용부(1166)가 형성되며, 과열 방지 퓨즈(1182)는 상기 과열 방지 퓨즈 수용부(1166)에 삽입된다. 과열 방지 퓨즈(1182)도 온도 센서(1181)와 마찬가지로 워킹 코일(1140)의 중심(또는 환형의 내측)에 배치될 수 있다. 도 5를 참조하며, 온도 센서(1181)와 과열 방지 퓨즈(1182)는 온도 센서 커버(1183)의 일측에 배치되고, 제1커버(1131)는 온도 센서 커버(1183)의 타측에 배치될 수 있다.The
브라켓(1160)은 위치 고정부(1167)를 구비한다. 위치 고정부(1167)는 워킹 코일(1140)의 내측 둘레를 지지하도록 워킹 코일(1140), 스페이서(1151, 1152) 및 절연체의 위치를 고정하도록 환형의 내측 둘레에 대응되는 라인을 따라 베이스부(1168)로부터 돌출되어 형성된다. 위치 고정부(1167)는 복수로 구비될 수 있으며, 서로 이격되게 배치될 수 있다.The
브라켓(1160)의 위치 고정부(1167)에 의해 워킹 코일(1140), 스페이서(1151, 1152) 및 절연체(1153)의 위치가 고정되며, 상기 워킹 코일(1140), 스페이서(1151, 1152) 및 절연체(1153)는 브라켓(1160)에 결합된 온수 탱크(1130)에 의해 서로 밀착된다. 따라서 추가 고정 구조나 실런트가 없더라도 상기 워킹 코일(1140), 스페이서(1151, 1152) 및 절연체(1153)의 위치는 고정될 수 있으며, 온수 탱크(1130)와 워킹 코일(1140) 사이의 간격이 일정하게 유지될 수 있다.The position of the working
나아가 실런트에 의한 결합 구조는 공정에 따라 작업 결과가 다르게 나타날 수 있으며, 작업 결과에 따라 유도 가열의 제어에 어려움이 있을 수 있다. 따라서 실런트에 의한 결합 구조는 대량 생산이 불리한 구조다. 그러나 본 발명과 같이 스크류(1800a, 1800b, 1800c, 1800d)에 의한 결합 구조는 공정에 따라 작업 결과가 다르게 나타나지 않으므로, 대량 생산에 유리한 구조다.Furthermore, the bonding structure by the sealant may have different work results depending on the process, and it may be difficult to control induction heating according to the work result. Therefore, the coupling structure by the sealant is a structure in which mass production is disadvantageous. However, the coupling structure by screws (1800a, 1800b, 1800c, 1800d) as in the present invention is advantageous for mass production since the results of the operation do not differ depending on the process.
실리콘 커버(1183)는 온도 센서(1181)와 과열 방지 퓨즈(1182)를 덮도록 브라켓(1160)에 결합된다. 실리콘 커버(1183)는 위치 고정부(1167)의 외주면을 감싸도록 이루어질 수 있다. 온도 센서(1181)의 원활한 온도 측정을 위해 실리콘 커버(1183)는 홀을 구비할 수 있다.The
도 6은 유도 가열 모듈(1100, 도 4 참조)의 결합 구조를 보이기 위해 도 5의 라인 A-A에 대응되는 구성을 보인 측면도다.FIG. 6 is a side view showing a configuration corresponding to line A-A of FIG. 5 to show the coupling structure of the induction heating module 1100 (see FIG. 4).
도 6에는 온수 탱크(1130)의 테두리가 스크류(1800a)에 의해 브라켓(1160)의 보스부(1161a)에 결합된 구조가 도시되어 있다. 온수 탱크(1130)의 테두리는 브라켓(1160)의 보스부(1161a)와 대응되는 위치에 형성된다. 스크류(1800a)가 보스부(1161a)에 체결되면, 스크류(1800a)의 헤드와 보스부(1161a) 사이에 온수 탱크(1130)의 테두리가 배치된다.6 shows a structure in which the rim of the
도 6을 참조하면, 온수 탱크(1130)의 제1커버(1131)와 브라켓(1160)의 베이스부(1168) 사이에는 절연체(1153), 워킹 코일(1140) 및 스페이서(1151, 1152)가 순차적으로 적층된다. 브라켓(1160)의 베이스부(1168), 절연체(1153), 워킹 코일(1140), 스페이서(1151, 1152) 및 제1커버(1131)는 서로 밀착되도록 배치된다. 스페이서(에 의해 워킹 코일(1140)과 온수 탱크(1130) 사이의 간격(G)이 일정하게 유지되는 구성을 도 6에서 확인할 수 있다.Referring to FIG. 6, between the
도 6에서 설명되지 않은 출수관(1132b), 제2커버(1132), 온수 탱크 지지부(1163), 위치 고정부(1167), 코어 수용부(1164), 코어(1170)는 도 5의 설명으로 갈음한다.The
이상에서 설명된 정수기는 상기 설명된 실시예들의 구성과 방법에 한정되는 것이 아니라, 상기 실시예들은 다양한 변형이 이루어질 수 있도록 각 실시예들의 전부 또는 일부가 선택적으로 조합되어 구성될 수도 있다.The water purifier described above is not limited to the configuration and method of the above-described embodiments, and the above embodiments may be configured by selectively combining all or part of each embodiment so that various modifications can be made.
Claims (14)
수용 공간을 형성하는 브라켓;
상기 브라켓의 수용 공간에 배치되고, 중심부가 비워진 환형의 워킹 코일;
상기 워킹 코일과 대향하게 배치되며 금속 소재로 형성되는 평판 형상의 제1커버와, 상기 제1커버의 테두리에 결합되는 물의 유동 및 가열 공간을 형성하는 제2커버로 구성되어 상기 브라켓에 고정되는 온수 탱크; 및
상기 워킹 코일의 중공부에 배치되도록, 상기 브라켓에 의해 고정되는 온도 센서;를 포함하고,
상기 정수 장치는,
상기 온도 센서를 덮도록 형성되는 온도 센서 커버를 포함하고,
상기 온도 센서 커버는 탄성을 가지며,
상기 온도 센서 커버는 상기 온도 센서와 상기 제1커버를 서로 마주보게 하도록 홀을 구비하는 것을 특징으로 하는 정수 장치.The water purifier,
A bracket forming an accommodation space;
An annular walking coil disposed in an accommodation space of the bracket and having an empty center portion;
Hot water fixed to the bracket is composed of a first cover having a flat plate shape formed of a metallic material and facing the working coil, and a second cover forming a flow and heating space for water coupled to the rim of the first cover Tank; And
It includes; a temperature sensor fixed by the bracket so as to be disposed in the hollow portion of the working coil;
The water purification device,
It includes a temperature sensor cover formed to cover the temperature sensor,
The temperature sensor cover has elasticity,
The temperature sensor cover is a water purification device characterized in that it has a hole to face the temperature sensor and the first cover to each other.
상기 온수 탱크는 상기 워킹 코일에 의해 유도 가열되어 하부로부터 차오르는 물을 가열하도록 형성되고,
상기 온도 센서는 상기 온수 탱크에 차오르면서 가열되는 물의 온도를 측정하도록 배치되는 것을 특징으로 하는 정수 장치.According to claim 1,
The hot water tank is induction heated by the working coil and is formed to heat water rising from the bottom,
The temperature sensor is arranged to measure the temperature of the water heated while being filled in the hot water tank.
상기 온수 탱크는,
상기 제2커버의 하부에 결합되는 입수관; 및
상기 입수관과 높이차를 갖도록 상기 제2커버의 상부에 결합되는 출수관을 포함하고,
상기 온도 센서는 상기 입수관과 상기 출수관의 중간 높이에 대응되도록 설치되는 것을 특징으로 하는 정수 장치.According to claim 1,
The hot water tank,
An inlet pipe coupled to a lower portion of the second cover; And
It includes a water outlet pipe coupled to the upper portion of the second cover to have a height difference with the inlet pipe,
The temperature sensor is a water purifying device, characterized in that installed to correspond to the intermediate height of the inlet pipe and the outlet pipe.
상기 브라켓은 상기 온도 센서를 수용하도록 형성되는 온도 센서 수용부를 구비하고,
상기 온도 센서 수용부는 상기 브라켓의 일 면으로부터 상기 워킹 코일의 중공부를 향해 돌출되는 것을 특징으로 하는 정수 장치.According to claim 1,
The bracket has a temperature sensor accommodating portion formed to accommodate the temperature sensor,
The temperature sensor accommodating portion is a water purifying device, characterized in that protrudes from one surface of the bracket toward the hollow portion of the working coil.
상기 온도 센서 수용부는 상기 워킹 코일의 중공부를 향해 돌출되는 두 리브로 구성되고,
상기 온도 센서는 상기 두 리브 사이에 배치되는 것을 특징으로 하는 정수 장치.The method of claim 4,
The temperature sensor accommodating portion is composed of two ribs protruding toward the hollow portion of the working coil,
The temperature sensor is a water purification device, characterized in that disposed between the two ribs.
상기 브라켓은 상기 온도 센서를 마주보는 위치에 홀을 구비하는 것을 특징으로 하는 정수 장치.According to claim 1,
The bracket is a water purification device characterized in that it has a hole in a position facing the temperature sensor.
상기 온도 센서 커버는 상기 온도 센서와 상기 제1커버의 사이에 배치되는 것을 특징으로 하는 정수 장치.According to claim 1,
The temperature sensor cover is a water purification device, characterized in that disposed between the temperature sensor and the first cover.
상기 온도 센서와 상기 제1커버의 사이에 배치되어 상기 온도 센서를 덮는 제1부분; 및
상기 제1부분의 테두리에서 상기 브라켓을 향해 연장되고, 상기 온도 센서로부터 이격된 위치에서 상기 온도 센서를 감싸는 제2부분을 포함하는 절연체를 더 구비하는 것을 특징으로 하는 정수 장치.According to claim 1,
A first portion disposed between the temperature sensor and the first cover to cover the temperature sensor; And
A water purifying device further comprising an insulator extending from the rim of the first portion toward the bracket and surrounding the temperature sensor at a position spaced apart from the temperature sensor.
상기 온도 센서 커버는 실리콘 소재로 형성되는 것을 특징으로 하는 정수 장치.According to claim 1,
The temperature sensor cover is a water purification device, characterized in that formed of a silicon material.
상기 제2커버는,
상기 물의 유동 및 가열 공간을 형성하도록 상기 제1커버로부터 이격된 위치에서 상기 제1커버를 마주보도록 배치되는 베이스 면;
상기 베이스 면으로부터 상기 제2커버를 향해 돌출되는 돌출면; 및
상기 돌출면과, 상기 제1커버의 중앙부의 내측면을, 상호 용접 결합시키는 용접부를 포함하는 것을 특징으로 하는 정수 장치.According to claim 1,
The second cover,
A base surface disposed to face the first cover at a position spaced apart from the first cover to form a flow space and a flow of water;
A protruding surface protruding from the base surface toward the second cover; And
And a welding portion for welding the projecting surface and the inner surface of the central portion of the first cover to each other by welding.
상기 제2커버는 상기 베이스 면으로부터 상기 제1커버를 향해 돌출되는 돌기부를 더 포함하고,
상기 제1커버로부터 상기 돌기부의 이격 정도는 상기 베이스 면과 상기 돌출면의 사이인 것을 특징으로 하는 정수 장치.The method of claim 12,
The second cover further includes a protrusion protruding from the base surface toward the first cover,
The degree of separation of the projections from the first cover is a water purifying device, characterized in that between the base surface and the protruding surface.
상기 온수 탱크는,
상기 제2커버의 일측에 결합되는 입수관; 및
상기 제2커버의 타측에 결합되는 출구관을 포함하고,
상기 돌기부는,
상기 입수관과 상기 출구관을 향해 연장되는 제1돌기부; 및
상기 제1돌기부의 연장 방향과 교차하는 방향으로 연장되는 제2돌기부를 포함하는 것을 특징으로 하는 정수 장치.
The method of claim 13,
The hot water tank,
An inlet pipe coupled to one side of the second cover; And
It includes an outlet pipe coupled to the other side of the second cover,
The projection,
A first protrusion extending toward the inlet pipe and the outlet pipe; And
And a second protrusion extending in a direction intersecting the extending direction of the first protrusion.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020180044610A KR102112722B1 (en) | 2018-04-17 | 2018-04-17 | Induction heating module and water purifier having the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020180044610A KR102112722B1 (en) | 2018-04-17 | 2018-04-17 | Induction heating module and water purifier having the same |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020160055459A Division KR102423368B1 (en) | 2016-05-04 | 2016-05-04 | Induction heating module and water purifier having the same |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20180042198A KR20180042198A (en) | 2018-04-25 |
KR102112722B1 true KR102112722B1 (en) | 2020-05-19 |
Family
ID=62088847
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020180044610A KR102112722B1 (en) | 2018-04-17 | 2018-04-17 | Induction heating module and water purifier having the same |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR102112722B1 (en) |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20120138598A1 (en) * | 2009-02-18 | 2012-06-07 | Dominique Akel | Apparatus for instantly preparing hot water |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101637210B1 (en) * | 2012-11-02 | 2016-07-07 | 주식회사 은성산업 | A heating device that slim type |
KR20160001614A (en) * | 2014-06-26 | 2016-01-06 | 엘지전자 주식회사 | Home appliance |
-
2018
- 2018-04-17 KR KR1020180044610A patent/KR102112722B1/en active IP Right Grant
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20120138598A1 (en) * | 2009-02-18 | 2012-06-07 | Dominique Akel | Apparatus for instantly preparing hot water |
Also Published As
Publication number | Publication date |
---|---|
KR20180042198A (en) | 2018-04-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102423368B1 (en) | Induction heating module and water purifier having the same | |
US11014800B2 (en) | Induction heater and water dispenser | |
KR102637684B1 (en) | Induction heating module and water purifier having the same | |
EP2127477A1 (en) | Induction heater | |
JP2006202624A (en) | Induction heating cooker | |
KR102115187B1 (en) | Induction heating module and water purifier having the same | |
CN104903658A (en) | Heating apparatus for instantaneous water heating | |
KR102112722B1 (en) | Induction heating module and water purifier having the same | |
KR101552643B1 (en) | Heating device for instant warm water | |
KR102065520B1 (en) | Water purifier having enhanced fuse structure | |
KR102043952B1 (en) | Induction heating module and water purifier having the same | |
KR102043953B1 (en) | Induction heating module and water purifier having the same | |
KR101803876B1 (en) | Induction heating module | |
KR20180042197A (en) | Induction heating module and water purifier having the same | |
KR20210006259A (en) | Induction heating module having improved water heater tank shape | |
JP2017215084A (en) | Fluid heating device | |
KR102139357B1 (en) | Water purifier having overheating prevention mechanism | |
US20220234879A1 (en) | Liquid dispenser | |
KR102055440B1 (en) | Water purifier having improved fixing structure for water-cooled heat sink | |
CN108314098A (en) | Water purifier and water purifier boiler | |
KR101512346B1 (en) | vacuum insulating hot-woter tank | |
JP2013075617A (en) | Heating medium heating device and vehicular air conditioner | |
JP4987892B2 (en) | Air conditioner | |
JP7461435B2 (en) | Linear motor | |
KR100624655B1 (en) | Air conditioner |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A107 | Divisional application of patent | ||
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant |